research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
ADDENDA AND ERRATA
A correction has been published for this article. To view the correction, click here.

Crystal structure and Hirshfeld surface analysis of (Z)-4-(4-hy­dr­oxy­benzyl­­idene)-3-methyl­isoxazol-5(4H)-one

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Cristallographie, Département de Physique, Université Mentouri-Constantine, 25000 Constantine, Algeria, and bLaboratoire de Synthèse de Molécules, d'Intérêts Biologiques, Département de Chimie, Université Mentouri-Constantine, 25000 Constantine, Algeria
*Correspondence e-mail: n_hamdouni@yahoo.fr

Edited by P. Bombicz, Hungarian Academy of Sciences, Hungary (Received 11 January 2018; accepted 27 May 2018; online 8 June 2018)

The title compound, C11H9NO3, contains an isoxazole and a hy­droxy­benzyl­idene ring, which are inclined to each another by 3.18 (8)°. There is an intra­molecular C—H⋯O contact forming an S(7) ring. In the crystal, mol­ecules stack head-to-tail in columns along the b-axis direction, linked by offset ππ inter­actions [inter­centroid distances of 3.676 (1) and 3.723 (1) Å]. The columns are linked by O—H⋯O and O—H⋯N hydrogen bonds, forming layers parallel to the ab plane. The layers are linked by C—H⋯O hydrogen bonds, forming a supra­molecular three-dimensional framework. An analysis of the Hirshfeld surfaces points to the importance of the O—H⋯O and O—H⋯N hydrogen bonding in the packing mechanism of the crystal structure.

1. Chemical context

The isoxazole ring system is a component of many natural and medicinally active mol­ecules that exhibit inter­esting biological activities (Wang et al., 2012[Wang, L., Yu, X., Feng, X. & Bao, M. (2012). Org. Lett. 14, 2418-2421.]). Isoxazole derivatives have been shown to possess anti­convulsant (Balalaie et al., 2000[Balalaie, S., Sharifi, A. & Ahangarian, B. (2000). Indian J. Heterocycl. Chem. 10, 149-150.]), anti­fungal (Santos et al., 2010[Santos, M. M. M., Faria, N., Iley, J., Coles, S. J., Hursthouse, M. B., Martins, M. L. & Moreira, R. (2010). Bioorg. Med. Chem. Lett. 20, 193-195.]), HDAC inhibitory (Conti et al., 2010[Conti, P., Tamborini, L., Pinto, A., Sola, L., Ettari, R., Mercurio, C. & De Micheli, C. (2010). Eur. J. Med. Chem. 45, 4331-4338.]), analgesic (Kano et al., 1967[Kano, H., Adachi, I., Kido, R. & Hirose, K. (1967). J. Med. Chem. 10, 411-418.]), anti­microbial (Padmaja et al., 2009[Padmaja, A., Payani, T., Reddy, G. D. & Padmavathi, V. (2009). Eur. J. Med. Chem. 44, 4557-4566.]), anti­tuberculosis (Lee et al., 2009[Lee, Y. S., Park, S. M. & Kim, B. H. (2009). Bioorg. Med. Chem. Lett. 19, 1126-1128.]), anti­mycobacterial (Mao et al., 2010[Mao, J., Yuan, H., Wang, Y., Wan, B., Pak, D., He, R. & Franzblau, S. G. (2010). Bioorg. Med. Chem. Lett. 20, 1263-1268.]) and many other biological properties. They are also used for the treatment of leishmaniasis (Changtam et al., 2010[Changtam, C., Hongmanee, P. & Suksamrarn, A. (2010). Eur. J. Med. Chem. 45, 4446-4457.]) and for the treatment of patients with active arthritis (Suryawanshi et al., 2012[Suryawanshi, S. N., Tiwari, A., Chandra, N., Ramesh & Gupta, S. (2012). Bioorg. Med. Chem. Lett. 22, 6559-6562.]). Furthermore, the isoxazole unit can be used as the basis for the design and construction of merocyanine dyes, which are used in optical recording and non-linear optical research (Zhang et al., 2011[Zhang, X. H., Wang, L. Y., Zhan, Y. H., Fu, Y. L., Zhai, G. H. & Wen, Z. Y. (2011). J. Mol. Struct. 994, 371-378.]). In the present study, we report on the synthesis, crystal structure and Hirshfeld surface analysis of the title isoxazole derivative.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The mol­ecule is composed of an isoxazole ring (O1/N1/C1–C3) that is almost coplanar with the benzene ring (C6–C11) of the 4-hy­droxy­benzyl­idene substituent; the two rings are inclined to each other by 3.18 (8)°. The configuration about the C2=C5 bond is Z, and within the mol­ecule there is a short intra­molecular C11—H11⋯O2 contact (Table 1[link]), forming an S(7) ring motif. The bond lengths and bond angles agree well with those observed for a similar compound, the 2-hy­droxy­benzyl­idene analogue, (Z)-4-(2-hy­droxy­benzyl­idene)-3-methyl­isoxazol-5(4H)-one (Cheng et al., 2009[Cheng, Q., Xu, X., Liu, L. & Zhang, L. (2009). Acta Cryst. E65, o3012.]). Here the hydroxyl group is in the ortho position, compared to the para position in the title compound.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O2 0.93 2.15 2.989 (2) 149
O3—H3O⋯O1i 0.86 (2) 2.41 (2) 2.9119 (18) 118 (2)
O3—H3O⋯N1i 0.86 (2) 2.00 (2) 2.7984 (19) 154 (2)
C5—H5⋯O2ii 0.93 2.47 3.3655 (17) 162
C7—H7⋯O2ii 0.93 2.55 3.4038 (19) 152
Symmetry codes: (i) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [x, -y, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labelling and displacement ellipsoids drawn at the 50% probability level. The intra­molecular C—H⋯O contact (see Table 1[link]) is shown as a dashed line.

3. Supra­molecular features

In the crystal, mol­ecules stack head-to-tail along the b-axis direction (Fig. 2[link]), and are linked by offset ππ inter­actions: Cg1⋯Cg2iii,iv inter­centroid distances are 3.676 (1) and 3.723 (1) Å, inter­planar distances are 3.426 (1) and 3.489 (1) Å, slippages are 1.287 and 1.458 Å with the rings inclined to each other by 3.18 (8)°; symmetry codes: (iii) −x + [{3\over 2}], −y + [{1\over 2}], −z + 1; (iv) −x + [{3\over 2}], −y − [{1\over 2}], −z + 1. The mol­ecular columns are linked by O—H⋯O and O—H⋯N hydrogen bonds (Table 1[link]), forming layers parallel to (001). The layers are linked by C—H⋯O hydrogen bonds, forming a supra­molecular three-dimensional framework (Table 1[link] and Fig. 2[link]).

[Figure 2]
Figure 2
A view along the b axis of the crystal packing of the title compound. Only the H atoms (grey balls) involved in hydrogen bonding (see Table 1[link]) have been included.

4. Analysis of the Hirshfeld surfaces

Additional insight into the inter­molecular inter­actions was obtained from an analysis of the Hirshfeld surface (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]). The program CrystalExplorer (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net]) was used to generate Hirshfeld surfaces mapped over dnorm, de and the electrostatic potential for the title compound.

The analysis of the Hirshfeld surface mapped over dnorm is shown in Fig. 3[link]. The O3—H3⋯O1i and O3—H3⋯N1i inter­actions between the corresponding donor and acceptor atoms are visualized as bright-red spots on both sides (zones 1 and 2) of the Hirshfeld surfaces (Fig. 4[link]). Two other red spots exist, corresponding to the C5—H5⋯O2ii and C7—H7⋯Oii inter­actions (Fig. 4[link], zones 3 and 4); these are considered to be weak inter­actions by comparing them to the sum of the van der Waals radii. The donors and acceptors of inter­molecular hydrogen bonds appear as blue and red regions, respectively, around the participating atoms on the Hirshfeld surface mapped over the calculated electrostatic potential (Fig. 5[link]).

[Figure 3]
Figure 3
A view of the Hirshfeld surface mapped over dnorm, with neighbouring inter­actions shown as green dashed lines.
[Figure 4]
Figure 4
Two views of the Hirshfeld surface mapped over dnorm.
[Figure 5]
Figure 5
Two views of the Hirshfeld surface mapped over the electrostatic potential.

The overall two-dimensional fingerprint plot is illustrated in Fig. 6[link]a, and the H⋯O/O⋯H, H⋯H, C⋯H/H⋯C, and N⋯H/H⋯N contacts are illustrated in Fig. 6[link]bf, respectively. The H⋯O/O⋯H contacts (Fig. 6[link]b) account for 33.9% of the Hirshfeld surface, representing the largest contribution and is displayed on the fingerprint plots by a pair of short spikes at de + di = 2.3 Å. This distance is ca 0.5 Å shorter than the sum of the van der Waals radii of the individual atoms, which means it is a very strong inter­action. A contribution of 31.0% was found for the inter­atomic H⋯H contacts (Fig. 6[link]c), with a distinctive peak in the fingerprint plot at de + di = 2.2 Å; the van der Waals radius for this inter­action is 2.4 Å. The H⋯C/C⋯H contacts (9.6% contribution; Fig. 6[link]d) are indicated by a pair of short peaks at de + di = 2.7 Å, equal to the sum of the van der Waals radii. The H⋯N/N⋯H contacts (Fig. 6[link]e), which account for only 8.4% of the Hirshfeld surface, are displayed on the fingerprint plot as a pair of long spikes at de + di = 2.0 Å. This distance differs by ca 0.7 Å from the sum of the van der Waals radii, which means it is the strongest inter­action present. The C⋯C contacts (Fig. 6[link]f), which account for 11.7% of the Hirshfeld surface with de + di = 3.4 Å, indicate the presence of ππ stacking.

[Figure 6]
Figure 6
Two-dimensional fingerprint plots: (a) overall, and delineated into contributions from different contacts: (b) H⋯O/O⋯H, (c) H⋯H, (d) H⋯C/C⋯H, (e) H⋯NN⋯H, (f) C⋯C.

5. Database survey

A search of the Cambridge Structural Database (CSD, V3.59, last update February 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for 4-substituted 3-methyl-isoxzol-5(4H)-ones gave 22 hits. Of these, six compounds involve a benzyl­idene substituent. The configuration about the C=C bond is Z in all six compounds and the benzene ring is inclined to the isoxazole ring by angles as small as 1.14° in (Z)-4-benzyl­idene-3-methyl­isoxazol-5(4H)-one (MBYIOZ01; Chandra et al., 2012[Chandra, Srikantamurthy, N., Jeyaseelan, S., Umesha, K. B., Palani, K. & Mahendra, M. (2012). Acta Cryst. E68, o3091.]) compared to ca 11.59° in (Z)-4-(4-meth­oxy­benzyl­idene)-3-methyl-1,2-oxazol-5(4H)-one (YIMWIC; Saikh et al., 2013[Saikh, F., Das, J. & Ghosh, S. (2013). Tetrahedron Lett. 54, 4679-4682.]). The most relevant structure is the 2-hy­droxy­benzyl­idene analogue, viz. (Z)-4-(2-hy­droxy­benzyl­idene)-3-methyl­isoxazol-5(4H)-one (AJESAK; Cheng et al., 2009[Cheng, Q., Xu, X., Liu, L. & Zhang, L. (2009). Acta Cryst. E65, o3012.]), in which the two rings are inclined to each other by ca 6.53°, compared to 3.18 (8)° in the title compound. The Z configuration of all six mol­ecules indicates that there is an intra­molecular C—H⋯O contact present forming an S(7) ring motif, as in the title compound (Fig. 1[link] and Table 1[link]).

6. Synthesis and crystallization

4-Hy­droxy­benzaldehyde (1 mmol), hydroxyl­amine hydro­chloride (1 mmol), ethyl­aceto­acetate (1 mmol) and K2CO3 (5 ml) were mixed in a 25 ml flask equipped with a magnetic stirrer. The mixture was refluxed in 5 ml of water for 1 h (the reaction was monitored by TLC). On completion of the reaction, the mixture was gradually poured into ice-cold water. Stirring was maintained for a few minutes and the obtained solid was filtered and purified by crystallization from ethanol (yield 83%), yielding pale-yellow needle-like crystals on slow evaporation of the solvent.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The hydroxyl H atom was located in a difference-Fourier map and freely refined. The C-bound H atoms were included in calculated positions and treated as riding: C—H = 0.93–0.96 Å with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C11H9NO3
Mr 203.19
Crystal system, space group Monoclinic, C2/c
Temperature (K) 293
a, b, c (Å) 21.191 (2), 7.2352 (11), 12.9569 (14)
β (°) 103.920 (11)
V3) 1928.2 (4)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.36 × 0.23 × 0.11
 
Data collection
Diffractometer Agilent Technologies Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Ltd., Yarnton, England.])
Tmin, Tmax 0.551, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 4536, 1891, 1465
Rint 0.021
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.113, 1.04
No. of reflections 1891
No. of parameters 142
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.19, −0.13
Computer programs: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Ltd., Yarnton, England.]), SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

(Z)-4-(4-Hydroxybenzylidene)-3-methylisoxazol-5(4H)-one top
Crystal data top
C11H9NO3F(000) = 848
Mr = 203.19Dx = 1.400 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 21.191 (2) ÅCell parameters from 1714 reflections
b = 7.2352 (11) Åθ = 4.1–32°
c = 12.9569 (14) ŵ = 0.10 mm1
β = 103.920 (11)°T = 293 K
V = 1928.2 (4) Å3Needle, pale yellow
Z = 80.36 × 0.23 × 0.11 mm
Data collection top
Agilent Technologies Xcalibur, Eos
diffractometer
1891 independent reflections
Radiation source: Enhance (Mo) X-ray Source1465 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 26.0°, θmin = 3.2°
Absorption correction: multi-scan
(CrysalisPro; Agilent, 2013)
h = 2623
Tmin = 0.551, Tmax = 1.000k = 88
4536 measured reflectionsl = 1512
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0595P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
1891 reflectionsΔρmax = 0.19 e Å3
142 parametersΔρmin = 0.13 e Å3
0 restraintsExtinction correction: (SHELXL-2018/3; Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0020 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.62276 (5)0.14571 (16)0.60644 (8)0.0492 (4)
O20.72284 (6)0.0722 (2)0.69282 (8)0.0626 (4)
O30.99352 (6)0.2162 (2)0.60528 (10)0.0613 (4)
H3O1.0132 (11)0.237 (3)0.5558 (16)0.092 (8)*
N10.58554 (6)0.16143 (18)0.49783 (10)0.0448 (4)
C10.68443 (8)0.0886 (2)0.60805 (12)0.0392 (4)
C20.68735 (7)0.06174 (19)0.49745 (11)0.0308 (3)
C30.62309 (7)0.11381 (19)0.43784 (12)0.0347 (4)
C40.59837 (9)0.1192 (2)0.32016 (13)0.0521 (5)
H4A0.5582710.1870520.3023070.078*
H4B0.5910610.0045610.2932770.078*
H4C0.6298190.1787070.2890260.078*
C50.73584 (7)0.00370 (18)0.45337 (10)0.0321 (4)
H50.7238670.0005920.3794660.039*
C60.80178 (7)0.05397 (19)0.49675 (11)0.0309 (3)
C70.83942 (7)0.0968 (2)0.42463 (11)0.0374 (4)
H70.8207420.0882930.3520880.045*
C80.90318 (8)0.1508 (2)0.45834 (12)0.0407 (4)
H80.9272600.1781270.4090060.049*
C90.93153 (7)0.1646 (2)0.56651 (13)0.0391 (4)
C100.89502 (8)0.1264 (2)0.63930 (12)0.0414 (4)
H100.9138600.1369110.7116930.050*
C110.83143 (7)0.0732 (2)0.60553 (11)0.0374 (4)
H110.8074150.0493260.6554260.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0342 (7)0.0808 (8)0.0351 (6)0.0182 (6)0.0132 (5)0.0031 (5)
O20.0413 (7)0.1180 (11)0.0271 (6)0.0283 (7)0.0056 (5)0.0015 (6)
O30.0259 (6)0.1075 (11)0.0490 (8)0.0214 (6)0.0061 (6)0.0077 (7)
N10.0290 (8)0.0631 (8)0.0410 (8)0.0122 (7)0.0057 (6)0.0029 (6)
C10.0271 (8)0.0580 (9)0.0335 (8)0.0104 (7)0.0091 (7)0.0017 (7)
C20.0256 (8)0.0372 (7)0.0289 (7)0.0031 (6)0.0050 (6)0.0010 (6)
C30.0274 (8)0.0405 (7)0.0363 (8)0.0049 (7)0.0076 (7)0.0005 (6)
C40.0392 (10)0.0710 (11)0.0397 (9)0.0134 (9)0.0027 (8)0.0004 (8)
C50.0294 (8)0.0403 (7)0.0263 (7)0.0033 (6)0.0061 (6)0.0002 (6)
C60.0258 (8)0.0373 (7)0.0297 (7)0.0036 (6)0.0067 (6)0.0021 (6)
C70.0324 (9)0.0516 (9)0.0283 (7)0.0051 (7)0.0075 (6)0.0001 (6)
C80.0297 (9)0.0582 (9)0.0374 (8)0.0057 (7)0.0141 (7)0.0051 (7)
C90.0225 (8)0.0503 (9)0.0435 (8)0.0067 (7)0.0062 (7)0.0045 (7)
C100.0323 (9)0.0588 (9)0.0304 (8)0.0081 (7)0.0025 (7)0.0033 (7)
C110.0292 (8)0.0531 (9)0.0310 (8)0.0083 (7)0.0093 (6)0.0032 (6)
Geometric parameters (Å, º) top
O1—C11.3660 (19)C5—C61.4370 (19)
O1—N11.4426 (15)C5—H50.9300
O2—C11.2054 (18)C6—C71.401 (2)
O3—C91.3417 (18)C6—C111.4053 (19)
O3—H3O0.86 (2)C7—C81.373 (2)
N1—C31.2860 (19)C7—H70.9300
C1—C21.462 (2)C8—C91.389 (2)
C2—C51.357 (2)C8—H80.9300
C2—C31.445 (2)C9—C101.384 (2)
C3—C41.489 (2)C10—C111.368 (2)
C4—H4A0.9600C10—H100.9300
C4—H4B0.9600C11—H110.9300
C4—H4C0.9600
C1—O1—N1109.59 (11)C6—C5—H5113.2
C9—O3—H3O112.2 (14)C7—C6—C11117.27 (13)
C3—N1—O1107.22 (11)C7—C6—C5117.34 (13)
O2—C1—O1118.53 (14)C11—C6—C5125.39 (13)
O2—C1—C2134.54 (15)C8—C7—C6121.68 (13)
O1—C1—C2106.93 (12)C8—C7—H7119.2
C5—C2—C3124.58 (13)C6—C7—H7119.2
C5—C2—C1131.96 (13)C7—C8—C9119.66 (14)
C3—C2—C1103.46 (13)C7—C8—H8120.2
N1—C3—C2112.79 (13)C9—C8—H8120.2
N1—C3—C4119.70 (14)O3—C9—C10117.26 (14)
C2—C3—C4127.50 (14)O3—C9—C8122.99 (14)
C3—C4—H4A109.5C10—C9—C8119.75 (14)
C3—C4—H4B109.5C11—C10—C9120.49 (14)
H4A—C4—H4B109.5C11—C10—H10119.8
C3—C4—H4C109.5C9—C10—H10119.8
H4A—C4—H4C109.5C10—C11—C6121.12 (14)
H4B—C4—H4C109.5C10—C11—H11119.4
C2—C5—C6133.54 (13)C6—C11—H11119.4
C2—C5—H5113.2
C1—O1—N1—C30.71 (16)C1—C2—C5—C60.4 (3)
N1—O1—C1—O2178.29 (14)C2—C5—C6—C7176.83 (15)
N1—O1—C1—C21.37 (16)C2—C5—C6—C114.0 (3)
O2—C1—C2—C51.7 (3)C11—C6—C7—C81.6 (2)
O1—C1—C2—C5178.74 (15)C5—C6—C7—C8179.15 (14)
O2—C1—C2—C3178.13 (19)C6—C7—C8—C90.2 (2)
O1—C1—C2—C31.45 (16)C7—C8—C9—O3179.90 (15)
O1—N1—C3—C20.28 (17)C7—C8—C9—C101.0 (2)
O1—N1—C3—C4178.93 (13)O3—C9—C10—C11179.90 (14)
C5—C2—C3—N1179.09 (14)C8—C9—C10—C110.7 (2)
C1—C2—C3—N11.08 (17)C9—C10—C11—C60.7 (2)
C5—C2—C3—C41.8 (2)C7—C6—C11—C101.8 (2)
C1—C2—C3—C4178.06 (14)C5—C6—C11—C10178.97 (14)
C3—C2—C5—C6179.81 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O20.932.152.989 (2)149
O3—H3O···O1i0.86 (2)2.41 (2)2.9119 (18)118 (2)
O3—H3O···N1i0.86 (2)2.00 (2)2.7984 (19)154 (2)
C5—H5···O2ii0.932.473.3655 (17)162
C7—H7···O2ii0.932.553.4038 (19)152
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x, y, z1/2.
 

Acknowledgements

We thank Mr F. Saidi, Engineer at the Laboratory of Crystallography, University Constantine 1, for assistance with the data collection.

Funding information

This work was supported by the Laboratoire de Cristallographie, Departement de Physique, Université Constantine 1, Algeria.

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies Ltd., Yarnton, England.  Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBalalaie, S., Sharifi, A. & Ahangarian, B. (2000). Indian J. Heterocycl. Chem. 10, 149–150.  Google Scholar
First citationChandra, Srikantamurthy, N., Jeyaseelan, S., Umesha, K. B., Palani, K. & Mahendra, M. (2012). Acta Cryst. E68, o3091.  CrossRef IUCr Journals Google Scholar
First citationChangtam, C., Hongmanee, P. & Suksamrarn, A. (2010). Eur. J. Med. Chem. 45, 4446–4457.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCheng, Q., Xu, X., Liu, L. & Zhang, L. (2009). Acta Cryst. E65, o3012.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationConti, P., Tamborini, L., Pinto, A., Sola, L., Ettari, R., Mercurio, C. & De Micheli, C. (2010). Eur. J. Med. Chem. 45, 4331–4338.  Web of Science CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKano, H., Adachi, I., Kido, R. & Hirose, K. (1967). J. Med. Chem. 10, 411–418.  Google Scholar
First citationLee, Y. S., Park, S. M. & Kim, B. H. (2009). Bioorg. Med. Chem. Lett. 19, 1126–1128.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMao, J., Yuan, H., Wang, Y., Wan, B., Pak, D., He, R. & Franzblau, S. G. (2010). Bioorg. Med. Chem. Lett. 20, 1263–1268.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationPadmaja, A., Payani, T., Reddy, G. D. & Padmavathi, V. (2009). Eur. J. Med. Chem. 44, 4557–4566.  Web of Science CrossRef Google Scholar
First citationSaikh, F., Das, J. & Ghosh, S. (2013). Tetrahedron Lett. 54, 4679–4682.  Web of Science CrossRef Google Scholar
First citationSantos, M. M. M., Faria, N., Iley, J., Coles, S. J., Hursthouse, M. B., Martins, M. L. & Moreira, R. (2010). Bioorg. Med. Chem. Lett. 20, 193–195.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuryawanshi, S. N., Tiwari, A., Chandra, N., Ramesh & Gupta, S. (2012). Bioorg. Med. Chem. Lett. 22, 6559–6562.  Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net  Google Scholar
First citationWang, L., Yu, X., Feng, X. & Bao, M. (2012). Org. Lett. 14, 2418–2421.  Web of Science CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, X. H., Wang, L. Y., Zhan, Y. H., Fu, Y. L., Zhai, G. H. & Wen, Z. Y. (2011). J. Mol. Struct. 994, 371–378.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds