research communications
and Hirshfeld surface analysis of 2,4-diamino-6-methyl-1,3,5-triazin-1-ium trichloroacetate monohydrate
aDepartment of Chemistry, Governemnt Arts College (Autonomous), Karur 639 005, Tamil Nadu, India, bDepartment of Chemistry, Government Arts College, Thiruchirappalli 620 022, Tamil Nadu, India, and cDepartment of Chemistry, Mother Teresa Womens University, Kodaikanal 624 102, Tamil Nadu, India
*Correspondence e-mail: manavaibala@gmail.com
The 4H8N5+·C2Cl3O2−·H2O, coomprises a 2,4-diamino-6-methyl-1,3,5-triazin-1-ium cation, a trichloroacetate anion and a water molecule of solvation. The protonated N atom of the cation forms a hydrogen bond with a carboxyl O atom of the anion, which also acts as a hydrogen-atom acceptor with the water molecule. The cations form centrosymmetric dimeric units through R22(8) N—H⋯N bond pairs and are extended into zigzag chains along the c-axis direction, also through similar cyclic R22(8) dual N—H⋯N hydrogen-bonding interactions. The water molecule acts as a dual acceptor forming N—H⋯O hydrogen bonds between the amine groups of the cations, forming cyclic R23(8) motifs. The second H atom of the water molecule also acts as a donor in an O—H⋯O hydrogen bond with the second carboxyl O atom, linking the chains along the b-axis direction. These interactions give rise to an overall three-dimensional supramolecular structure. A Hirshfeld surface analysis was employed in order to study the intermolecular interactions.
of the title molecular salt, CKeywords: crystal structure; triazinium cation; trichloroacetate anion; three-dimensional hydrogen-bonded supramolecular framework; Hirshfeld surface analysis.
CCDC reference: 1587723
1. Chemical context
Triazine heterocyclic π-conjugated structures are attractive owing to the chemical flexiblity of their systems and have many applications in medicinal chemistry, materials science and organic synthesis (Boesveld & Lappert, 1997; Boesveld et al., 1999; Reid et al., 2011). 1,3,5-Triazine derivatives represent an important class of compounds because of their potential to be biologically active. They are known to be anti-protozoal agents (Baliani et al., 2005), anticancer agents (Menicagli et al., 2004), estrogen receptor modulators (Henke et al., 2002), anti-malarials (Agarwal et al., 2005), cyclin-dependent kinase modulators (Kuo et al., 2005) and anti-microbial agents (Koc et al., 2010). These compounds still continue to be the object of considerable interest mainly because of their applications in various fields, including the production of herbicides and polymer photostabilizers. Triazine derivatives have been used as building blocks for subtle chemical architectures comprising organic–inorganic hybrid frameworks (Mathias et al., 1994; Zerkowski & Whitesides, 1994; MacDonald & Whitesides, 1994; Guru Row, 1999; Krische & Lehn, 2000; Sherrington & Taskinen, 2001). In these approaches, interplay between molecules is achieved by using diverse styles of non-covalent interactions, which include hydrogen bonds or ionic, hydrophobic, van der Waals or dispersive forces. Herein, the of the title compound salt, 2,4-diamino-6-methyl-1,3,5-triazine-5-ium trichloroacetate monohydrate is reported. Hirshfeld surface analysis and 2D fingerprint plots were employed in order to quantify the contributions of the various intermolecular interactions present in the structure.
2. Structural commentary
The molecular structure with atomic numbering scheme is shown in Fig. 1. The comprises a 2,4-diamino-6-methyl-1,3,5-triazine-5-ium cation, a trichloroacetate anion and a water molecule of solvation (O1W). Proton transfer occurs from one of the carboxylic acid oxygen atoms (O1) to atom N5 of the cation, with a resulting N5—H1N5⋯O1 hydrogen bond [2.652 (3) Å, Table 1]. The water molecule is also hydrogen bonded to atom O1 [2.835 (3) Å]. The proton transfer to the cation results in a widening of the C3—N5—C2 bond angle of the triazinium ring to 119.06 (19)°, compared to the comparative angle found in neutral 2,4-diamino-6-methyl-1,3,5-triazine [114.4 (7)°; Aoki et al., 1994]. The C—O bond distances within the carboxyl group of the trichloroacetate anion are 1.212 (3) and 1.251 (3) Å.
3. Supramolecular features
In the crystal, pairs of 2,4-diamino-6-methyl-1,3,5-triazine-5-ium cations associate through lateral centrosymmetric interactions via N2—H2N2⋯N1iii and N4—H2N4⋯N3iv hydrogen bonds (Table 1) with cyclic (8) graph-set motifs. These interactions result in the formation of zigzag chains extending along the c-axis direction (Fig. 2). The cations in the chains are further linked through amine N2—H1N2⋯O1Wii and N4—H1N4⋯O1Wv hydrogen bonds in R32(8) motifs (Fig. 3), producing a complementary DADA (D = donor and A = acceptor) hydrogen-bonded array with an R32(8), (8), R32(8) graph-set motif sequence (Fig. 3). The water molecule acts as a donor to form a second O1W—H2O2⋯O2vi hydrogen bond, which together with the O1W—H1O1⋯O1 hydrogen-bond sequence links the trichloroacetate anions into chains along the b-axis direction. Overall, a three-dimensional supramolecular structure is generated (Fig. 4).
4. Hirshfeld surface analysis
Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and 2D fingerprint plots are useful tools for describing the surface characteristics of the and were generated using CrystalExplorer 3.0 (Wolff et al., 2012). The normalized contact distance (dnorm) is based on the distances from the nearest atom inside (di) and outside (de) the surface. The 3D dnorm surface of the title compound is shown in Fig. 5. The red points represent closer contacts and negative dnorm values on the surface corresponding to the N—H⋯O, N—H⋯N and O—H⋯O interactions. Two-dimensional fingerprint plots are shown in Fig. 6. H⋯H interactions (24.5%) are present as a major contributor while H⋯O/O⋯H (22.9%), N⋯H/H⋯N (10.2%), H⋯Cl (15.1%) N⋯H (10.2%), N⋯Cl (8.0%), C⋯Cl (5.6%), C⋯H (2.6%), Cl⋯O (2.4%), C⋯N (1.6%) and C⋯C (0.2%) contacts also make significant contributions to the Hirshfeld surface.
5. Database survey
A search of the Cambridge Structural Database (Version 5.37, update February 2016; Groom et al., 2016) for 2,4-diamino-6-methyl-1,3,5-triazine yielded 22 structures of proton-transfer salts with carboxylic acids: AZUYUQ (with tetrafluoroboric acid; Gomathi & Muthiah, 2011); CICZUK (with trifluoroacetic acid; Perpétuo & Janczak, 2007); GIMRIE (with hydrogen chloride; Portalone & Colapietro, 2007); KUSQEV (with hydrogen chloride; Qian & Huang, 2010); LUGGEB (with 3,5-dihydroxybenzoic acid; Xiao et al., 2014); NAGLIR (with dimesylamide; Wijaya et al., 2004); QUWXAI (with 2-carboxybenzoic acid), QUWXEM [with (Z)-2-carboxyethene-1-carboxylic acid] and QUWXIQ (with 3-hydroxypyridine-2-carboxylic acid) (Thanigaimani et al., 2010); ROGPIN [with oxalic acid (methanol clathrate)], ROGPOT [with malonic acid (tetrahydrate clathrate)], ROGPUZ [with succinic acid (clathrate)], ROGQAG [with acetylenedicarboxylic acid (monohydrate clathrate)], ROGQEK [glutaric acid (clathrate)], ROGQIO [thiodiglycolic acid(clathrate)], ROGQOU [diglycolic acid (monohydrate clathrate)], ROMZOJ [fumaric acid (clathrate)] (Delori et al., 2008); SOLTIX (with nitric acid; Fan et al., 2009); YODCAX (with 2,3,5,6-tetrafluoroterephthalic acid; Wang et al., 2014); ZAQJEI (with oxalic acid; Narimani & Yamin, 2012); ZUDSOI [with 6-chlorouracil-1-ide (N,N-dimethylacetamide solvate)], ZUDSUO [with 6-chlorouracil-1-ide (N,N-dimethylformamide solvate monohydrate)] (Gerhardt & Egert, 2015).
6. Synthesis and crystallization
The title compound was prepared by mixing a hot methanolic solution (20 ml) of 2,4-diamino-6-methyl-1,3,5-triazine (1.25 mg) and an aqueous solution (10 ml) of trichloroacetic acid (1.63 mg) in a 1:1 molar ratio. The reaction mixture was warmed over a water bath for a few minutes. The resultant solution was then allowed to cool slowly at room temperature. After a few days, colourless block-shaped crystals of the title compound were separated out.
7. Refinement
Crystal data, data collection and structure . The C- and N-bound H atoms were placed in calculated positions and were included in the in the riding-model approximation with C—H = 0.96 Å and N—H = 0.86 Å (NH, NH2), with Uiso(H) set to 1.2Ueq(C,N). The water-bound H atoms were located in a difference-Fourier map and were freely refined [O—H = 0.78 (4) and 0.86 (4) Å].
details are summarized in Table 2
|
Supporting information
CCDC reference: 1587723
https://doi.org/10.1107/S2056989018008307/zs2400sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018008307/zs2400Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018008307/zs2400Isup3.cml
Data collection: APEX2 (Bruker, 2004); cell
APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C4H8N5+·C2Cl3O2−·H2O | F(000) = 1248 |
Mr = 306.54 | Dx = 1.645 Mg m−3 Dm = 1.646 Mg m−3 Dm measured by Not Measured |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 3519 reflections |
a = 21.7056 (18) Å | θ = 6.6–56.0° |
b = 11.9074 (9) Å | µ = 0.75 mm−1 |
c = 10.9562 (6) Å | T = 293 K |
β = 119.084 (5)° | Block, colorless |
V = 2474.7 (3) Å3 | 0.35 × 0.30 × 0.30 mm |
Z = 8 |
Bruker Kappa APEXII CCD diffractometer | 3027 independent reflections |
Radiation source: fine-focus sealed tube | 2280 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
Detector resolution: 18.4 pixels mm-1 | θmax = 28.3°, θmin = 3.3° |
ω and φ scan | h = −27→28 |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | k = −15→14 |
Tmin = 0.781, Tmax = 0.807 | l = −14→8 |
9801 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.159 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0984P)2 + 1.9287P] where P = (Fo2 + 2Fc2)/3 |
3027 reflections | (Δ/σ)max = 0.001 |
163 parameters | Δρmax = 0.68 e Å−3 |
0 restraints | Δρmin = −0.59 e Å−3 |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.06709 (3) | 0.61615 (7) | 0.46638 (9) | 0.0614 (3) | |
Cl2 | 0.13757 (4) | 0.58198 (9) | 0.30457 (7) | 0.0653 (3) | |
Cl3 | 0.08995 (5) | 0.39459 (7) | 0.40021 (13) | 0.0922 (4) | |
N1 | 0.06762 (9) | 0.13611 (16) | 0.43697 (17) | 0.0272 (5) | |
N2 | −0.05081 (9) | 0.14541 (17) | 0.35783 (18) | 0.0318 (5) | |
N3 | 0.01987 (9) | 0.13451 (15) | 0.59533 (17) | 0.0260 (5) | |
N4 | 0.09746 (10) | 0.12278 (18) | 0.82990 (18) | 0.0361 (6) | |
N5 | 0.14168 (9) | 0.13060 (16) | 0.67706 (18) | 0.0293 (5) | |
O1 | 0.22699 (10) | 0.62450 (18) | 0.6137 (2) | 0.0559 (7) | |
C1 | 0.01284 (10) | 0.13863 (17) | 0.46625 (19) | 0.0242 (5) | |
O2 | 0.22226 (11) | 0.4396 (2) | 0.6332 (2) | 0.0575 (7) | |
C2 | 0.08544 (10) | 0.13021 (17) | 0.7000 (2) | 0.0251 (5) | |
C3 | 0.13012 (11) | 0.13324 (18) | 0.5439 (2) | 0.0274 (6) | |
C4 | 0.19386 (13) | 0.1349 (3) | 0.5269 (3) | 0.0442 (8) | |
O1W | 0.17844 (9) | 0.8439 (2) | 0.6222 (2) | 0.0433 (6) | |
C5 | 0.19921 (11) | 0.5296 (2) | 0.5782 (2) | 0.0362 (7) | |
C6 | 0.12614 (11) | 0.5291 (2) | 0.4432 (2) | 0.0374 (6) | |
H1N5 | 0.18400 | 0.12920 | 0.74610 | 0.0350* | |
H1N2 | −0.08710 | 0.14710 | 0.37000 | 0.0380* | |
H2N2 | −0.05620 | 0.14810 | 0.27480 | 0.0380* | |
H2N4 | 0.06270 | 0.12070 | 0.84680 | 0.0430* | |
H4A | 0.18040 | 0.12240 | 0.43060 | 0.0660* | |
H4B | 0.22570 | 0.07680 | 0.58310 | 0.0660* | |
H4C | 0.21670 | 0.20650 | 0.55590 | 0.0660* | |
H1N4 | 0.14000 | 0.12000 | 0.89770 | 0.0430* | |
H1O1 | 0.1914 (16) | 0.776 (3) | 0.619 (3) | 0.045 (8)* | |
H2O2 | 0.205 (2) | 0.868 (3) | 0.695 (4) | 0.068 (12)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0282 (3) | 0.0761 (6) | 0.0743 (5) | 0.0099 (3) | 0.0205 (3) | −0.0050 (4) |
Cl2 | 0.0627 (5) | 0.0932 (7) | 0.0349 (4) | 0.0076 (4) | 0.0198 (3) | 0.0068 (3) |
Cl3 | 0.0671 (6) | 0.0422 (5) | 0.1127 (8) | −0.0123 (4) | 0.0008 (5) | −0.0058 (5) |
N1 | 0.0247 (8) | 0.0366 (10) | 0.0229 (8) | 0.0001 (7) | 0.0136 (7) | −0.0006 (7) |
N2 | 0.0231 (8) | 0.0491 (11) | 0.0224 (8) | 0.0025 (8) | 0.0104 (7) | 0.0010 (8) |
N3 | 0.0217 (8) | 0.0349 (10) | 0.0214 (8) | 0.0014 (6) | 0.0105 (7) | 0.0000 (6) |
N4 | 0.0270 (9) | 0.0596 (13) | 0.0197 (8) | 0.0012 (8) | 0.0097 (7) | 0.0017 (8) |
N5 | 0.0192 (8) | 0.0425 (11) | 0.0236 (8) | 0.0013 (7) | 0.0084 (7) | 0.0013 (7) |
O1 | 0.0277 (9) | 0.0623 (14) | 0.0515 (11) | −0.0021 (8) | −0.0014 (8) | −0.0080 (9) |
C1 | 0.0228 (9) | 0.0270 (10) | 0.0224 (9) | 0.0003 (7) | 0.0108 (8) | −0.0002 (7) |
O2 | 0.0515 (11) | 0.0702 (14) | 0.0404 (10) | 0.0242 (10) | 0.0142 (9) | 0.0166 (9) |
C2 | 0.0241 (9) | 0.0274 (10) | 0.0231 (9) | 0.0010 (7) | 0.0109 (8) | 0.0000 (7) |
C3 | 0.0249 (9) | 0.0317 (11) | 0.0285 (10) | 0.0016 (8) | 0.0152 (8) | 0.0017 (8) |
C4 | 0.0266 (11) | 0.0717 (18) | 0.0401 (12) | 0.0034 (11) | 0.0208 (10) | 0.0042 (12) |
O1W | 0.0283 (8) | 0.0559 (13) | 0.0346 (9) | 0.0001 (8) | 0.0066 (7) | −0.0048 (9) |
C5 | 0.0236 (9) | 0.0559 (15) | 0.0263 (10) | 0.0094 (10) | 0.0100 (8) | 0.0022 (10) |
C6 | 0.0267 (10) | 0.0378 (12) | 0.0378 (11) | 0.0020 (9) | 0.0079 (9) | 0.0014 (10) |
Cl1—C6 | 1.760 (3) | N2—H1N2 | 0.8600 |
Cl2—C6 | 1.770 (2) | N2—H2N2 | 0.8600 |
Cl3—C6 | 1.745 (3) | C3—C4 | 1.483 (4) |
N1—C1 | 1.374 (3) | N4—H2N4 | 0.8600 |
N1—C3 | 1.292 (3) | N4—H1N4 | 0.8600 |
N2—C1 | 1.316 (3) | N5—H1N5 | 0.8600 |
N3—C2 | 1.325 (3) | C4—H4B | 0.9600 |
N3—C1 | 1.348 (3) | C4—H4C | 0.9600 |
N4—C2 | 1.319 (3) | C4—H4A | 0.9600 |
N5—C2 | 1.361 (3) | C5—C6 | 1.557 (3) |
N5—C3 | 1.355 (3) | O1W—H1O1 | 0.86 (4) |
O1—C5 | 1.251 (3) | O1W—H2O2 | 0.78 (4) |
O2—C5 | 1.212 (3) | ||
C1—N1—C3 | 115.80 (18) | C2—N5—H1N5 | 121.00 |
C1—N3—C2 | 115.8 (2) | C3—N5—H1N5 | 120.00 |
C2—N5—C3 | 119.06 (19) | C3—C4—H4A | 109.00 |
N1—C1—N2 | 116.02 (18) | C3—C4—H4B | 110.00 |
N1—C1—N3 | 125.08 (19) | C3—C4—H4C | 109.00 |
N2—C1—N3 | 118.9 (2) | H4A—C4—H4B | 109.00 |
N3—C2—N4 | 120.1 (2) | H4A—C4—H4C | 110.00 |
N3—C2—N5 | 121.50 (19) | H4B—C4—H4C | 109.00 |
N4—C2—N5 | 118.3 (2) | O1—C5—O2 | 128.6 (2) |
C1—N2—H1N2 | 120.00 | O1—C5—C6 | 114.4 (2) |
C1—N2—H2N2 | 120.00 | O2—C5—C6 | 116.9 (2) |
H1N2—N2—H2N2 | 120.00 | Cl1—C6—Cl2 | 109.27 (13) |
N1—C3—N5 | 122.7 (2) | Cl1—C6—Cl3 | 108.40 (15) |
N1—C3—C4 | 121.2 (2) | Cl1—C6—C5 | 109.74 (15) |
N5—C3—C4 | 116.1 (2) | Cl2—C6—Cl3 | 109.12 (12) |
C2—N4—H2N4 | 120.00 | Cl2—C6—C5 | 108.12 (17) |
C2—N4—H1N4 | 120.00 | Cl3—C6—C5 | 112.16 (16) |
H2N4—N4—H1N4 | 120.00 | H1O1—O1W—H2O2 | 107 (3) |
C3—N1—C1—N2 | 177.8 (2) | C3—N5—C2—N4 | 177.2 (2) |
C3—N1—C1—N3 | −2.4 (3) | C2—N5—C3—N1 | 0.4 (3) |
C1—N1—C3—N5 | 1.3 (3) | C2—N5—C3—C4 | 179.3 (2) |
C1—N1—C3—C4 | −177.5 (2) | O1—C5—C6—Cl1 | −59.0 (3) |
C2—N3—C1—N1 | 1.6 (3) | O1—C5—C6—Cl2 | 60.1 (3) |
C2—N3—C1—N2 | −178.58 (19) | O1—C5—C6—Cl3 | −179.51 (19) |
C1—N3—C2—N4 | −178.1 (2) | O2—C5—C6—Cl1 | 122.4 (2) |
C1—N3—C2—N5 | 0.3 (3) | O2—C5—C6—Cl2 | −118.5 (2) |
C3—N5—C2—N3 | −1.3 (3) | O2—C5—C6—Cl3 | 1.9 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N5—H1N5···O1i | 0.86 | 1.79 | 2.652 (3) | 178 |
N2—H1N2···O1Wii | 0.86 | 2.03 | 2.886 (3) | 174 |
N2—H2N2···N1iii | 0.86 | 2.21 | 3.071 (3) | 174 |
N4—H2N4···N3iv | 0.86 | 2.18 | 3.034 (3) | 173 |
N4—H1N4···O1Wv | 0.86 | 2.22 | 2.834 (3) | 128 |
O1W—H1O1···O1 | 0.86 (4) | 1.97 (4) | 2.835 (3) | 176 (3) |
O1W—H2O2···O2vi | 0.78 (4) | 1.97 (4) | 2.741 (3) | 173 (3) |
Symmetry codes: (i) −x+1/2, y−1/2, −z+3/2; (ii) −x, −y+1, −z+1; (iii) −x, y, −z+1/2; (iv) −x, y, −z+3/2; (v) x, −y+1, z+1/2; (vi) −x+1/2, y+1/2, −z+3/2. |
Acknowledgements
The authors wish to thank the SAIF–STIC, Cochin, Kerala for the data collection.
Funding information
KB thanks the Department of Science and Technology (DST–SERB), New Delhi, India, for financial support (grant No. SB/ FT/CS-058/2013). RS thanks the Department of Science and Technology (DST), New Delhi, India, for financial support in the form of an INSPIRE fellowship (INSPIRE code No. IF131050).
References
Agarwal, A., Srivastava, K., Puri, S. K. & Chauhan, P. M. S. (2005). Bioorg. Med. Chem. Lett. 15, 531–533. Web of Science CrossRef Google Scholar
Aoki, K., Inaba, M., Teratani, S., Yamazaki, H. & Miyashita, Y. (1994). Inorg. Chem. 33, 3018–3020. CrossRef CAS Web of Science Google Scholar
Baliani, A., Bueno, G. J., Stewart, M. L., Yardley, V., Brun, R., Barrett, P. M. & Gilbert, I. H. (2005). J. Med. Chem. 48, 5570–5579. Web of Science CrossRef Google Scholar
Boesveld, W. M., Hitchcock, P. B. & Lappert, M. F. (1999). J. Chem. Soc. Dalton Trans. pp. 4041–4046. Web of Science CrossRef Google Scholar
Boesveld, W. M. & Lappert, M. F. (1997). Chem. Commun. pp. 2091–2092. CrossRef Web of Science Google Scholar
Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Delori, A., Suresh, E. & Pedireddi, V. R. (2008). Chem. Eur. J. 14, 6967–6977. Web of Science CrossRef PubMed CAS Google Scholar
Fan, Y., You, W., Qian, H.-F., Liu, J.-L. & Huang, W. (2009). Acta Cryst. E65, o494. Web of Science CrossRef IUCr Journals Google Scholar
Gerhardt, V. & Egert, E. (2015). Acta Cryst. B71, 209–220. Web of Science CrossRef IUCr Journals Google Scholar
Gomathi, S. & Muthiah, P. T. (2011). Acta Cryst. E67, o2762. Web of Science CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Guru Row, T. N. (1999). Coord. Chem. Rev. 183, 81–100. CrossRef CAS Google Scholar
Henke, B. R., Consler, T. G., Go, N., Hale, R. L., Hohman, D. R., Jones, S. A., Lu, A. T., Moore, L. B., Moore, J. T., Orband-Miller, L. A., Robinett, R. G., Shearin, J., Spearing, P. K., Stewart, E. L., Turnbull, P. S., Weaver, S. L., Williams, S. P., Wisely, G. B. & Lambert, M. H. (2002). J. Med. Chem. 45, 5492–5505. Web of Science CrossRef Google Scholar
Koc, Z. E., Bingol, H., Saf, A. O., Torlak, E. & Coskun, A. (2010). J. Hazard. Mater. 183, 251–255. Web of Science CrossRef Google Scholar
Krische, M. J. & Lehn, J. M. (2000). Struct. Bond. 96, 3–29. CrossRef CAS Google Scholar
Kuo, G. H., DeAngelis, A., Emanuel, S., Wang, A., Zhang, Y., Connolly, P. J., Chen, X., Gruninger, R. H., Rugg, C., Fuentes-Pesquera, A., Middleton, S. A., Jolliffe, L. & Murray, W. V. (2005). J. Med. Chem. 48, 4535–4546. Web of Science CrossRef Google Scholar
MacDonald, J. C. & Whitesides, G. M. (1994). Chem. Rev. 94, 2383–2420. CrossRef CAS Web of Science Google Scholar
Mathias, J. P., Simanek, E. E., Zerkowski, J. A., Seto, C. T. & Whitesides, G. M. (1994). J. Am. Chem. Soc. 116, 4316–4325. CrossRef Web of Science Google Scholar
Menicagli, R., Samaritani, S., Signore, G., Vaglini, F. & Dalla Via, L. (2004). J. Med. Chem. 47, 4649–4652. Web of Science CrossRef Google Scholar
Narimani, L. & Yamin, B. M. (2012). Acta Cryst. E68, o1475. CrossRef IUCr Journals Google Scholar
Perpétuo, G. J. & Janczak, J. (2007). Acta Cryst. C63, o271–o273. Web of Science CrossRef IUCr Journals Google Scholar
Portalone, G. & Colapietro, M. (2007). Acta Cryst. C63, o655–o658. Web of Science CSD CrossRef IUCr Journals Google Scholar
Qian, H.-F. & Huang, W. (2010). Acta Cryst. E66, o759. Web of Science CrossRef IUCr Journals Google Scholar
Reid, D. J., Cull, J. E. W., Chisholm, K. D. S., Langlois, A., Lin, P.-H., Long, J., Lebel, O., Korobkov, I., Wang, R., Wuest, J. D., Murugesu, M. & Scott, J. (2011). Dalton Trans. 40, 5009–5017. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sherrington, D. C. & Taskinen, K. A. (2001). Chem. Soc. Rev. 30, 83–93. Web of Science CrossRef CAS Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Thanigaimani, K., Devi, P., Muthiah, P. T., Lynch, D. E. & Butcher, R. J. (2010). Acta Cryst. C66, o324–o328. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, L., Hu, Y., Wang, W., Liu, F. & Huang, K. (2014). CrystEngComm, 16, 4142–4161. Web of Science CrossRef CAS Google Scholar
Wijaya, K., Moers, O., Henschel, D., Blaschette, A. & Jones, P. G. (2004). Z. Naturforsch. B Chem. Sci. 59, 747–756. CrossRef Google Scholar
Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer 3.0. University of Western Australia. Google Scholar
Xiao, Z. Y., Wang, W. Q., Xue, R. Y., Zhao, L., Wang, L. & Zhang, Y. H. (2014). Sci. China Chem. 57, 1731–1737. Web of Science CrossRef Google Scholar
Zerkowski, J. A. & Whitesides, G. M. (1994). J. Am. Chem. Soc. 116, 4298–4304. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.