research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 3,3′,3′′-[(1,3,5-triazine-2,4,6-tri­yl)tris­­(­­oxy)]tris­­(5,5-di­methyl­cyclo­hex-2-en-1-one)

CROSSMARK_Color_square_no_text.svg

aİlke Education and Health Foundation, Cappadocia University, Cappadocia Vocational College, The Medical Imaging Techniques Program, 50420 Mustafapaşa, Ürgüp, Nevşehir, Turkey, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Chemistry, Faculty of Sciences, University of Douala, PO Box 24157, Douala, Republic of Cameroon, dOrganic Chemistry Department, Baku State University, Z. Xalilov Str. 23, Az 1148 Baku, Azerbaijan, and eState Economic University of Azerbaijan, Istiqlaliyyat St, 6, AZ1001, Baku, Azerbaijan
*Correspondence e-mail: toflavien@yahoo.fr

Edited by P. Bombicz, Hungarian Academy of Sciences, Hungary (Received 25 May 2018; accepted 20 June 2018; online 28 June 2018)

The three cyclo­hexenone rings of the title compound, C27H33N3O6, adopt slightly distorted envelope conformations, with the C atom bearing two methyl groups as the flap atom in each case. These cyclo­hexenone mean planes form dihedral angles of 87.41 (11), 70.73 (11) and 70.47 (11)° with the 1,3,5-triazine ring, while the dihedral angle between the cyclo­hexenone mean planes are 57.52 (12), 23.75 (12) and 53.21 (12)°. In the crystal, mol­ecules are linked via C—H⋯O hydrogen bonds, forming a three-dimensional network.

1. Chemical context

β-Diketones are versatile starting materials in the synthesis of organic and coordination compounds (Mahmudov et al., 2017[Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017). Coord. Chem. Rev. 345, 54-72.]; Mahmudov & Pombeiro, 2016[Mahmudov, K. T. & Pombeiro, A. J. L. (2016). Chem. Eur. J. 22, 16356-16398.]). Usually, the active methyl­ene group of β-diketones is a reaction centre in the organic transformations of this class of compounds (Ma et al., 2017a[Ma, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526-533.],b[Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). J. Mol. Catal. A Chem. 428, 17-23.]; Gurbanov et al., 2017a[Gurbanov, A. V., Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, F. M., Sutradhar, M., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017a). Dyes Pigments, 138, 107-111.],b[Gurbanov, A. V., Mahmudov, K. T., Sutradhar, M., Guedes da Silva, F. C., Mahmudov, T. A., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017b). J. Organomet. Chem. 834, 22-27.], 2018[Gurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Inorg. Chim. Acta, 471, 130-136.]; Borisova et al., 2018[Borisova, K. K., Nikitina, E. V., Novikov, R. A., Khrustalev, V. N., Dorovatovskii, P. V., Zubavichus, Y. V., Kuznetsov, M. L., Zaytsev, V. P., Varlamov, A. V. & Zubkov, F. I. (2018). Chem. Commun. 54, 2850-2853.]; Jlassi et al., 2018[Jlassi, R., Ribeiro, A. P. C., Alegria, E. C. B. A., Naïli, H., Tiago, G. A. O., Rüffer, T., Lang, H., Zubkov, F. I., Pombeiro, A. J. L. & Rekik, W. (2018). Inorg. Chim. Acta, 471, 658-663.]). In contrast, there are few reports on the reactivity of β-diketones as O-nucleophiles (Yusifov et al., 2013[Yusifov, N. N., Ismayilov, V. M., Sadigova, N. D., Kopylovich, M. N. & Mahmudov, K. T. (2013). Mendeleev Commun. 23, 292-293.]; Ledenyova et al., 2018[Ledenyova, I. V., Falaleev, A. V., Shikhaliev, Kh. S., Ryzhkova, E. A. & Zubkov, F. I. (2018). Russ. J. Gen. Chem. 88, 73-79.]; Vandyshev et al., 2017[Vandyshev, D. Y., Shikhaliev, K. S., Potapov, A. Y., Krysin, M. Y., Zubkov, F. I. & Sapronova, L. V. (2017). Beilstein J. Org. Chem. 13, 2561-2568.]; Nasirova et al., 2017[Nasirova, D. K., Malkova, A. V., Polyanskii, K. B., Yankina, K. Y., Amoyaw, P. N.-A., Kolesnik, I. A., Kletskov, A. V., Godovikov, I. A., Nikitina, E. V. & Zubkov, F. I. (2017). Tetrahedron Lett. 58, 4384-4387.]). Herein we found a C—O coupling reaction between cyanuric chloride and dimedone leading to the title compound 3,3′,3′′-[(1,3,5-triazine-2,4,6-tri­yl)tris­(­oxy)]tris­(5,5-di­methyl­cyclo­hex-2-en-1-one) (Fig. 1[link]).

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as spheres of arbitrary radius.

2. Structural commentary

In the title compound, the cyclo­hexenone rings A (C4–C8/C11), B (C12–C16/C19) and C (C20–C22/C25–C27) adopt distorted envelope conformations, with flap atoms C8, C16 and C22, respectively [the puckering parameters are: for A, QT = 0.436 (3) Å, θ = 130.8 (4), φ = 43.3 (5)°, for B, QT = 0.449 (3) Å, θ = 131.0 (4)°, φ = 46.2 (4)° and for C, QT = 0.451 (3) Å, θ = 123.6 (4)°, φ = 298.6 (4)°]. The dihedral angle between the cyclo­hexenone rings are A/B = 57.52 (12), A/C = 23.75 (12) and B/C =53.21 (12)°. The dihedral angle between the 1,3,5-triazine ring (C1/N1/C2/N2/C3/N3) and cyclo­hexenone rings A, B and C are 87.41 (11), 70.73 (11) and 70.47 (11)°, respectively.

The values of the geometric parameters are normal and are comparable to those observed in similar compounds such as 2,2′-[(3-bromo-4-hy­droxy-5-meth­oxy­phen­yl)methyl­idene]bis(3-hy­droxy-5,5-di­methyl­cyclo­hex-2-en-1-one) (Sughanya & Sureshbabu, 2012[Sughanya, V. & Sureshbabu, N. (2012). Acta Cryst. E68, o2875-o2876.]) and 3-hy­droxy-2-[(4-hy­droxy-3,5-di­meth­oxy­phen­yl)(2-hy­droxy-4,4-dimethyl-6-oxo­cyclo­hex-1-en-1-yl)meth­yl]-5,5-di­methyl­cyclo­hex-2-en-1-one (Yang et al., 2011[Yang, X.-H., Zhou, Y.-H., Zhang, M. & Hu, L.-H. (2011). Acta Cryst. E67, o492.]).

3. Supra­molecular features

In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming a three-dimensional network (Table 1[link]; Fig. 2[link]). The mol­ecules are further linked by weak C—O⋯π inter­actions between the carbonyl groups, and the centroids (Cg1) of the 1,3,5-triazine rings of neighbouring mol­ecules: C14—O5 = 1.213 (3), O5⋯Cg11iii = 3.013 (2), C14⋯Cg1iii = 3.892 (3) Å, C14—O5⋯Cg1i = 129.0 (2)°; C26—O6 = 1.213 (3), O6⋯Cg1ii = 3.126 (2), C26⋯Cg1ii = 3.899 (3) Å, C26—O6⋯Cg1ii = 121.4 (2)°; symmetry codes: (iii) x, 1 + y, z; (ii) x, −1 + y, z]. No C—H⋯π inter­actions or ππ stacking inter­actions are observed in the crystal structure.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯O4i 0.93 2.59 3.447 (3) 153
C19—H19A⋯O5ii 0.97 2.60 3.532 (3) 162
C21—H21B⋯O6iii 0.97 2.57 3.399 (3) 143
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x, y-1, z; (iii) x, y+1, z.
[Figure 2]
Figure 2
A view of the inter­molecular C—H⋯O hydrogen bonds (Table 1[link]) in the title compound.

4. Hiershfeld surface analysis

Hirshfeld surfaces and fingerprint plots were generated for the title compound based on the crystallographic information file (CIF) using CrystalExplorer (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]). Hirshfeld surfaces enable the visualization of inter­molecular inter­actions by different colors and color intensity, representing short or long contacts and indicating the relative strength of the inter­actions. Fig. 3[link] shows the Hirshfeld surface of the title compound mapped over dnorm(−0.16 to 1.25 a.u.). It is evident from the bright-red spots appearing near the oxygen atoms in this figure that these atoms play a significant role in the mol­ecular packing. The red points, which represent closer contacts and negative dnorm values on the surface, correspond to the C—H⋯O inter­actions.

[Figure 3]
Figure 3
Hirshfeld surface of the title compound mapped over dnorm.

The percentage contributions of various contacts to the total Hirshfeld surface are shown in the two-dimensional fingerprint plots in Fig. 4[link]. The H⋯H inter­actions appear in the middle of the scattered points in the two-dimensional fingerprint plots with an overall contribution to the Hirshfeld surface of 57.5% (Fig. 4[link]b). The contribution (25.9%) from the O⋯H/H⋯O contacts, corresponding to C—H⋯O inter­actions, is represented by a pair of sharp spikes characteristic of a strong hydrogen-bonding inter­action (Fig. 4[link]c). The contribution of the inter­molecular N⋯H/H⋯N contacts to the Hirshfeld surfaces is 6.3% (Fig. 4[link]d). The small percentage contributions from the other different inter­atomic contacts are as follows: C⋯O/O⋯C (3.8%), C⋯H/H⋯C (3.3%), N⋯O/O⋯N (2.1%), O⋯O (0.9%) and C⋯N/N⋯C (0.2%). The large number of H⋯H, H⋯O/O⋯H and H⋯N/N⋯H inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]). The three-dimensional shape-index surface of the title compound is shown in Fig. 5[link].

[Figure 4]
Figure 4
The two-dimensional fingerprint plots of the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) O⋯H/ H⋯O, (d) H⋯N/N⋯H, (e) C⋯O/O⋯C and (f) C⋯H/H⋯C inter­actions [de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].
[Figure 5]
Figure 5
View of the three-dimensional Hirshfeld surface of the title complex plotted over shape-index.

5. Synthesis and crystallization

1.40 g (10 mmol) dimedone was added to 30 mL of an aqueous solution of KOH (0.56 g, 10 mmol) and the solution was stirred for 5 min at room temperature. Cyanuric chloride (0.61 g, 3.3 mmol) was added to this alkali solution of dimedone in 10 portions under stirring for 10 min. After 2 h, the formed white precipitate of the product was filtered off and was recrystallized from methanol. Yield 84% (based on cyanuric chloride), white powder, soluble in DMSO, ethanol and di­methyl­formamide and insoluble in non-polar solvents. Analysis calculated for C27H33N3O6 (Mr = 495.58): C, 65.44; H, 6.71; N, 8.48. Found: C, 65.40; H, 6.65; N, 8.43%. MS (ESI) (positive ion mode): m/z: 496.73 [M + H]+. 1H NMR (DMSO-d6): δ 1.01 (18H, 6CH3), 1.90 and 2.34 (12H, 6CH2), 5.80 (3H, C—H). 13C{1H} (DMSO-d6): δ 27.80 (6CH3), 44.56 (3CH2), 48.12 (3CH2), 124.31 (3CH), 167.72 (3C=C—O), 176.23 (3C—O) and 196.58 (3C=O).

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were fixed geom­etrically and allowed to ride on the attached non-H atoms, with C —H = 0.93–0.97 Å, and with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for all other atoms.

Table 2
Experimental details

Crystal data
Chemical formula C27H33N3O6
Mr 495.56
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 18.084 (2), 7.3858 (10), 20.614 (3)
β (°) 104.725 (5)
V3) 2662.9 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.34 × 0.19 × 0.14
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.])
Tmin, Tmax 0.964, 0.982
No. of measured, independent and observed [I > 2σ(I)] reflections 30340, 5064, 2847
Rint 0.100
(sin θ/λ)max−1) 0.612
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.159, 1.01
No. of reflections 5064
No. of parameters 331
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.17, −0.24
Computer programs: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2003).

3,3',3''-[(1,3,5-Triazine-2,4,6-triyl)tris(oxy)]tris(5,5-dimethylcyclohex-2-en-1-one) top
Crystal data top
C27H33N3O6F(000) = 1056
Mr = 495.56Dx = 1.236 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 18.084 (2) ÅCell parameters from 6177 reflections
b = 7.3858 (10) Åθ = 2.3–25.6°
c = 20.614 (3) ŵ = 0.09 mm1
β = 104.725 (5)°T = 296 K
V = 2662.9 (6) Å3Block, colourless
Z = 40.34 × 0.19 × 0.14 mm
Data collection top
Bruker APEXII CCD
diffractometer
2847 reflections with I > 2σ(I)
φ and ω scansRint = 0.100
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
θmax = 25.8°, θmin = 2.6°
Tmin = 0.964, Tmax = 0.982h = 2222
30340 measured reflectionsk = 99
5064 independent reflectionsl = 2525
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.159 w = 1/[σ2(Fo2) + (0.0858P)2 + 0.0315P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
5064 reflectionsΔρmax = 0.17 e Å3
331 parametersΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.24163 (12)0.5010 (3)0.78577 (11)0.0352 (5)
C20.13024 (12)0.6221 (3)0.74190 (12)0.0375 (6)
C30.16639 (12)0.3837 (3)0.69484 (12)0.0369 (5)
C40.36056 (12)0.3650 (3)0.83435 (12)0.0394 (6)
C50.41371 (13)0.3863 (3)0.80154 (13)0.0474 (6)
H5A0.4148860.4905630.7765110.057*
C60.47069 (14)0.2444 (3)0.80498 (14)0.0497 (7)
C70.47343 (13)0.0961 (4)0.85502 (14)0.0540 (7)
H7A0.5044920.1356220.8982560.065*
H7B0.4981060.0088290.8414570.065*
C80.39470 (13)0.0401 (3)0.86274 (13)0.0457 (6)
C90.34874 (15)0.0466 (4)0.79846 (14)0.0578 (7)
H9A0.3005970.0877010.8045510.087*
H9B0.3765630.1476560.7873220.087*
H9C0.3399570.0406250.7627890.087*
C100.40348 (17)0.0952 (4)0.91991 (15)0.0721 (9)
H10A0.3538440.1306320.9241390.108*
H10B0.4316300.0403240.9609930.108*
H10C0.4304980.1999870.9106400.108*
C110.35337 (14)0.2092 (3)0.87747 (13)0.0468 (6)
H11A0.2996160.1811480.8712220.056*
H11B0.3738990.2429780.9240460.056*
C120.08311 (12)0.8590 (3)0.79663 (12)0.0410 (6)
C130.09560 (14)1.0324 (3)0.79119 (13)0.0470 (6)
H13A0.1027831.0777500.7511400.056*
C140.09837 (14)1.1550 (3)0.84702 (13)0.0491 (7)
C150.07422 (14)1.0778 (3)0.90568 (13)0.0478 (6)
H15A0.0190441.0862470.8970160.057*
H15B0.0963441.1500360.9451230.057*
C160.09812 (14)0.8803 (3)0.92030 (13)0.0484 (7)
C170.0646 (2)0.8065 (4)0.97584 (16)0.0761 (9)
H17A0.0100360.8196710.9629930.114*
H17B0.0852560.8726271.0165100.114*
H17C0.0775320.6806990.9829800.114*
C180.18568 (15)0.8686 (4)0.94248 (15)0.0667 (8)
H18A0.2009520.7439470.9482940.100*
H18B0.2039350.9319940.9841390.100*
H18C0.2069080.9225960.9088690.100*
C190.06780 (14)0.7700 (3)0.85618 (13)0.0465 (6)
H19A0.0915800.6513870.8617180.056*
H19B0.0131060.7532380.8489620.056*
C200.20769 (13)0.1412 (3)0.63687 (11)0.0403 (6)
C210.27721 (14)0.2252 (3)0.62347 (13)0.0455 (6)
H21A0.3147240.2460810.6656770.055*
H21B0.2638360.3414550.6017720.055*
C220.31233 (14)0.1041 (3)0.57862 (12)0.0449 (6)
C230.26205 (16)0.1060 (4)0.50692 (13)0.0592 (7)
H23A0.2834480.0266260.4795810.089*
H23B0.2595450.2268140.4893360.089*
H23C0.2115360.0656470.5067310.089*
C240.39175 (16)0.1760 (4)0.57940 (16)0.0717 (9)
H24A0.4147930.0989880.5525100.108*
H24B0.4229710.1773970.6246620.108*
H24C0.3874000.2966290.5615250.108*
C250.31926 (15)0.0878 (3)0.60713 (14)0.0527 (7)
H25A0.3342730.1678350.5753970.063*
H25B0.3600030.0893230.6481350.063*
C260.24829 (15)0.1627 (4)0.62219 (12)0.0497 (6)
C270.19336 (14)0.0336 (3)0.63526 (13)0.0471 (6)
H27A0.1475590.0748620.6425670.057*
N10.19417 (10)0.6328 (2)0.78932 (9)0.0374 (5)
N20.11151 (10)0.5028 (3)0.69217 (10)0.0414 (5)
N30.23251 (10)0.3701 (2)0.74050 (9)0.0363 (5)
O10.30770 (9)0.5048 (2)0.83405 (8)0.0444 (4)
O20.07577 (9)0.7480 (2)0.73984 (8)0.0467 (4)
O30.14991 (9)0.2578 (2)0.64567 (9)0.0478 (5)
O40.51468 (12)0.2482 (3)0.76883 (12)0.0776 (7)
O50.11854 (13)1.3113 (2)0.84562 (11)0.0753 (6)
O60.23846 (13)0.3247 (3)0.62492 (11)0.0795 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0343 (12)0.0306 (13)0.0423 (14)0.0016 (10)0.0130 (11)0.0023 (11)
C20.0371 (13)0.0294 (12)0.0496 (15)0.0020 (10)0.0180 (11)0.0018 (11)
C30.0379 (13)0.0309 (12)0.0444 (14)0.0025 (10)0.0151 (11)0.0044 (11)
C40.0342 (12)0.0362 (13)0.0464 (14)0.0018 (10)0.0078 (11)0.0100 (11)
C50.0455 (14)0.0382 (14)0.0624 (17)0.0032 (11)0.0208 (13)0.0002 (13)
C60.0394 (14)0.0464 (15)0.0690 (19)0.0048 (11)0.0239 (13)0.0024 (13)
C70.0401 (14)0.0529 (17)0.0695 (19)0.0102 (12)0.0146 (13)0.0069 (14)
C80.0415 (13)0.0463 (15)0.0517 (16)0.0045 (11)0.0161 (12)0.0071 (13)
C90.0623 (17)0.0462 (16)0.0675 (19)0.0053 (13)0.0213 (15)0.0026 (14)
C100.077 (2)0.071 (2)0.073 (2)0.0139 (16)0.0281 (17)0.0241 (17)
C110.0465 (14)0.0543 (16)0.0436 (15)0.0030 (12)0.0189 (12)0.0003 (13)
C120.0340 (12)0.0381 (14)0.0527 (16)0.0107 (10)0.0145 (11)0.0023 (12)
C130.0558 (15)0.0336 (15)0.0558 (16)0.0060 (11)0.0221 (13)0.0045 (12)
C140.0538 (15)0.0309 (14)0.0642 (18)0.0058 (12)0.0181 (13)0.0019 (13)
C150.0491 (14)0.0438 (15)0.0521 (16)0.0033 (12)0.0156 (12)0.0088 (12)
C160.0491 (14)0.0451 (15)0.0558 (17)0.0055 (11)0.0219 (12)0.0072 (13)
C170.096 (2)0.072 (2)0.072 (2)0.0067 (18)0.0417 (18)0.0139 (17)
C180.0567 (17)0.0641 (19)0.074 (2)0.0107 (14)0.0062 (15)0.0113 (16)
C190.0422 (13)0.0325 (13)0.0701 (18)0.0037 (10)0.0236 (13)0.0038 (13)
C200.0452 (13)0.0405 (15)0.0355 (13)0.0040 (11)0.0108 (10)0.0076 (11)
C210.0522 (15)0.0371 (14)0.0494 (15)0.0047 (11)0.0169 (12)0.0100 (12)
C220.0524 (15)0.0406 (14)0.0459 (15)0.0035 (11)0.0202 (12)0.0036 (12)
C230.0763 (19)0.0613 (18)0.0448 (16)0.0099 (14)0.0244 (14)0.0032 (14)
C240.0663 (19)0.078 (2)0.080 (2)0.0166 (16)0.0360 (17)0.0172 (18)
C250.0600 (16)0.0475 (16)0.0561 (17)0.0085 (13)0.0246 (13)0.0044 (13)
C260.0709 (17)0.0384 (16)0.0431 (15)0.0048 (13)0.0204 (13)0.0027 (12)
C270.0543 (15)0.0412 (15)0.0505 (16)0.0026 (12)0.0217 (13)0.0038 (12)
N10.0361 (10)0.0293 (10)0.0494 (12)0.0002 (8)0.0156 (9)0.0052 (9)
N20.0357 (11)0.0381 (11)0.0511 (13)0.0028 (8)0.0126 (9)0.0059 (10)
N30.0383 (10)0.0302 (10)0.0415 (11)0.0017 (8)0.0120 (9)0.0048 (9)
O10.0398 (9)0.0407 (10)0.0508 (10)0.0071 (7)0.0076 (8)0.0120 (8)
O20.0436 (9)0.0396 (9)0.0565 (11)0.0116 (7)0.0117 (8)0.0066 (8)
O30.0429 (9)0.0444 (10)0.0539 (11)0.0049 (7)0.0083 (8)0.0169 (8)
O40.0715 (13)0.0625 (13)0.1195 (19)0.0047 (10)0.0626 (14)0.0057 (12)
O50.1122 (17)0.0341 (11)0.0883 (16)0.0123 (11)0.0416 (13)0.0049 (10)
O60.1165 (17)0.0338 (12)0.1037 (17)0.0018 (11)0.0566 (14)0.0050 (11)
Geometric parameters (Å, º) top
C1—N11.312 (3)C14—C151.499 (4)
C1—N31.325 (3)C15—C161.529 (4)
C1—O11.347 (3)C15—H15A0.9700
C2—N11.313 (3)C15—H15B0.9700
C2—N21.329 (3)C16—C171.526 (4)
C2—O21.348 (3)C16—C191.530 (4)
C3—N21.317 (3)C16—C181.535 (4)
C3—N31.324 (3)C17—H17A0.9600
C3—O31.351 (3)C17—H17B0.9600
C4—C51.318 (3)C17—H17C0.9600
C4—O11.406 (3)C18—H18A0.9600
C4—C111.480 (3)C18—H18B0.9600
C5—C61.459 (3)C18—H18C0.9600
C5—H5A0.9300C19—H19A0.9700
C6—O41.221 (3)C19—H19B0.9700
C6—C71.497 (4)C20—C271.316 (3)
C7—C81.529 (3)C20—O31.401 (3)
C7—H7A0.9700C20—C211.489 (3)
C7—H7B0.9700C21—C221.535 (3)
C8—C91.515 (4)C21—H21A0.9700
C8—C101.522 (4)C21—H21B0.9700
C8—C111.525 (3)C22—C231.526 (4)
C9—H9A0.9600C22—C241.527 (4)
C9—H9B0.9600C22—C251.528 (3)
C9—H9C0.9600C23—H23A0.9600
C10—H10A0.9600C23—H23B0.9600
C10—H10B0.9600C23—H23C0.9600
C10—H10C0.9600C24—H24A0.9600
C11—H11A0.9700C24—H24B0.9600
C11—H11B0.9700C24—H24C0.9600
C12—C131.310 (3)C25—C261.501 (4)
C12—O21.407 (3)C25—H25A0.9700
C12—C191.479 (3)C25—H25B0.9700
C13—C141.455 (3)C26—O61.213 (3)
C13—H13A0.9300C26—C271.451 (3)
C14—O51.213 (3)C27—H27A0.9300
N1—C1—N3127.9 (2)C17—C16—C18109.4 (2)
N1—C1—O1114.44 (19)C15—C16—C18109.3 (2)
N3—C1—O1117.62 (19)C19—C16—C18110.1 (2)
N1—C2—N2128.16 (19)C16—C17—H17A109.5
N1—C2—O2118.7 (2)C16—C17—H17B109.5
N2—C2—O2113.10 (19)H17A—C17—H17B109.5
N2—C3—N3127.9 (2)C16—C17—H17C109.5
N2—C3—O3114.07 (19)H17A—C17—H17C109.5
N3—C3—O3117.93 (19)H17B—C17—H17C109.5
C5—C4—O1119.6 (2)C16—C18—H18A109.5
C5—C4—C11126.0 (2)C16—C18—H18B109.5
O1—C4—C11114.2 (2)H18A—C18—H18B109.5
C4—C5—C6119.2 (2)C16—C18—H18C109.5
C4—C5—H5A120.4H18A—C18—H18C109.5
C6—C5—H5A120.4H18B—C18—H18C109.5
O4—C6—C5121.0 (2)C12—C19—C16112.3 (2)
O4—C6—C7121.7 (2)C12—C19—H19A109.2
C5—C6—C7117.3 (2)C16—C19—H19A109.2
C6—C7—C8113.6 (2)C12—C19—H19B109.2
C6—C7—H7A108.8C16—C19—H19B109.2
C8—C7—H7A108.8H19A—C19—H19B107.9
C6—C7—H7B108.8C27—C20—O3117.3 (2)
C8—C7—H7B108.8C27—C20—C21125.0 (2)
H7A—C7—H7B107.7O3—C20—C21117.4 (2)
C9—C8—C10109.0 (2)C20—C21—C22111.55 (19)
C9—C8—C11109.4 (2)C20—C21—H21A109.3
C10—C8—C11110.1 (2)C22—C21—H21A109.3
C9—C8—C7110.0 (2)C20—C21—H21B109.3
C10—C8—C7110.0 (2)C22—C21—H21B109.3
C11—C8—C7108.4 (2)H21A—C21—H21B108.0
C8—C9—H9A109.5C23—C22—C24109.5 (2)
C8—C9—H9B109.5C23—C22—C25110.6 (2)
H9A—C9—H9B109.5C24—C22—C25109.5 (2)
C8—C9—H9C109.5C23—C22—C21110.0 (2)
H9A—C9—H9C109.5C24—C22—C21108.9 (2)
H9B—C9—H9C109.5C25—C22—C21108.4 (2)
C8—C10—H10A109.5C22—C23—H23A109.5
C8—C10—H10B109.5C22—C23—H23B109.5
H10A—C10—H10B109.5H23A—C23—H23B109.5
C8—C10—H10C109.5C22—C23—H23C109.5
H10A—C10—H10C109.5H23A—C23—H23C109.5
H10B—C10—H10C109.5H23B—C23—H23C109.5
C4—C11—C8113.3 (2)C22—C24—H24A109.5
C4—C11—H11A108.9C22—C24—H24B109.5
C8—C11—H11A108.9H24A—C24—H24B109.5
C4—C11—H11B108.9C22—C24—H24C109.5
C8—C11—H11B108.9H24A—C24—H24C109.5
H11A—C11—H11B107.7H24B—C24—H24C109.5
C13—C12—O2118.7 (2)C26—C25—C22115.5 (2)
C13—C12—C19125.3 (2)C26—C25—H25A108.4
O2—C12—C19115.7 (2)C22—C25—H25A108.4
C12—C13—C14120.8 (2)C26—C25—H25B108.4
C12—C13—H13A119.6C22—C25—H25B108.4
C14—C13—H13A119.6H25A—C25—H25B107.5
O5—C14—C13121.6 (2)O6—C26—C27121.6 (3)
O5—C14—C15122.2 (2)O6—C26—C25121.1 (2)
C13—C14—C15116.3 (2)C27—C26—C25117.3 (2)
C14—C15—C16113.4 (2)C20—C27—C26120.7 (2)
C14—C15—H15A108.9C20—C27—H27A119.7
C16—C15—H15A108.9C26—C27—H27A119.7
C14—C15—H15B108.9C1—N1—C2112.26 (19)
C16—C15—H15B108.9C3—N2—C2111.66 (19)
H15A—C15—H15B107.7C3—N3—C1111.95 (18)
C17—C16—C15110.0 (2)C1—O1—C4117.56 (17)
C17—C16—C19109.6 (2)C2—O2—C12117.53 (18)
C15—C16—C19108.4 (2)C3—O3—C20119.36 (17)
O1—C4—C5—C6176.9 (2)C23—C22—C25—C2670.8 (3)
C11—C4—C5—C61.9 (4)C24—C22—C25—C26168.5 (2)
C4—C5—C6—O4170.7 (3)C21—C22—C25—C2649.9 (3)
C4—C5—C6—C710.1 (4)C22—C25—C26—O6157.2 (2)
O4—C6—C7—C8143.6 (3)C22—C25—C26—C2724.7 (3)
C5—C6—C7—C837.1 (3)O3—C20—C27—C26176.2 (2)
C6—C7—C8—C966.4 (3)C21—C20—C27—C262.5 (4)
C6—C7—C8—C10173.6 (2)O6—C26—C27—C20175.0 (3)
C6—C7—C8—C1153.2 (3)C25—C26—C27—C203.2 (4)
C5—C4—C11—C820.7 (3)N3—C1—N1—C22.1 (3)
O1—C4—C11—C8164.03 (19)O1—C1—N1—C2179.09 (18)
C9—C8—C11—C475.6 (3)N2—C2—N1—C12.9 (3)
C10—C8—C11—C4164.6 (2)O2—C2—N1—C1179.37 (19)
C7—C8—C11—C444.3 (3)N3—C3—N2—C22.2 (3)
O2—C12—C13—C14175.7 (2)O3—C3—N2—C2179.37 (19)
C19—C12—C13—C142.5 (4)N1—C2—N2—C31.0 (3)
C12—C13—C14—O5171.3 (2)O2—C2—N2—C3178.84 (19)
C12—C13—C14—C159.3 (4)N2—C3—N3—C12.8 (3)
O5—C14—C15—C16144.1 (3)O3—C3—N3—C1179.92 (19)
C13—C14—C15—C1636.5 (3)N1—C1—N3—C30.4 (3)
C14—C15—C16—C17174.3 (2)O1—C1—N3—C3178.33 (19)
C14—C15—C16—C1954.5 (3)N1—C1—O1—C4178.46 (19)
C14—C15—C16—C1865.5 (3)N3—C1—O1—C42.6 (3)
C13—C12—C19—C1622.7 (3)C5—C4—O1—C191.5 (3)
O2—C12—C19—C16163.90 (18)C11—C4—O1—C192.9 (2)
C17—C16—C19—C12166.6 (2)N1—C2—O2—C1213.8 (3)
C15—C16—C19—C1246.6 (3)N2—C2—O2—C12168.13 (19)
C18—C16—C19—C1273.0 (3)C13—C12—O2—C2113.9 (2)
C27—C20—C21—C2225.3 (3)C19—C12—O2—C272.3 (2)
O3—C20—C21—C22148.4 (2)N2—C3—O3—C20170.2 (2)
C20—C21—C22—C2372.3 (3)N3—C3—O3—C2012.3 (3)
C20—C21—C22—C24167.7 (2)C27—C20—O3—C3127.7 (2)
C20—C21—C22—C2548.7 (3)C21—C20—O3—C358.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O4i0.932.593.447 (3)153
C19—H19A···O5ii0.972.603.532 (3)162
C21—H21B···O6iii0.972.573.399 (3)143
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y1, z; (iii) x, y+1, z.
 

Funding information

This work was supported partially by Baku State University.

References

First citationBorisova, K. K., Nikitina, E. V., Novikov, R. A., Khrustalev, V. N., Dorovatovskii, P. V., Zubavichus, Y. V., Kuznetsov, M. L., Zaytsev, V. P., Varlamov, A. V. & Zubkov, F. I. (2018). Chem. Commun. 54, 2850–2853.  CrossRef Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Inorg. Chim. Acta, 471, 130–136.  CrossRef Google Scholar
First citationGurbanov, A. V., Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, F. M., Sutradhar, M., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017a). Dyes Pigments, 138, 107–111.  CrossRef Google Scholar
First citationGurbanov, A. V., Mahmudov, K. T., Sutradhar, M., Guedes da Silva, F. C., Mahmudov, T. A., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017b). J. Organomet. Chem. 834, 22–27.  CrossRef Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationJlassi, R., Ribeiro, A. P. C., Alegria, E. C. B. A., Naïli, H., Tiago, G. A. O., Rüffer, T., Lang, H., Zubkov, F. I., Pombeiro, A. J. L. & Rekik, W. (2018). Inorg. Chim. Acta, 471, 658–663.  CrossRef Google Scholar
First citationLedenyova, I. V., Falaleev, A. V., Shikhaliev, Kh. S., Ryzhkova, E. A. & Zubkov, F. I. (2018). Russ. J. Gen. Chem. 88, 73–79.  CrossRef Google Scholar
First citationMa, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526–533.  CrossRef Google Scholar
First citationMa, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). J. Mol. Catal. A Chem. 428, 17–23.  Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017). Coord. Chem. Rev. 345, 54–72.  CrossRef Google Scholar
First citationMahmudov, K. T. & Pombeiro, A. J. L. (2016). Chem. Eur. J. 22, 16356–16398.  CrossRef Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationNasirova, D. K., Malkova, A. V., Polyanskii, K. B., Yankina, K. Y., Amoyaw, P. N.-A., Kolesnik, I. A., Kletskov, A. V., Godovikov, I. A., Nikitina, E. V. & Zubkov, F. I. (2017). Tetrahedron Lett. 58, 4384–4387.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSughanya, V. & Sureshbabu, N. (2012). Acta Cryst. E68, o2875–o2876.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationVandyshev, D. Y., Shikhaliev, K. S., Potapov, A. Y., Krysin, M. Y., Zubkov, F. I. & Sapronova, L. V. (2017). Beilstein J. Org. Chem. 13, 2561–2568.  CrossRef Google Scholar
First citationYang, X.-H., Zhou, Y.-H., Zhang, M. & Hu, L.-H. (2011). Acta Cryst. E67, o492.  CrossRef IUCr Journals Google Scholar
First citationYusifov, N. N., Ismayilov, V. M., Sadigova, N. D., Kopylovich, M. N. & Mahmudov, K. T. (2013). Mendeleev Commun. 23, 292–293.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds