research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Two N,N′-bis­­(pyridin-4-yl)pyridine-2,6-dicarboxamide coordination compounds

CROSSMARK_Color_square_no_text.svg

aSchool of Pharmacy, North China University of Science and Technology, Tangshan, 063210, Hebei, People's Republic of China, and bCollege of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
*Correspondence e-mail: yuexinguo@126.com

Edited by A. M. Chippindale, University of Reading, England (Received 27 February 2018; accepted 16 May 2018; online 6 July 2018)

The molecular structures of tetra­aqua­[N,N′-bis­(pyridin-4-yl)pyridine-2,6-dicar­boxamide]­sulfatomanganese(II) dihydrate, [Mn(SO4)(C17H13N5O2)(H2O)4]·2H2O or [Mn(H2L1)(SO4)(H2O)4]·2H2O, (I), and tetra­aqua­bis[N,N′-bis­(pyridin-4-yl)pyridine-2,6-dicar­boxamide]cadmium(II) sulfate tetra­hydrate, [Cd(C17H13N5O2)2(H2O)4]SO4·4H2O or [Cd(H2O)4(H2L1)2]·SO4·4H2O, (II), both contain a central metal atom in a distorted octa­hedral geometry coordinated equatorially by four oxygen atoms from water mol­ecules. In (I), the axial positions are occupied by a nitro­gen atom from H2L1 and an oxygen atom from the sulfate anion, whereas in (II), the axial positions contain two nitro­gen atoms from two different H2L1 ligands and the sulfate anion acts as the charge-balancing ion. ππ stacking between pyridine rings and a network of hydrogen bonds involving the water molecules and the sulfate anions play a crucial role in the mol­ecular self-assembly of the two structures.

1. Chemical context

In recent years, the design of metal–organic complexes constructed from heterocyclic nitro­gen-derivative ligands has witnessed an upsurge in inter­est due to their fascinating structures and potential applications in luminescence, catal­ysis, gas storage and separation (Perry et al., 2004[Perry, J. J., McManus, G. J. & Zaworotko, M. J. (2004). Chem. Commun. pp. 2534-2535.]). The heterocyclic nitro­gen-derivative ligands have σ-electron-donating ability and can form strong M—N covalent bonds with transition-metal ions. This bonding feature, when combined with the flexibility and length of mol­ecular backbone within these ligands, can lead to the construction of porous coordination compounds (Gao et al., 2003[Gao, E.-Q., Bai, S.-Q., Wang, Z.-M. & Yan, C.-H. (2003). J. Am. Chem. Soc. 125, 4984-4985.]; Hagrman et al., 1999[Hagrman, P. J., Hagrman, D. & Zubieta, J. (1999). Angew. Chem. Int. Ed. 38, 2638-2684.]; Li et al., 2017[Li, J.-P., Li, B.-J., Pan, M.-T., Liu, B., Cheng, J.-J., Li, R.-Y., Gao, X.-L., Wang, S.-M., Hou, H.-W. & Liu, Z.-Y. (2017). Cryst. Growth Des. 17, 2975-2986.]). A variety of heterocyclic nitro­gen-derivative complexes with inter­esting properties and topologies have been synthesized using ligands such as 4,4′-bi­pyridine (Fujita et al., 1994[Fujita, M., Kwon, Y. J., Washizu, S. & Ogura, K. (1994). J. Am. Chem. Soc. 116, 1151-1152.]), an asymmetric triazole di­carboxyl­ate ligand (Hao et al., 2018[Hao, Y.-P., Yue, C.-P., Jin, B.-N., Lv, Y.-L., Zhang, Q.-K., Li, J.-P., Liu, Z.-Y. & Hou. H.-W. (2018). Polyhedron, 139, 296-307.]), 5-(pyridine-3-yl)pyrazole-3-carb­oxy­lic acid (Cheng et al., 2016[Cheng, J.-J., Wang, S.-M., Shi, Z., Sun, H., Li, B.-J., Wang, M.-M., Li, M.-Y., Li, J.-P. & Liu, Z.-Y. (2016). Inorg. Chim. Acta, 453, 86-94.]), 2-[4-(1H-imidazole-1-ylmeth­yl)-1H-1,2,3-triazol-1-yl] acetic acid (Yu et al., 2016[Yu, T.-T., Wang, S.-M., Li, X.-M., Gao, X.-L., Zhou, C.-L., Cheng, J.-J., Li, B.-J., Li, J.-P., Chang, J.-B., Hou, H.-W. & Liu, Z.-Y. (2016). CrystEngComm, 18, 1350-1362.]) and 2,2′-dihy­droxy-[1,1′]binaphthalenyl-3,3′-di­carb­oxy­l­ate (Zheng et al., 2004[Zheng, S.-L., Yang, J.-H., Yu, X.-L., Chen, X.-M. & Wong, W.-T. (2004). Inorg. Chem. 43, 830-838.]). Heterocyclic ligands containing aromatic systems continue to attract our inter­est because they can form various ππ stacking inter­actions between pyridine rings and direct the crystal packing and mol­ecular assembly (Tomura & Yamashita, 2001[Tomura, M. & Yamashita, Y. (2001). Chem. Lett. 30, 532-533.]; Li et al., 2012[Li, J.-P., Liu, L., Hou, T.-T., Sun, H., Zhu, Y.,-Y. Wang, S.-M., Wu, J.-H. Xu, H., Guo, Y.-X., Ye, B.-X., Hou, H.-W., Fan, Y.-T. & Chang, J.-B. (2012). J. Coord. Chem. 65, 3684-3698.]). Here we report the synthesis and crystal structures of two new mononuclear complexes, [Mn(H2L1)(SO4)(H2O)4]·2H2O, (I)[link], and [Cd(H2L1)2(H2O)4]SO4·4H2O, (II)[link], both of which contain N,N′-bis­(pyridin-4-yl)pyridine-2,6-dicarboxamide (H2L1) as the heterocyclic nitro­gen ligand.

[Scheme 1]

In complexes (I)[link] and (II)[link], the heterocyclic nitro­gen ligand (H2L1) acts as a monodentate ligand. The results indicate that the rational design and selection of ligands with heterocyclic nitro­gen systems is an effective synthetic strategy to construct complexes via self-assembly. The asymmetry of the [N,N′-bis­(pyridin-4-yl)pyridine-2,6-dicarboxamide ligand has resulted in some novel structures (Li et al., 2012[Li, J.-P., Liu, L., Hou, T.-T., Sun, H., Zhu, Y.,-Y. Wang, S.-M., Wu, J.-H. Xu, H., Guo, Y.-X., Ye, B.-X., Hou, H.-W., Fan, Y.-T. & Chang, J.-B. (2012). J. Coord. Chem. 65, 3684-3698.]). Further study is ongoing.

2. Structural commentary

The mononuclear complex (I)[link] crystallizes in the triclinic space group P[\overline1]. As shown in Fig. 1[link], the hexa­coordinated MnII ion exhibits an octa­hedral geometry, arising from coordination to five water and one sulfate oxygen atoms (O3, O4, O5, O6, O10) and to one nitro­gen (N1) atom of a pyridine group of the H2L1 ligand (Table 1[link]). The Mn—O bond distances involving the water mol­ecules coordinated by manganese(II) in equatorial positions lie in the range 2.1502 (17)–2.2333 (17) Å whilst the Mn—N1 and Mn—O10 distances in the axial positions are 2.2208 (17) and 2.1492 (15) Å, respectively. The bond angles around the MnII ion vary from 85.79 (7) to 177.74 (6)°. Intra­molecular O4—H4⋯O8, N2—H20⋯N5 and N3—H24⋯N5 hydrogen bonds are also present (Table 3[link]).

Table 1
Selected geometric parameters (Å, °) for (I)[link]

Mn1—O10 2.1491 (15) Mn1—N1 2.2208 (17)
Mn1—O6 2.1502 (17) Mn1—O5 2.2298 (16)
Mn1—O4 2.1938 (17) Mn1—O3 2.2333 (17)
       
O6—Mn1—O4 175.13 (6) O6—Mn1—O3 85.79 (7)
O10—Mn1—N1 177.74 (6) O4—Mn1—O3 90.90 (7)
O6—Mn1—O5 91.71 (6) O5—Mn1—O3 175.51 (6)
O4—Mn1—O5 91.35 (7)    

Table 3
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O10i 0.82 2.34 3.057 (3) 147
O4—H4⋯O8 0.82 1.98 2.754 (2) 158
O5—H5⋯O8ii 0.82 1.98 2.774 (2) 163
O6—H6⋯O7i 0.82 2.02 2.834 (2) 170
O12—H18⋯O9iii 0.83 (3) 1.97 (3) 2.772 (3) 165 (4)
O12—H19⋯O7iv 0.81 (4) 2.47 (4) 3.169 (3) 145 (3)
O12—H19⋯O9iv 0.81 (4) 2.43 (4) 3.128 (3) 145 (3)
N2—H20⋯N5 0.85 (3) 2.34 (2) 2.733 (2) 109.0 (18)
N2—H20⋯O11v 0.85 (3) 2.11 (3) 2.910 (3) 157 (2)
O6—H21⋯N4vi 0.85 (3) 1.84 (3) 2.686 (3) 173 (3)
O5—H22⋯O12vi 0.81 (3) 2.08 (3) 2.883 (3) 171 (3)
O4—H23⋯O9ii 0.83 (3) 2.02 (4) 2.828 (2) 168 (3)
O3—H24⋯O12vii 0.85 (4) 2.32 (4) 3.165 (3) 171 (4)
N3—H25⋯N5 0.85 (3) 2.28 (2) 2.709 (2) 111.4 (16)
N3—H25⋯O11v 0.85 (3) 2.24 (2) 2.979 (2) 147 (3)
O11—H26⋯O7iii 0.86 (3) 1.92 (3) 2.774 (2) 176 (3)
O11—H27⋯O1viii 0.78 (3) 2.08 (3) 2.843 (2) 168 (3)
Symmetry codes: (i) -x-1, -y, -z+1; (ii) -x, -y-1, -z+1; (iii) x+1, y+1, z; (iv) -x, -y, -z+1; (v) -x+1, -y+1, -z+1; (vi) x-1, y-1, z; (vii) x-1, y, z; (viii) x, y, z+1.
[Figure 1]
Figure 1
The mol­ecular structure of the title complex (I)[link] with displacement ellipsoids shown at the 50% probability level.

When MnSO4·H2O is replaced by CdSO4·8/3H2O, complex (II)[link] is obtained, which crystallizes in the monoclinic space group C2/c. As illustrated in Fig. 2[link], CdII also shows an octahedral environment coordinating four oxygen atoms from four water molecules and two axial nitrogen atoms from two symmetry-related H2L1 ligands (Table 2[link]). In contrast to complex (I)[link], the sulfate group does not coordinate to the cadmium(II) atom, but balances the compound charge as a free anion. The Cd—O bond lengths lie in the range 2.334 (2)– 2.371 (3) Å, the Cd—N bond length is 2.275 (3) Å, and the bond angles around the CdII cation lie in the range 82.63 (14) to 175.09 (10)°. Intra­molecular N2—H2B⋯N3 and N4—H4B⋯N3 hydrogen bonds are also present (Table 4[link]).

Table 2
Selected geometric parameters (Å, °) for (II)[link]

Cd1—N1 2.275 (3) Cd1—O6 2.371 (3)
Cd1—O5 2.334 (2)    
       
N1i—Cd1—N1 177.40 (15) O5—Cd1—O6 175.09 (10)
N1—Cd1—O5i 90.92 (10) N1i—Cd1—O6i 90.88 (10)
N1—Cd1—O5 91.04 (10) N1—Cd1—O6i 87.31 (10)
O5i—Cd1—O5 82.63 (14) O5—Cd1—O6i 92.82 (10)
N1—Cd1—O6 90.88 (10) O6—Cd1—O6i 91.79 (15)
Symmetry code: (i) [-x, y, -z+{\script{1\over 2}}].

Table 4
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯O7ii 0.84 (4) 2.17 (4) 2.958 (4) 156 (4)
N2—H2B⋯N3 0.84 (4) 2.35 (4) 2.736 (4) 109 (3)
N4—H4B⋯O7ii 0.83 (4) 2.29 (4) 3.030 (4) 150 (4)
N4—H4B⋯N3 0.83 (4) 2.29 (4) 2.698 (4) 111 (3)
O5—H5A⋯N5iii 0.80 (4) 1.91 (4) 2.704 (4) 174 (4)
O5—H5B⋯O3iii 0.79 (4) 2.02 (4) 2.811 (4) 172 (4)
O6—H6A⋯O4iv 0.82 (5) 1.98 (5) 2.775 (6) 161 (6)
O6—H6B⋯O8v 0.84 (6) 2.04 (6) 2.872 (4) 173 (6)
O7—H7A⋯O3vi 0.86 (5) 1.93 (5) 2.784 (4) 174 (4)
O7—H7B⋯O2vii 0.82 (5) 2.13 (5) 2.912 (4) 159 (5)
O8—H8B⋯O5viii 0.80 2.33 3.052 (4) 151
O8—H8C⋯O4vi 0.80 2.53 3.233 (6) 147
O8—H8C⋯O3ix 0.80 2.36 3.085 (4) 152
Symmetry codes: (ii) x, y-1, z; (iii) [-x+1, y, -z+{\script{1\over 2}}]; (iv) x-1, y-1, z; (v) [-x, y-1, -z+{\script{1\over 2}}]; (vi) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (vii) -x+1, -y+1, -z; (viii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ix) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
The mol­ecular structure of the title complex (II)[link] with displacement ellipsoids shown at the 50% probability level. Symmetry code: (i) −x, y, −z + [1\over2].

In complexes (I)[link] and (II)[link], the heterocyclic nitro­gen ligand (H2L1) acts as a monodentate ligand. The results indicate that the rational design and selection of ligands with heterocyclic nitro­gen systems is an effective synthetic strategy to construct complexes via self-assembly. The asymmetry of the [N,N′-bis­(pyridin-4-yl)pyridine-2,6-dicarboxamide ligand has resulted in some novel structures. Further study is ongoing.

3. Supra­molecular features

In (I)[link], inter­molecular ππ inter­actions between the pyridine rings of the H2L1 ligands play a crucial role in mol­ecular self-assembly, with centroid-to-centroid separations of 3.5808 (13) and 3.6269 (14) Å. In addition, a number of O—H⋯N and O—H⋯O hydrogen-bonding inter­actions (Table 3[link] and Fig. 3[link]) connect separate mononuclear structures to produce a three-dimensional supra­molecular framework (Fig. 4[link]).

[Figure 3]
Figure 3
The weak inter­actions between mol­ecules of complex (I)[link]. ππ inter­actions are shown as red dashed lines, hydrogen-bonding inter­actions as blue dashed lines.
[Figure 4]
Figure 4
The mol­ecular packing of (I)[link] viewed along the a axis.

Complex (II)[link] also extends into a three-dimensional supra­molecular network (Figs. 5[link] and 6[link]) via O—H⋯N and O—H⋯O hydrogen-bonding inter­actions (Table 4[link]). In (II)[link], the centroid–centroid separations of the pyridine rings are 3.634 (2) and 3.768 (2) Å and indicating that inter­molecular ππ stacking inter­actions of the H2L1 ligand are important in molecular self-assembly.

[Figure 5]
Figure 5
The weak inter­actions between mol­ecules of complex (II)[link] with hydrogen-bonding inter­actions and ππ interactions shown as blue and red dashed lines, respectively.
[Figure 6]
Figure 6
The mol­ecular packing of (II)[link] viewed along the b axis.

4. Database survey

A search of the Cambridge Crystallographic Database (CSD, version 5.39, update May 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) reveals eight structures with the H2L1 skeleton. These include the methyl pyridinium compound of H2L1 (Dorazco-González et al., 2010[Dorazco-González, A., Höpfl, H., Medrano, F. & Yatsimirsky, A. K. (2010). J. Org. Chem. 75, 2259-2273.]), two Ru+ compounds (Park et al., 2006[Park, Y. J., Kim, J.-S., Youm, K.-T., Lee, N.-K., Ko, J., Park, H.-S. & Jun, M.-J. (2006). Angew. Chem. Int. Ed. 45, 4290-4294.]; Mishra et al., 2012[Mishra, A., Vajpayee, V., Kim, H., Lee, M.-H., Jung, H., Wang, M., Stang, P. J. & Chi, K.-W. (2012). Dalton Trans. 41, 1195-1201.]), two Pd2+ compounds (Qin et al., 2002[Qin, Z., Jennings, M. C. & Puddephatt, R. J. (2002). Chem. Commun. pp. 354-355.], 2003[Qin, Z.-Q., Jennings, M. C. & Puddephatt, R. J. (2003). Inorg. Chem. 42, 1956-1965.]) and two Co2+ compounds (Singh et al., 2010[Singh, A. P., Ali, A. & Gupta, R. (2010). Dalton Trans. 39, 8135-8138.], 2011[Singh, A. P., Kumar, G. & Gupta, R. (2011). Dalton Trans. 40, 12454-12461.]). There is only one Mn2+ coordination compound (Noveron et al., 2003[Noveron, J. C., Chatterjee, B., Arif, A. M. & Stang, P. J. (2003). J. Phys. Org. Chem. 16, 420-425.]), with bis­(hexa­fluoro­acetyl­acetonato) as an ancillary ligand.

5. Synthesis and crystallization

The heterocyclic nitro­gen ligand (H2L1) was prepared using a modified literature procedure (Qin et al., 2003[Qin, Z.-Q., Jennings, M. C. & Puddephatt, R. J. (2003). Inorg. Chem. 42, 1956-1965.]; Li et al., 2012[Li, J.-P., Liu, L., Hou, T.-T., Sun, H., Zhu, Y.,-Y. Wang, S.-M., Wu, J.-H. Xu, H., Guo, Y.-X., Ye, B.-X., Hou, H.-W., Fan, Y.-T. & Chang, J.-B. (2012). J. Coord. Chem. 65, 3684-3698.]). In the preparation of complex (I)[link], H2L1 (0.1 mmol, 0.032 g) in N,N′-di­methyl­formamide solution (4 mL) was gradually added to MnSO4.H2O (0.1 mmol, 0.017 g) in a mixed solution (3 mL, water–methanol v/v = 1/3). After standing for 5 min, the suspension was filtered and the filtrate was kept at room temperature in the dark. One week later, colourless single crystals suitable for X-ray diffraction were obtained. Complex (II)[link] was prepared with the same procedure employed for (I)[link] except that CdSO4.8/3H2O (0.1 mmol, 0.026 g) was used instead of MnSO4.H2O.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. Water H atoms were located in a difference-Fourier map and freely refined. All other H atoms were positioned gemetrically and refined using a riding model with bond lengths of 0.93 Å (C—H, aromatic), 0.83 Å (N—H) and 0.85 Å (O—H), and with Uiso(H) = 1.2–1.5Ueq(C/N/O).

Table 5
Experimental details

  (I) (II)
Crystal data
Chemical formula [Mn(SO4)(C17H13N5O2)(H2O)4·2H2O [Cd(C17H13N5O2)2(H2O)4](SO4)·4H2O
Mr 578.42 991.23
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, C2/c
Temperature (K) 293 293
a, b, c (Å) 8.9333 (18), 8.9998 (18), 15.949 (3) 14.706 (3), 10.157 (2), 27.293 (6)
α, β, γ (°) 78.92 (3), 81.04 (3), 68.43 (3) 90, 99.52 (3), 90
V3) 1165.1 (5) 4020.6 (14)
Z 2 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.73 0.68
Crystal size (mm) 0.20 × 0.20 × 0.20 0.20 × 0.20 × 0.20
 
Data collection
Diffractometer Rigaku Saturn724 Rigaku Saturn724
Absorption correction Multi-scan (CrystalClear; Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]) Multi-scan (CrystalClear; Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.939, 1.000 0.780, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 14157, 5299, 4440 22754, 4592, 4261
Rint 0.024 0.061
(sin θ/λ)max−1) 0.650 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.092, 1.07 0.051, 0.128, 1.14
No. of reflections 5299 4592
No. of parameters 369 313
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.24, −0.45 0.81, −0.85
Computer programs: CrystalClear (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]), SHELXT2014/7 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]) and SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]).

Supporting information


Computing details top

For both structures, data collection: CrystalClear (Rigaku/MSC, 2006); cell refinement: CrystalClear (Rigaku/MSC, 2006); data reduction: CrystalClear (Rigaku/MSC, 2006); program(s) used to solve structure: SHELXT2014/7 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: SHELXL2014/7 (Sheldrick, 2015b); software used to prepare material for publication: SHELXL2014/7 (Sheldrick, 2015b).

Tetraaqua[N,N'-bis(pyridin-4-yl)pyridine-2,6-dicarboxamide]sulfatomanganese(II) dihydrate (I) top
Crystal data top
[Mn(SO4)(C17H13N5O2)(H2O)4]·2H2OZ = 2
Mr = 578.42F(000) = 598
Triclinic, P1Dx = 1.649 Mg m3
a = 8.9333 (18) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.9998 (18) ÅCell parameters from 3219 reflections
c = 15.949 (3) Åθ = 3.3–27.5°
α = 78.92 (3)°µ = 0.73 mm1
β = 81.04 (3)°T = 293 K
γ = 68.43 (3)°Prism, colorless
V = 1165.1 (5) Å30.20 × 0.20 × 0.20 mm
Data collection top
Rigaku Saturn724
diffractometer
4440 reflections with I > 2σ(I)
Detector resolution: 28.5714 pixels mm-1Rint = 0.024
dtprofit.ref scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2006)
h = 1111
Tmin = 0.939, Tmax = 1.000k = 1111
14157 measured reflectionsl = 2020
5299 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0475P)2 + 0.1434P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
5299 reflectionsΔρmax = 0.24 e Å3
369 parametersΔρmin = 0.45 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2351 (2)0.4933 (2)0.18307 (12)0.0332 (4)
H10.23770.50310.24240.040*
C20.1757 (2)0.3842 (2)0.13011 (12)0.0323 (4)
H20.13510.32070.15300.039*
C30.1769 (2)0.3699 (2)0.04191 (11)0.0254 (4)
C40.2824 (2)0.5697 (2)0.05814 (11)0.0251 (4)
C50.2907 (2)0.5875 (2)0.14691 (12)0.0297 (4)
H5A0.33290.66160.18110.036*
C60.3359 (2)0.6775 (2)0.01818 (12)0.0271 (4)
C70.1178 (2)0.2448 (2)0.01474 (12)0.0290 (4)
C80.0623 (2)0.1421 (2)0.16695 (12)0.0263 (4)
C90.0734 (2)0.1556 (2)0.25115 (12)0.0321 (4)
H90.12690.22020.26200.039*
C100.0053 (3)0.0734 (3)0.31810 (13)0.0356 (5)
H100.01580.08290.37370.043*
C110.0834 (2)0.0329 (2)0.22587 (12)0.0331 (4)
H110.13870.09710.21680.040*
C120.0160 (2)0.0415 (2)0.15486 (12)0.0310 (4)
H120.02280.02480.10000.037*
C130.3595 (2)0.7410 (2)0.12187 (11)0.0255 (4)
C140.3298 (2)0.7027 (2)0.21023 (12)0.0315 (4)
H140.27660.63020.23250.038*
C150.3801 (3)0.7733 (2)0.26411 (13)0.0354 (5)
H150.35850.74730.32300.042*
C160.4822 (2)0.9162 (2)0.15173 (13)0.0345 (4)
H160.53420.99040.13140.041*
C170.4350 (2)0.8534 (2)0.09234 (12)0.0314 (4)
H170.45350.88560.03390.038*
H180.663 (4)0.456 (4)0.455 (2)0.092 (12)*
H190.587 (4)0.454 (4)0.389 (2)0.086 (12)*
H200.167 (3)0.295 (3)0.1157 (15)0.048 (7)*
H210.463 (4)0.051 (3)0.3149 (18)0.070 (9)*
H220.202 (4)0.400 (3)0.3595 (18)0.065 (9)*
H230.090 (4)0.300 (4)0.4613 (18)0.067 (9)*
H240.293 (5)0.175 (5)0.462 (3)0.138 (17)*
H250.278 (3)0.588 (3)0.0925 (13)0.037 (6)*
H260.645 (3)0.661 (3)0.7711 (19)0.065 (9)*
H270.593 (4)0.694 (3)0.8471 (19)0.062 (10)*
Mn10.21144 (3)0.13074 (3)0.41352 (2)0.02613 (9)
N10.0756 (2)0.0201 (2)0.30737 (10)0.0328 (4)
N20.1244 (2)0.23492 (19)0.10064 (10)0.0279 (3)
N30.3141 (2)0.66182 (19)0.06822 (10)0.0286 (3)
N40.4582 (2)0.8772 (2)0.23662 (11)0.0356 (4)
N50.22775 (18)0.46192 (17)0.00561 (9)0.0248 (3)
O10.39470 (19)0.77213 (17)0.06388 (9)0.0391 (3)
O20.0668 (2)0.16229 (19)0.01660 (9)0.0472 (4)
O30.2975 (2)0.0822 (2)0.48362 (12)0.0453 (4)
H30.39200.09950.50270.068*
O40.00523 (19)0.23999 (19)0.48356 (10)0.0390 (3)
H40.01500.29300.52880.059*
O50.14334 (18)0.34701 (17)0.34781 (10)0.0352 (3)
H50.05160.40730.35790.053*
O60.43556 (19)0.01988 (18)0.35520 (11)0.0434 (4)
H60.46790.07800.35520.065*
O70.42592 (18)0.32142 (18)0.66102 (9)0.0429 (4)
O80.14065 (18)0.39726 (18)0.61734 (10)0.0418 (4)
O90.29838 (19)0.52446 (17)0.56986 (10)0.0423 (4)
O100.33597 (17)0.24703 (16)0.51556 (9)0.0354 (3)
O110.6732 (2)0.6493 (2)0.82167 (11)0.0396 (4)
O120.6731 (2)0.4413 (3)0.40463 (14)0.0622 (5)
S20.29885 (5)0.37332 (5)0.59117 (3)0.02647 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0400 (11)0.0386 (11)0.0209 (9)0.0124 (9)0.0036 (8)0.0061 (8)
C20.0382 (11)0.0331 (10)0.0289 (10)0.0133 (9)0.0051 (8)0.0085 (8)
C30.0249 (9)0.0264 (9)0.0261 (9)0.0091 (7)0.0029 (7)0.0056 (7)
C40.0240 (9)0.0262 (9)0.0249 (9)0.0090 (7)0.0022 (7)0.0031 (7)
C50.0322 (10)0.0312 (10)0.0245 (9)0.0121 (8)0.0010 (8)0.0006 (7)
C60.0284 (9)0.0265 (9)0.0268 (9)0.0116 (7)0.0020 (7)0.0011 (7)
C70.0322 (10)0.0277 (9)0.0288 (10)0.0125 (8)0.0012 (8)0.0053 (8)
C80.0267 (9)0.0232 (9)0.0286 (9)0.0092 (7)0.0031 (7)0.0018 (7)
C90.0368 (11)0.0374 (11)0.0308 (10)0.0223 (9)0.0039 (8)0.0055 (8)
C100.0436 (12)0.0434 (12)0.0268 (10)0.0241 (10)0.0015 (8)0.0048 (8)
C110.0409 (11)0.0317 (10)0.0333 (11)0.0212 (9)0.0024 (9)0.0038 (8)
C120.0391 (11)0.0316 (10)0.0279 (10)0.0186 (9)0.0028 (8)0.0048 (8)
C130.0279 (9)0.0236 (9)0.0259 (9)0.0094 (7)0.0044 (7)0.0035 (7)
C140.0400 (11)0.0300 (10)0.0277 (10)0.0178 (9)0.0001 (8)0.0032 (8)
C150.0480 (12)0.0325 (11)0.0270 (10)0.0152 (9)0.0044 (9)0.0045 (8)
C160.0409 (11)0.0296 (10)0.0388 (11)0.0186 (9)0.0038 (9)0.0058 (8)
C170.0398 (11)0.0304 (10)0.0263 (10)0.0167 (9)0.0012 (8)0.0021 (8)
Mn10.02740 (16)0.02532 (16)0.02546 (16)0.01036 (12)0.00155 (11)0.00162 (11)
N10.0377 (9)0.0340 (9)0.0318 (9)0.0209 (7)0.0006 (7)0.0028 (7)
N20.0348 (9)0.0297 (8)0.0259 (8)0.0191 (7)0.0026 (7)0.0038 (6)
N30.0365 (9)0.0295 (9)0.0255 (8)0.0197 (7)0.0016 (7)0.0019 (6)
N40.0431 (10)0.0317 (9)0.0358 (9)0.0143 (8)0.0077 (8)0.0083 (7)
N50.0262 (8)0.0253 (8)0.0242 (8)0.0106 (6)0.0022 (6)0.0036 (6)
O10.0562 (10)0.0421 (8)0.0287 (7)0.0321 (7)0.0009 (6)0.0014 (6)
O20.0780 (12)0.0517 (9)0.0327 (8)0.0456 (9)0.0039 (8)0.0092 (7)
O30.0421 (9)0.0416 (9)0.0570 (11)0.0162 (7)0.0034 (8)0.0218 (8)
O40.0335 (8)0.0401 (9)0.0411 (9)0.0111 (7)0.0072 (7)0.0007 (7)
O50.0352 (8)0.0310 (8)0.0403 (8)0.0115 (6)0.0031 (6)0.0079 (6)
O60.0481 (9)0.0311 (8)0.0518 (10)0.0030 (7)0.0267 (8)0.0118 (7)
O70.0436 (9)0.0448 (9)0.0263 (7)0.0043 (7)0.0058 (6)0.0022 (6)
O80.0380 (8)0.0427 (9)0.0447 (9)0.0136 (7)0.0124 (7)0.0007 (7)
O90.0523 (9)0.0318 (8)0.0468 (9)0.0186 (7)0.0056 (7)0.0062 (6)
O100.0348 (8)0.0363 (8)0.0307 (7)0.0134 (6)0.0024 (6)0.0072 (6)
O110.0480 (10)0.0516 (10)0.0280 (8)0.0280 (8)0.0045 (7)0.0044 (7)
O120.0493 (11)0.1032 (17)0.0448 (11)0.0374 (11)0.0040 (9)0.0148 (11)
S20.0293 (2)0.0244 (2)0.0232 (2)0.00813 (19)0.00086 (18)0.00150 (17)
Geometric parameters (Å, º) top
C1—C21.372 (3)C15—N41.334 (3)
C1—C51.373 (3)C15—H150.9300
C1—H10.9300C16—N41.336 (3)
C2—C31.389 (3)C16—C171.378 (3)
C2—H20.9300C16—H160.9300
C3—N51.331 (2)C17—H170.9300
C3—C71.503 (3)Mn1—O102.1491 (15)
C4—N51.338 (2)Mn1—O62.1502 (17)
C4—C51.387 (2)Mn1—O42.1938 (17)
C4—C61.500 (2)Mn1—N12.2208 (17)
C5—H5A0.9300Mn1—O52.2298 (16)
C6—O11.226 (2)Mn1—O32.2333 (17)
C6—N31.348 (2)N2—H200.85 (2)
C7—O21.213 (2)N3—H250.84 (2)
C7—N21.365 (2)O3—H240.85 (4)
C8—C121.386 (3)O3—H30.8200
C8—C91.393 (3)O4—H230.83 (3)
C8—N21.394 (2)O4—H40.8200
C9—C101.372 (3)O5—H220.82 (3)
C9—H90.9300O5—H50.8200
C10—N11.342 (2)O6—H210.85 (3)
C10—H100.9300O6—H60.8200
C11—N11.341 (3)O7—S21.4711 (15)
C11—C121.373 (3)O8—S21.4640 (15)
C11—H110.9300O9—S21.4624 (14)
C12—H120.9300O10—S21.4753 (14)
C13—C171.386 (2)O11—H260.86 (3)
C13—C141.392 (3)O11—H270.77 (3)
C13—N31.399 (2)O12—H180.83 (4)
C14—C151.372 (3)O12—H190.81 (4)
C14—H140.9300
C2—C1—C5118.78 (17)C16—C17—H17120.8
C2—C1—H1120.6C13—C17—H17120.8
C5—C1—H1120.6O10—Mn1—O687.71 (7)
C1—C2—C3119.17 (18)O10—Mn1—O488.59 (6)
C1—C2—H2120.4O6—Mn1—O4175.13 (6)
C3—C2—H2120.4O10—Mn1—N1177.74 (6)
N5—C3—C2122.91 (17)O6—Mn1—N193.60 (7)
N5—C3—C7118.79 (16)O4—Mn1—N190.19 (7)
C2—C3—C7118.31 (16)O10—Mn1—O588.16 (6)
N5—C4—C5123.57 (16)O6—Mn1—O591.71 (6)
N5—C4—C6117.74 (15)O4—Mn1—O591.35 (7)
C5—C4—C6118.68 (16)N1—Mn1—O589.96 (6)
C1—C5—C4118.43 (18)O10—Mn1—O388.01 (7)
C1—C5—H5A120.8O6—Mn1—O385.79 (7)
C4—C5—H5A120.8O4—Mn1—O390.90 (7)
O1—C6—N3124.43 (17)N1—Mn1—O393.91 (7)
O1—C6—C4119.88 (16)O5—Mn1—O3175.51 (6)
N3—C6—C4115.69 (16)C11—N1—C10115.82 (17)
O2—C7—N2124.42 (18)C11—N1—Mn1119.92 (13)
O2—C7—C3120.07 (17)C10—N1—Mn1124.00 (13)
N2—C7—C3115.50 (16)C7—N2—C8126.96 (16)
C12—C8—C9117.44 (17)C7—N2—H20116.9 (16)
C12—C8—N2124.29 (17)C8—N2—H20116.0 (16)
C9—C8—N2118.22 (16)C6—N3—C13127.71 (16)
C10—C9—C8119.91 (17)C6—N3—H25115.3 (14)
C10—C9—H9120.0C13—N3—H25116.6 (14)
C8—C9—H9120.0C15—N4—C16116.70 (17)
N1—C10—C9123.33 (18)C3—N5—C4117.08 (15)
N1—C10—H10118.3Mn1—O3—H24125 (3)
C9—C10—H10118.3Mn1—O3—H3109.5
N1—C11—C12125.09 (18)H24—O3—H3105.1
N1—C11—H11117.5Mn1—O4—H23120 (2)
C12—C11—H11117.5Mn1—O4—H4109.5
C11—C12—C8118.35 (18)H23—O4—H4105.3
C11—C12—H12120.8Mn1—O5—H22117 (2)
C8—C12—H12120.8Mn1—O5—H5109.5
C17—C13—C14117.86 (17)H22—O5—H5107.8
C17—C13—N3123.86 (17)Mn1—O6—H21126.4 (19)
C14—C13—N3118.27 (16)Mn1—O6—H6109.5
C15—C14—C13119.23 (18)H21—O6—H6116.0
C15—C14—H14120.4S2—O10—Mn1139.12 (9)
C13—C14—H14120.4H26—O11—H27103 (3)
N4—C15—C14123.52 (19)H18—O12—H19111 (3)
N4—C15—H15118.2O9—S2—O8109.64 (9)
C14—C15—H15118.2O9—S2—O7109.31 (10)
N4—C16—C17124.19 (18)O8—S2—O7110.22 (9)
N4—C16—H16117.9O9—S2—O10109.28 (9)
C17—C16—H16117.9O8—S2—O10110.20 (9)
C16—C17—C13118.42 (18)O7—S2—O10108.16 (9)
C5—C1—C2—C31.4 (3)C14—C13—C17—C162.5 (3)
C1—C2—C3—N52.6 (3)N3—C13—C17—C16176.26 (18)
C1—C2—C3—C7177.44 (18)C12—C11—N1—C100.1 (3)
C2—C1—C5—C40.8 (3)C12—C11—N1—Mn1174.26 (16)
N5—C4—C5—C12.1 (3)C9—C10—N1—C111.7 (3)
C6—C4—C5—C1177.26 (17)C9—C10—N1—Mn1172.42 (16)
N5—C4—C6—O1176.21 (17)O2—C7—N2—C86.2 (3)
C5—C4—C6—O14.4 (3)C3—C7—N2—C8172.84 (17)
N5—C4—C6—N33.9 (2)C12—C8—N2—C70.8 (3)
C5—C4—C6—N3175.47 (17)C9—C8—N2—C7176.46 (18)
N5—C3—C7—O2178.03 (18)O1—C6—N3—C133.4 (3)
C2—C3—C7—O21.9 (3)C4—C6—N3—C13176.79 (17)
N5—C3—C7—N21.1 (3)C17—C13—N3—C60.8 (3)
C2—C3—C7—N2179.01 (17)C14—C13—N3—C6177.94 (19)
C12—C8—C9—C101.3 (3)C14—C15—N4—C162.2 (3)
N2—C8—C9—C10176.22 (18)C17—C16—N4—C151.5 (3)
C8—C9—C10—N11.0 (3)C2—C3—N5—C41.4 (3)
N1—C11—C12—C82.1 (3)C7—C3—N5—C4178.70 (16)
C9—C8—C12—C112.7 (3)C5—C4—N5—C31.0 (3)
N2—C8—C12—C11174.63 (18)C6—C4—N5—C3178.35 (15)
C17—C13—C14—C151.9 (3)Mn1—O10—S2—O9100.05 (14)
N3—C13—C14—C15176.98 (18)Mn1—O10—S2—O820.49 (16)
C13—C14—C15—N40.6 (3)Mn1—O10—S2—O7141.04 (13)
N4—C16—C17—C130.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O10i0.822.343.057 (3)147
O4—H4···O80.821.982.754 (2)158
O5—H5···O8ii0.821.982.774 (2)163
O6—H6···O7i0.822.022.834 (2)170
O12—H18···O9iii0.83 (3)1.97 (3)2.772 (3)165 (4)
O12—H19···O7iv0.81 (4)2.47 (4)3.169 (3)145 (3)
O12—H19···O9iv0.81 (4)2.43 (4)3.128 (3)145 (3)
N2—H20···N50.85 (3)2.34 (2)2.733 (2)109.0 (18)
N2—H20···O11v0.85 (3)2.11 (3)2.910 (3)157 (2)
O6—H21···N4vi0.85 (3)1.84 (3)2.686 (3)173 (3)
O5—H22···O12vi0.81 (3)2.08 (3)2.883 (3)171 (3)
O4—H23···O9ii0.83 (3)2.02 (4)2.828 (2)168 (3)
O3—H24···O12vii0.85 (4)2.32 (4)3.165 (3)171 (4)
N3—H25···N50.85 (3)2.28 (2)2.709 (2)111.4 (16)
N3—H25···O11v0.85 (3)2.24 (2)2.979 (2)147 (3)
O11—H26···O7iii0.86 (3)1.92 (3)2.774 (2)176 (3)
O11—H27···O1viii0.78 (3)2.08 (3)2.843 (2)168 (3)
Symmetry codes: (i) x1, y, z+1; (ii) x, y1, z+1; (iii) x+1, y+1, z; (iv) x, y, z+1; (v) x+1, y+1, z+1; (vi) x1, y1, z; (vii) x1, y, z; (viii) x, y, z+1.
Tetraaquabis[N,N'-bis(pyridin-4-yl)pyridine-2,6-\ dicarboxamide]cadmium(II) sulfate tetrahydrate (II) top
Crystal data top
[Cd(C17H13N5O2)2(H2O)4]SO4·4H2OF(000) = 2032
Mr = 991.23Dx = 1.638 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 14.706 (3) ÅCell parameters from 5365 reflections
b = 10.157 (2) Åθ = 3.0–27.5°
c = 27.293 (6) ŵ = 0.68 mm1
β = 99.52 (3)°T = 293 K
V = 4020.6 (14) Å3Prism, colorless
Z = 40.20 × 0.20 × 0.20 mm
Data collection top
Rigaku Saturn724
diffractometer
4261 reflections with I > 2σ(I)
Detector resolution: 28.5714 pixels mm-1Rint = 0.061
dtprofit.ref scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2006)
h = 1919
Tmin = 0.780, Tmax = 1.000k = 1313
22754 measured reflectionsl = 3532
4592 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.0648P)2 + 3.9753P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max < 0.001
4592 reflectionsΔρmax = 0.81 e Å3
313 parametersΔρmin = 0.85 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1669 (2)0.0681 (3)0.18881 (12)0.0366 (7)
H1A0.20000.07770.22070.044*
C20.0297 (2)0.0417 (4)0.13698 (13)0.0385 (7)
H2A0.03410.03310.13260.046*
C30.0710 (2)0.0386 (3)0.09526 (12)0.0355 (7)
H3A0.03620.02670.06390.043*
C40.2149 (2)0.0669 (3)0.14971 (12)0.0343 (7)
H4A0.27880.07470.15530.041*
C50.1666 (2)0.0538 (3)0.10146 (11)0.0296 (6)
C60.1819 (2)0.0643 (3)0.01320 (11)0.0319 (6)
C70.2508 (2)0.0910 (3)0.02056 (11)0.0292 (6)
C80.2192 (2)0.0944 (3)0.07171 (11)0.0356 (7)
H8A0.15700.08230.08420.043*
C90.2815 (2)0.1161 (4)0.10331 (11)0.0375 (7)
H9A0.26250.11690.13750.045*
C100.3732 (2)0.1366 (3)0.08306 (11)0.0340 (6)
H10A0.41700.15050.10350.041*
C110.39861 (19)0.1362 (3)0.03202 (10)0.0285 (6)
C120.49709 (19)0.1659 (3)0.00939 (11)0.0308 (6)
C130.59738 (19)0.1960 (3)0.07196 (11)0.0305 (6)
C140.5979 (2)0.1960 (3)0.12313 (12)0.0377 (7)
H14A0.54330.18660.13570.045*
C150.6807 (2)0.2147 (3)0.05531 (12)0.0360 (7)
H15A0.68310.21910.02150.043*
C160.7602 (2)0.2269 (4)0.09021 (13)0.0412 (7)
H16A0.81580.23800.07870.049*
C170.6805 (2)0.2102 (4)0.15466 (12)0.0424 (8)
H17A0.67980.21060.18870.051*
Cd10.00000.06136 (3)0.25000.03132 (12)
H5A0.133 (3)0.229 (5)0.3090 (16)0.053 (12)*
H6A0.088 (4)0.177 (5)0.2195 (19)0.068 (16)*
H7A0.441 (3)1.003 (5)0.1380 (18)0.058 (13)*
H2B0.274 (3)0.069 (4)0.0709 (14)0.039 (10)*
H4B0.470 (3)0.153 (4)0.0549 (15)0.050 (11)*
H5B0.071 (3)0.305 (4)0.2858 (15)0.044 (12)*
H6B0.160 (4)0.097 (6)0.218 (2)0.09 (2)*
H7B0.415 (3)0.948 (5)0.0934 (19)0.066 (16)*
N10.07517 (18)0.0563 (3)0.18357 (10)0.0358 (6)
N20.21691 (18)0.0606 (3)0.06249 (9)0.0306 (5)
N30.33872 (16)0.1131 (3)0.00068 (9)0.0280 (5)
N40.51311 (17)0.1742 (3)0.04068 (10)0.0333 (6)
N50.76221 (19)0.2236 (3)0.13927 (11)0.0415 (6)
O10.10075 (16)0.0500 (3)0.00425 (9)0.0533 (7)
O20.55554 (15)0.1802 (3)0.03618 (8)0.0429 (6)
O30.9969 (2)0.4750 (3)0.20625 (10)0.0606 (8)
O40.9169 (3)0.6394 (5)0.24461 (16)0.1008 (14)
O50.09316 (17)0.2339 (3)0.28544 (10)0.0404 (5)
O60.10537 (19)0.1011 (3)0.21310 (10)0.0440 (6)
O70.41102 (16)1.0167 (3)0.10871 (10)0.0425 (6)
O80.29730 (18)0.8984 (3)0.27805 (11)0.0568 (7)
H8B0.30770.84170.25940.068*
H8C0.34200.94410.27970.068*
S11.00000.56069 (11)0.25000.0352 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0307 (15)0.0508 (19)0.0287 (15)0.0013 (13)0.0059 (12)0.0002 (13)
C20.0257 (14)0.053 (2)0.0381 (17)0.0061 (13)0.0093 (12)0.0052 (14)
C30.0271 (14)0.0473 (19)0.0322 (16)0.0053 (13)0.0052 (12)0.0024 (13)
C40.0229 (13)0.0478 (18)0.0324 (15)0.0003 (12)0.0053 (11)0.0005 (13)
C50.0283 (14)0.0314 (15)0.0306 (15)0.0002 (11)0.0096 (11)0.0007 (11)
C60.0272 (14)0.0381 (16)0.0308 (15)0.0031 (12)0.0059 (11)0.0019 (12)
C70.0278 (14)0.0311 (14)0.0294 (14)0.0009 (11)0.0065 (11)0.0013 (11)
C80.0295 (15)0.0455 (18)0.0300 (15)0.0024 (13)0.0002 (12)0.0002 (13)
C90.0408 (17)0.0463 (18)0.0237 (14)0.0014 (14)0.0004 (12)0.0002 (13)
C100.0355 (15)0.0386 (16)0.0298 (15)0.0006 (13)0.0108 (12)0.0005 (13)
C110.0267 (13)0.0321 (15)0.0274 (13)0.0008 (11)0.0070 (11)0.0032 (11)
C120.0259 (13)0.0360 (15)0.0311 (14)0.0010 (12)0.0066 (11)0.0010 (12)
C130.0259 (13)0.0319 (15)0.0332 (15)0.0029 (11)0.0030 (11)0.0016 (12)
C140.0323 (15)0.0462 (19)0.0353 (16)0.0061 (13)0.0074 (12)0.0005 (14)
C150.0309 (15)0.0424 (17)0.0351 (16)0.0044 (13)0.0072 (12)0.0025 (14)
C160.0288 (15)0.0464 (19)0.0484 (19)0.0065 (14)0.0061 (13)0.0000 (15)
C170.0440 (18)0.049 (2)0.0331 (16)0.0090 (15)0.0018 (14)0.0002 (15)
Cd10.02672 (17)0.0394 (2)0.02952 (19)0.0000.00968 (12)0.000
N10.0284 (13)0.0469 (16)0.0347 (14)0.0021 (11)0.0129 (11)0.0017 (11)
N20.0226 (12)0.0429 (15)0.0273 (12)0.0019 (10)0.0069 (10)0.0009 (10)
N30.0258 (11)0.0339 (13)0.0252 (11)0.0010 (10)0.0071 (9)0.0003 (10)
N40.0247 (12)0.0453 (16)0.0306 (13)0.0045 (11)0.0071 (10)0.0017 (11)
N50.0343 (14)0.0443 (16)0.0436 (15)0.0072 (12)0.0007 (12)0.0000 (13)
O10.0270 (12)0.096 (2)0.0367 (13)0.0126 (12)0.0036 (10)0.0016 (13)
O20.0326 (11)0.0639 (17)0.0348 (12)0.0061 (11)0.0131 (9)0.0010 (11)
O30.096 (2)0.0527 (17)0.0318 (13)0.0022 (16)0.0057 (14)0.0026 (12)
O40.093 (3)0.111 (3)0.104 (3)0.059 (3)0.032 (2)0.014 (3)
O50.0357 (12)0.0384 (13)0.0426 (14)0.0004 (11)0.0071 (10)0.0025 (11)
O60.0364 (13)0.0438 (15)0.0518 (15)0.0051 (11)0.0077 (11)0.0037 (12)
O70.0332 (12)0.0613 (17)0.0326 (13)0.0018 (11)0.0038 (10)0.0011 (12)
O80.0448 (14)0.0694 (19)0.0610 (17)0.0013 (13)0.0230 (13)0.0069 (14)
S10.0403 (6)0.0326 (5)0.0341 (6)0.0000.0102 (4)0.000
Geometric parameters (Å, º) top
C1—N11.338 (4)C14—C171.375 (4)
C1—C41.373 (4)C14—H14A0.9300
C1—H1A0.9300C15—C161.386 (4)
C2—N11.344 (4)C15—H15A0.9300
C2—C31.377 (5)C16—N51.335 (4)
C2—H2A0.9300C16—H16A0.9300
C3—C51.397 (4)C17—N51.344 (4)
C3—H3A0.9300C17—H17A0.9300
C4—C51.395 (4)Cd1—N1i2.275 (3)
C4—H4A0.9300Cd1—N12.275 (3)
C5—N21.394 (4)Cd1—O5i2.334 (2)
C6—O11.218 (4)Cd1—O52.334 (2)
C6—N21.359 (4)Cd1—O62.371 (3)
C6—C71.503 (4)Cd1—O6i2.371 (3)
C7—N31.336 (4)N2—H2B0.84 (4)
C7—C81.397 (4)N4—H4B0.83 (4)
C8—C91.376 (5)O3—S11.472 (3)
C8—H8A0.9300O4—S11.447 (3)
C9—C101.386 (4)O5—H5A0.79 (4)
C9—H9A0.9300O5—H5B0.79 (4)
C10—C111.381 (4)O6—H6A0.82 (5)
C10—H10A0.9300O6—H6B0.85 (6)
C11—N31.346 (4)O7—H7A0.86 (5)
C11—C121.508 (4)O7—H7B0.82 (5)
C12—O21.226 (4)O8—H8B0.8001
C12—N41.350 (4)O8—H8C0.8000
C13—C151.389 (4)S1—O4ii1.447 (3)
C13—C141.395 (4)S1—O3ii1.472 (3)
C13—N41.401 (4)
N1—C1—C4123.7 (3)N5—C16—H16A117.9
N1—C1—H1A118.2C15—C16—H16A117.9
C4—C1—H1A118.2N5—C17—C14123.9 (3)
N1—C2—C3124.5 (3)N5—C17—H17A118.0
N1—C2—H2A117.7C14—C17—H17A118.0
C3—C2—H2A117.7N1i—Cd1—N1177.40 (15)
C2—C3—C5118.1 (3)N1i—Cd1—O5i91.04 (10)
C2—C3—H3A121.0N1—Cd1—O5i90.92 (10)
C5—C3—H3A121.0N1i—Cd1—O590.92 (10)
C1—C4—C5119.2 (3)N1—Cd1—O591.04 (10)
C1—C4—H4A120.4O5i—Cd1—O582.63 (14)
C5—C4—H4A120.4N1i—Cd1—O687.31 (10)
N2—C5—C4117.6 (3)N1—Cd1—O690.88 (10)
N2—C5—C3124.3 (3)O5i—Cd1—O692.82 (10)
C4—C5—C3118.0 (3)O5—Cd1—O6175.09 (10)
O1—C6—N2124.8 (3)N1i—Cd1—O6i90.88 (10)
O1—C6—C7119.9 (3)N1—Cd1—O6i87.31 (10)
N2—C6—C7115.3 (2)O5i—Cd1—O6i175.09 (10)
N3—C7—C8122.8 (3)O5—Cd1—O6i92.82 (10)
N3—C7—C6119.2 (3)O6—Cd1—O6i91.79 (15)
C8—C7—C6118.0 (3)C1—N1—C2116.5 (3)
C9—C8—C7118.9 (3)C1—N1—Cd1121.8 (2)
C9—C8—H8A120.5C2—N1—Cd1121.7 (2)
C7—C8—H8A120.5C6—N2—C5126.5 (3)
C8—C9—C10118.6 (3)C6—N2—H2B118 (3)
C8—C9—H9A120.7C5—N2—H2B116 (3)
C10—C9—H9A120.7C7—N3—C11117.5 (2)
C11—C10—C9119.0 (3)C12—N4—C13128.0 (3)
C11—C10—H10A120.5C12—N4—H4B116 (3)
C9—C10—H10A120.5C13—N4—H4B115 (3)
N3—C11—C10123.1 (3)C16—N5—C17116.3 (3)
N3—C11—C12117.4 (2)Cd1—O5—H5A126 (3)
C10—C11—C12119.6 (3)Cd1—O5—H5B119 (3)
O2—C12—N4125.0 (3)H5A—O5—H5B107 (4)
O2—C12—C11120.0 (3)Cd1—O6—H6A114 (4)
N4—C12—C11115.0 (2)Cd1—O6—H6B118 (4)
C15—C13—C14117.9 (3)H6A—O6—H6B106 (5)
C15—C13—N4124.2 (3)H7A—O7—H7B106 (5)
C14—C13—N4117.9 (3)H8B—O8—H8C102.2
C17—C14—C13119.0 (3)O4ii—S1—O4112.9 (4)
C17—C14—H14A120.5O4ii—S1—O3108.8 (2)
C13—C14—H14A120.5O4—S1—O3109.4 (2)
C16—C15—C13118.5 (3)O4ii—S1—O3ii109.4 (2)
C16—C15—H15A120.7O4—S1—O3ii108.8 (2)
C13—C15—H15A120.7O3—S1—O3ii107.5 (2)
N5—C16—C15124.3 (3)
N1—C2—C3—C51.2 (5)C14—C13—C15—C162.7 (5)
N1—C1—C4—C50.6 (5)N4—C13—C15—C16175.9 (3)
C1—C4—C5—N2176.3 (3)C13—C15—C16—N51.0 (6)
C1—C4—C5—C31.9 (5)C13—C14—C17—N50.4 (6)
C2—C3—C5—N2176.0 (3)C4—C1—N1—C20.4 (5)
C2—C3—C5—C42.1 (5)C4—C1—N1—Cd1179.3 (3)
O1—C6—C7—N3176.6 (3)C3—C2—N1—C10.1 (5)
N2—C6—C7—N32.2 (4)C3—C2—N1—Cd1179.6 (3)
O1—C6—C7—C81.9 (5)O1—C6—N2—C57.0 (5)
N2—C6—C7—C8179.3 (3)C7—C6—N2—C5171.6 (3)
N3—C7—C8—C92.8 (5)C4—C5—N2—C6172.5 (3)
C6—C7—C8—C9178.7 (3)C3—C5—N2—C65.6 (5)
C7—C8—C9—C101.5 (5)C8—C7—N3—C111.8 (4)
C8—C9—C10—C110.7 (5)C6—C7—N3—C11179.8 (3)
C9—C10—C11—N31.9 (5)C10—C11—N3—C70.6 (5)
C9—C10—C11—C12176.6 (3)C12—C11—N3—C7177.9 (3)
N3—C11—C12—O2175.8 (3)O2—C12—N4—C132.2 (5)
C10—C11—C12—O25.6 (5)C11—C12—N4—C13177.7 (3)
N3—C11—C12—N44.0 (4)C15—C13—N4—C120.9 (5)
C10—C11—C12—N4174.6 (3)C14—C13—N4—C12177.7 (3)
C15—C13—C14—C172.1 (5)C15—C16—N5—C171.4 (6)
N4—C13—C14—C17176.6 (3)C14—C17—N5—C162.1 (6)
Symmetry codes: (i) x, y, z+1/2; (ii) x+2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O7iii0.84 (4)2.17 (4)2.958 (4)156 (4)
N2—H2B···N30.84 (4)2.35 (4)2.736 (4)109 (3)
N4—H4B···O7iii0.83 (4)2.29 (4)3.030 (4)150 (4)
N4—H4B···N30.83 (4)2.29 (4)2.698 (4)111 (3)
O5—H5A···N5iv0.80 (4)1.91 (4)2.704 (4)174 (4)
O5—H5B···O3iv0.79 (4)2.02 (4)2.811 (4)172 (4)
O6—H6A···O4v0.82 (5)1.98 (5)2.775 (6)161 (6)
O6—H6B···O8vi0.84 (6)2.04 (6)2.872 (4)173 (6)
O7—H7A···O3vii0.86 (5)1.93 (5)2.784 (4)174 (4)
O7—H7B···O2viii0.82 (5)2.13 (5)2.912 (4)159 (5)
O8—H8B···O5ix0.802.333.052 (4)151
O8—H8C···O4vii0.802.533.233 (6)147
O8—H8C···O3x0.802.363.085 (4)152
Symmetry codes: (iii) x, y1, z; (iv) x+1, y, z+1/2; (v) x1, y1, z; (vi) x, y1, z+1/2; (vii) x1/2, y+1/2, z; (viii) x+1, y+1, z; (ix) x+1/2, y+1/2, z+1/2; (x) x+3/2, y+1/2, z+1/2.
 

Funding information

This work was supported by the Hebei Province Science and Technology Support Program (China) (No. 16211233).

References

First citationCheng, J.-J., Wang, S.-M., Shi, Z., Sun, H., Li, B.-J., Wang, M.-M., Li, M.-Y., Li, J.-P. & Liu, Z.-Y. (2016). Inorg. Chim. Acta, 453, 86–94.  Web of Science CrossRef Google Scholar
First citationDorazco-González, A., Höpfl, H., Medrano, F. & Yatsimirsky, A. K. (2010). J. Org. Chem. 75, 2259–2273.  Google Scholar
First citationFujita, M., Kwon, Y. J., Washizu, S. & Ogura, K. (1994). J. Am. Chem. Soc. 116, 1151–1152.  CSD CrossRef CAS Web of Science Google Scholar
First citationGao, E.-Q., Bai, S.-Q., Wang, Z.-M. & Yan, C.-H. (2003). J. Am. Chem. Soc. 125, 4984–4985.  Web of Science CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHagrman, P. J., Hagrman, D. & Zubieta, J. (1999). Angew. Chem. Int. Ed. 38, 2638–2684.  CrossRef CAS Google Scholar
First citationHao, Y.-P., Yue, C.-P., Jin, B.-N., Lv, Y.-L., Zhang, Q.-K., Li, J.-P., Liu, Z.-Y. & Hou. H.-W. (2018). Polyhedron, 139, 296–307.  Web of Science CrossRef Google Scholar
First citationLi, J.-P., Li, B.-J., Pan, M.-T., Liu, B., Cheng, J.-J., Li, R.-Y., Gao, X.-L., Wang, S.-M., Hou, H.-W. & Liu, Z.-Y. (2017). Cryst. Growth Des. 17, 2975–2986.  Web of Science CrossRef Google Scholar
First citationLi, J.-P., Liu, L., Hou, T.-T., Sun, H., Zhu, Y.,-Y. Wang, S.-M., Wu, J.-H. Xu, H., Guo, Y.-X., Ye, B.-X., Hou, H.-W., Fan, Y.-T. & Chang, J.-B. (2012). J. Coord. Chem. 65, 3684–3698.  Google Scholar
First citationMishra, A., Vajpayee, V., Kim, H., Lee, M.-H., Jung, H., Wang, M., Stang, P. J. & Chi, K.-W. (2012). Dalton Trans. 41, 1195–1201.  Web of Science CrossRef Google Scholar
First citationNoveron, J. C., Chatterjee, B., Arif, A. M. & Stang, P. J. (2003). J. Phys. Org. Chem. 16, 420–425.  Web of Science CrossRef Google Scholar
First citationPark, Y. J., Kim, J.-S., Youm, K.-T., Lee, N.-K., Ko, J., Park, H.-S. & Jun, M.-J. (2006). Angew. Chem. Int. Ed. 45, 4290–4294.  Web of Science CrossRef Google Scholar
First citationPerry, J. J., McManus, G. J. & Zaworotko, M. J. (2004). Chem. Commun. pp. 2534–2535.  Web of Science CrossRef Google Scholar
First citationQin, Z., Jennings, M. C. & Puddephatt, R. J. (2002). Chem. Commun. pp. 354–355.  Web of Science CrossRef Google Scholar
First citationQin, Z.-Q., Jennings, M. C. & Puddephatt, R. J. (2003). Inorg. Chem. 42, 1956–1965.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku/MSC (2006). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, A. P., Ali, A. & Gupta, R. (2010). Dalton Trans. 39, 8135–8138.  Web of Science CrossRef Google Scholar
First citationSingh, A. P., Kumar, G. & Gupta, R. (2011). Dalton Trans. 40, 12454–12461.  Web of Science CrossRef Google Scholar
First citationTomura, M. & Yamashita, Y. (2001). Chem. Lett. 30, 532–533.  Web of Science CSD CrossRef Google Scholar
First citationYu, T.-T., Wang, S.-M., Li, X.-M., Gao, X.-L., Zhou, C.-L., Cheng, J.-J., Li, B.-J., Li, J.-P., Chang, J.-B., Hou, H.-W. & Liu, Z.-Y. (2016). CrystEngComm, 18, 1350–1362.  Web of Science CrossRef Google Scholar
First citationZheng, S.-L., Yang, J.-H., Yu, X.-L., Chen, X.-M. & Wong, W.-T. (2004). Inorg. Chem. 43, 830–838.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds