research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of homodinuclear platinum complex containing a metal–metal bond bridged by hydride and phosphide ligands

CROSSMARK_Color_square_no_text.svg

aUnité de Recherche Chimie de l'Environnement et Moléculaire, Structurale 'CHEMS', Faculté des Sciences Exactes, Campus Chaabet Ersas, Université Frères Mentouri Constantine 1, 25000 Constantine, Algeria, and bService de Radiocristallographie, Institut de Chimie, UMR 7177 CNRS-Université de Strasbourg, 1 Rue Blaise Pascal, 67008 Strasbourg cedex, France
*Correspondence e-mail: bendjeddoulamia@gmail.com

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 5 June 2018; accepted 12 June 2018; online 19 June 2018)

In the title compound, μ-di­phenyl­phosphido-μ-hydrido-bis­[bromido­(tri­phenyl­phosphane-κP)platinum(II)] diethyl ether monosolvate, [Pt2Br2(C12H10P)H(C18H15P)2]·C4H10O or [Pt2(μ-H)(μ-PPh2)Br2(PPh3)2]·(C2H5)2O, the PtII atoms are coordinated in a distorted square-planar arrangement, with one hydrido and one phosphido ligand bridging in a trans position. In the lattice, C—H⋯·O and C—H⋯π interactions are present. This complex has a total number of 32 electrons, 16 electrons for each PtII atom. One of the Br atoms is disordered over two positions in a 0.92:0.08 ratio.

1. Chemical context

Transition metal hydrides play a central role in many homogeneous catalytic reactions (Bertolasi et al., 1993[Bertolasi, V., Ferretti, V., Gilli, P. & De Benedetti, P. G. (1993). J. Chem. Soc. Perkin Trans. 2, pp. 213-219.]; Clegg et al., 1996[Clegg, W., Capdevila, M., González-Duarte, P. & Sola, J. (1996). Acta Cryst. B52, 270-276.]) and are very important in hydrogenation or hydro­formyl­ation. Their characterization is commonly carried out by NMR spectroscopy, X-ray analysis or neutron diffraction (Ciriano et al., 1978[Ciriano, M., Green, M., Howard, J. A. K., Proud, J. M., Spencer, J. L., Stone, F. G. A. & Tsipis, C. A. (1978). J. Chem Soc. Dalton Trans. pp. 801]). Hydrides of PtII are the most numerous of any transition metal hydride group (Leoni et al., 1995[Leoni, P., Manetti, S. & Pasquali, M. (1995). Inorg. Chem. 34, 749-752.]; Bachechi et al., 1993[Bachechi, F., Mura, P. & Zambonelli, L. (1993). Acta Cryst. C49, 2072-2074.]). In addition to the presence of the hydride ligand, the complexes invariably have a coordinated phosphine. Pure complexes are usually both air stable and kinetically inert (Roundhill, 1978[Roundhill, D. M. (1978). In Advances in Chemistry, Vol. 167 Transition Metal Hydrides edited by R. Bau, pp. 160-168. Washington: American Chemical Society.]).

[Scheme 1]

We report here the synthesis and structural analysis of a new hydrido-bridged diplatinum complex, μ-di­phenyl­phos­phido-μ-hydrido-bis­[bromido­(tri­phenyl­phosphane-κP)platinum(II)] diethyl ether monosolvate. One of the attractive features of this dinuclear complex is that it is doubly bridged by hydrido and phosphido ligands in a trans fashion. The bridging of metal–metal-bonded homodinuclear complexes with a phosphido ligand allows the stabilization of the metal–metal bond. Many phosphido complexes (with and without a metal–metal bond) have been well documented and both their structural and reactivity features investigated (Stephan, 1989[Stephan, D. W. (1989). Coord. Chem. Rev. 95, 41-107.]; He et al., 1992[He, Z., Lugan, N., Neibecker, D., Mathieu, R. & Bonnet, J. J. (1992). J. Organomet. Chem. 426, 247-259.]; Comte et al., 1997[Comte, V., Blacque, O., Kubicki, M. M. & Moïse, C. (1997). Organometallics, 16, 5763-5769.]; Lavastre et al., 1997[Lavastre, O., Bonnet, G., Boni, G., Kubicki, M. M. & Moïse, C. (1997). J. Organomet. Chem. 547, 141-147.]; Mohamed et al., 2015[Mohamed, A. S., Jourdain, I., Knorr, M., Rousselin, Y. & Kubicki, M. M. (2015). Acta Cryst. E71, 241-243.]).

2. Structural commentary

The asymmetric unit of the title compound consists of an organometallic mol­ecule which is a neutral dinuclear PtII complex, [Pt2(μ-H)(μ-PPh2)Br2(PPh3)2], and one solvent ether mol­ecule (Fig. 1[link]). The dinuclear complex is composed of two triangles formed by two platinum atoms and one phospho­rus (P2), and by two platinum and one hydrogen atom. The coordination sphere of each platinum atom is completed by a terminal phosphine (P1, P3) and two bromides (Br1, Br2). The two platinum atoms are linked by phosphido and hydrido bridges and a formal metal–metal bond. The Pt—Pt bond increases from 2.667 (3) Å in the starting complex to 2.8365 (4) Å in the title complex because of the difference in bridging atoms and probably also because of steric hindrance between the phenyl groups of the tri­phenyl­phosphine unit and repulsion between the triphenylphosphine groups and the bromide atoms. The value of this bond length is comparable to those in dinuclear phosphido- and hydrido-bridged compounds (2.58–2.9 Å; Jans et al., 1983[Jans, J., Naegeli, R., Venanzi, L. M. & Albinati, A. (1983). J. Organomet. Chem. 247, c37-c41.]; Bender et al., 1999[Bender, R., Bouaoud, S. E., Braunstein, P., Dusausoy, Y., Merabet, N., Raya, J. & Rouag, D. (1999). J. Chem. Soc. Dalton Trans. pp. 735-742.]; Archambault et al., 2001[Archambault, C., Bender, R., Braunstein, P., Bouaoud, S. E., Rouag, D., Golhen, S. & Ouahab, L. (2001). Chem. Commun. pp. 849-850.]) but is one of the longest. The angle of the phosphido bridge, Pt1—P2—Pt2, is 79.24 (3)° because of the long Pt—Pt bond and is one of the largest phosphido bridge angles observed (Bachechi et al., 1983[Bachechi, F., Bracher, G., Grove, D. M., Kellenberger, B., Pregosin, P. S., Venanzi, L. M. & Zambonelli, L. (1983). Inorg. Chem. 22, 1031-1037.]). The platinum atoms are coordinated in a distorted square-planar arrangement with one hydrido and one phosphido ligand in a bridging trans position. The phospho­rus atoms P1 and P3 are located in the same plane as atoms Pt1/P2/Pt2 with the bromide atoms displaced by 0.0117 (3) and 0.0250 (2) Å from the plane. The Pt1—P1 and Pt2—P3 bond lengths [2.2616 (13) and 2.2731 (11) Å, respectively] are comparable, and consistent with literature values for a platinum–phospho­rus bond. The Pt—Br bonds [2.5023 (5) and 2.5084 (6) Å; Table 1[link]] are slightly longer than those found in the literature (Bachechi et al., 1983[Bachechi, F., Bracher, G., Grove, D. M., Kellenberger, B., Pregosin, P. S., Venanzi, L. M. & Zambonelli, L. (1983). Inorg. Chem. 22, 1031-1037.]). Intra­molecular C—H⋯Br hydrogen bonds and C—H⋯π (Table 2[link], Fig. 2[link]) inter­actions are observed.

Table 1
Selected geometric parameters (Å, °)

Pt1—Pt2 2.8365 (4) Pt1—P2 2.2217 (10)
Pt1—Br1A 2.5084 (6) Pt2—Br2 2.5023 (5)
Pt1—Br1B 2.364 (9) Pt2—P2 2.2266 (11)
Pt1—P1 2.2616 (13) Pt2—P3 2.2731 (11)
       
Pt2—Pt1—Br1A 112.09 (2) Pt1—Pt2—P3 154.61 (3)
Pt2—Pt1—Br1B 124.3 (3) Br2—Pt2—P2 157.93 (3)
Pt2—Pt1—P1 155.02 (3) Br2—Pt2—P3 93.56 (3)
Pt2—Pt1—P2 50.46 (3) P2—Pt2—P3 104.41 (4)
Br1A—Pt1—P1 91.84 (3) P1—Pt1—H 169.7 (10)
Br1A—Pt1—P2 158.53 (3) P2—Pt1—H 85.5 (8)
Br1B—Pt1—P1 80.7 (3) Pt2—Pt1—H 35.1 (9)
Br1B—Pt1—P2 174.7 (3) Br2—Pt2—H 77.7 (11)
P1—Pt1—P2 104.59 (4) P2—Pt2—H 85.4 (11)
Pt1—Pt2—Br2 111.58 (1) P3—Pt2—H 169.6 (12)
Pt1—Pt2—P2 50.31 (3) Pt1—P2—Pt2 79.24 (3)

Table 2
Hydrogen-bond geometry (Å, °)

Cg4, Cg5 and Cg7 are the centroids of the C13–C18, C19–C24 and C31–C36 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯Br1A 0.95 2.73 3.460 (6) 134
C8—H8⋯Br1B 0.95 1.99 2.719 (13) 132
C45—H45⋯O1i 0.95 2.54 3.484 (8) 170
C48—H48⋯Br2 0.95 2.65 3.520 (5) 153
C2—H2⋯Cg5 0.95 2.70 3.637 (6) 168
C24—H24⋯Cg4 0.95 2.83 3.459 (9) 125
C30—H30⋯Cg7 0.95 2.84 3.340 (5) 114
Symmetry code: (i) x-1, y+1, z.
[Figure 1]
Figure 1
The asymmetric unit of title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
View showing intra­molecular C—H⋯Br hydrogen bonds (blue dashed lines) and C—H⋯π (green dashed lines) inter­actions (Table 2[link]).

3. Supra­molecular features

As shown in Fig. 3[link], C45—H45⋯O1i hydrogen bonds (Table 2[link], ) link the complex and solvent mol­ecules.

[Figure 3]
Figure 3
Partial packing diagram of the molecules along the b-axis direction, showing the C—H⋯O hydrogen bonds (Table 2[link]).

4. NMR Spectroscopy

The 1H NMR spectrum was recorded on a FT Bruker AVANCE III instrument at 296 K. The spectrum exhibits high field resonance, which unequivocally indicates the presence of a bridging hydride ligand absorbing at −4.5 ppm (Fig. 4[link]) with 1J Pt—H 445 Hz, 2J P2—H 13Hz, 2J P1—H 87 Hz, identical to 2J P3—H (Jans et al., 1983[Jans, J., Naegeli, R., Venanzi, L. M. & Albinati, A. (1983). J. Organomet. Chem. 247, c37-c41.]).

[Figure 4]
Figure 4
Part of the 1H NMR spectrum of the hydride bridging absorbing at −4.55 ppm.

5. Database survey

A search of the Cambridge Structural Database (Version 5.38; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave 60 hits for a direct platinum platinum bond with a hydrido bridge. Only one contains the same core as the title compound with hydrido and phosphido bridges (Jans et al., 1983[Jans, J., Naegeli, R., Venanzi, L. M. & Albinati, A. (1983). J. Organomet. Chem. 247, c37-c41.]).

6. Synthesis and crystallization

In a 100ml schlenk, [Pt2(μ-o-C6H4PPh2)(PPh3)2] (135 mg, 0.1 mmol) in freshly distilled THF (30 ml) was stirred at room temperature for three h with a 2M solution of HBr (230 µl, 0.2 mmol). The product, a yellow powder, was recrystallized from ether/pentane (v:v = 1:1) yielding pale-yellow crystals.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The hydrido H atom was located in difference-Fourier maps and refined with a distance restraint of 1.7 Å using the command DFIX in SHELXL2014. C-bound H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.95 (aromatic), 0.99 (CH2) and 0.98 Å (CH3) and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmeth­yl). Atom Br1 is disordered over two positions in a 0.92:0.08 ratio.

Table 3
Experimental details

Crystal data
Chemical formula [Pt2Br2(C12H10P)H(C18H15P)2]·C4H10O
Mr 1334.83
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 11.0257 (5), 14.0341 (6), 17.4469 (7)
α, β, γ (°) 113.411 (1), 94.083 (1), 96.681 (1)
V3) 2440.09 (18)
Z 2
Radiation type Mo Kα
μ (mm−1) 7.50
Crystal size (mm) 0.25 × 0.16 × 0.08
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.512, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 47421, 9969, 8359
Rint 0.033
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.057, 1.02
No. of reflections 9969
No. of parameters 556
No. of restraints 23
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 2.00, −1.01
Computer programs: APEX2 and SAINT (Bruker, 2006[Bruker (2006). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2006).

µ-Diphenylphosphido-µ-hydrido-bis[bromido(triphenylphosphane-κP)platinum(II)] diethyl ether monosolvate top
Crystal data top
[Pt2Br2(C12H10P)H(C18H15P)2]·C4H10OZ = 2
Mr = 1334.83F(000) = 1284
Triclinic, P1Dx = 1.817 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.0257 (5) ÅCell parameters from 9992 reflections
b = 14.0341 (6) Åθ = 2.3–35.0°
c = 17.4469 (7) ŵ = 7.50 mm1
α = 113.411 (1)°T = 173 K
β = 94.083 (1)°Plate, yellow
γ = 96.681 (1)°0.25 × 0.16 × 0.08 mm
V = 2440.09 (18) Å3
Data collection top
Bruker APEXII CCD
diffractometer
9969 independent reflections
Radiation source: fine-focus sealed tube8359 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 18.4 pixels mm-1θmax = 26.4°, θmin = 1.6°
φ and ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
k = 1717
Tmin = 0.512, Tmax = 0.747l = 2121
47421 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.023H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.057 w = 1/[σ2(Fo2) + (0.0283P)2 + 3.5779P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.003
9969 reflectionsΔρmax = 2.00 e Å3
556 parametersΔρmin = 1.01 e Å3
23 restraints
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2>2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pt10.00394 (2)0.88526 (2)0.75388 (2)0.0191 (1)
Pt20.06369 (2)1.06252 (2)0.73179 (2)0.0177 (1)
Br1A0.21974 (5)0.92152 (5)0.82617 (4)0.0298 (2)0.920
Br1B0.2082 (8)0.8680 (9)0.7906 (5)0.054 (3)0.080
Br20.11894 (4)1.17492 (3)0.71718 (3)0.0354 (1)
P10.03201 (10)0.72696 (8)0.76059 (7)0.0225 (3)
P20.18132 (9)0.91642 (7)0.72085 (6)0.0184 (3)
P30.19935 (9)1.16206 (7)0.70978 (6)0.0173 (3)
C10.0144 (4)0.7457 (3)0.8704 (3)0.0256 (12)
O10.4696 (5)0.5756 (5)0.9171 (4)0.106 (3)
C20.0902 (5)0.8066 (4)0.9231 (3)0.0404 (17)
C30.0777 (5)0.8264 (4)1.0081 (3)0.0439 (19)
C40.0081 (5)0.7842 (4)1.0401 (3)0.0373 (14)
C50.0852 (5)0.7255 (4)0.9884 (3)0.0388 (17)
C60.0748 (4)0.7059 (3)0.9034 (3)0.0304 (12)
C70.0683 (4)0.6318 (3)0.7082 (3)0.0300 (14)
C80.1758 (5)0.6624 (4)0.6809 (3)0.0457 (17)
C90.2501 (6)0.5881 (5)0.6409 (4)0.066 (2)
C100.2166 (6)0.4845 (5)0.6282 (5)0.074 (3)
C110.1111 (6)0.4548 (4)0.6580 (4)0.064 (2)
C120.0373 (5)0.5283 (4)0.6979 (4)0.0444 (19)
C130.1830 (4)0.6475 (3)0.7150 (3)0.0264 (12)
C140.2595 (5)0.6088 (4)0.7591 (3)0.0405 (17)
C150.3708 (5)0.5458 (4)0.7194 (4)0.0527 (19)
C160.4070 (5)0.5213 (4)0.6361 (4)0.0528 (19)
C170.3310 (5)0.5596 (4)0.5912 (3)0.0480 (17)
C180.2199 (5)0.6222 (4)0.6302 (3)0.0357 (14)
C190.2826 (4)0.9126 (3)0.7973 (3)0.0230 (12)
C200.2545 (4)0.9915 (3)0.8785 (3)0.0308 (14)
C210.3228 (5)0.9889 (4)0.9415 (3)0.0456 (19)
C220.4174 (6)0.9072 (5)0.9240 (4)0.057 (2)
C230.4453 (5)0.8285 (4)0.8448 (4)0.0523 (19)
C240.3775 (4)0.8291 (4)0.7810 (3)0.0342 (14)
C250.2685 (4)0.8502 (3)0.6165 (3)0.0235 (11)
C260.2012 (4)0.8197 (3)0.5484 (3)0.0313 (14)
C270.2604 (6)0.7795 (3)0.4669 (3)0.0435 (16)
C280.3867 (6)0.7657 (4)0.4527 (3)0.0490 (19)
C290.4536 (5)0.7955 (4)0.5183 (3)0.0486 (17)
C300.3959 (4)0.8393 (3)0.6011 (3)0.0332 (14)
C310.3612 (3)1.1109 (3)0.6999 (2)0.0190 (11)
C320.4044 (4)1.1002 (3)0.7699 (3)0.0247 (12)
C330.5269 (4)1.0618 (3)0.7667 (3)0.0298 (14)
C340.6077 (4)1.0352 (4)0.6945 (3)0.0350 (16)
C350.5661 (4)1.0467 (4)0.6258 (3)0.0358 (16)
C360.4429 (4)1.0840 (3)0.6279 (3)0.0271 (12)
C370.1800 (3)1.1791 (3)0.6131 (2)0.0207 (11)
C380.1460 (4)1.0968 (3)0.5462 (3)0.0274 (12)
C390.1318 (4)1.1054 (4)0.4710 (3)0.0323 (14)
C400.1494 (5)1.1954 (4)0.4621 (3)0.0428 (17)
C410.1827 (5)1.2783 (4)0.5284 (3)0.0441 (17)
C420.1988 (4)1.2703 (3)0.6036 (3)0.0319 (14)
C430.1864 (4)1.2956 (3)0.7920 (2)0.0216 (11)
C440.2896 (4)1.3424 (3)0.8157 (3)0.0337 (14)
C450.2768 (5)1.4447 (4)0.8766 (3)0.0400 (16)
C460.1624 (5)1.5005 (3)0.9142 (3)0.0387 (16)
C470.0599 (5)1.4555 (3)0.8906 (3)0.0361 (16)
C480.0707 (4)1.3532 (3)0.8298 (3)0.0284 (12)
C490.6136 (11)0.7134 (8)1.0225 (7)0.144 (5)
C500.4824 (10)0.6726 (8)0.9905 (7)0.127 (4)
C510.3504 (9)0.5283 (10)0.8798 (9)0.150 (6)
C520.3495 (10)0.4253 (9)0.8167 (9)0.166 (6)
H0.058 (2)1.008 (2)0.757 (3)0.064 (17)*
H20.150900.835020.900920.0480*
H30.128860.869171.044080.0530*
H40.014450.795381.097710.0450*
H50.146330.698101.011090.0460*
H60.128580.665510.868290.0370*
H80.198540.733680.689510.0550*
H90.323640.608780.622380.0790*
H100.265550.433370.599070.0880*
H110.089770.383940.650860.0770*
H120.034550.507900.718260.0530*
H140.235210.625550.816950.0480*
H150.422670.519260.750060.0630*
H160.483850.478320.609090.0630*
H170.355860.542390.533440.0570*
H180.168150.648330.599230.0420*
H200.188371.047320.890730.0370*
H210.304421.043350.996630.0540*
H220.463760.905500.967410.0680*
H230.511530.773080.833470.0620*
H240.395500.773170.726510.0410*
H260.114060.826510.557990.0370*
H270.213890.761360.420760.0520*
H280.427420.735160.396630.0590*
H290.540770.786340.507710.0580*
H300.443330.861640.646630.0400*
H320.349401.119300.819950.0300*
H330.555471.053840.814270.0360*
H340.691831.008920.692410.0420*
H350.622031.028950.576420.0430*
H360.414831.090990.579920.0330*
H380.132531.034280.552050.0330*
H390.109691.048360.425260.0390*
H400.138701.201180.410470.0510*
H410.194531.340940.522180.0530*
H420.222631.326970.648730.0390*
H440.369331.304370.790250.0410*
H450.348011.476260.892300.0480*
H460.154381.570120.956310.0460*
H470.019451.494460.916180.0430*
H480.001111.322720.813980.0340*
H49A0.661940.696280.975120.2160*
H49B0.641750.681221.059810.2160*
H49C0.624440.789901.053980.2160*
H50A0.439400.660911.034690.1520*
H50B0.444060.724780.976210.1520*
H51A0.313860.571560.854070.1800*
H51B0.299610.524020.923230.1800*
H52A0.409640.428140.778590.2490*
H52B0.267180.397930.784560.2490*
H52C0.371060.378890.843460.2490*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.0181 (1)0.0218 (1)0.0213 (1)0.0054 (1)0.0053 (1)0.0117 (1)
Pt20.0161 (1)0.0179 (1)0.0205 (1)0.0030 (1)0.0034 (1)0.0090 (1)
Br1A0.0185 (2)0.0384 (3)0.0356 (4)0.0010 (2)0.0020 (2)0.0201 (3)
Br1B0.040 (4)0.077 (6)0.038 (5)0.012 (5)0.004 (4)0.022 (4)
Br20.0235 (2)0.0294 (2)0.0564 (3)0.0019 (2)0.0144 (2)0.0199 (2)
P10.0285 (6)0.0227 (5)0.0219 (5)0.0102 (4)0.0067 (4)0.0127 (4)
P20.0184 (5)0.0174 (5)0.0214 (5)0.0041 (4)0.0044 (4)0.0095 (4)
P30.0179 (5)0.0155 (4)0.0192 (5)0.0015 (4)0.0027 (4)0.0080 (4)
C10.035 (2)0.022 (2)0.025 (2)0.0053 (17)0.0061 (18)0.0143 (18)
O10.085 (4)0.099 (4)0.147 (6)0.030 (3)0.041 (4)0.054 (4)
C20.058 (3)0.044 (3)0.030 (3)0.026 (2)0.014 (2)0.020 (2)
C30.066 (4)0.041 (3)0.026 (3)0.019 (3)0.014 (2)0.011 (2)
C40.057 (3)0.031 (2)0.021 (2)0.002 (2)0.001 (2)0.011 (2)
C50.047 (3)0.038 (3)0.034 (3)0.005 (2)0.007 (2)0.020 (2)
C60.035 (2)0.030 (2)0.031 (2)0.0066 (19)0.004 (2)0.017 (2)
C70.040 (3)0.026 (2)0.028 (2)0.0175 (19)0.011 (2)0.0109 (19)
C80.062 (3)0.036 (3)0.054 (3)0.022 (2)0.032 (3)0.026 (3)
C90.072 (4)0.048 (3)0.096 (5)0.029 (3)0.056 (4)0.036 (4)
C100.082 (5)0.043 (3)0.104 (6)0.036 (3)0.051 (4)0.025 (4)
C110.065 (4)0.027 (3)0.102 (5)0.020 (3)0.031 (4)0.022 (3)
C120.037 (3)0.032 (3)0.066 (4)0.012 (2)0.013 (3)0.019 (3)
C130.032 (2)0.018 (2)0.029 (2)0.0038 (17)0.0044 (18)0.0095 (18)
C140.040 (3)0.042 (3)0.045 (3)0.002 (2)0.005 (2)0.026 (2)
C150.044 (3)0.056 (3)0.069 (4)0.002 (3)0.011 (3)0.039 (3)
C160.041 (3)0.043 (3)0.070 (4)0.005 (2)0.006 (3)0.024 (3)
C170.057 (3)0.039 (3)0.041 (3)0.003 (2)0.009 (3)0.013 (2)
C180.045 (3)0.031 (2)0.029 (2)0.005 (2)0.002 (2)0.011 (2)
C190.021 (2)0.028 (2)0.027 (2)0.0103 (16)0.0091 (17)0.0159 (18)
C200.035 (3)0.032 (2)0.029 (2)0.0123 (19)0.006 (2)0.014 (2)
C210.062 (4)0.050 (3)0.035 (3)0.030 (3)0.021 (3)0.020 (3)
C220.075 (4)0.059 (4)0.064 (4)0.034 (3)0.049 (3)0.041 (3)
C230.050 (3)0.045 (3)0.077 (4)0.011 (3)0.036 (3)0.035 (3)
C240.031 (2)0.032 (2)0.046 (3)0.0077 (19)0.016 (2)0.020 (2)
C250.033 (2)0.0158 (18)0.024 (2)0.0038 (16)0.0009 (17)0.0110 (17)
C260.042 (3)0.023 (2)0.030 (2)0.0040 (19)0.009 (2)0.0117 (19)
C270.082 (4)0.024 (2)0.025 (2)0.012 (2)0.010 (3)0.009 (2)
C280.077 (4)0.032 (3)0.029 (3)0.015 (3)0.015 (3)0.005 (2)
C290.049 (3)0.039 (3)0.047 (3)0.009 (2)0.019 (3)0.010 (3)
C300.033 (2)0.025 (2)0.037 (3)0.0057 (18)0.004 (2)0.009 (2)
C310.0136 (18)0.0187 (18)0.028 (2)0.0033 (15)0.0039 (16)0.0126 (17)
C320.027 (2)0.024 (2)0.026 (2)0.0085 (17)0.0064 (18)0.0116 (18)
C330.026 (2)0.033 (2)0.039 (3)0.0084 (18)0.015 (2)0.021 (2)
C340.020 (2)0.038 (3)0.055 (3)0.0075 (19)0.008 (2)0.026 (2)
C350.024 (2)0.043 (3)0.041 (3)0.002 (2)0.004 (2)0.020 (2)
C360.024 (2)0.030 (2)0.030 (2)0.0053 (17)0.0010 (18)0.0151 (19)
C370.0175 (19)0.025 (2)0.023 (2)0.0005 (15)0.0025 (16)0.0143 (17)
C380.027 (2)0.029 (2)0.025 (2)0.0015 (17)0.0047 (18)0.0103 (19)
C390.029 (2)0.043 (3)0.023 (2)0.002 (2)0.0065 (18)0.012 (2)
C400.043 (3)0.066 (3)0.032 (3)0.007 (3)0.008 (2)0.033 (3)
C410.058 (3)0.047 (3)0.045 (3)0.013 (3)0.007 (3)0.036 (3)
C420.038 (3)0.030 (2)0.033 (2)0.009 (2)0.008 (2)0.017 (2)
C430.032 (2)0.0154 (18)0.019 (2)0.0055 (16)0.0052 (17)0.0080 (16)
C440.032 (2)0.024 (2)0.040 (3)0.0072 (19)0.005 (2)0.007 (2)
C450.043 (3)0.028 (2)0.046 (3)0.015 (2)0.014 (2)0.008 (2)
C460.056 (3)0.021 (2)0.032 (3)0.010 (2)0.002 (2)0.003 (2)
C470.043 (3)0.024 (2)0.035 (3)0.001 (2)0.005 (2)0.009 (2)
C480.031 (2)0.026 (2)0.026 (2)0.0035 (18)0.0010 (18)0.0091 (19)
C490.157 (9)0.097 (7)0.145 (10)0.033 (7)0.043 (8)0.007 (7)
C500.140 (7)0.100 (6)0.170 (9)0.056 (6)0.102 (7)0.062 (6)
C510.054 (5)0.175 (10)0.239 (14)0.011 (6)0.044 (6)0.102 (9)
C520.085 (7)0.139 (9)0.257 (15)0.049 (7)0.013 (8)0.088 (9)
Geometric parameters (Å, º) top
Pt1—Pt22.8365 (4)C40—C411.385 (7)
Pt1—Br1A2.5084 (6)C41—C421.382 (7)
Pt1—Br1B2.364 (9)C43—C481.390 (6)
Pt1—P12.2616 (13)C43—C441.386 (6)
Pt1—P22.2217 (10)C44—C451.389 (7)
Pt2—Br22.5023 (5)C45—C461.371 (8)
Pt2—P22.2266 (11)C46—C471.368 (8)
Pt2—P32.2731 (11)C47—C481.390 (7)
Pt1—H1.73 (3)C2—H20.9500
Pt2—H1.73 (3)C3—H30.9500
P1—C131.823 (5)C4—H40.9500
P1—C11.820 (5)C5—H50.9500
P1—C71.833 (5)C6—H60.9500
P2—C251.817 (5)C8—H80.9500
P2—C191.812 (5)C9—H90.9500
P3—C371.819 (4)C10—H100.9500
P3—C311.814 (4)C11—H110.9500
P3—C431.834 (4)C12—H120.9500
C1—C61.383 (6)C14—H140.9500
C1—C21.388 (7)C15—H150.9500
O1—C501.434 (13)C16—H160.9500
O1—C511.387 (13)C17—H170.9500
C2—C31.389 (7)C18—H180.9500
C3—C41.369 (8)C20—H200.9500
C4—C51.377 (8)C21—H210.9500
C5—C61.390 (7)C22—H220.9500
C7—C121.388 (8)C23—H230.9500
C7—C81.393 (7)C24—H240.9500
C8—C91.396 (9)C26—H260.9500
C9—C101.381 (11)C27—H270.9500
C10—C111.394 (10)C28—H280.9500
C11—C121.384 (9)C29—H290.9500
C13—C181.394 (7)C30—H300.9500
C13—C141.384 (7)C32—H320.9500
C14—C151.381 (8)C33—H330.9500
C15—C161.370 (9)C34—H340.9500
C16—C171.389 (8)C35—H350.9500
C17—C181.375 (8)C36—H360.9500
C19—C241.399 (7)C38—H380.9500
C19—C201.393 (7)C39—H390.9500
C20—C211.386 (7)C40—H400.9500
C21—C221.376 (9)C41—H410.9500
C22—C231.368 (9)C42—H420.9500
C23—C241.387 (8)C44—H440.9500
C25—C261.393 (7)C45—H450.9500
C25—C301.390 (6)C46—H460.9500
C26—C271.382 (7)C47—H470.9500
C27—C281.374 (9)C48—H480.9500
C28—C291.357 (8)C49—C501.473 (16)
C29—C301.394 (7)C51—C521.43 (2)
C31—C321.398 (6)C49—H49A0.9800
C31—C361.384 (6)C49—H49B0.9800
C32—C331.383 (6)C49—H49C0.9800
C33—C341.382 (7)C50—H50A0.9900
C34—C351.374 (7)C50—H50B0.9900
C35—C361.390 (6)C51—H51A0.9900
C37—C381.389 (6)C51—H51B0.9900
C37—C421.391 (6)C52—H52A0.9800
C38—C391.382 (7)C52—H52B0.9800
C39—C401.366 (8)C52—H52C0.9800
Pt2—Pt1—Br1A112.09 (2)C43—C48—C47120.1 (4)
Pt2—Pt1—Br1B124.3 (3)C1—C2—H2120.00
Pt2—Pt1—P1155.02 (3)C3—C2—H2120.00
Pt2—Pt1—P250.46 (3)C4—C3—H3120.00
Br1A—Pt1—P191.84 (3)C2—C3—H3120.00
Br1A—Pt1—P2158.53 (3)C5—C4—H4120.00
Br1B—Pt1—P180.7 (3)C3—C4—H4120.00
Br1B—Pt1—P2174.7 (3)C4—C5—H5120.00
P1—Pt1—P2104.59 (4)C6—C5—H5120.00
Pt1—Pt2—Br2111.58 (1)C1—C6—H6120.00
Pt1—Pt2—P250.31 (3)C5—C6—H6120.00
Pt1—Pt2—P3154.61 (3)C9—C8—H8120.00
Br2—Pt2—P2157.93 (3)C7—C8—H8120.00
Br2—Pt2—P393.56 (3)C8—C9—H9120.00
P2—Pt2—P3104.41 (4)C10—C9—H9120.00
P1—Pt1—H169.7 (10)C11—C10—H10120.00
P2—Pt1—H85.5 (8)C9—C10—H10120.00
Br1A—Pt1—H77.9 (10)C10—C11—H11120.00
Br1B—Pt1—H89.2 (9)C12—C11—H11120.00
Pt2—Pt1—H35.1 (9)C11—C12—H12120.00
Pt1—Pt2—H35.1 (11)C7—C12—H12120.00
Br2—Pt2—H77.7 (11)C15—C14—H14120.00
P2—Pt2—H85.4 (11)C13—C14—H14120.00
P3—Pt2—H169.6 (12)C14—C15—H15120.00
Pt1—P1—C1109.25 (16)C16—C15—H15120.00
C1—P1—C7106.0 (2)C17—C16—H16120.00
Pt1—P1—C7116.75 (16)C15—C16—H16120.00
Pt1—P1—C13117.50 (16)C16—C17—H17120.00
C7—P1—C13100.6 (2)C18—C17—H17120.00
C1—P1—C13105.6 (2)C17—C18—H18120.00
Pt1—P2—Pt279.24 (3)C13—C18—H18120.00
Pt1—P2—C19110.91 (15)C19—C20—H20120.00
Pt2—P2—C19123.38 (16)C21—C20—H20120.00
Pt2—P2—C25110.18 (16)C20—C21—H21120.00
Pt1—P2—C25123.60 (15)C22—C21—H21120.00
C19—P2—C25108.3 (2)C23—C22—H22120.00
Pt2—P3—C43115.63 (14)C21—C22—H22120.00
C31—P3—C37105.31 (16)C24—C23—H23120.00
Pt2—P3—C37110.81 (13)C22—C23—H23120.00
C37—P3—C43105.24 (19)C19—C24—H24120.00
C31—P3—C43102.59 (19)C23—C24—H24120.00
Pt2—P3—C31116.14 (15)C25—C26—H26120.00
P1—C1—C2118.0 (4)C27—C26—H26120.00
C50—O1—C51116.5 (8)C28—C27—H27120.00
C2—C1—C6119.5 (4)C26—C27—H27120.00
P1—C1—C6122.5 (4)C27—C28—H28120.00
C1—C2—C3120.3 (5)C29—C28—H28120.00
C2—C3—C4120.1 (5)C30—C29—H29120.00
C3—C4—C5119.7 (5)C28—C29—H29120.00
C4—C5—C6120.8 (5)C25—C30—H30120.00
C1—C6—C5119.5 (4)C29—C30—H30120.00
C8—C7—C12120.0 (5)C33—C32—H32120.00
P1—C7—C12118.9 (4)C31—C32—H32120.00
P1—C7—C8121.1 (4)C34—C33—H33120.00
C7—C8—C9119.8 (6)C32—C33—H33120.00
C8—C9—C10119.9 (6)C33—C34—H34120.00
C9—C10—C11120.1 (6)C35—C34—H34120.00
C10—C11—C12120.1 (6)C34—C35—H35120.00
C7—C12—C11120.0 (5)C36—C35—H35120.00
P1—C13—C14123.6 (4)C35—C36—H36120.00
P1—C13—C18117.2 (4)C31—C36—H36120.00
C14—C13—C18119.2 (5)C37—C38—H38120.00
C13—C14—C15120.3 (5)C39—C38—H38120.00
C14—C15—C16120.4 (5)C40—C39—H39120.00
C15—C16—C17119.8 (5)C38—C39—H39120.00
C16—C17—C18120.2 (5)C39—C40—H40120.00
C13—C18—C17120.2 (5)C41—C40—H40120.00
P2—C19—C20117.3 (3)C42—C41—H41120.00
C20—C19—C24119.2 (4)C40—C41—H41120.00
P2—C19—C24123.1 (4)C37—C42—H42120.00
C19—C20—C21120.2 (4)C41—C42—H42120.00
C20—C21—C22119.8 (5)C45—C44—H44120.00
C21—C22—C23120.7 (6)C43—C44—H44120.00
C22—C23—C24120.4 (6)C44—C45—H45120.00
C19—C24—C23119.6 (5)C46—C45—H45120.00
P2—C25—C26116.9 (3)C47—C46—H46120.00
P2—C25—C30123.7 (4)C45—C46—H46120.00
C26—C25—C30118.9 (4)C46—C47—H47120.00
C25—C26—C27120.4 (5)C48—C47—H47120.00
C26—C27—C28119.9 (5)C43—C48—H48120.00
C27—C28—C29120.4 (5)C47—C48—H48120.00
C28—C29—C30120.8 (5)O1—C50—C49110.2 (9)
C25—C30—C29119.5 (4)O1—C51—C52110.7 (9)
C32—C31—C36119.1 (4)C50—C49—H49A110.00
P3—C31—C36123.5 (3)C50—C49—H49B109.00
P3—C31—C32117.3 (3)C50—C49—H49C109.00
C31—C32—C33120.3 (4)H49A—C49—H49B109.00
C32—C33—C34120.1 (4)H49A—C49—H49C109.00
C33—C34—C35119.9 (4)H49B—C49—H49C109.00
C34—C35—C36120.6 (4)O1—C50—H50A110.00
C31—C36—C35120.0 (4)O1—C50—H50B110.00
P3—C37—C38118.1 (3)C49—C50—H50A110.00
C38—C37—C42119.2 (4)C49—C50—H50B110.00
P3—C37—C42122.7 (3)H50A—C50—H50B108.00
C37—C38—C39120.3 (4)O1—C51—H51A109.00
C38—C39—C40120.4 (5)O1—C51—H51B110.00
C39—C40—C41120.0 (5)C52—C51—H51A109.00
C40—C41—C42120.3 (5)C52—C51—H51B109.00
C37—C42—C41119.9 (4)H51A—C51—H51B108.00
C44—C43—C48118.8 (4)C51—C52—H52A109.00
P3—C43—C44121.5 (3)C51—C52—H52B110.00
P3—C43—C48119.7 (3)C51—C52—H52C110.00
C43—C44—C45120.2 (4)H52A—C52—H52B109.00
C44—C45—C46120.6 (5)H52A—C52—H52C109.00
C45—C46—C47119.7 (5)H52B—C52—H52C109.00
C46—C47—C48120.7 (5)
Br1A—Pt1—Pt2—Br229.49 (3)C43—P3—C31—C3263.9 (4)
Br1A—Pt1—Pt2—P2165.31 (4)C31—P3—C37—C4287.1 (4)
Br1A—Pt1—Pt2—P3159.11 (7)C37—P3—C31—C365.2 (4)
P1—Pt1—Pt2—Br2168.15 (7)C31—P3—C43—C4415.4 (4)
P1—Pt1—Pt2—P22.95 (8)C43—P3—C37—C38159.6 (3)
P1—Pt1—Pt2—P33.25 (11)Pt2—P3—C37—C42146.6 (3)
P2—Pt1—Pt2—Br2165.20 (4)Pt2—P3—C43—C4839.4 (4)
P2—Pt1—Pt2—P36.20 (7)C43—P3—C31—C36115.1 (4)
Pt2—Pt1—P1—C1103.09 (17)C43—P3—C37—C4220.9 (4)
Br1A—Pt1—P1—C160.59 (16)C37—P3—C43—C4883.3 (4)
P2—Pt1—P1—C1105.44 (16)Pt2—P3—C31—C36117.8 (4)
Pt2—Pt1—P1—C7136.76 (17)C31—P3—C43—C48166.8 (3)
Br1A—Pt1—P1—C759.55 (17)C50—O1—C51—C52170.5 (10)
P2—Pt1—P1—C7134.41 (17)C2—C1—C6—C51.5 (7)
Pt2—Pt1—P1—C1317.2 (2)C51—O1—C50—C49179.7 (10)
Br1A—Pt1—P1—C13179.16 (18)C6—C1—C2—C30.8 (8)
P2—Pt1—P1—C1314.81 (18)P1—C1—C2—C3177.8 (4)
Br1A—Pt1—P2—Pt239.94 (10)P1—C1—C6—C5178.3 (4)
P1—Pt1—P2—Pt2178.72 (4)C1—C2—C3—C41.2 (9)
Pt2—Pt1—P2—C19121.79 (17)C2—C3—C4—C52.6 (9)
Br1A—Pt1—P2—C1981.85 (19)C3—C4—C5—C61.9 (9)
P1—Pt1—P2—C1956.92 (17)C4—C5—C6—C10.2 (8)
Pt2—Pt1—P2—C25107.17 (19)C8—C7—C12—C112.1 (8)
Br1A—Pt1—P2—C25147.11 (19)P1—C7—C8—C9179.7 (4)
P1—Pt1—P2—C2574.11 (19)P1—C7—C12—C11179.5 (5)
Br2—Pt2—P2—Pt139.20 (9)C12—C7—C8—C92.0 (8)
P3—Pt2—P2—Pt1177.26 (3)C7—C8—C9—C100.3 (9)
Pt1—Pt2—P2—C19108.05 (19)C8—C9—C10—C112.3 (10)
Br2—Pt2—P2—C19147.25 (18)C9—C10—C11—C122.2 (11)
P3—Pt2—P2—C1969.21 (18)C10—C11—C12—C70.1 (10)
Pt1—Pt2—P2—C25122.02 (16)P1—C13—C14—C15177.6 (4)
Br2—Pt2—P2—C2582.82 (18)C14—C13—C18—C170.0 (8)
P3—Pt2—P2—C2560.72 (16)C18—C13—C14—C150.1 (8)
Pt1—Pt2—P3—C310.85 (15)P1—C13—C18—C17177.9 (4)
Br2—Pt2—P3—C31172.84 (12)C13—C14—C15—C160.3 (9)
P2—Pt2—P3—C315.77 (13)C14—C15—C16—C170.3 (9)
Pt1—Pt2—P3—C37119.22 (14)C15—C16—C17—C180.2 (9)
Br2—Pt2—P3—C3752.77 (14)C16—C17—C18—C130.0 (9)
P2—Pt2—P3—C37114.30 (14)P2—C19—C20—C21175.3 (4)
Pt1—Pt2—P3—C43121.17 (16)C20—C19—C24—C232.7 (7)
Br2—Pt2—P3—C4366.84 (15)P2—C19—C24—C23175.4 (4)
P2—Pt2—P3—C43126.09 (15)C24—C19—C20—C212.2 (7)
Pt1—P1—C1—C259.8 (4)C19—C20—C21—C221.0 (8)
C7—P1—C1—C2173.7 (4)C20—C21—C22—C230.3 (10)
C13—P1—C1—C267.5 (4)C21—C22—C23—C240.8 (10)
Pt1—P1—C1—C6117.1 (4)C22—C23—C24—C192.1 (9)
C7—P1—C1—C69.5 (5)C26—C25—C30—C291.9 (7)
C13—P1—C1—C6115.6 (4)C30—C25—C26—C270.2 (7)
Pt1—P1—C13—C14124.8 (4)P2—C25—C26—C27172.8 (4)
Pt1—P1—C7—C812.7 (5)P2—C25—C30—C29174.3 (4)
C1—P1—C7—C8109.2 (4)C25—C26—C27—C282.5 (7)
C13—P1—C7—C8141.0 (4)C26—C27—C28—C292.9 (8)
Pt1—P1—C7—C12169.1 (4)C27—C28—C29—C300.8 (9)
C1—P1—C7—C1269.1 (5)C28—C29—C30—C251.5 (8)
C13—P1—C7—C1240.7 (5)C36—C31—C32—C330.9 (7)
C7—P1—C13—C14107.3 (5)P3—C31—C32—C33179.9 (4)
Pt1—P1—C13—C1857.4 (4)C32—C31—C36—C350.1 (7)
C1—P1—C13—C142.7 (5)P3—C31—C36—C35179.1 (4)
C7—P1—C13—C1870.4 (4)C31—C32—C33—C340.9 (7)
C1—P1—C13—C18179.6 (4)C32—C33—C34—C350.2 (8)
C25—P2—C19—C20154.3 (4)C33—C34—C35—C360.6 (8)
C19—P2—C25—C26163.2 (4)C34—C35—C36—C310.6 (8)
Pt1—P2—C25—C30156.3 (3)P3—C37—C38—C39179.1 (3)
Pt1—P2—C25—C2631.1 (4)C42—C37—C38—C390.4 (6)
Pt1—P2—C19—C2067.2 (4)C38—C37—C42—C410.5 (6)
Pt2—P2—C19—C2023.6 (4)P3—C37—C42—C41179.9 (4)
Pt2—P2—C25—C2659.2 (4)C37—C38—C39—C400.9 (7)
Pt1—P2—C19—C24105.6 (4)C38—C39—C40—C410.6 (8)
Pt2—P2—C19—C24163.7 (3)C39—C40—C41—C420.3 (8)
Pt2—P2—C25—C30113.5 (4)C40—C41—C42—C370.8 (7)
C25—P2—C19—C2433.0 (5)P3—C43—C44—C45178.3 (4)
C19—P2—C25—C3024.2 (5)C44—C43—C48—C470.5 (7)
Pt2—P3—C31—C3263.2 (4)C48—C43—C44—C450.5 (7)
C37—P3—C31—C32173.8 (3)P3—C43—C48—C47178.3 (4)
C37—P3—C43—C4494.5 (4)C43—C44—C45—C460.2 (8)
Pt2—P3—C43—C44142.9 (3)C44—C45—C46—C471.0 (8)
Pt2—P3—C37—C3834.0 (3)C45—C46—C47—C481.0 (7)
C31—P3—C37—C3892.4 (3)C46—C47—C48—C430.3 (7)
Hydrogen-bond geometry (Å, º) top
Cg4, Cg5 and Cg7 are the centroids of the C13–C18, C19–C24 and C31–C36 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C8—H8···Br1A0.952.733.460 (6)134
C8—H8···Br1B0.951.992.719 (13)132
C45—H45···O1i0.952.543.484 (8)170
C48—H48···Br20.952.653.520 (5)153
C2—H2···Cg50.952.703.637 (6)168
C24—H24···Cg40.952.833.459 (9)125
C30—H30···Cg70.952.843.340 (5)114
Symmetry code: (i) x1, y+1, z.
 

Funding information

This work was supported by the Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (URCHEMS), Université Frères Mentouri Constantine, Algeria. Thanks are due to MESRS and ATRST (Ministère de l'Enseignement Supérieur et de la Recherche Scientifique) for financial support.

References

First citationArchambault, C., Bender, R., Braunstein, P., Bouaoud, S. E., Rouag, D., Golhen, S. & Ouahab, L. (2001). Chem. Commun. pp. 849–850.  Web of Science CrossRef Google Scholar
First citationBachechi, F., Bracher, G., Grove, D. M., Kellenberger, B., Pregosin, P. S., Venanzi, L. M. & Zambonelli, L. (1983). Inorg. Chem. 22, 1031–1037.  CrossRef Web of Science Google Scholar
First citationBachechi, F., Mura, P. & Zambonelli, L. (1993). Acta Cryst. C49, 2072–2074.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBender, R., Bouaoud, S. E., Braunstein, P., Dusausoy, Y., Merabet, N., Raya, J. & Rouag, D. (1999). J. Chem. Soc. Dalton Trans. pp. 735–742.  Web of Science CrossRef Google Scholar
First citationBertolasi, V., Ferretti, V., Gilli, P. & De Benedetti, P. G. (1993). J. Chem. Soc. Perkin Trans. 2, pp. 213–219.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2006). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCiriano, M., Green, M., Howard, J. A. K., Proud, J. M., Spencer, J. L., Stone, F. G. A. & Tsipis, C. A. (1978). J. Chem Soc. Dalton Trans. pp. 801  CrossRef Web of Science Google Scholar
First citationClegg, W., Capdevila, M., González-Duarte, P. & Sola, J. (1996). Acta Cryst. B52, 270–276.  CrossRef Web of Science IUCr Journals Google Scholar
First citationComte, V., Blacque, O., Kubicki, M. M. & Moïse, C. (1997). Organometallics, 16, 5763–5769.  Web of Science CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHe, Z., Lugan, N., Neibecker, D., Mathieu, R. & Bonnet, J. J. (1992). J. Organomet. Chem. 426, 247–259.  CrossRef Web of Science Google Scholar
First citationJans, J., Naegeli, R., Venanzi, L. M. & Albinati, A. (1983). J. Organomet. Chem. 247, c37–c41.  CrossRef Web of Science Google Scholar
First citationLavastre, O., Bonnet, G., Boni, G., Kubicki, M. M. & Moïse, C. (1997). J. Organomet. Chem. 547, 141–147.  Web of Science CrossRef Google Scholar
First citationLeoni, P., Manetti, S. & Pasquali, M. (1995). Inorg. Chem. 34, 749–752.  CrossRef Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMohamed, A. S., Jourdain, I., Knorr, M., Rousselin, Y. & Kubicki, M. M. (2015). Acta Cryst. E71, 241–243.  Web of Science CrossRef IUCr Journals Google Scholar
First citationRoundhill, D. M. (1978). In Advances in Chemistry, Vol. 167 Transition Metal Hydrides edited by R. Bau, pp. 160–168. Washington: American Chemical Society.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStephan, D. W. (1989). Coord. Chem. Rev. 95, 41–107.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds