research communications
Crystal structures of sodium-, lithium-, and ammonium 4,5-dihydroxybenzene-1,3-disulfonate (tiron) hydrates
aDepartment of Chemistry, Temple University, 1901 N. 13th St., Philadelphia, PA 19122, USA, and bDepartment of Chemistry, University of Pennsylvania, 231 S. 34 Street, Philadelphia, PA 19104, USA
*Correspondence e-mail: ann.valentine@temple.edu
The solid-state structures of the Na+, Li+, and NH4+ salts of the 4,5-dihydroxybenzene-1,3-disulfonate (tiron) dianion are reported, namely disodium 4,5-dihydroxybenzene-1,3-disulfonate, 2Na+·C6H4O8S22−, μ-4,5-dihydroxybenzene-1,3-disulfonato-bis[aqualithium(I)] hemihydrate, [Li2(C6H4O8S2)(H2O)2]·0.5H2O, and diammonium 4,5-dihydroxybenzene-1,3-disulfonate monohydrate, 2NH4+·C6H4O8S22−·H2O. Intermolecular interactions vary with the size of the cation, and the cell, and the macromolecular features are also affected. The sodium in Na2(tiron) is coordinated in a distorted octahedral environment through the sulfonate oxygen and hydroxyl oxygen donors on tiron, as well as an interstitial water molecule. Lithium, with its smaller ionic radius, is coordinated in a distorted tetrahedral environment by sulfonic and phenolic O atoms, as well as water in Li2(tiron). The surrounding tiron anions coordinating to sodium or lithium in Na2(tiron) and Li2(tiron), respectively, result in a three-dimensional network held together by the coordinate bonds to the alkali metal cations. The formation of such a three-dimensional network for tiron salts is relatively rare and has not been observed with monovalent cations. Finally, (NH4)2(tiron) exhibits extensive hydrogen-bonding arrays between NH4+ and the surrounding tiron anions and interstitial water molecules. This series of structures may be valuable for understanding charge transfer in a putative solid-state fuel cell utilizing tiron.
Keywords: bioinorganic; catechol; metal organic framework; sodium channel; crystal structure.
1. Chemical context
Catechols play important roles across many areas of chemistry and biology. Their rich coordination chemistry with metal ions (Pierpont & Lange, 1994; Sever & Wilker, 2004) emerges for example in siderophores (Boukhalfa & Crumbliss, 2002; Raymond et al., 2015; Springer & Butler, 2016). One catechol-containing siderophore, enterobactin (ent) has the strongest characterized FeIII complex to date (Ka = 1049) (Loomis & Raymond, 1991). Catechols are also key to the function of some marine bioadhesives (Lee et al., 2011); in one recent example, a protein in sessile marine organisms uses a cooperation between surface residues containing 3,4-dihydroxyphenylalanine (DOPA) and lysine to bind strongly to mineral surfaces (Rapp et al., 2016). Some species of ascidians produce a polyphenol-containing molecule called tunichrome that has been implicated in metal binding and/or metal function (Sugumaran & Robinson, 2012).
Upon binding to metal cations such as FeIII and TiIV, catechols typically form brightly colored complexes (Sever & Wilker, 2004; Pierpont & Lange, 1994). In solution, however, some catechols can oxidize and form polymers, thus forming metal complexes that are more difficult to characterize. Compared to unsubstituted catechol, tiron (4,5-dihydroxy-1,3-benzenedisulfonic acid, Fig. 1) allows for improved water solubility as well as reduced polymerization by substituting electron-withdrawing sulfonic acid moieties (Sommer, 1963a,b). Tiron has long been used for colorimetric determination of both TiIV and FeIII (Yoe & Armstrong, 1945, 1947), hence its name.
The free acid of tiron has been used in an aqueous flow battery because of its two-electron redox couple within range of an aqueous system, high water solubility, and low cost (Yang et al., 2014). When crystallized, tiron molecules can form a network through coordination of the counter-cation to the sulfonate or protonated or deprotonated hydroxide of the tiron (Côté & Shimizu, 2001, 2003; Sheriff et al., 2003; Guan & Wang, 2016, 2017). These networks can range from one-dimensional networks, which form a (Côté & Shimizu, 2003; Sheriff et al., 2003), to three-dimensional networks in which each tiron anion is coordinated to a metal cation and forms an interconnected lattice among all tiron anions in the crystal (Côté & Shimizu, 2001, 2003; Guan & Wang, 2016). Many of these tiron-containing crystal structures exhibit counter-cation-dependent luminescent properties (Guan & Wang, 2016, 2017). The three-dimensional networks with tiron can absorb H2S gas after interstitial and coordinated H2O are liberated with heat (Côté & Shimizu, 2003). Currently, examples of three-dimensional networks formed by tiron and cations are relatively rare. Presented here are the first two examples of the preparation and characterization of the Li+ tiron salt and Na+ tiron salt, which forms a three-dimensional network. In addition to Li2(tiron) and Na2(tiron), the preparation and crystallization of the NH4+ tiron salt is reported. This species is the first tiron salt which utilizes a counter-cation capable of hydrogen bond (H-bond) donation to allow for a complex H-bonding network.
2. Structural commentary
Three tiron salts of different monovalent cations were crystallized. Li2(tiron) and (NH4)2(tiron) were both prepared from commercially available Na2(tiron) by salt metathesis. In each case, the Na+ cation was removed by 15-crown-5 ether.
All asymmetric units (Fig. 2) contain two of their respective cations on general positions. Water is included in all asymmetric units, however in different amounts. Both sodium and ammonium tiron have one water molecule in the whereas lithium tiron has 2.5 water molecules in the The lithium tiron also exhibits rotational whole-molecule disorder leading to two possible placements of O1 on the phenyl, and representing a major and minor orientation [89.2 (3) and 10.8 (3)% occupancy, respectively].
The structure of Li2(tiron) is presented in the P21/n The lithium ion is coordinated by phenolic, sulfonate and water oxygen atoms. Lithium is bonded to only three sulfonate moieties, and one water molecule in a distorted tetrahedral geometry. An extensive H-bonding network with three types of solvate water molecules stabilizes the (Table 1, Fig. 3). The geometrically frustrated water molecule containing O10 sits in a pocket surrounded by H-bond donors and acceptors from sulfonate (O6, O4), and water (O9), and phenol (O2). As a result of the frustration, O10 is highly disordered, modeled with a two-site split-atom model that additionally exhibits special-position disorder about the inversion element at d. The result is a four-site disorder model for the water molecule containing O10. The lithium-bound water molecule containing O11 H-bonds with sulfonate oxygen atoms O4 and O8, but the oxygen atom is disordered, pyramidalized predominantly toward the phenolic O—H hydrogen atom of O2 due to H-bonding, but with a minor component pyramidalized toward O1, which is less available as an H-bond acceptor since the phenolic hydrogen of O1 is already involved in an intramolecular ortho-H-bond with its own O2 (Fig. 2). The water molecule containing O9 is also lithium bound, but not disordered, and interacts with O10/10A of the disordered water and with sulfonate oxygen O3 and the phenolic hydrogen atom of O1.
The sodium salt of tiron is also presented in the P21/n Each sodium atom is bonded to four sulfonate moieties, one hydroxide, and one water oxygen atom to give a distorted octahedral geometry (Fig. 4). The two types of Na atoms are bridged to one another along the crystallographic a axis by O9 of a water ligand and by phenolic oxygen residue O1 on one side, and by sulfonate residues O6 and O5 on the other.
Finally, (NH4)2(tiron) is presented in the Pbca Ammonium is oriented around the negatively charged sulfonates, and acts as an H-bond donor to both sulfonates and neighboring water molecules (Table 3, Fig. 5). The structure of (NH4)2(tiron) is well-ordered with a clear H-bonding network, discussed in more detail in the next section.
|
3. Supramolecular features
All three tiron salts exhibit π-stacking between tiron catechol moieties, augmented by H-bonding interactions. H-bonding is present inter- and intramolecularly for all tiron salts in this study. The lithium salt exists in the solid state as a three-dimensional interconnected array of tiron anions bridged by lithium ions (Fig. 6). One of the lithium ions, Li1 serves to bridge two sulfonate groups of two neighboring tiron which π-stack with one another about a crystallographic inversion center (Wyckoff position b), hence the rings are perfectly parallel. The other lithium ion, Li2, links through a sulfonate group (S1) of one tiron to the other sulfonate group S(2) of a third tiron, generating a `square' assembly of tiron anions and two Li2 ions around a crystallographic inversion element (Wyckoff position a, Fig. 6). The distance of 3.718 (10) Å between the centroids of neighboring arene rings is consistent with a strong π-stacking interaction, and suggests the interaction is augmented by the array of H-bonding interactions among phenolic hydroxyl and sulfonate groups and water (Table 1, Fig. 3).
The H-bonding in the sodium complex is entirely intermolecular (Table 2, Fig. 7). Both hydroxyl moieties H-bond to a sulfonate moiety on an adjacent tiron anion. The hydroxyl O1 H-bonds to the sulfonate based O3 [O—H⋯O—S 2.05 (2) Å]. The other hydroxyl O4 H-bonds to O2 of the same sulfonate with a slightly shorter H-bond [O—H⋯O—S 1.98 Å]. These two H-bonds decrease to the π-system from the oxygen atom in the hydroxyls by reducing the torsion angle by 32.08 and 46.16° for O1 and O2, respectively. This deviation from a fully hyperconjugated hydroxyl exemplifies the importance of the formation of the H-bond. An H-bond not shown exists between a proton in water bound by Na+ and a tiron-based hydroxyl O2 position as well as a sulfonate in the first position [O—H⋯O—H 2.18 (3) Å, O—H⋯O—S 2.14 (3) Å].
|
Two types of sodium atoms arrange in channels along the crystallographic a-axis direction, and are bridged by sulfonyl oxygen atoms O3, O4, O5, and O6, by phenolic oxygen atom O1, and by water oxygen atom O9 (Fig. 7). Neighboring tiron π-stack along the crystallographic a-axis direction, related by crystallographic inversion centers (Wyckoff letters a and b), also requiring the arene rings to be parallel, as in the lithium salt. The π-stacking interactions are further augmented by H-bonding interactions between the phenolic hydrogens of O1 and O2 with sulfonate oxygens O3 and O4 respectively. The π-stacking distance of 3.753 (18) Å is similar to that observed in the lithium salt with its corresponding dense array of H-bonding interactions, but slightly shorter due to the more acute O—Na—O bond angles in octahedrally coordinated sodium atoms, in contrast to tetrahedrally coordinated lithium atoms in the lithium salt. This arrangement of Na+ and tiron ions results in an ordered array of sodium channels interspersed between columns of strongly interacting π-stacked tiron all in the crystallographic a-axis direction (Fig. 8).
Unlike Na+ and Li+, NH4+ cannot be coordinated by any atoms on tiron or water. Because of this inability, NH4+ interactions with the surrounding molecules are primarily H-bond based. Both ammonium ions H-bond to three sulfonate moieties and an oxygen atom from a phenolic hydroxyl or a water molecule (Tables 3 and 4, Fig. 9). The ammonium ion containing N1 forms H-bonds with two tiron molecules that are horizontally next to each other in the as well as a tiron above and a tiron below. The ammonium ion containing N2 also forms a similar H-bonding network with the tiron molecules but also stabilizes an interstitial water. This water H-bonds to two first position sulfonate moieties in alternating layers of tiron molecules [O—H⋯O—S 1.97 (2) Å, O—H⋯O—S 2.03 (2) Å]. Finally, O5 of a phenolic hydroxyl is H-bonded to this interstitial water [O—H⋯OH2 1.99 Å] (Fig. 9). Regarding intramolecular H-bonding, because the protons on the hydroxyls are pointed away from each other to allow for H-bonding to N1, the phenolic hydroxyl containing O1 is directed to H-bond with O3 of the sulfonate (Fig. 9).
|
The (NH4)2(tiron) packs such that the tiron units connect to one another along the crystallographic c-axis direction via a six-membered H-bonding array of two lattice water molecules, two ammonium ions (containing N2), and two sulfonate oxygen atoms (Fig. 9). The ammonium ions containing N1 further serve to link tiron units along the crystallographic b-axis direction by H-bonding with sulfonate oxygen O8 and phenolic oxygen atom O1. Further, the arene π-stacking interactions and additional H-bonding interactions between sulfonate oxygen atoms and both ammonium ions link these strands to one another in the crystallographic a-axis direction to give the three-dimensional H-bonding network (Fig. 10), although the π-stacking distance is greatest in the ammonium salt [4.006 (3) Å] in comparison to the Li+ and Na+ salts. This result is possibly due to the lower strength of N—H H-bonds in comparison to O—H H-bonds. Unlike the Li+ and Na+ salts, the planes of the arene rings of tiron in the NH4+ tiron are canted at an angle of 2.08°, related to one another by the crystallographic glide operations.
4. Database survey
In the reported structures, interactions with sulfonate moieties and the protonated hydroxyl moieties together create a complex network formed through coordinate bonds or H-bonds. A search of the Cambridge Structural Database (Version 5.39, February 2018; Groom et al., 2016) yielded several structures that included tiron (Table 5). Of the structures reported, seven exhibited π-stacking interactions between at least two tiron molecules as represented by their intercentroid distances. A rarer structural feature of these complexes is the formation of networks between tiron molecules and their corresponding counter-cations in which only HUCMOH, ADOXUP, and HUCMOH02 form three-dimensional networks by eliciting multiple bonds to the cations (Côté & Shimizu, 2003; Guan & Wang, 2016). Both presented Li+ and Na+ tiron salts are the first examples of tiron-containing structures with monovalent cations that form three-dimensional networks. Furthermore, the NH4+ tiron salt presented is the first example of a tiron complex in which the counter-cation H-bonds to the tiron.
|
5. Synthesis and crystallization
Na2(tiron)·H2O
Na2(tiron)·H2O was used as received from the commercial source (97%, Sigma Aldrich) and added to water until it was saturated. The slurry was filtered into a 1 dram scintillation vial and covered with a Kimwipe. The solution was allowed to sit undisturbed at room temperature until the water evaporated. The crystals which developed were off-white needles.
Li2(tiron)·2.5H2O
In 2.00 mL of water, 0.100 g of Na2(tiron)·H2O was dissolved. To this solution, 0.94 g of LiPF6 was added. Once the lithium salt dissolved, 0.120 mL 15-crown-5 was added which immediately resulted in a white precipitate. The slurry was stirred while adding 1 mL of dichloromethane (DCM), then the DCM layer was removed by pipette. The aqueous solution was extracted twice more with DCM for a total of three times. The water was then evaporated by gentle heating. A white powder was obtained and triturated with 1 mL of diethyl ether three times. The resulting solid was dried, partially dissolved in ethanol, filtered, and allowed to sit undisturbed in a 1 dram scintillation vial at room temperature. The resulting crystals were off-white needles.
(NH4)2(tiron)·H2O
Na2(tiron)·H2O (0.100 g) was added and dissolved in 2.00 mL of water. After the Na2(tiron) had dissolved, 0.098 g of NH4PF6 was added and dissolved. Upon adding NH4PF6, the solution turned rose pink. To this solution, 0.120 mL of 15-crown-5 was added and a white precipitate formed. The slurry was extracted three times total with 1 mL of DCM each time. The aqueous solution was gently heated to dryness. The solid was then triturated with three separate 1 mL portions of diethyl ether. The solid was dried and dissolved in methanol, filtered, and allowed to sit undisturbed in a 1 dram vial at room temperature. The crystals which formed were off-white needles with a purple/rose-colored oily residue coating them.
6. Refinement
Crystal data, data collection and structure . Water hydrogens were located in difference maps and refined wherever possible. H atoms bonded to C were placed in geometrically idealized positions based on sp2 with C—H bond lengths of 0.95 Å and Uiso(H) = 1.2Ueq(C). A combination of calculated H atoms and H atoms found in the difference map was utilized for phenolic O—H and H2O molecules. For phenolic OH, H atoms were either located and freely refined, or placed in idealized sp3 positions with bond lengths of 0.84 Å and Uiso(H) = 1.5Ueq(O), and permitted to rotate about the O—C bond. For water molecules, hydrogen atoms were either located in the difference-Fourier map and refined with restraints (detailed below), or added and refined with restraints according to the most likely hydrogen-bonding interactions. For disordered water molecules, restraints (SIMU, DFIX, DANG, ISOR) and constraints (EADP) were employed to improve displacement parameters as well as allow for convergence of H-atom locations. For SIMU restraints on the disordered O10 of Li2(tiron)·2.5H2O, the restraint was set at s = 0.005 Å, st = 0.02 Å, and the default cutoff of 1.7 Å. These atoms were further restrained with ISOR 0.01 0.02. The disordered O—H phenoxyl group on the tiron ligand for the Li2(tiron) was located from a difference map and refined to a 0.892 (3)/0.108 (3) site occupancy. The lithium-bound water molecule was refined to a 0.751 (12)/0.249 (12) site occupancy. The disordered solvate water molecule on d containing O10 was refined to a 0.30 (5)/0.20 (5) site occupancy. H atoms bonded to N were located in the difference-Fourier maps and restrained using DFIX and DANG to idealized sp3 with N—H bond lengths of 1.00 (2) Å and Uiso(H) = 1.5Ueq(N). EADP was used to constrain the ellipsoids of the disordered O1 to be equivalent for accurate of occupancies.
details are summarized in Table 6
|
Supporting information
https://doi.org/10.1107/S2056989018008009/zl2730sup1.cif
contains datablocks global, NaTiron, NH4Tiron, LiTiron. DOI:Structure factors: contains datablock NaTiron. DOI: https://doi.org/10.1107/S2056989018008009/zl2730NaTironsup2.hkl
Structure factors: contains datablock NH4Tiron. DOI: https://doi.org/10.1107/S2056989018008009/zl2730NH4Tironsup3.hkl
Structure factors: contains datablock LiTiron. DOI: https://doi.org/10.1107/S2056989018008009/zl2730LiTironsup4.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018008009/zl2730NaTironsup5.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2056989018008009/zl2730NH4Tironsup6.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2056989018008009/zl2730LiTironsup7.cdx
For all structures, data collection: APEX2 (Bruker, 2014). Cell
SAINT (Bruker, 2014) for NaTiron, NH4Tiron; SAINT (Bruker, 2016) for LiTiron. Data reduction: SAINT (Bruker, 2014) for NaTiron, NH4Tiron; SAINT (Bruker, 2016) for LiTiron. For all structures, program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).2Na+·C6H6O9S22− | F(000) = 672 |
Mr = 332.21 | Dx = 2.094 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 6.8156 (7) Å | Cell parameters from 6900 reflections |
b = 16.1449 (15) Å | θ = 2.5–27.9° |
c = 9.5870 (9) Å | µ = 0.63 mm−1 |
β = 92.727 (2)° | T = 100 K |
V = 1053.73 (18) Å3 | Plank, colorless |
Z = 4 | 0.45 × 0.16 × 0.13 mm |
Bruker APEXII diffractometer | 2485 independent reflections |
Radiation source: sealed tube | 2340 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
Detector resolution: 8.333 pixels mm-1 | θmax = 27.9°, θmin = 2.5° |
ω and φ scans | h = −8→8 |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | k = −17→21 |
Tmin = 0.676, Tmax = 0.746 | l = −11→12 |
9573 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.023 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.071 | w = 1/[σ2(Fo2) + (0.0406P)2 + 0.6133P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max = 0.001 |
2485 reflections | Δρmax = 0.44 e Å−3 |
185 parameters | Δρmin = −0.43 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.74934 (5) | 0.47581 (2) | 0.82422 (3) | 0.00662 (9) | |
S2 | 0.78290 (5) | 0.28628 (2) | 0.35605 (3) | 0.00666 (9) | |
Na1 | 0.52212 (8) | 0.15609 (3) | 0.55730 (6) | 0.01024 (13) | |
Na2 | 0.52978 (8) | 0.35866 (3) | 0.07130 (6) | 0.00904 (13) | |
O1 | 0.77862 (15) | 0.44913 (6) | 0.21044 (10) | 0.0095 (2) | |
H1 | 0.834 (3) | 0.4913 (15) | 0.184 (2) | 0.026 (6)* | |
O2 | 0.72832 (15) | 0.60443 (6) | 0.33613 (10) | 0.0103 (2) | |
H2 | 0.646843 | 0.597179 | 0.268721 | 0.015* | |
O3 | 0.93352 (15) | 0.43988 (6) | 0.88058 (10) | 0.0102 (2) | |
O4 | 0.57824 (15) | 0.42796 (6) | 0.86349 (10) | 0.0104 (2) | |
O5 | 0.73253 (14) | 0.56359 (6) | 0.85674 (10) | 0.0094 (2) | |
O6 | 0.78663 (15) | 0.22645 (6) | 0.47032 (10) | 0.0089 (2) | |
O7 | 0.96390 (15) | 0.28408 (6) | 0.27946 (10) | 0.0104 (2) | |
O8 | 0.60507 (15) | 0.28136 (6) | 0.26724 (10) | 0.0102 (2) | |
O9 | 0.26274 (16) | 0.24089 (7) | 0.49210 (11) | 0.0115 (2) | |
H9A | 0.256 (4) | 0.2814 (17) | 0.542 (3) | 0.042 (7)* | |
H9B | 0.205 (4) | 0.2515 (16) | 0.419 (3) | 0.037 (7)* | |
C1 | 0.76633 (19) | 0.45634 (8) | 0.35261 (13) | 0.0074 (2) | |
C2 | 0.74189 (19) | 0.53371 (8) | 0.41504 (14) | 0.0078 (3) | |
C3 | 0.73789 (19) | 0.53988 (8) | 0.55936 (14) | 0.0082 (2) | |
H3 | 0.723889 | 0.592459 | 0.602256 | 0.010* | |
C4 | 0.75445 (19) | 0.46884 (8) | 0.64062 (13) | 0.0073 (2) | |
C5 | 0.77038 (19) | 0.39085 (8) | 0.58031 (13) | 0.0082 (3) | |
H5 | 0.778109 | 0.342517 | 0.636828 | 0.010* | |
C6 | 0.77476 (19) | 0.38501 (8) | 0.43624 (14) | 0.0072 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.00802 (17) | 0.00652 (17) | 0.00529 (15) | −0.00008 (11) | −0.00004 (11) | −0.00033 (10) |
S2 | 0.00871 (17) | 0.00549 (16) | 0.00574 (16) | 0.00048 (11) | −0.00007 (12) | 0.00022 (11) |
Na1 | 0.0092 (3) | 0.0105 (3) | 0.0109 (3) | 0.0003 (2) | −0.0001 (2) | −0.0014 (2) |
Na2 | 0.0093 (3) | 0.0099 (3) | 0.0079 (3) | 0.0004 (2) | −0.0002 (2) | 0.0004 (2) |
O1 | 0.0137 (5) | 0.0090 (5) | 0.0060 (4) | −0.0021 (4) | 0.0006 (3) | 0.0014 (4) |
O2 | 0.0152 (5) | 0.0072 (5) | 0.0081 (4) | −0.0012 (4) | −0.0029 (4) | 0.0030 (4) |
O3 | 0.0105 (5) | 0.0108 (5) | 0.0091 (4) | 0.0022 (4) | −0.0018 (3) | 0.0007 (4) |
O4 | 0.0111 (5) | 0.0121 (5) | 0.0079 (4) | −0.0035 (4) | 0.0009 (3) | 0.0017 (4) |
O5 | 0.0110 (5) | 0.0071 (5) | 0.0100 (4) | 0.0005 (4) | 0.0007 (3) | −0.0018 (3) |
O6 | 0.0113 (5) | 0.0073 (4) | 0.0081 (4) | 0.0008 (4) | 0.0003 (4) | 0.0024 (3) |
O7 | 0.0116 (5) | 0.0111 (5) | 0.0087 (5) | 0.0022 (4) | 0.0031 (4) | 0.0003 (3) |
O8 | 0.0118 (5) | 0.0095 (5) | 0.0091 (5) | −0.0010 (4) | −0.0029 (4) | 0.0005 (3) |
O9 | 0.0135 (5) | 0.0114 (5) | 0.0095 (5) | 0.0012 (4) | −0.0007 (4) | −0.0003 (4) |
C1 | 0.0066 (6) | 0.0090 (6) | 0.0065 (6) | −0.0009 (5) | 0.0000 (4) | 0.0007 (5) |
C2 | 0.0072 (6) | 0.0069 (6) | 0.0093 (6) | −0.0006 (5) | −0.0003 (5) | 0.0021 (5) |
C3 | 0.0073 (6) | 0.0074 (6) | 0.0100 (6) | −0.0008 (5) | 0.0003 (5) | 0.0000 (5) |
C4 | 0.0068 (6) | 0.0091 (6) | 0.0059 (6) | −0.0007 (5) | −0.0001 (4) | 0.0003 (5) |
C5 | 0.0079 (6) | 0.0080 (6) | 0.0086 (6) | −0.0002 (5) | 0.0004 (5) | 0.0013 (5) |
C6 | 0.0065 (6) | 0.0064 (6) | 0.0087 (6) | 0.0004 (5) | 0.0002 (4) | −0.0007 (5) |
S1—O3 | 1.4628 (10) | Na2—O5vi | 2.3163 (11) |
S1—O4 | 1.4630 (10) | Na2—O6iii | 2.3278 (11) |
S1—O5 | 1.4567 (10) | Na2—O8 | 2.2929 (11) |
S1—C4 | 1.7657 (13) | Na2—O9vii | 2.4073 (12) |
S2—Na2 | 3.3683 (7) | O1—H1 | 0.82 (2) |
S2—O6 | 1.4599 (10) | O1—C1 | 1.3746 (16) |
S2—O7 | 1.4658 (10) | O2—H2 | 0.8400 |
S2—O8 | 1.4499 (10) | O2—C2 | 1.3704 (16) |
S2—C6 | 1.7717 (14) | O9—H9A | 0.82 (3) |
Na1—Na2i | 3.3731 (8) | O9—H9B | 0.80 (3) |
Na1—Na2ii | 3.4644 (8) | C1—C2 | 1.3984 (18) |
Na1—O1i | 2.8332 (12) | C1—C6 | 1.4028 (18) |
Na1—O3iii | 2.3534 (11) | C2—C3 | 1.3888 (19) |
Na1—O5iv | 2.3611 (11) | C3—H3 | 0.9500 |
Na1—O6 | 2.3192 (12) | C3—C4 | 1.3881 (18) |
Na1—O7i | 2.3890 (11) | C4—C5 | 1.3920 (19) |
Na1—O9 | 2.2988 (12) | C5—H5 | 0.9500 |
Na2—O1 | 2.5640 (12) | C5—C6 | 1.3862 (18) |
Na2—O4v | 2.3223 (11) | ||
O3—S1—O4 | 112.09 (6) | O5vi—Na2—O9vii | 170.31 (4) |
O3—S1—C4 | 106.60 (6) | O6iii—Na2—O1 | 173.13 (4) |
O4—S1—C4 | 106.06 (6) | O6iii—Na2—O9vii | 86.67 (4) |
O5—S1—O3 | 112.43 (6) | O8—Na2—O1 | 76.54 (4) |
O5—S1—O4 | 112.76 (6) | O8—Na2—O4v | 158.38 (4) |
O5—S1—C4 | 106.31 (6) | O8—Na2—O5vi | 101.35 (4) |
O6—S2—Na2 | 145.86 (4) | O8—Na2—O6iii | 98.43 (4) |
O6—S2—O7 | 112.01 (6) | O8—Na2—O9vii | 76.69 (4) |
O6—S2—C6 | 105.63 (6) | O9vii—Na2—O1 | 96.58 (4) |
O7—S2—Na2 | 90.76 (4) | Na1vii—O1—H1 | 92.7 (16) |
O7—S2—C6 | 106.48 (6) | Na2—O1—Na1vii | 77.18 (3) |
O8—S2—Na2 | 33.02 (4) | Na2—O1—H1 | 127.7 (15) |
O8—S2—O6 | 112.87 (6) | C1—O1—Na1vii | 129.01 (8) |
O8—S2—O7 | 113.86 (6) | C1—O1—Na2 | 119.61 (8) |
O8—S2—C6 | 105.17 (6) | C1—O1—H1 | 106.6 (15) |
C6—S2—Na2 | 90.81 (5) | C2—O2—H2 | 109.5 |
Na2i—Na1—Na2ii | 170.83 (3) | S1—O3—Na1ii | 135.50 (6) |
O1i—Na1—Na2i | 47.83 (2) | S1—O4—Na2viii | 128.53 (6) |
O1i—Na1—Na2ii | 123.18 (3) | S1—O5—Na1ix | 128.93 (6) |
O3iii—Na1—Na2ii | 101.78 (3) | S1—O5—Na2vi | 131.35 (6) |
O3iii—Na1—Na2i | 76.14 (3) | Na2vi—O5—Na1ix | 95.57 (4) |
O3iii—Na1—O1i | 80.89 (4) | S2—O6—Na1 | 127.43 (6) |
O3iii—Na1—O5iv | 89.31 (4) | S2—O6—Na2ii | 133.57 (6) |
O3iii—Na1—O7i | 149.34 (4) | Na1—O6—Na2ii | 96.41 (4) |
O5iv—Na1—Na2i | 129.11 (3) | S2—O7—Na1vii | 128.04 (6) |
O5iv—Na1—Na2ii | 41.72 (3) | S2—O8—Na2 | 126.83 (6) |
O5iv—Na1—O1i | 82.09 (4) | Na1—O9—Na2i | 91.54 (4) |
O5iv—Na1—O7i | 95.13 (4) | Na1—O9—H9A | 112.4 (19) |
O6—Na1—Na2ii | 41.89 (3) | Na1—O9—H9B | 134.7 (18) |
O6—Na1—Na2i | 147.21 (3) | Na2i—O9—H9A | 107.1 (19) |
O6—Na1—O1i | 164.68 (4) | Na2i—O9—H9B | 96.3 (19) |
O6—Na1—O3iii | 103.94 (4) | H9A—O9—H9B | 108 (2) |
O6—Na1—O5iv | 83.43 (4) | O1—C1—C2 | 120.94 (12) |
O6—Na1—O7i | 106.70 (4) | O1—C1—C6 | 119.63 (12) |
O7i—Na1—Na2ii | 101.61 (3) | C2—C1—C6 | 119.42 (12) |
O7i—Na1—Na2i | 77.60 (3) | O2—C2—C1 | 120.95 (12) |
O7i—Na1—O1i | 69.77 (3) | O2—C2—C3 | 119.09 (12) |
O9—Na1—Na2ii | 143.62 (4) | C3—C2—C1 | 119.93 (12) |
O9—Na1—Na2i | 45.51 (3) | C2—C3—H3 | 120.2 |
O9—Na1—O1i | 92.07 (4) | C4—C3—C2 | 119.66 (12) |
O9—Na1—O3iii | 91.64 (4) | C4—C3—H3 | 120.2 |
O9—Na1—O5iv | 173.87 (4) | C3—C4—S1 | 120.12 (10) |
O9—Na1—O6 | 102.21 (4) | C3—C4—C5 | 121.34 (12) |
O9—Na1—O7i | 80.99 (4) | C5—C4—S1 | 118.52 (10) |
O4v—Na2—O1 | 93.11 (4) | C4—C5—H5 | 120.6 |
O4v—Na2—O6iii | 93.16 (4) | C6—C5—C4 | 118.76 (12) |
O4v—Na2—O9vii | 85.88 (4) | C6—C5—H5 | 120.6 |
O5vi—Na2—O1 | 92.13 (4) | C1—C6—S2 | 119.47 (10) |
O5vi—Na2—O4v | 97.91 (4) | C5—C6—S2 | 119.74 (10) |
O5vi—Na2—O6iii | 84.23 (4) | C5—C6—C1 | 120.76 (12) |
S1—C4—C5—C6 | −179.90 (10) | O6—S2—C6—C1 | −178.85 (11) |
Na1vii—O1—C1—C2 | 141.05 (10) | O6—S2—C6—C5 | −0.93 (12) |
Na1vii—O1—C1—C6 | −40.13 (17) | O7—S2—O6—Na1 | −148.47 (7) |
Na2—S2—O6—Na1 | −20.03 (12) | O7—S2—O6—Na2ii | 8.76 (10) |
Na2—S2—O6—Na2ii | 137.20 (6) | O7—S2—O8—Na2 | −49.16 (9) |
Na2—S2—O7—Na1vii | 11.89 (7) | O7—S2—C6—C1 | 61.90 (12) |
Na2—S2—C6—C1 | −29.14 (11) | O7—S2—C6—C5 | −120.18 (11) |
Na2—S2—C6—C5 | 148.78 (11) | O8—S2—O6—Na1 | −18.39 (9) |
Na2—O1—C1—C2 | −121.37 (12) | O8—S2—O6—Na2ii | 138.85 (8) |
Na2—O1—C1—C6 | 57.45 (15) | O8—S2—O7—Na1vii | 36.24 (9) |
O1—C1—C2—O2 | 0.4 (2) | O8—S2—C6—C1 | −59.25 (12) |
O1—C1—C2—C3 | −177.37 (12) | O8—S2—C6—C5 | 118.67 (11) |
O1—C1—C6—S2 | −4.63 (17) | C1—C2—C3—C4 | −1.2 (2) |
O1—C1—C6—C5 | 177.47 (12) | C2—C1—C6—S2 | 174.21 (10) |
O2—C2—C3—C4 | −179.04 (12) | C2—C1—C6—C5 | −3.7 (2) |
O3—S1—O4—Na2viii | 35.85 (9) | C2—C3—C4—S1 | −179.94 (10) |
O3—S1—O5—Na1ix | 13.55 (9) | C2—C3—C4—C5 | −1.6 (2) |
O3—S1—O5—Na2vi | −137.77 (7) | C3—C4—C5—C6 | 1.7 (2) |
O3—S1—C4—C3 | −121.82 (11) | C4—S1—O3—Na1ii | −132.68 (8) |
O3—S1—C4—C5 | 59.75 (12) | C4—S1—O4—Na2viii | 151.80 (7) |
O4—S1—O3—Na1ii | −17.06 (10) | C4—S1—O5—Na1ix | −102.73 (8) |
O4—S1—O5—Na1ix | 141.46 (7) | C4—S1—O5—Na2vi | 105.95 (8) |
O4—S1—O5—Na2vi | −9.86 (10) | C4—C5—C6—S2 | −176.94 (10) |
O4—S1—C4—C3 | 118.57 (11) | C4—C5—C6—C1 | 1.0 (2) |
O4—S1—C4—C5 | −59.86 (12) | C6—S2—O6—Na1 | 96.00 (8) |
O5—S1—O3—Na1ii | 111.21 (9) | C6—S2—O6—Na2ii | −106.76 (8) |
O5—S1—O4—Na2viii | −92.24 (8) | C6—S2—O7—Na1vii | −79.18 (8) |
O5—S1—C4—C3 | −1.68 (13) | C6—S2—O8—Na2 | 67.03 (8) |
O5—S1—C4—C5 | 179.89 (10) | C6—C1—C2—O2 | −178.42 (12) |
O6—S2—O7—Na1vii | 165.81 (6) | C6—C1—C2—C3 | 3.8 (2) |
O6—S2—O8—Na2 | −178.30 (6) |
Symmetry codes: (i) x−1/2, −y+1/2, z+1/2; (ii) x+1/2, −y+1/2, z+1/2; (iii) x−1/2, −y+1/2, z−1/2; (iv) −x+3/2, y−1/2, −z+3/2; (v) x, y, z−1; (vi) −x+1, −y+1, −z+1; (vii) x+1/2, −y+1/2, z−1/2; (viii) x, y, z+1; (ix) −x+3/2, y+1/2, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O3x | 0.82 (2) | 2.05 (2) | 2.8256 (15) | 156 (2) |
O2—H2···O4vi | 0.84 | 1.98 | 2.8145 (14) | 169 |
O9—H9A···O2vi | 0.82 (3) | 2.18 (3) | 2.9904 (15) | 173 (3) |
O9—H9B···O7xi | 0.80 (3) | 2.14 (3) | 2.8975 (15) | 158 (3) |
Symmetry codes: (vi) −x+1, −y+1, −z+1; (x) −x+2, −y+1, −z+1; (xi) x−1, y, z. |
2NH4+·C6H4O8S22−·H2O | Dx = 1.733 Mg m−3 |
Mr = 322.31 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 511 reflections |
a = 6.5023 (15) Å | θ = 3.0–21.0° |
b = 18.779 (4) Å | µ = 0.48 mm−1 |
c = 20.236 (4) Å | T = 100 K |
V = 2470.9 (9) Å3 | Plank, colorless |
Z = 8 | 0.10 × 0.05 × 0.04 mm |
F(000) = 1344 |
Bruker APEXII diffractometer | 2255 independent reflections |
Radiation source: sealed tube | 1354 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.147 |
Detector resolution: 8.333 pixels mm-1 | θmax = 25.3°, θmin = 2.0° |
ω and φ scans | h = −7→7 |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | k = −22→22 |
Tmin = 0.663, Tmax = 0.746 | l = −15→24 |
12544 measured reflections |
Refinement on F2 | 23 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.055 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.127 | w = 1/[σ2(Fo2) + (0.0411P)2 + 0.6346P] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max < 0.001 |
2255 reflections | Δρmax = 0.42 e Å−3 |
204 parameters | Δρmin = −0.53 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.29066 (17) | 0.42273 (6) | 0.34618 (5) | 0.0132 (3) | |
S2 | 0.26230 (17) | 0.69952 (6) | 0.42150 (6) | 0.0154 (3) | |
O1 | 0.2580 (5) | 0.72630 (16) | 0.27192 (15) | 0.0216 (8) | |
H1 | 0.224751 | 0.751861 | 0.304271 | 0.032* | |
O2 | 0.2771 (5) | 0.62901 (17) | 0.17777 (13) | 0.0175 (7) | |
H2 | 0.270116 | 0.594058 | 0.151957 | 0.026* | |
O3 | 0.0895 (5) | 0.41015 (16) | 0.37651 (14) | 0.0184 (8) | |
O4 | 0.4555 (5) | 0.41571 (16) | 0.39574 (14) | 0.0152 (7) | |
O5 | 0.3278 (5) | 0.38099 (17) | 0.28738 (14) | 0.0199 (8) | |
O6 | 0.2038 (5) | 0.66240 (16) | 0.48126 (15) | 0.0193 (8) | |
O7 | 0.4689 (5) | 0.72999 (17) | 0.42551 (15) | 0.0209 (8) | |
O8 | 0.1134 (5) | 0.75262 (17) | 0.39943 (16) | 0.0234 (8) | |
C1 | 0.2691 (7) | 0.6571 (2) | 0.2915 (2) | 0.0127 (10) | |
C2 | 0.2800 (7) | 0.6052 (3) | 0.2418 (2) | 0.0152 (11) | |
C3 | 0.2921 (7) | 0.5343 (2) | 0.2580 (2) | 0.0129 (10) | |
H3 | 0.301928 | 0.499446 | 0.224165 | 0.015* | |
C4 | 0.2901 (7) | 0.5134 (2) | 0.3242 (2) | 0.0119 (10) | |
C5 | 0.2797 (7) | 0.5640 (2) | 0.3741 (2) | 0.0138 (10) | |
H5 | 0.279726 | 0.549780 | 0.419125 | 0.017* | |
C6 | 0.2694 (6) | 0.6352 (2) | 0.3576 (2) | 0.0115 (9) | |
O9 | 0.7831 (5) | 0.51345 (17) | 0.41197 (17) | 0.0209 (8) | |
H9A | 0.883 (5) | 0.487 (2) | 0.401 (2) | 0.031* | |
H9B | 0.684 (5) | 0.483 (2) | 0.410 (2) | 0.031* | |
N1 | 0.7375 (6) | 0.8117 (2) | 0.34433 (18) | 0.0172 (9) | |
H1A | 0.853 (4) | 0.829 (2) | 0.3686 (17) | 0.026* | |
H1B | 0.707 (6) | 0.8458 (17) | 0.3109 (15) | 0.026* | |
H1C | 0.762 (6) | 0.7691 (14) | 0.3204 (17) | 0.026* | |
H1D | 0.620 (4) | 0.804 (2) | 0.3718 (16) | 0.026* | |
N2 | 0.7621 (6) | 0.6433 (2) | 0.49080 (17) | 0.0159 (9) | |
H2A | 0.767 (6) | 0.5981 (13) | 0.4675 (17) | 0.024* | |
H2B | 0.673 (5) | 0.6738 (18) | 0.4648 (16) | 0.024* | |
H2C | 0.895 (4) | 0.664 (2) | 0.4954 (19) | 0.024* | |
H2D | 0.698 (6) | 0.634 (2) | 0.5323 (12) | 0.024* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0118 (5) | 0.0115 (6) | 0.0162 (6) | 0.0002 (5) | −0.0002 (5) | −0.0014 (5) |
S2 | 0.0156 (6) | 0.0120 (6) | 0.0186 (6) | 0.0004 (5) | −0.0001 (5) | −0.0024 (5) |
O1 | 0.028 (2) | 0.0126 (18) | 0.0244 (18) | 0.0027 (16) | 0.0000 (17) | −0.0008 (14) |
O2 | 0.0188 (18) | 0.0202 (19) | 0.0135 (15) | 0.0027 (16) | 0.0001 (15) | 0.0018 (14) |
O3 | 0.0134 (18) | 0.016 (2) | 0.0258 (18) | −0.0042 (14) | 0.0062 (14) | 0.0024 (15) |
O4 | 0.0136 (17) | 0.0127 (19) | 0.0194 (16) | 0.0014 (14) | −0.0035 (13) | 0.0004 (14) |
O5 | 0.032 (2) | 0.0115 (18) | 0.0158 (17) | 0.0028 (15) | −0.0010 (15) | −0.0042 (14) |
O6 | 0.024 (2) | 0.0156 (19) | 0.0185 (17) | 0.0012 (15) | 0.0059 (15) | −0.0035 (14) |
O7 | 0.0184 (18) | 0.020 (2) | 0.0239 (18) | −0.0051 (14) | 0.0004 (15) | −0.0033 (15) |
O8 | 0.022 (2) | 0.019 (2) | 0.0291 (18) | 0.0111 (16) | −0.0067 (17) | 0.0004 (16) |
C1 | 0.006 (2) | 0.011 (2) | 0.021 (2) | 0.0002 (19) | 0.005 (2) | 0.0040 (19) |
C2 | 0.008 (2) | 0.021 (3) | 0.016 (2) | −0.002 (2) | −0.006 (2) | 0.005 (2) |
C3 | 0.011 (2) | 0.013 (2) | 0.014 (2) | 0.002 (2) | 0.0008 (19) | −0.005 (2) |
C4 | 0.009 (2) | 0.008 (3) | 0.018 (2) | −0.0018 (19) | −0.002 (2) | 0.0014 (19) |
C5 | 0.008 (2) | 0.017 (3) | 0.017 (2) | −0.001 (2) | −0.0017 (19) | 0.004 (2) |
C6 | 0.006 (2) | 0.011 (2) | 0.017 (2) | −0.0003 (18) | −0.001 (2) | 0.0023 (19) |
O9 | 0.0136 (18) | 0.020 (2) | 0.0290 (19) | −0.0020 (15) | −0.0015 (16) | −0.0015 (16) |
N1 | 0.014 (2) | 0.018 (2) | 0.019 (2) | −0.0015 (18) | −0.0003 (19) | −0.0002 (18) |
N2 | 0.019 (2) | 0.015 (2) | 0.014 (2) | 0.0006 (19) | 0.0029 (19) | 0.0010 (17) |
S1—O3 | 1.464 (3) | C3—H3 | 0.9500 |
S1—O4 | 1.474 (3) | C3—C4 | 1.396 (6) |
S1—O5 | 1.445 (3) | C4—C5 | 1.388 (6) |
S1—C4 | 1.760 (4) | C5—H5 | 0.9500 |
S2—O6 | 1.447 (3) | C5—C6 | 1.378 (6) |
S2—O7 | 1.462 (3) | O9—H9A | 0.849 (19) |
S2—O8 | 1.460 (3) | O9—H9B | 0.861 (19) |
S2—C6 | 1.770 (4) | N1—H1A | 0.951 (18) |
O1—H1 | 0.8400 | N1—H1B | 0.954 (17) |
O1—C1 | 1.361 (5) | N1—H1C | 0.949 (17) |
O2—H2 | 0.8400 | N1—H1D | 0.956 (17) |
O2—C2 | 1.370 (5) | N2—H2A | 0.972 (17) |
C1—C2 | 1.402 (6) | N2—H2B | 0.969 (17) |
C1—C6 | 1.401 (6) | N2—H2C | 0.948 (17) |
C2—C3 | 1.373 (6) | N2—H2D | 0.955 (17) |
O3—S1—O4 | 110.49 (18) | C3—C4—S1 | 121.0 (3) |
O3—S1—C4 | 105.1 (2) | C5—C4—S1 | 118.6 (3) |
O4—S1—C4 | 105.1 (2) | C5—C4—C3 | 120.4 (4) |
O5—S1—O3 | 114.01 (19) | C4—C5—H5 | 120.3 |
O5—S1—O4 | 112.96 (19) | C6—C5—C4 | 119.4 (4) |
O5—S1—C4 | 108.5 (2) | C6—C5—H5 | 120.3 |
O6—S2—O7 | 112.6 (2) | C1—C6—S2 | 119.8 (3) |
O6—S2—O8 | 114.2 (2) | C5—C6—S2 | 119.1 (3) |
O6—S2—C6 | 106.75 (19) | C5—C6—C1 | 121.0 (4) |
O7—S2—C6 | 106.47 (19) | H9A—O9—H9B | 100 (3) |
O8—S2—O7 | 111.0 (2) | H1A—N1—H1B | 108 (3) |
O8—S2—C6 | 105.1 (2) | H1A—N1—H1C | 114 (3) |
C1—O1—H1 | 109.5 | H1A—N1—H1D | 112 (3) |
C2—O2—H2 | 109.5 | H1B—N1—H1C | 104 (3) |
O1—C1—C2 | 117.3 (4) | H1B—N1—H1D | 110 (3) |
O1—C1—C6 | 123.9 (4) | H1C—N1—H1D | 108 (3) |
C6—C1—C2 | 118.8 (4) | H2A—N2—H2B | 106 (3) |
O2—C2—C1 | 116.8 (4) | H2A—N2—H2C | 112 (3) |
O2—C2—C3 | 122.9 (4) | H2A—N2—H2D | 106 (3) |
C3—C2—C1 | 120.3 (4) | H2B—N2—H2C | 111 (3) |
C2—C3—H3 | 119.9 | H2B—N2—H2D | 109 (3) |
C2—C3—C4 | 120.1 (4) | H2C—N2—H2D | 113 (3) |
C4—C3—H3 | 119.9 | ||
S1—C4—C5—C6 | −177.0 (3) | O7—S2—C6—C1 | −76.0 (4) |
O1—C1—C2—O2 | −0.4 (6) | O7—S2—C6—C5 | 102.6 (4) |
O1—C1—C2—C3 | 179.8 (4) | O8—S2—C6—C1 | 41.9 (4) |
O1—C1—C6—S2 | −1.8 (6) | O8—S2—C6—C5 | −139.5 (4) |
O1—C1—C6—C5 | 179.6 (4) | C1—C2—C3—C4 | 1.1 (6) |
O2—C2—C3—C4 | −178.6 (4) | C2—C1—C6—S2 | 178.4 (3) |
O3—S1—C4—C3 | −112.9 (4) | C2—C1—C6—C5 | −0.2 (6) |
O3—S1—C4—C5 | 64.7 (4) | C2—C3—C4—S1 | 176.4 (4) |
O4—S1—C4—C3 | 130.5 (4) | C2—C3—C4—C5 | −1.2 (7) |
O4—S1—C4—C5 | −51.9 (4) | C3—C4—C5—C6 | 0.6 (6) |
O5—S1—C4—C3 | 9.4 (4) | C4—C5—C6—S2 | −178.5 (3) |
O5—S1—C4—C5 | −173.0 (3) | C4—C5—C6—C1 | 0.1 (6) |
O6—S2—C6—C1 | 163.6 (3) | C6—C1—C2—O2 | 179.3 (4) |
O6—S2—C6—C5 | −17.8 (4) | C6—C1—C2—C3 | −0.4 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O5i | 0.84 | 2.47 | 2.974 (4) | 119 |
O1—H1···O8 | 0.84 | 2.06 | 2.790 (4) | 146 |
O2—H2···O9ii | 0.84 | 1.99 | 2.830 (5) | 174 |
O9—H9A···O3iii | 0.85 (2) | 2.03 (2) | 2.871 (5) | 171 (5) |
O9—H9B···O4 | 0.86 (2) | 1.97 (2) | 2.831 (4) | 174 (5) |
N1—H1A···O4iv | 0.95 (2) | 2.13 (3) | 2.980 (5) | 148 (3) |
N1—H1A···O8iii | 0.95 (2) | 2.30 (4) | 2.907 (5) | 121 (3) |
N1—H1B···O5v | 0.95 (2) | 2.11 (2) | 2.996 (5) | 155 (3) |
N1—H1C···O1vi | 0.95 (2) | 2.03 (3) | 2.850 (5) | 143 (3) |
N1—H1C···O2vi | 0.95 (2) | 2.63 (3) | 3.470 (5) | 147 (3) |
N1—H1D···O3i | 0.96 (2) | 2.41 (4) | 2.891 (5) | 111 (3) |
N1—H1D···O7 | 0.96 (2) | 2.02 (3) | 2.847 (5) | 143 (3) |
N2—H2A···O9 | 0.97 (2) | 1.95 (2) | 2.917 (5) | 174 (3) |
N2—H2B···O7 | 0.97 (2) | 1.87 (2) | 2.834 (5) | 171 (3) |
N2—H2C···O6iii | 0.95 (2) | 2.03 (3) | 2.901 (5) | 152 (3) |
N2—H2C···O7vii | 0.95 (2) | 2.60 (3) | 3.215 (5) | 123 (3) |
N2—H2D···O3viii | 0.96 (2) | 2.45 (4) | 3.025 (5) | 119 (3) |
N2—H2D···O4viii | 0.96 (2) | 1.99 (2) | 2.916 (5) | 161 (3) |
N2—H2D···O8vii | 0.96 (2) | 2.60 (4) | 3.113 (5) | 114 (3) |
Symmetry codes: (i) −x+1/2, y+1/2, z; (ii) x−1/2, y, −z+1/2; (iii) x+1, y, z; (iv) −x+3/2, y+1/2, z; (v) −x+1, y+1/2, −z+1/2; (vi) x+1/2, y, −z+1/2; (vii) x+1/2, −y+3/2, −z+1; (viii) −x+1, −y+1, −z+1. |
[Li2(C6H4O8S2)(H2O)2]2·H2O | F(000) = 668 |
Mr = 654.26 | Dx = 1.775 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 9.5847 (18) Å | Cell parameters from 3529 reflections |
b = 7.4498 (15) Å | θ = 2.2–27.8° |
c = 17.599 (4) Å | µ = 0.49 mm−1 |
β = 102.997 (4)° | T = 100 K |
V = 1224.5 (4) Å3 | Plank, colourless |
Z = 2 | 0.24 × 0.09 × 0.04 mm |
Bruker APEXII diffractometer | 2851 independent reflections |
Radiation source: sealed tube | 2313 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.049 |
Detector resolution: 8.333 pixels mm-1 | θmax = 27.9°, θmin = 2.2° |
ω and φ scans | h = −12→12 |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | k = −9→9 |
Tmin = 0.670, Tmax = 0.746 | l = −23→22 |
15864 measured reflections |
Refinement on F2 | 18 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.041 | H-atom parameters constrained |
wR(F2) = 0.100 | w = 1/[σ2(Fo2) + (0.0437P)2 + 1.2637P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
2851 reflections | Δρmax = 0.44 e Å−3 |
217 parameters | Δρmin = −0.48 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
S1 | 0.32410 (6) | 0.37552 (7) | 0.67254 (3) | 0.01367 (14) | |
S2 | 0.20642 (6) | 0.24170 (8) | 0.35997 (3) | 0.01575 (15) | |
O1 | 0.5203 (2) | 0.1795 (3) | 0.38983 (11) | 0.0257 (5) | 0.892 (3) |
H1 | 0.610071 | 0.172739 | 0.400448 | 0.039* | 0.892 (3) |
O1A | 0.6234 (16) | 0.305 (2) | 0.6540 (9) | 0.0257 (5) | 0.108 (3) |
H1A | 0.616503 | 0.223206 | 0.685965 | 0.039* | 0.108 (3) |
O2 | 0.71321 (17) | 0.2031 (3) | 0.52616 (10) | 0.0267 (4) | |
H2 | 0.763939 | 0.215385 | 0.571438 | 0.040* | |
O3 | 0.32479 (17) | 0.2061 (2) | 0.71493 (9) | 0.0185 (4) | |
O4 | 0.17924 (16) | 0.4482 (2) | 0.64770 (9) | 0.0173 (3) | |
O5 | 0.42396 (17) | 0.5036 (2) | 0.71657 (9) | 0.0215 (4) | |
O6 | 0.06889 (17) | 0.2875 (2) | 0.37599 (10) | 0.0221 (4) | |
O7 | 0.2162 (2) | 0.0587 (3) | 0.33493 (11) | 0.0390 (5) | |
O8 | 0.24746 (18) | 0.3710 (3) | 0.30624 (10) | 0.0309 (5) | |
O9 | −0.21479 (18) | 0.1015 (2) | 0.37158 (10) | 0.0233 (4) | |
H9A | −0.241410 | 0.013821 | 0.342640 | 0.044* | |
H9B | −0.166840 | 0.058560 | 0.410700 | 0.044* | |
O11 | 0.4064 (3) | 0.1930 (4) | 0.1751 (3) | 0.0238 (11) | 0.751 (12) |
H11A | 0.487329 | 0.164550 | 0.168051 | 0.025* | 0.751 (12) |
H11B | 0.366160 | 0.103101 | 0.187910 | 0.025* | 0.751 (12) |
O11A | 0.4377 (10) | 0.1619 (13) | 0.2239 (10) | 0.028 (3) | 0.249 (12) |
H11C | 0.396660 | 0.068010 | 0.203321 | 0.034* | 0.249 (12) |
H11D | 0.483500 | 0.127750 | 0.269549 | 0.034* | 0.249 (12) |
C1 | 0.4755 (2) | 0.2263 (3) | 0.45422 (13) | 0.0154 (5) | |
H1B | 0.506816 | 0.192678 | 0.408715 | 0.018* | 0.108 (3) |
C2 | 0.5738 (2) | 0.2393 (3) | 0.52645 (14) | 0.0175 (5) | |
C3 | 0.5268 (2) | 0.2844 (3) | 0.59252 (14) | 0.0169 (5) | |
H3 | 0.592517 | 0.288774 | 0.641732 | 0.020* | 0.892 (3) |
C4 | 0.3821 (2) | 0.3237 (3) | 0.58686 (13) | 0.0138 (4) | |
C5 | 0.2839 (2) | 0.3139 (3) | 0.51595 (13) | 0.0134 (4) | |
H5 | 0.185883 | 0.341503 | 0.512466 | 0.016* | |
C6 | 0.3312 (2) | 0.2633 (3) | 0.45013 (13) | 0.0136 (4) | |
Li1 | −0.1315 (4) | 0.3045 (5) | 0.3289 (2) | 0.0188 (8) | |
Li2 | 0.3913 (4) | 0.3966 (6) | 0.2447 (2) | 0.0224 (9) | |
O10 | 0.011 (6) | −0.038 (9) | 0.478 (3) | 0.045 (5) | 0.20 (5) |
H10A | 0.057700 | −0.123691 | 0.468720 | 0.068* | 0.20 (5) |
H10B | 0.066210 | 0.054340 | 0.453980 | 0.068* | 0.20 (5) |
O10A | 0.005 (4) | 0.042 (6) | 0.507 (3) | 0.043 (5) | 0.30 (5) |
H10C | −0.047541 | 0.116070 | 0.529981 | 0.065* | 0.30 (5) |
H10D | 0.045200 | 0.118550 | 0.481750 | 0.065* | 0.30 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0148 (3) | 0.0123 (3) | 0.0136 (3) | −0.0003 (2) | 0.00248 (19) | −0.0012 (2) |
S2 | 0.0166 (3) | 0.0155 (3) | 0.0143 (3) | 0.0031 (2) | 0.0016 (2) | −0.0006 (2) |
O1 | 0.0209 (10) | 0.0374 (12) | 0.0215 (10) | 0.0025 (8) | 0.0105 (8) | −0.0048 (9) |
O1A | 0.0209 (10) | 0.0374 (12) | 0.0215 (10) | 0.0025 (8) | 0.0105 (8) | −0.0048 (9) |
O2 | 0.0141 (8) | 0.0442 (12) | 0.0219 (9) | 0.0071 (7) | 0.0043 (7) | −0.0002 (8) |
O3 | 0.0265 (9) | 0.0134 (8) | 0.0154 (8) | 0.0007 (6) | 0.0044 (6) | 0.0024 (6) |
O4 | 0.0166 (8) | 0.0183 (8) | 0.0169 (8) | 0.0014 (6) | 0.0035 (6) | −0.0019 (7) |
O5 | 0.0208 (9) | 0.0214 (9) | 0.0218 (9) | −0.0054 (7) | 0.0035 (7) | −0.0074 (7) |
O6 | 0.0158 (8) | 0.0316 (10) | 0.0187 (9) | −0.0009 (7) | 0.0034 (6) | −0.0021 (7) |
O7 | 0.0451 (12) | 0.0210 (10) | 0.0378 (12) | 0.0131 (8) | −0.0185 (9) | −0.0163 (9) |
O8 | 0.0236 (9) | 0.0469 (12) | 0.0239 (10) | 0.0088 (8) | 0.0085 (7) | 0.0187 (9) |
O9 | 0.0293 (9) | 0.0184 (9) | 0.0220 (9) | −0.0009 (7) | 0.0051 (7) | 0.0004 (7) |
O11 | 0.0168 (13) | 0.0183 (13) | 0.037 (3) | −0.0016 (9) | 0.0070 (14) | −0.0075 (14) |
O11A | 0.023 (4) | 0.025 (4) | 0.036 (8) | −0.004 (3) | 0.007 (4) | −0.011 (4) |
C1 | 0.0183 (11) | 0.0116 (11) | 0.0182 (12) | 0.0011 (8) | 0.0082 (9) | 0.0009 (9) |
C2 | 0.0121 (10) | 0.0165 (11) | 0.0245 (13) | 0.0023 (8) | 0.0052 (9) | 0.0012 (10) |
C3 | 0.0157 (11) | 0.0151 (12) | 0.0188 (12) | −0.0001 (8) | 0.0014 (9) | 0.0005 (9) |
C4 | 0.0172 (11) | 0.0092 (10) | 0.0154 (11) | −0.0010 (8) | 0.0046 (8) | 0.0009 (8) |
C5 | 0.0130 (10) | 0.0107 (10) | 0.0168 (11) | 0.0003 (8) | 0.0042 (8) | −0.0009 (9) |
C6 | 0.0160 (11) | 0.0110 (10) | 0.0134 (11) | −0.0017 (8) | 0.0023 (8) | 0.0009 (8) |
Li1 | 0.021 (2) | 0.0144 (19) | 0.019 (2) | −0.0001 (15) | 0.0005 (15) | 0.0006 (16) |
Li2 | 0.020 (2) | 0.022 (2) | 0.025 (2) | −0.0026 (16) | 0.0045 (16) | 0.0007 (17) |
O10 | 0.042 (8) | 0.050 (6) | 0.049 (13) | 0.010 (7) | 0.023 (8) | 0.020 (10) |
O10A | 0.040 (7) | 0.050 (6) | 0.047 (12) | 0.008 (6) | 0.024 (7) | 0.020 (9) |
S1—O3 | 1.4655 (17) | O9—H9B | 0.8033 (17) |
S1—O4 | 1.4626 (16) | O9—Li1 | 1.939 (4) |
S1—O5 | 1.4466 (16) | O11—H11A | 0.840 (2) |
S1—C4 | 1.764 (2) | O11—H11B | 0.829 (3) |
S1—Li1i | 3.012 (4) | O11—Li2 | 1.975 (5) |
S1—Li1ii | 3.005 (4) | O11A—H11C | 0.843 (8) |
S2—O6 | 1.4493 (17) | O11A—H11D | 0.862 (18) |
S2—O7 | 1.4422 (19) | O11A—Li2 | 1.861 (9) |
S2—O8 | 1.4642 (19) | C1—H1B | 0.9500 |
S2—C6 | 1.766 (2) | C1—C2 | 1.405 (3) |
O1—H1 | 0.8400 | C1—C6 | 1.396 (3) |
O1—C1 | 1.345 (3) | C2—C3 | 1.380 (3) |
O1A—H1A | 0.8400 | C3—H3 | 0.9500 |
O1A—C3 | 1.265 (16) | C3—C4 | 1.398 (3) |
O2—H2 | 0.8400 | C4—C5 | 1.386 (3) |
O2—C2 | 1.364 (3) | C5—H5 | 0.9500 |
O3—Li1ii | 1.957 (4) | C5—C6 | 1.388 (3) |
O4—Li1i | 1.964 (4) | Li2—H11D | 2.193 (4) |
O5—Li2iii | 1.900 (4) | O10—H10A | 0.81 (6) |
O6—Li1 | 1.917 (4) | O10—H10B | 1.02 (6) |
O7—Li2iv | 1.958 (5) | O10A—H10C | 0.90 (5) |
O8—Li2 | 1.945 (5) | O10A—H10D | 0.86 (4) |
O9—H9A | 0.8323 (17) | ||
O3—S1—C4 | 106.28 (10) | O2—C2—C3 | 123.8 (2) |
O3—S1—Li1i | 128.22 (11) | C3—C2—C1 | 120.0 (2) |
O4—S1—O3 | 111.49 (10) | O1A—C3—C2 | 115.8 (7) |
O4—S1—C4 | 106.64 (10) | O1A—C3—C4 | 124.0 (7) |
O4—S1—Li1ii | 111.62 (10) | C2—C3—H3 | 120.1 |
O5—S1—O3 | 111.63 (10) | C2—C3—C4 | 119.8 (2) |
O5—S1—O4 | 112.66 (10) | C4—C3—H3 | 120.1 |
O5—S1—C4 | 107.73 (10) | C3—C4—S1 | 118.89 (17) |
C4—S1—Li1i | 118.47 (11) | C5—C4—S1 | 120.01 (16) |
C4—S1—Li1ii | 132.73 (11) | C5—C4—C3 | 121.0 (2) |
Li1ii—S1—Li1i | 108.75 (7) | C4—C5—H5 | 120.6 |
O6—S2—O8 | 111.04 (10) | C4—C5—C6 | 118.8 (2) |
O6—S2—C6 | 105.40 (10) | C6—C5—H5 | 120.6 |
O7—S2—O6 | 113.98 (12) | C1—C6—S2 | 119.42 (17) |
O7—S2—O8 | 112.28 (13) | C5—C6—S2 | 119.48 (17) |
O7—S2—C6 | 106.44 (10) | C5—C6—C1 | 121.1 (2) |
O8—S2—C6 | 107.11 (11) | S1v—Li1—S1i | 112.65 (12) |
C1—O1—H1 | 109.5 | O3v—Li1—S1i | 91.92 (14) |
C3—O1A—H1A | 109.5 | O3v—Li1—O4i | 104.25 (19) |
C2—O2—H2 | 109.5 | O4i—Li1—S1v | 128.23 (18) |
S1—O3—Li1ii | 122.14 (15) | O6—Li1—S1i | 127.50 (18) |
S1—O4—Li1i | 122.34 (15) | O6—Li1—S1v | 106.74 (17) |
S1—O5—Li2iii | 154.32 (17) | O6—Li1—O3v | 113.8 (2) |
S2—O6—Li1 | 142.95 (17) | O6—Li1—O4i | 103.28 (19) |
S2—O7—Li2iv | 137.88 (16) | O6—Li1—O9 | 103.95 (19) |
S2—O8—Li2 | 138.70 (17) | O9—Li1—S1i | 108.40 (17) |
H9A—O9—H9B | 104.44 (18) | O9—Li1—S1v | 91.18 (15) |
Li1—O9—H9A | 118.14 (19) | O9—Li1—O3v | 110.7 (2) |
Li1—O9—H9B | 115.87 (18) | O9—Li1—O4i | 121.0 (2) |
H11A—O11—H11B | 109.7 (3) | O5iii—Li2—O7vi | 108.3 (2) |
Li2—O11—H11A | 119.0 (3) | O5iii—Li2—O8 | 124.0 (2) |
Li2—O11—H11B | 110.4 (4) | O5iii—Li2—O11 | 109.3 (2) |
H11C—O11A—H11D | 104.3 (14) | O7vi—Li2—O11 | 97.5 (2) |
Li2—O11A—H11C | 139.0 (10) | O8—Li2—O7vi | 97.7 (2) |
Li2—O11A—H11D | 100.9 (8) | O8—Li2—O11 | 115.5 (2) |
O1—C1—C2 | 120.3 (2) | O11A—Li2—O5iii | 101.2 (3) |
O1—C1—C6 | 120.5 (2) | O11A—Li2—O7vi | 123.3 (6) |
C2—C1—H1B | 120.4 | O11A—Li2—O8 | 104.4 (4) |
C6—C1—H1B | 120.4 | H10A—O10—H10B | 95 (5) |
C6—C1—C2 | 119.2 (2) | H10C—O10A—H10D | 101 (4) |
O2—C2—C1 | 116.2 (2) | ||
S1—C4—C5—C6 | −176.51 (16) | O8—S2—O6—Li1 | 66.9 (3) |
O1—C1—C2—O2 | 0.3 (3) | O8—S2—O7—Li2iv | −74.8 (3) |
O1—C1—C2—C3 | −178.9 (2) | O8—S2—C6—C1 | −62.2 (2) |
O1—C1—C6—S2 | 1.9 (3) | O8—S2—C6—C5 | 118.80 (18) |
O1—C1—C6—C5 | −179.2 (2) | C1—C2—C3—O1A | −175.5 (9) |
O1A—C3—C4—S1 | −9.0 (10) | C1—C2—C3—C4 | −2.4 (3) |
O1A—C3—C4—C5 | 174.0 (10) | C2—C1—C6—S2 | −178.43 (17) |
O2—C2—C3—O1A | 5.3 (10) | C2—C1—C6—C5 | 0.5 (3) |
O2—C2—C3—C4 | 178.4 (2) | C2—C3—C4—S1 | 178.46 (17) |
O3—S1—O4—Li1i | 127.63 (18) | C2—C3—C4—C5 | 1.5 (3) |
O3—S1—O5—Li2iii | 79.3 (4) | C3—C4—C5—C6 | 0.4 (3) |
O3—S1—C4—C3 | −73.21 (19) | C4—S1—O3—Li1ii | 147.14 (17) |
O3—S1—C4—C5 | 103.75 (19) | C4—S1—O4—Li1i | −116.77 (18) |
O4—S1—O3—Li1ii | −97.05 (18) | C4—S1—O5—Li2iii | −37.0 (4) |
O4—S1—O5—Li2iii | −154.4 (4) | C4—C5—C6—S2 | 177.56 (17) |
O4—S1—C4—C3 | 167.74 (17) | C4—C5—C6—C1 | −1.4 (3) |
O4—S1—C4—C5 | −15.3 (2) | C6—S2—O6—Li1 | −177.4 (3) |
O5—S1—O3—Li1ii | 29.9 (2) | C6—S2—O7—Li2iv | 168.3 (3) |
O5—S1—O4—Li1i | 1.2 (2) | C6—S2—O8—Li2 | 76.1 (3) |
O5—S1—C4—C3 | 46.6 (2) | C6—C1—C2—O2 | −179.4 (2) |
O5—S1—C4—C5 | −136.48 (18) | C6—C1—C2—C3 | 1.4 (3) |
O6—S2—O7—Li2iv | 52.6 (3) | Li1i—S1—O3—Li1ii | −63.3 (2) |
O6—S2—O8—Li2 | −169.3 (2) | Li1ii—S1—O4—Li1i | 91.57 (15) |
O6—S2—C6—C1 | 179.47 (17) | Li1ii—S1—O5—Li2iii | 95.4 (4) |
O6—S2—C6—C5 | 0.5 (2) | Li1i—S1—O5—Li2iii | −153.7 (4) |
O7—S2—O6—Li1 | −61.1 (3) | Li1i—S1—C4—C3 | 133.71 (18) |
O7—S2—O8—Li2 | −40.4 (3) | Li1ii—S1—C4—C3 | −49.2 (2) |
O7—S2—C6—C1 | 58.1 (2) | Li1i—S1—C4—C5 | −49.3 (2) |
O7—S2—C6—C5 | −120.90 (19) | Li1ii—S1—C4—C5 | 127.79 (19) |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) x+1/2, −y+1/2, z+1/2; (iii) −x+1, −y+1, −z+1; (iv) −x+1/2, y−1/2, −z+1/2; (v) x−1/2, −y+1/2, z−1/2; (vi) −x+1/2, y+1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O2 | 0.84 | 2.22 | 2.685 (3) | 115 |
O1—H1···O9vii | 0.84 | 1.93 | 2.693 (3) | 150 |
O1A—H1A···O8ii | 0.84 | 2.31 | 2.978 (17) | 136 |
O2—H2···O1A | 0.84 | 2.29 | 2.693 (16) | 110 |
O2—H2···O7viii | 0.84 | 2.60 | 3.082 (3) | 117 |
O2—H2···O11ii | 0.84 | 2.13 | 2.952 (6) | 166 |
O9—H9A···O3ix | 0.8323 (17) | 1.9961 (16) | 2.821 (2) | 170.86 (13) |
O9—H9B···O10ix | 0.8033 (17) | 2.19 (6) | 2.96 (6) | 160.0 (18) |
O9—H9B···O10 | 0.8033 (17) | 1.98 (6) | 2.73 (6) | 155.0 (16) |
O9—H9B···O10Aix | 0.8033 (17) | 2.02 (4) | 2.80 (4) | 164.8 (14) |
O9—H9B···O10A | 0.8033 (17) | 2.08 (4) | 2.83 (4) | 156.2 (12) |
O11—H11A···O4x | 0.840 (2) | 2.1244 (16) | 2.957 (3) | 171.19 (17) |
O11—H11B···O8iv | 0.829 (3) | 2.0583 (19) | 2.873 (3) | 167.4 (4) |
O11A—H11C···O6iv | 0.843 (8) | 2.5753 (18) | 3.290 (8) | 143.3 (5) |
O11A—H11C···O8iv | 0.843 (8) | 1.9964 (18) | 2.776 (8) | 153.2 (8) |
O11A—H11D···O1 | 0.862 (18) | 2.1019 (19) | 2.851 (17) | 145.0 (5) |
O10—H10A···O2viii | 0.81 (6) | 2.2562 (16) | 2.93 (6) | 141 (4) |
O10—H10B···O6 | 1.02 (6) | 2.2175 (18) | 3.14 (6) | 150 (3) |
O10A—H10C···O2xi | 0.90 (5) | 2.3694 (16) | 3.13 (5) | 142 (3) |
O10A—H10D···O6 | 0.86 (4) | 2.3000 (17) | 3.10 (5) | 155 (3) |
Symmetry codes: (ii) x+1/2, −y+1/2, z+1/2; (iv) −x+1/2, y−1/2, −z+1/2; (vii) x+1, y, z; (viii) −x+1, −y, −z+1; (ix) −x, −y, −z+1; (x) x+1/2, −y+1/2, z−1/2; (xi) x−1, y, z. |
Proton on NH4 | Acceptor/moiety | H-bond distance (Å) |
N1H1a | O4/sulfonate | 2.13 (3) |
N1H1b | O5/sulfonate | 2.10 (2) |
N1H1c | O1/phenolic | 2.04 (3) |
N1H1d | O7/sulfonate | 2.02 (3) |
N2H2a | O9/water | 1.950 (18) |
N2H2b | O7/sulfonate | 1.872 (19) |
N2H2c | O6/sulfonate | 2.03 (3) |
N2H2d | O4/sulfonate | 1.99 (2) |
CSD code | Counter-cation | Observed coordination number | Charge of tiron | Intercentroid distance (Å) | Reference |
CAZZEI | Na+ | 2, 1, 1 | 3- | 3.857 | (Riley et al., 1983) |
HUCMOH | Ba2+ | 9 | 2- | 3.520 | (Côté & Shimizu, 2003) |
OMARAV | Ca2+ | 8 | 2- | 3.598 | (Côté & Shimizu, 2003) |
OMAREZ | Sr2+ | 9 | 2- | 3.654 | (Côté & Shimizu, 2003) |
OMARID | Mg2+ | 6 (all water) | 2- | 4.180 | (Côté & Shimizu, 2003) |
FIMBEJ | Zn2+ | 6 (no tiron) | 2- | N/A | (Wang et al., 2005) |
NIWKUA | Cd2+ | 6 (one sulfonate) | 2- | N/A | (Zhang et al., 2008) |
FIRMEA | Cu2+ | 6 (one sulfonate) | 2- | N/A | (Lu et al., 2014) |
TUYNUY | Mg2+ | 6 (no tiron) | 2- | N/A | (Guan, 2016) |
ADOXUP | La3+ | 9 | 3- | 3.530 | (Guan & Wang, 2016) |
HUCMOH02 | Ba2+ | 9 | 2- | 3.516 | (Guan & Wang, 2016) |
Funding information
We thank the National Science Foundation (CHE-1412373 and CHE-1708793 to AMV) and Temple University (Dissertation Completion Grant to CJHG) for support.
References
Boukhalfa, H. & Crumbliss, A. L. (2002). Biometals, 15, 325–339. Web of Science CrossRef Google Scholar
Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA. Google Scholar
Bruker (2016). SAINT. Bruker AXS Inc, Madison, Wisconsin, USA. Google Scholar
Côté, A. P. & Shimizu, G. K. H. (2001). Chem. Commun. pp. 251–252. Google Scholar
Côté, A. P. & Shimizu, G. K. H. (2003). Chem. Eur. J. 9, 5361–5370. Web of Science CSD CrossRef PubMed CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Guan, L. (2016). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 46, 1–5. Web of Science CrossRef Google Scholar
Guan, L. & Wang, Y. (2016). J. Coord. Chem. 69, 3107–3114. Web of Science CrossRef Google Scholar
Guan, L. & Wang, Y. (2017). J. Coord. Chem. 70, 2520–2529. Web of Science CrossRef Google Scholar
Lee, B. P., Messersmith, P. B., Israelachvili, J. N. & Waite, J. H. (2011). Annual Review of Materials Research, Vol 41, edited by D. R. Clarke & P. Fratzl, pp. 99–132. Palo Alto: Annual Reviews. Google Scholar
Loomis, L. D. & Raymond, K. N. (1991). Inorg. Chem. 30, 906–911. CrossRef Web of Science Google Scholar
Lu, L., Jun, W., Wei-Ping, W., Xiu-Lan, Z. & Bin, X. (2014). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 44, 393–396. Web of Science CrossRef Google Scholar
Pierpont, C. G. & Lange, C. W. (1994). Progress in Inorganic Chemistry, Vol 41, edited by K. D. Karlin, pp. 331–442. New York: John Wiley & Sons Inc. Google Scholar
Rapp, M. V., Maier, G. P., Dobbs, H. A., Higdon, N. J., Waite, J. H., Butler, A. & Israelachvili, J. N. (2016). J. Am. Chem. Soc. 138, 9013–9016. Web of Science CrossRef Google Scholar
Raymond, K. N., Allred, B. E. & Sia, A. K. (2015). Acc. Chem. Res. 48, 2496–2505. Web of Science CrossRef Google Scholar
Riley, P. E., Haddad, S. F. & Raymond, K. N. (1983). Inorg. Chem. 22, 3090–3096. CSD CrossRef CAS Web of Science Google Scholar
Sever, M. J. & Wilker, J. J. (2004). Dalton Trans. pp. 1061–1072. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheriff, T. S., Carr, P. & Piggott, B. (2003). Inorg. Chim. Acta, 348, 115–122. Web of Science CSD CrossRef CAS Google Scholar
Sommer, L. (1963a). Collect. Czech. Chem. Commun. 28, 2102–2130. CrossRef Web of Science Google Scholar
Sommer, L. (1963b). Z. Anorg. Allg. Chem. 321, 191–197. CrossRef Web of Science Google Scholar
Springer, S. D. & Butler, A. (2016). Coord. Chem. Rev. 306, 628–635. Web of Science CrossRef Google Scholar
Sugumaran, M. & Robinson, W. E. (2012). Comp. Biochem. Physiol. Part B: Biochem. Mol. Biol. 163, 1–25. Google Scholar
Wang, W. G., Zhang, J., Ju, Z. F. & Song, L. J. (2005). Appl. Organomet. Chem. 19, 191–192. Web of Science CrossRef Google Scholar
Yang, B., Hoober-Burkhardt, L., Wang, F., Surya Prakash, G. K. & Narayanan, S. R. (2014). J. Electrochem. Soc. 161, A1371–A1380. Web of Science CrossRef Google Scholar
Yoe, J. H. & Armstrong, A. R. (1945). Science, 102, 207–207. CrossRef Web of Science Google Scholar
Yoe, J. H. & Armstrong, A. R. (1947). Anal. Chem. 19, 100–102. CrossRef Web of Science Google Scholar
Zhang, X., Ge, C., Guan, L. & Sun, Z. (2008). Acta Cryst. E64, m396–m397. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.