research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
ADDENDA AND ERRATA
A correction has been published for this article. To view the correction, click here.

Crystal structure and Hirshfeld surface analysis of N-[(2-hy­dr­oxy­naphthalen-1-yl)(3-methyl­phen­yl)meth­yl]acetamide

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Synthèse de Molécules, d'Intérêts Biologiques, Département de Chimie, Université Mentouri-Constantine, 25000 Constantine, Algeria, and bLaboratoire de Cristallographie, Département de Physique, Université Mentouri-Constantine, 25000 Constantine, Algeria
*Correspondence e-mail: n_hamdouni@yahoo.fr

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 25 May 2018; accepted 7 June 2018; online 21 June 2018)

The title compound, C20H19NO2, is of inter­est as a precursor to biologically active substituted quinolines and related compounds. This compound crystallizes with two independent mol­ecules (A and B) in the asymmetric unit. The dihedral angles between mean planes of the methyl­phenyl ring and the naphthalene ring system are 78.32 (6) and 84.70 (6)° in mol­ecules A and B, respectively. In the crystal, the anti­ferroelectric packing of mol­ecules A and B is of an ABBAABB type along the b-axis direction. The crystal structure features N—H⋯O, O—H⋯O and weak C—H⋯O hydrogen bonds, which link the mol­ecules into infinite chains propagating along the b-axis direction.

1. Chemical context

1-Amino­alkyl-2-naphthols are used as bradycardiac (Dingermann et al., 2004[Dingermann, T., Steinhilber, D. & Folkers, G. (2004). Molecular Biology in Medicinal Chemistry. Wiley-VCH, Weinheim.]) and hypotensive agents (Shen et al., 1999[Shen, A. Y., Tsai, C. T. & Chen, C. L. (1999). Eur. J. Med. Chem. 34, 877-882.]). In addition, 1,3-oxazines possess pharmaceutical properties such as analgesic (Lesher et al., 1955[Lesher, G. Y. & Surrey, A. R. (1955). J. Am. Chem. Soc. 77, 636-641.]), anti­tumor (Remillard et al., 1975[Remillard, S., Rebhun, L. I., Howie, G. A. & Kupchan, S. M. (1975). Science, 189, 1002-1005.]), anti­malaria (Ren et al., 2001[Ren, H., Grady, S., Gamenara, D., Heinzen, H., Moyna, P., Croft, S., Kendrick, H., Yardley, V. & Moyna, G. (2001). Bioorg. Med. Chem. Lett. 11, 1851-1854.]) and anti­biotic (Haneishi et al., 1971[Haneishi, T., Okazaki, T., Hata, T., Tamura, C., Nomura, M., Naito, A., Seki, I. & Arai, M. (1971). J. Antibiot. 24, 797-799.]). The above compounds are easily prepared from 1-amino­alkyl-2-naphthols (Damodiran et al., 2009[Damodiran, M., Selvam, N. P. & Perumal, P. T. (2009). Tetrahedron Lett. 50, 5474-5478.]) and for this reason they are of great inter­est. The usual method for the preparation of 1-amino­alkyl-2-naphthols is a three-component reaction between 2-naphthol, aromatic aldehydes and acetamide catalysed by various catalysts (Singh et al., 2015[Singh, R. K., Bala, R., Duvedi, R. & Kumar, S. (2015). Iranian J. Cat. 5, 187-206.]). For our part we propose a new method using phenyl­boronic acid as catalyst in a free-solvent medium.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. It crystallizes with two independent mol­ecules (A and B) in the asymmetric unit, with Z = 8. The bond lengths in the methyl­phenyl rings and naphthalene ring systems of the two mol­ecules are practically equal, while there are slight differences in bond angles, with for example N1—C7—C1 and N21—C27—C21 differing by 1.2° and the exocyclic angles C7—C11—C12 and C27—C211—C212 differing by 1.8°. The naphthalene ring systems are essentially planar with maximum deviations from the mean plane of 0.059 (1) Å (for C11) and −0.020 (1) and 0.020 (2) Å (for C211 and C213) in mol­ecules A and B, respectively. The mean plane of the naphthalene ring system subtends a dihedral of angle of 78.32 (6)° with the methyl­phenyl ring in mol­ecule A and 84.70 (6)° in B while the dihedral angles between the naphthalene ring system and the acetamide group is 55.98 (9)° in mol­ecule A and 65.30 (9)° in B. This differences also exist between the mean plane of acetamide and phenyl rings which are about 80.63 (10)° for mol­ecule A and 84.51 (10)° for mol­ecule B. The methyl groups at C8 and C28 have a C–H bond eclipsed in the mean plane of the phenyl ring and they are oriented towards the acetamide group, as been observed in N-[(2-hy­droxy­naphthalen-1-yl)(4-methyl­phen­yl)meth­yl]acetamide (Khanapure et al., 2015[Khanapure, S., Rashinkar, G., Chhowala, T., Anthal, S. & Kant, R. (2015). Acta Cryst. E71, o235.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labelling and displacement ellipsoids drawn at the 50% probability level.

Intra­molecular N—H⋯O hydrogen bonds (Table 1[link]) involving the hydroxyl O atoms result in the formation of pseudo six-membered rings in both mol­ecules.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1 0.86 2.18 2.7424 (14) 123
N21—H21A⋯O21 0.86 2.35 2.8254 (15) 115
O1—H1⋯O2i 0.82 1.87 2.6298 (14) 153
O21—H21⋯O22ii 0.82 1.90 2.7111 (15) 169
C2—H2⋯O1iii 0.93 2.56 3.358 (2) 145
C13—H13⋯O2i 0.93 2.57 3.191 (2) 124
Symmetry codes: (i) x, y+1, z; (ii) x, y-1, z; (iii) -x+2, -y+1, -z+1.

3. Supra­molecular features

In the crystal, the anti-ferroelectric packing of mol­ecules A and B is of an ABBAABB type (Fig. 2[link]). Inversion-related mol­ecules are lined by pairs of hydrogen bonds (Table 1[link]), forming infinite chains along the b-axis direction. O—H⋯C and C—O⋯O short contacts are also present in the crystal (Table 2[link]).

Table 2
Summary of short inter­atomic contacts (Å)

Contact Distance Symmetry operation
C3⋯H10A 2.885 x + 2, −y + 1, −z + 1
O1⋯O2 2.6298 (14) x, y + 1, z
C2⋯H10A 2.80 x + 2, −y + 1, −z + 1
O21⋯O22 2.7111 (15) x, y − 1, z
O21⋯H22 2. 63 x + 1, −y, −z + 1
[Figure 2]
Figure 2
A view along the b axis of the crystal packing of the title compound.

4. Analysis of the Hirshfeld surfaces

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were generated with CrystalExplorer 3.1 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net]). The Hirshfeld surface of the compound mapped over dnorm is illustrated in Fig. 3[link]. The red spots in Fig. 4[link] correspond to close H⋯H contacts resulting from the short O—H⋯H contacts, and the white areas, representing distances between neighboring atoms close to the sum of the van der waals radii, indicate N⋯H/H⋯N inter­actions. Bluish areas illustrate areas where neighboring atoms are too far apart to inter­act with one another. Fig. 5[link]a illustrates the two-dimensional fingerprint of all the contacts contributing to the Hirshfeld surface. The two-dimensional fingerprint of the points di, de (Fig. 5[link]b) associated with hydrogen atoms is characterized by an extremity pointed to the origin along the a diagonal, which corresponds to di + de = 2.2 Å and represents 59.7% of all the inter­molecular contacts. Fig. 5[link]c illustrates C⋯H/H⋯C contacts between carbon and hydrogen atoms from inside and outside the Hirshfeld surface and vice versa, resulting from H⋯C short contacts. It accounts for 26.0% of the surface and is characterized by two symmetrical points with di + de = 2.6 Å. The plot of O⋯H/H⋯O contacts between hydrogen atoms located inside the Hirshfeld surface and oxygen from outside and vice versa is shown in Fig. 5[link]d. These contacts account for 13.0% and are characterized by two symmetrical peaks with di + de = 1.8 Å; this reveals the presence of strong O⋯H contacts that are characteristic of C—H⋯O and O—H⋯O hydrogen bonds.

[Figure 3]
Figure 3
Two views of the Hirshfeld surface mapped over dnorm.
[Figure 4]
Figure 4
A view of the Hirshfeld surface mapped over dnorm, with neighbouring inter­actions shown as green dashed lines.
[Figure 5]
Figure 5
Two-dimensional fingerprint plots: (a) overall, and delineated into contributions from different contacts: (b) H⋯H, (c) H⋯C/C⋯H and (d) H⋯O/O⋯H.

5. Database survey

A search of the Cambridge Structural Database (Version 5.37, update May 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for N-[(2-hy­droxy­naphthalen-1-yl)(m-tol­yl)meth­yl]acetamide yielded four hits: methyl N-[(2-hy­droxy­naphthalen-1-yl)(phen­yl)meth­yl]carb­amate (Bazgir et al., 2006[Bazgir, A., Amani, V. & Khavasi, H. R. (2006). Acta Cryst. E62, o3533-o3534.]), N-[(2-hy­droxy­naphthalen-1-yl)(phen­yl)meth­yl]acetamide (Mosslemin et al., 2007[Mosslemin, M. H., Arab-Salmanabadi, S. & Masoudi, M. (2007). Acta Cryst. E63, o444-o445.]), N-[(2-hy­droxy­naphthalen-1-yl)(4-methyl­phen­yl)meth­yl]acetamide (Khanapure et al., 2015[Khanapure, S., Rashinkar, G., Chhowala, T., Anthal, S. & Kant, R. (2015). Acta Cryst. E71, o235.]) and N-[(2-hy­droxy-1-naphth­yl)(3-nitro­phen­yl)meth­yl]acetamide (NizamMohideen et al., 2009[NizamMohideen, M., SubbiahPandi, A., Panneer Selvam, N. & Perumal, P. T. (2009). Acta Cryst. E65, o714-o715.]). Three of these compounds involve N-[(2-hydroxynaphthalen-1-yl) (Bazgir et al., 2006[Bazgir, A., Amani, V. & Khavasi, H. R. (2006). Acta Cryst. E62, o3533-o3534.]; Mosslemin et al., 2007[Mosslemin, M. H., Arab-Salmanabadi, S. & Masoudi, M. (2007). Acta Cryst. E63, o444-o445.]; Khanapure et al., 2015[Khanapure, S., Rashinkar, G., Chhowala, T., Anthal, S. & Kant, R. (2015). Acta Cryst. E71, o235.]); in these analogues, the naphthalene ring system is inclined to the benzene ring by 81.54, 82.10 and 82.50° respectively, but in the hy­droxy-1-naphthyl compound (NizamMohideen et al., 2009[NizamMohideen, M., SubbiahPandi, A., Panneer Selvam, N. & Perumal, P. T. (2009). Acta Cryst. E65, o714-o715.]), the dihedral angle is 81.9°, compared with 78.32 (6) and 84.70 (6)° in mol­ecules A and B of the title compound. In the four compounds above, as in the title compound, intra­molecular N—H⋯O and inter­molecular O—H⋯O hydrogen bonds are observed.

6. Synthesis and crystallization

A mixture of m-tolu­aldehyde (2.4 mmol), β-naphthol (2 mmol), acetamide (2.4 mmol) in the presence of a catalytic amount of phenyl­boronic acid (1.5 mmol) was heated at 393 K without solvent for 7 h (the reaction was monitored by TLC). After completion of the reaction, the solid mixture was allowed to warm to room temperature, then 5 ml of 96% ethanol was added while maintaining stirring for 10 min. The solid was filtered, washed with cold 96% EtOH, dried and recrystallized from ethanol.

IR (KBr): ν (cm−1) 3405, 2921, 2358, 1627, 1508, 1265, 1065, 748, 686, 623. 1H NMR (DMSO-d6, 250 MHz): δ (ppm) 9.98 (s, 1H, –CONH), 8.28 (d, J = 8.7 Hz, 1H), 7.97 (d, J = 7.7 Hz, 1H), 7.74 (d, J = 8.0 Hz, 1H), 7.68 (d, J = 8.8 Hz, 1H), 7.40–6.92 (m, 7H), 2.22 (s, 3H, CAr—CH3), 2.02 (s, 3H, CO—CH3). 13C NMR (DMSO-d6, 62.5 MHz): δ (ppm) 169.4, 153.1, 142.2, 137.0, 132.4, 129.0, 128.4, 127.7, 126.8, 126.6, 126.4, 123.2, 122.7, 122.4, 118.7, 118.6, 48.3, 22.9, 21.2.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The hydroxyl H atoms were located in difference-Fourier maps but introduced in calculated positions and treated as riding: O—H = 0.82 Å, with Uiso(H) = 1.5Ueq(O). All other H atoms were positioned geometrically and refined as riding: N—H = 0.86, C—H = 0.93–0.96 Å with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C,N) for other H atoms.

Table 3
Experimental details

Crystal data
Chemical formula C20H19NO2
Mr 305.36
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 24.3079 (16), 7.5677 (4), 18.4555 (14)
β (°) 110.024 (8)
V3) 3189.7 (4)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.26 × 0.13 × 0.09
 
Data collection
Diffractometer Agilent Technologies Xcalibur Eos
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.])
Tmin, Tmax 0.907, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 23278, 10300, 6594
Rint 0.025
(sin θ/λ)max−1) 0.756
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.159, 1.03
No. of reflections 10300
No. of parameters 415
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.29, −0.20
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

N-[(2-Hydroxynaphthalen-1-yl)(3-methylphenyl)methyl]acetamide top
Crystal data top
C20H19NO2F(000) = 1296
Mr = 305.36Dx = 1.272 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.7107 Å
a = 24.3079 (16) ÅCell parameters from 5580 reflections
b = 7.5677 (4) Åθ = 3.5–32.3°
c = 18.4555 (14) ŵ = 0.08 mm1
β = 110.024 (8)°T = 293 K
V = 3189.7 (4) Å3Needle, colorlese
Z = 80.26 × 0.13 × 0.09 mm
Data collection top
Agilent Technologies Xcalibur Eos
diffractometer
10300 independent reflections
Radiation source: Enhance (Mo) X-ray Source6594 reflections with I > 2σ(I)
Detector resolution: 8.0226 pixels mm-1Rint = 0.025
ω scansθmax = 32.5°, θmin = 3.2°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 3633
Tmin = 0.907, Tmax = 1.000k = 1010
23278 measured reflectionsl = 1227
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0676P)2 + 0.417P]
where P = (Fo2 + 2Fc2)/3
10300 reflections(Δ/σ)max < 0.001
415 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.20 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.92362 (5)0.71780 (12)0.51690 (7)0.0382 (3)
H10.91950.81730.49820.057*
O210.56936 (5)0.16567 (13)0.45919 (8)0.0464 (3)
H210.56130.26810.44510.070*
N10.92900 (5)0.35840 (14)0.50150 (7)0.0306 (2)
H1A0.93210.45170.47660.037*
N210.53975 (5)0.19657 (14)0.45137 (7)0.0306 (2)
H21A0.51840.10320.44430.037*
C210.61345 (6)0.12477 (17)0.57884 (8)0.0291 (3)
C2160.67823 (6)0.12927 (18)0.42822 (8)0.0305 (3)
O220.54173 (6)0.48795 (14)0.43134 (9)0.0563 (4)
C270.60251 (6)0.17987 (16)0.49558 (8)0.0278 (3)
H270.61920.29840.49780.033*
C70.92286 (6)0.37875 (16)0.57749 (8)0.0287 (3)
H70.90680.26650.58770.034*
C2170.70322 (7)0.3003 (2)0.44704 (9)0.0376 (3)
H2170.68910.37590.47640.045*
C220.57640 (7)0.18155 (19)0.61706 (9)0.0353 (3)
H220.54280.24450.58980.042*
C150.78567 (6)0.60938 (19)0.59489 (9)0.0348 (3)
C90.92993 (6)0.20029 (17)0.46945 (9)0.0339 (3)
C21.03272 (6)0.33243 (19)0.63590 (9)0.0350 (3)
H21.03140.28070.58960.042*
C160.83131 (6)0.48354 (18)0.60542 (8)0.0315 (3)
O20.92749 (6)0.06341 (14)0.50457 (8)0.0561 (4)
C2110.63209 (6)0.06506 (17)0.45251 (8)0.0293 (3)
C120.87790 (6)0.68069 (17)0.54142 (8)0.0295 (3)
C10.98150 (6)0.40135 (17)0.64271 (8)0.0306 (3)
C2120.61263 (7)0.10654 (18)0.43421 (9)0.0355 (3)
C110.87709 (6)0.51816 (17)0.57498 (8)0.0282 (3)
C170.82953 (7)0.3286 (2)0.64798 (11)0.0446 (4)
H170.85940.24550.65730.053*
C240.63861 (8)0.0530 (2)0.73514 (10)0.0470 (4)
H240.64750.02980.78740.056*
C140.78716 (7)0.7681 (2)0.55555 (10)0.0390 (3)
H140.75680.84900.54670.047*
C130.83230 (7)0.80449 (18)0.53048 (9)0.0358 (3)
H130.83320.91130.50600.043*
C2140.67914 (8)0.1549 (2)0.36602 (12)0.0513 (4)
H2140.69400.22800.33660.062*
C260.66307 (7)0.0296 (2)0.62030 (10)0.0402 (3)
H260.68830.01070.59580.048*
C60.98401 (7)0.4762 (2)0.71238 (10)0.0410 (4)
H60.95040.52390.71780.049*
C250.67531 (8)0.0057 (2)0.69808 (11)0.0485 (4)
H250.70870.06980.72520.058*
C41.08714 (8)0.4130 (2)0.76614 (11)0.0468 (4)
H41.12220.41730.80760.056*
C31.08604 (7)0.3394 (2)0.69714 (10)0.0412 (4)
C2190.77018 (7)0.2456 (3)0.37928 (11)0.0519 (4)
H2190.80040.28470.36320.062*
C290.51402 (6)0.34835 (18)0.42162 (9)0.0336 (3)
C100.93414 (8)0.1965 (2)0.39073 (11)0.0473 (4)
H10A0.93550.31530.37320.071*
H10B0.90050.13710.35600.071*
H10C0.96900.13470.39240.071*
C200.73944 (7)0.5718 (2)0.62321 (10)0.0449 (4)
H200.70900.65230.61470.054*
C2150.70185 (7)0.0178 (2)0.38405 (9)0.0388 (3)
C2200.74777 (8)0.0807 (3)0.36040 (11)0.0512 (4)
H2200.76300.00770.33130.061*
C230.58816 (8)0.1468 (2)0.69530 (10)0.0433 (4)
C2130.63629 (8)0.2162 (2)0.39051 (11)0.0484 (4)
H2130.62240.33090.37850.058*
C2100.44988 (7)0.3386 (2)0.37528 (12)0.0503 (4)
H210A0.43660.21900.37470.076*
H210B0.44360.37660.32340.076*
H210C0.42850.41390.39810.076*
C2180.74773 (7)0.3560 (2)0.42277 (10)0.0461 (4)
H2180.76310.46890.43550.055*
C180.78482 (8)0.2994 (3)0.67542 (12)0.0529 (5)
H180.78490.19700.70330.063*
C190.73898 (8)0.4201 (3)0.66252 (11)0.0507 (4)
H190.70840.39690.68070.061*
C51.03648 (8)0.4802 (2)0.77408 (11)0.0492 (4)
H51.03760.52830.82090.059*
C280.54747 (12)0.2098 (4)0.73576 (14)0.0749 (7)
H28A0.56240.17410.78890.112*
H28B0.50940.15910.71140.112*
H28C0.54470.33630.73280.112*
C81.14143 (8)0.2672 (3)0.68826 (14)0.0649 (6)
H8A1.13270.22120.63710.097*
H8B1.15690.17450.72510.097*
H8C1.16980.36020.69690.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0442 (6)0.0212 (4)0.0593 (7)0.0018 (4)0.0308 (5)0.0060 (4)
O210.0532 (7)0.0250 (5)0.0713 (8)0.0102 (4)0.0348 (6)0.0091 (5)
N10.0364 (6)0.0199 (5)0.0361 (6)0.0002 (4)0.0131 (5)0.0017 (4)
N210.0328 (6)0.0218 (5)0.0375 (7)0.0029 (4)0.0125 (5)0.0007 (4)
C210.0323 (7)0.0236 (6)0.0326 (7)0.0022 (5)0.0129 (6)0.0008 (5)
C2160.0306 (6)0.0346 (7)0.0262 (6)0.0002 (5)0.0094 (5)0.0007 (5)
O220.0550 (7)0.0217 (5)0.0844 (10)0.0031 (5)0.0137 (7)0.0039 (5)
C270.0307 (6)0.0214 (5)0.0334 (7)0.0018 (5)0.0138 (5)0.0016 (5)
C70.0304 (6)0.0216 (6)0.0357 (7)0.0006 (5)0.0134 (6)0.0036 (5)
C2170.0391 (8)0.0425 (8)0.0335 (8)0.0097 (6)0.0154 (6)0.0029 (6)
C220.0365 (7)0.0356 (7)0.0364 (8)0.0049 (6)0.0160 (6)0.0011 (6)
C150.0312 (7)0.0379 (7)0.0366 (8)0.0006 (6)0.0135 (6)0.0049 (6)
C90.0317 (7)0.0235 (6)0.0472 (9)0.0013 (5)0.0144 (6)0.0036 (6)
C20.0346 (7)0.0344 (7)0.0366 (8)0.0015 (6)0.0127 (6)0.0013 (6)
C160.0301 (6)0.0311 (7)0.0337 (7)0.0021 (5)0.0117 (6)0.0014 (5)
O20.0834 (9)0.0205 (5)0.0766 (9)0.0016 (5)0.0432 (8)0.0008 (5)
C2110.0317 (7)0.0276 (6)0.0304 (7)0.0001 (5)0.0129 (5)0.0014 (5)
C120.0318 (6)0.0246 (6)0.0342 (7)0.0002 (5)0.0141 (6)0.0009 (5)
C10.0345 (7)0.0213 (6)0.0361 (7)0.0011 (5)0.0121 (6)0.0036 (5)
C2120.0387 (7)0.0274 (7)0.0428 (8)0.0015 (5)0.0167 (6)0.0048 (6)
C110.0276 (6)0.0248 (6)0.0326 (7)0.0012 (5)0.0110 (5)0.0016 (5)
C170.0440 (9)0.0422 (8)0.0508 (10)0.0002 (7)0.0205 (8)0.0125 (7)
C240.0557 (10)0.0484 (9)0.0350 (8)0.0033 (8)0.0128 (8)0.0063 (7)
C140.0343 (7)0.0360 (7)0.0473 (9)0.0087 (6)0.0149 (7)0.0007 (6)
C130.0417 (8)0.0249 (6)0.0418 (8)0.0066 (5)0.0156 (7)0.0052 (6)
C2140.0584 (11)0.0471 (9)0.0564 (11)0.0065 (8)0.0299 (9)0.0146 (8)
C260.0376 (8)0.0408 (8)0.0440 (9)0.0069 (6)0.0162 (7)0.0040 (7)
C60.0445 (8)0.0353 (8)0.0441 (9)0.0043 (6)0.0163 (7)0.0051 (6)
C250.0446 (9)0.0497 (9)0.0456 (10)0.0085 (7)0.0080 (8)0.0122 (8)
C40.0446 (9)0.0390 (8)0.0450 (10)0.0014 (7)0.0001 (7)0.0004 (7)
C30.0360 (8)0.0383 (8)0.0456 (9)0.0024 (6)0.0092 (7)0.0052 (7)
C2190.0357 (8)0.0759 (13)0.0489 (10)0.0040 (8)0.0207 (7)0.0102 (9)
C290.0386 (7)0.0248 (6)0.0393 (8)0.0007 (5)0.0159 (6)0.0005 (5)
C100.0535 (10)0.0407 (9)0.0503 (10)0.0039 (7)0.0213 (8)0.0123 (7)
C200.0373 (8)0.0522 (9)0.0504 (10)0.0037 (7)0.0218 (7)0.0109 (8)
C2150.0369 (7)0.0463 (8)0.0363 (8)0.0065 (6)0.0165 (6)0.0002 (6)
C2200.0455 (9)0.0694 (12)0.0473 (10)0.0113 (8)0.0269 (8)0.0031 (9)
C230.0516 (9)0.0458 (9)0.0377 (8)0.0003 (7)0.0222 (7)0.0003 (7)
C2130.0562 (10)0.0323 (8)0.0625 (12)0.0017 (7)0.0275 (9)0.0151 (7)
C2100.0430 (9)0.0403 (9)0.0606 (12)0.0038 (7)0.0086 (8)0.0067 (8)
C2180.0402 (8)0.0580 (10)0.0401 (9)0.0148 (7)0.0136 (7)0.0016 (8)
C180.0542 (10)0.0539 (10)0.0581 (12)0.0071 (8)0.0289 (9)0.0143 (9)
C190.0468 (9)0.0613 (11)0.0540 (11)0.0136 (8)0.0303 (8)0.0072 (9)
C50.0584 (11)0.0426 (9)0.0412 (9)0.0005 (7)0.0102 (8)0.0108 (7)
C280.0897 (16)0.0980 (17)0.0534 (13)0.0242 (13)0.0456 (12)0.0081 (12)
C80.0353 (9)0.0847 (15)0.0676 (14)0.0108 (9)0.0084 (9)0.0033 (11)
Geometric parameters (Å, º) top
O1—C121.3651 (17)C24—C231.390 (2)
O1—H10.8200C24—H240.9300
O21—C2121.3605 (19)C14—C131.357 (2)
O21—H210.8200C14—H140.9300
N1—C91.3384 (17)C13—H130.9300
N1—C71.4683 (19)C214—C2131.351 (3)
N1—H1A0.8600C214—C2151.413 (2)
N21—C291.3329 (18)C214—H2140.9300
N21—C271.4685 (18)C26—C251.389 (2)
N21—H21A0.8600C26—H260.9300
C21—C261.388 (2)C6—C51.389 (2)
C21—C221.389 (2)C6—H60.9300
C21—C271.525 (2)C25—H250.9300
C216—C2171.422 (2)C4—C31.382 (3)
C216—C2151.424 (2)C4—C51.386 (3)
C216—C2111.4281 (19)C4—H40.9300
O22—C291.2324 (17)C3—C81.513 (2)
C27—C2111.5149 (19)C219—C2201.359 (3)
C27—H270.9800C219—C2181.393 (3)
C7—C111.5224 (18)C219—H2190.9300
C7—C11.528 (2)C29—C2101.502 (2)
C7—H70.9800C10—H10A0.9600
C217—C2181.371 (2)C10—H10B0.9600
C217—H2170.9300C10—H10C0.9600
C22—C231.398 (2)C20—C191.360 (3)
C22—H220.9300C20—H200.9300
C15—C141.410 (2)C215—C2201.413 (2)
C15—C201.421 (2)C220—H2200.9300
C15—C161.424 (2)C23—C281.506 (3)
C9—O21.2341 (18)C213—H2130.9300
C9—C101.491 (2)C210—H210A0.9600
C2—C11.395 (2)C210—H210B0.9600
C2—C31.399 (2)C210—H210C0.9600
C2—H20.9300C218—H2180.9300
C16—C171.420 (2)C18—C191.397 (3)
C16—C111.4323 (19)C18—H180.9300
C211—C2121.3838 (19)C19—H190.9300
C12—C111.3803 (18)C5—H50.9300
C12—C131.4120 (19)C28—H28A0.9600
C1—C61.387 (2)C28—H28B0.9600
C212—C2131.410 (2)C28—H28C0.9600
C17—C181.365 (2)C8—H8A0.9600
C17—H170.9300C8—H8B0.9600
C24—C251.371 (3)C8—H8C0.9600
C12—O1—H1109.5C215—C214—H214119.3
C212—O21—H21109.5C21—C26—C25120.53 (15)
C9—N1—C7122.58 (12)C21—C26—H26119.7
C9—N1—H1A118.7C25—C26—H26119.7
C7—N1—H1A118.7C1—C6—C5120.36 (15)
C29—N21—C27123.69 (11)C1—C6—H6119.8
C29—N21—H21A118.2C5—C6—H6119.8
C27—N21—H21A118.2C24—C25—C26120.51 (15)
C26—C21—C22118.21 (14)C24—C25—H25119.7
C26—C21—C27121.07 (13)C26—C25—H25119.7
C22—C21—C27120.50 (12)C3—C4—C5120.53 (16)
C217—C216—C215117.21 (13)C3—C4—H4119.7
C217—C216—C211123.30 (13)C5—C4—H4119.7
C215—C216—C211119.48 (13)C4—C3—C2118.70 (15)
N21—C27—C211110.32 (11)C4—C3—C8120.54 (16)
N21—C27—C21111.90 (11)C2—C3—C8120.76 (17)
C211—C27—C21114.93 (11)C220—C219—C218119.79 (16)
N21—C27—H27106.4C220—C219—H219120.1
C211—C27—H27106.4C218—C219—H219120.1
C21—C27—H27106.4O22—C29—N21121.52 (14)
N1—C7—C11110.84 (11)O22—C29—C210122.30 (13)
N1—C7—C1113.06 (11)N21—C29—C210116.19 (12)
C11—C7—C1114.91 (11)C9—C10—H10A109.5
N1—C7—H7105.7C9—C10—H10B109.5
C11—C7—H7105.7H10A—C10—H10B109.5
C1—C7—H7105.7C9—C10—H10C109.5
C218—C217—C216121.25 (15)H10A—C10—H10C109.5
C218—C217—H217119.4H10B—C10—H10C109.5
C216—C217—H217119.4C19—C20—C15121.13 (16)
C21—C22—C23121.86 (14)C19—C20—H20119.4
C21—C22—H22119.1C15—C20—H20119.4
C23—C22—H22119.1C220—C215—C214121.67 (15)
C14—C15—C20121.51 (14)C220—C215—C216119.56 (15)
C14—C15—C16118.93 (13)C214—C215—C216118.76 (15)
C20—C15—C16119.55 (14)C219—C220—C215121.34 (17)
O2—C9—N1120.47 (15)C219—C220—H220119.3
O2—C9—C10121.82 (14)C215—C220—H220119.3
N1—C9—C10117.71 (13)C24—C23—C22118.29 (15)
C1—C2—C3121.46 (15)C24—C23—C28120.65 (17)
C1—C2—H2119.3C22—C23—C28121.06 (16)
C3—C2—H2119.3C214—C213—C212120.09 (15)
C17—C16—C15117.26 (14)C214—C213—H213120.0
C17—C16—C11122.87 (13)C212—C213—H213120.0
C15—C16—C11119.85 (13)C29—C210—H210A109.5
C212—C211—C216118.84 (13)C29—C210—H210B109.5
C212—C211—C27118.84 (12)H210A—C210—H210B109.5
C216—C211—C27122.30 (12)C29—C210—H210C109.5
O1—C12—C11118.06 (12)H210A—C210—H210C109.5
O1—C12—C13120.29 (12)H210B—C210—H210C109.5
C11—C12—C13121.63 (13)C217—C218—C219120.84 (16)
C6—C1—C2118.62 (14)C217—C218—H218119.6
C6—C1—C7120.59 (13)C219—C218—H218119.6
C2—C1—C7120.53 (13)C17—C18—C19121.43 (17)
O21—C212—C211117.73 (13)C17—C18—H18119.3
O21—C212—C213120.96 (13)C19—C18—H18119.3
C211—C212—C213121.31 (14)C20—C19—C18119.41 (16)
C12—C11—C16118.12 (12)C20—C19—H19120.3
C12—C11—C7120.58 (12)C18—C19—H19120.3
C16—C11—C7121.29 (11)C4—C5—C6120.32 (16)
C18—C17—C16121.15 (16)C4—C5—H5119.8
C18—C17—H17119.4C6—C5—H5119.8
C16—C17—H17119.4C23—C28—H28A109.5
C25—C24—C23120.58 (16)C23—C28—H28B109.5
C25—C24—H24119.7H28A—C28—H28B109.5
C23—C24—H24119.7C23—C28—H28C109.5
C13—C14—C15120.97 (13)H28A—C28—H28C109.5
C13—C14—H14119.5H28B—C28—H28C109.5
C15—C14—H14119.5C3—C8—H8A109.5
C14—C13—C12120.22 (13)C3—C8—H8B109.5
C14—C13—H13119.9H8A—C8—H8B109.5
C12—C13—H13119.9C3—C8—H8C109.5
C213—C214—C215121.49 (15)H8A—C8—H8C109.5
C213—C214—H214119.3H8B—C8—H8C109.5
C29—N21—C27—C211114.66 (14)N1—C7—C11—C16130.38 (13)
C29—N21—C27—C21116.05 (14)C1—C7—C11—C1699.91 (15)
C26—C21—C27—N21151.70 (13)C15—C16—C17—C182.0 (3)
C22—C21—C27—N2133.75 (17)C11—C16—C17—C18179.34 (16)
C26—C21—C27—C21124.87 (18)C20—C15—C14—C13178.32 (15)
C22—C21—C27—C211160.59 (12)C16—C15—C14—C132.5 (2)
C9—N1—C7—C11133.02 (13)C15—C14—C13—C121.9 (2)
C9—N1—C7—C196.29 (15)O1—C12—C13—C14179.37 (14)
C215—C216—C217—C2180.8 (2)C11—C12—C13—C142.4 (2)
C211—C216—C217—C218179.63 (15)C22—C21—C26—C250.6 (2)
C26—C21—C22—C230.6 (2)C27—C21—C26—C25174.04 (14)
C27—C21—C22—C23174.10 (14)C2—C1—C6—C50.7 (2)
C7—N1—C9—O22.4 (2)C7—C1—C6—C5173.47 (14)
C7—N1—C9—C10177.78 (13)C23—C24—C25—C260.9 (3)
C14—C15—C16—C17177.55 (15)C21—C26—C25—C240.1 (3)
C20—C15—C16—C173.2 (2)C5—C4—C3—C20.8 (2)
C14—C15—C16—C111.1 (2)C5—C4—C3—C8179.53 (18)
C20—C15—C16—C11178.11 (14)C1—C2—C3—C41.5 (2)
C217—C216—C211—C212177.01 (14)C1—C2—C3—C8178.80 (16)
C215—C216—C211—C2121.8 (2)C27—N21—C29—O221.9 (2)
C217—C216—C211—C274.8 (2)C27—N21—C29—C210177.50 (14)
C215—C216—C211—C27176.35 (13)C14—C15—C20—C19178.58 (17)
N21—C27—C211—C21258.80 (17)C16—C15—C20—C192.2 (2)
C21—C27—C211—C21268.83 (17)C213—C214—C215—C220178.20 (18)
N21—C27—C211—C216119.38 (14)C213—C214—C215—C2160.8 (3)
C21—C27—C211—C216112.99 (14)C217—C216—C215—C2200.7 (2)
C3—C2—C1—C60.8 (2)C211—C216—C215—C220179.58 (14)
C3—C2—C1—C7174.92 (13)C217—C216—C215—C214178.34 (15)
N1—C7—C1—C6159.58 (13)C211—C216—C215—C2140.6 (2)
C11—C7—C1—C630.96 (18)C218—C219—C220—C2150.0 (3)
N1—C7—C1—C226.40 (17)C214—C215—C220—C219178.66 (18)
C11—C7—C1—C2155.01 (13)C216—C215—C220—C2190.3 (3)
C216—C211—C212—O21178.84 (13)C25—C24—C23—C220.9 (3)
C27—C211—C212—O212.9 (2)C25—C24—C23—C28179.38 (19)
C216—C211—C212—C2131.8 (2)C21—C22—C23—C240.1 (2)
C27—C211—C212—C213176.44 (15)C21—C22—C23—C28179.89 (18)
O1—C12—C11—C16175.87 (12)C215—C214—C213—C2120.9 (3)
C13—C12—C11—C165.8 (2)O21—C212—C213—C214179.81 (17)
O1—C12—C11—C75.6 (2)C211—C212—C213—C2140.5 (3)
C13—C12—C11—C7172.67 (13)C216—C217—C218—C2190.5 (3)
C17—C16—C11—C12173.44 (15)C220—C219—C218—C2170.1 (3)
C15—C16—C11—C125.1 (2)C16—C17—C18—C190.3 (3)
C17—C16—C11—C78.1 (2)C15—C20—C19—C180.2 (3)
C15—C16—C11—C7173.32 (13)C17—C18—C19—C201.4 (3)
N1—C7—C11—C1248.06 (17)C3—C4—C5—C60.7 (3)
C1—C7—C11—C1281.66 (17)C1—C6—C5—C41.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.862.182.7424 (14)123
N21—H21A···O210.862.352.8254 (15)115
O1—H1···O2i0.821.872.6298 (14)153
O21—H21···O22ii0.821.902.7111 (15)169
C2—H2···O1iii0.932.563.358 (2)145
C13—H13···O2i0.932.573.191 (2)124
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x+2, y+1, z+1.
Table 3 top
Summary of short interatomic contacts (Å)
ContactDistanceSymmetry operation
C3···H10A2.885-x + 2, -y + 1, -z + 1
O1···O22.6298 (14)x, y + 1, z
C2···H10A2.80-x + 2, -y + 1, -z + 1
O21···O222.7111 (15)x, y - 1, z
O21···H222. 63-x + 1, -y, -z + 1
 

Acknowledgements

We would like to thank Mr F. Saidi, Engineer at the Laboratory of Crystallography, University Constantine 1, for assistance with the data collection.

Funding information

This work was supported by the Laboratoire de Cristallographie, Departement de Physique, Université Constantine 1, Algeria.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBazgir, A., Amani, V. & Khavasi, H. R. (2006). Acta Cryst. E62, o3533–o3534.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDamodiran, M., Selvam, N. P. & Perumal, P. T. (2009). Tetrahedron Lett. 50, 5474–5478.  Web of Science CrossRef Google Scholar
First citationDingermann, T., Steinhilber, D. & Folkers, G. (2004). Molecular Biology in Medicinal Chemistry. Wiley-VCH, Weinheim.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHaneishi, T., Okazaki, T., Hata, T., Tamura, C., Nomura, M., Naito, A., Seki, I. & Arai, M. (1971). J. Antibiot. 24, 797–799.  CrossRef Web of Science Google Scholar
First citationKhanapure, S., Rashinkar, G., Chhowala, T., Anthal, S. & Kant, R. (2015). Acta Cryst. E71, o235.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLesher, G. Y. & Surrey, A. R. (1955). J. Am. Chem. Soc. 77, 636–641.  CrossRef Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMosslemin, M. H., Arab-Salmanabadi, S. & Masoudi, M. (2007). Acta Cryst. E63, o444–o445.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNizamMohideen, M., SubbiahPandi, A., Panneer Selvam, N. & Perumal, P. T. (2009). Acta Cryst. E65, o714–o715.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRemillard, S., Rebhun, L. I., Howie, G. A. & Kupchan, S. M. (1975). Science, 189, 1002–1005.  CrossRef Web of Science Google Scholar
First citationRen, H., Grady, S., Gamenara, D., Heinzen, H., Moyna, P., Croft, S., Kendrick, H., Yardley, V. & Moyna, G. (2001). Bioorg. Med. Chem. Lett. 11, 1851–1854.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShen, A. Y., Tsai, C. T. & Chen, C. L. (1999). Eur. J. Med. Chem. 34, 877–882.  Web of Science CrossRef Google Scholar
First citationSingh, R. K., Bala, R., Duvedi, R. & Kumar, S. (2015). Iranian J. Cat. 5, 187–206.  Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds