research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Single-crystal X-ray diffraction study of a host–guest system comprising monofunctionalized-hy­droxy pillar[5]arene and 1-octa­namine

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Kuwait University, PO Box 5969, Safat 13060, Kuwait
*Correspondence e-mail: t.alazemi@ku.edu.kw

Edited by D. Chopra, Indian Institute of Science Education and Research Bhopal, India (Received 13 June 2018; accepted 11 July 2018; online 20 July 2018)

Co-crystallization of a monofunctionalized hy­droxy pillar[5]arene with 1-octa­namine resulted in the formation of an inclusion complex where the alkyl chain is threaded in the macrocycle cavity, namely 1,2,3,4-(1,4-dimeth­oxy)-5-(1-hy­droxy-4-meth­oxy)-pillar[5]arene–1-octa­namine–water (1/1/1), C44H48O10·C8H19N·H2O. The guest compound is stabilized inside the cavity by hydrogen-bonding and C—H⋯π inter­actions. The water mol­ecule in the asymmetric unit mediates the formation of a supra­molecular dimer by hydrogen-bonding inter­actions. These functionalized-pillararene hosts expand the possibility of exploring more supra­molecular inter­actions with various guest species.

1. Chemical context

Pillar[5]arenes are a relatively new class of three-dimensional macrocyclic compounds having a well-defined inner cavity for guest encapsulation. Unlike cone-shaped calixarene or resorcinarene-type structures, the pillararenes have a tabular cavity, which makes them inter­esting mol­ecular hosts. It is well known that pillar[5]arenes exhibit an outstanding ability to selectively bind different kinds of guest mol­ecules and thus are valuable chemical entities in the areas of host–guest systems and mol­ecular recognition (Ogoshi et al., 2008[Ogoshi, T., Kanai, S., Fujinami, S., Yamagishi, T. A. & Nakamoto, Y. (2008). J. Am. Chem. Soc. 130, 5022-5023.]). The guest moieties that could be encapsulated by pillararenes include both neutral and charged guest species and the preference will be for those having long alkyl chains. Appropriate function­alization of the pillararene framework could enable efficient control over the binding properties of these macrocycles with a variety of guest species (Han et al., 2010[Han, C., Ma, F., Zhang, Z., Xia, B., Yu, Y. & Huang, F. (2010). Org. Lett. 12, 4360-4363.], 2015[Han, J., Hou, X., Ke, C., Zhang, H., Strutt, N. L., Stern, C. L. & Stoddart, J. F. (2015). Org. Lett. 17, 3260-3263.]; Pan & Xue, 2013[Pan, M. & Xue, M. (2013). Eur. J. Org. Chem. pp. 4787-4793.]; Hu et al., 2016[Hu, W. B., Hu, W. J., Zhao, X. L., Liu, Y. A., Li, J. S., Jiang, B. & Wen, K. (2016). J. Org. Chem. 81, 3877-3881.]).

Chemical modification of the pillararene system could be achieved in two ways, namely cyclization of appropriately functionalized monomers or functionalization of preformed pillararenes (Al-Azemi et al., 2017[Al-Azemi, T. F., Vinodh, M., Alipour, F. H. & Mohamod, A. A. (2017). J. Org. Chem. 82, 10945-10952.]). In the former, co-cyclization of pre-functionalized monomers in an appropriate feed ratio could be employed to generate pillararenes having the desired functionalities in terms of numbers and positions.

The pillar[5]rene system having one hy­droxy group is inter­esting because this OH– function is susceptible for further chemical transformation (Al-Azemi et al., 2018). Furthermore, the OH– group in pillararenes could involve hydrogen bonding with guest mol­ecules and/or with neighboring pillararenes, which makes them valuable compounds in mol­ecular recognition and supra­molecular chemistry. We have recently reported details of the host–guest complexation between mono-hy­droxy-pillar[5]arenes with long-chain alkyl alcohol guests (Al-Azemi et al., 2018). It was observed that the encapsulation characteristics of the pillar[5]arene was affected by the presence of the hy­droxy group, resulting in the formation of a 1:2 complex with long-chain alkyl alcohols.

[Scheme 1]

In this work we report the crystal structure of the inclusion complex consisting of 1-(1-hy­droxy-4-meth­oxy)-2,3,4,5-(1,4-dimeth­oxy)-pillar[5]arene (Pil-OH) and 1-octa­namine (OctNH2). The structural features and supra­molecular host–guest inter­actions of this co-crystalline system (Pil-OH·OctNH2) has been addressed and discussed.

2. Structural commentary

The crystal structure of the inclusion complex Pil-OH·OctNH2 is given in Fig. 1[link]. The mono-hy­droxy-pillar[5]arene (Pil-OH) has a rigid three-dimensional macrocyclic architecture with a wide cavity having a penta­gonal shape. The 1-octa­namine mol­ecule is threaded inside the pillararene cavity and one water is included in asymmetric unit, displaying strong hydrogen-bonding inter­actions with the amino group of the guest mol­ecule inside the cavity and the hy­droxy group on the pillararene system via O11—H11A⋯N1 and O11—H11B⋯O1 bonds respectively (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O11—H11A⋯N1 0.83 (2) 1.98 (5) 2.770 (10) 159 (7)
O11—H11B⋯O1 0.80 (10) 2.40 (10) 3.060 (10) 145 (10)
O1—H1⋯O11i 0.82 (5) 1.90 (5) 2.711 (7) 168 (9)
Symmetry code: (i) -x+2, -y+1, -z+1.
[Figure 1]
Figure 1
Displacement ellipsoid representation (30% probability) of Pil-OH·OctNH2. Hydrogen atoms are omitted for clarity.

3. Supra­molecular features

In the title inclusion complex, the water mol­ecule mediates the formation of supra­molecular dimers through O1i—H1i⋯O11[symmetry code: (i) −x + 2, −y + 1, −z + 1] and O11—H11⋯O1 hydrogen-bonding inter­actions (Table 1[link]), as illustrated in Fig. 2[link]. In addition, the encapsulated 1-octa­namine is stabilized inside the cavity by C—H⋯π inter­actions with the pillararene aromatic ring and C—H⋯O inter­actions at the meth­oxy groups on the rim of the macrocycle, which act as hydrogen-bond acceptors. These weak inter­actions are shown in Fig. 3[link] and the corresponding inter­action distances are given in Table 2[link]. The threaded terminal methyl group of the alkyl chain of the 1-octa­namine guest is positioned outside the pillararene moiety where it engages in a weak inter­molecular C—H⋯O inter­action with the meth­oxy group of another pillararene mol­ecule [C52—H52C⋯O7ii; symmetry code: (ii) x − 1, y, z]. A weak C—H⋯O type pillararene–pillararene inter­action is also observed [C44—H44B⋯O3iii; symmetry code: (iii) x − 1, y − 1, z].

Table 2
Summary of weak inter­actions (C—H⋯π and C—H⋯O; Å, °) between the pillararene and 1-octa­namine mol­ecules

Cg1, Cg2, Cg3 and Cg4 are the centroids of the C1–C6, C29–C34, C15–C20 and C22–C27 rings, respectively.

D—H⋯A H⋯A DA D—H⋯A
C45—H45ACg1 3.02 3.815 (10) 139
C45—H45BCg2 2.89 3.867 (8) 175
C46—H46ACg3 3.10 3.790 (9) 128
C46—H46BCg4 3.18 4.106 (12) 157
C47—H47A⋯O2 3.10 4.070 (13) 166
C47—H47B⋯O10 3.26 4.158 (10) 151
C48—H48A⋯O4 3.17 4.094 (12) 156
C48—H48B⋯O6 3.24 3.974 (14) 132
C52—H52C⋯O7ii 2.43 3.39 (2) 168
C44—H44B⋯O3ii 2.65 3.611 (8) 167
Symmetry codes: (ii) x − 1, y, z; (iii) x − 1, y − 1, z.
[Figure 2]
Figure 2
Hydrogen-bonding inter­actions between Pil-OH·OctNH2 systems showing the formation of a water-mol­ecule-mediated supra­molecular dimer. [Symmetry code: (i) −x + 2, −y + 1, −z + 1.]
[Figure 3]
Figure 3
Crystal structure of the inclusion complex Pil-OH·OctNH2 showing weak C—H⋯O and C—H⋯ π inter­actions where Cg1–4 are the centroids of the aromatic rings in the pillararene system. C—H⋯O inter­actions are represented as brown and C—H⋯ π as green dashed lines.

4. Synthesis and crystallization

The synthesis of 1-(1-hy­droxy-4-meth­oxy)-2,3,4,5-(1,4-di­meth­oxy)pillar[5]arene has been reported previously (Al-Azemi et al., 2018[Al-Azemi, T. F., Mohamod, A. A., Vinodh, M. & Alipour, F. H. (2018). Org. Chem. Front. 5, 10-18.]). The co-crystallization of pillararene with 1-octa­namine was undertaken by adding pillararene (20 mg) and 1-octa­namine (50 µL) to chloro­form (0.5 mL) in a small vial, followed by a very slow solvent evaporation. Within six days, crystals of a suitable size for diffraction analysis had formed.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The hydrogen atoms belonging to water, the OH fraction of the pillarene apex and the NH2 group of 1-octa­namine were found in the electron density map and freely refined. All other hydrogen atoms are placed at calculated positions and refined using a riding model: C—H = 0.95–0.99 Å with Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula C44H48O10·C8H19N·H2O
Mr 884.08
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 12.147 (12), 12.341 (12), 19.406 (19)
α, β, γ (°) 91.433 (11), 90.181 (11), 119.182 (9)
V3) 2539 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.12 × 0.11 × 0.02
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.000, 0.998
No. of measured, independent and observed [I > 2σ(I)] reflections 19245, 8604, 3452
Rint 0.078
(sin θ/λ)max−1) 0.589
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.094, 0.349, 0.95
No. of reflections 8604
No. of parameters 606
No. of restraints 44
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.36, −0.27
Computer programs: CrystalClear-SM Expert (Rigaku, 2009[Rigaku (2009). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]); CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]), Il Milione (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]), SHELXL2017 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]); ShelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Supporting information


Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2009); cell refinement: CrystalClear-SM Expert (Rigaku, 2009); data reduction: CrystalClear-SM Expert (Rigaku, 2009); CrystalStructure (Rigaku, 2010); program(s) used to solve structure: Il Milione (Burla et al., 2007); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); SHELXLe (Hübschle et al., 2011); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2017 (Sheldrick, 2015).

10,15,19,25,27,28,31,33,34-Nonamethoxyhexacyclo[21.2.2.2{3,6}.2{8,11}.2{13,16}.2{18,21}]pentatriaconta-1(25),3(35),4,6(34),8,10,13,15,18,20,23,26,28,30,32-pentadecaen-4-ol–1-octanamine–water (1/1/1) top
Crystal data top
C44H48O10·C8H19N·H2OZ = 2
Mr = 884.08F(000) = 952
Triclinic, P1Dx = 1.157 Mg m3
a = 12.147 (12) ÅMo Kα radiation, λ = 0.71075 Å
b = 12.341 (12) ÅCell parameters from 1156 reflections
c = 19.406 (19) Åθ = 3.2–24.5°
α = 91.433 (11)°µ = 0.08 mm1
β = 90.181 (11)°T = 150 K
γ = 119.182 (9)°Platelet, colorless
V = 2539 (4) Å30.12 × 0.11 × 0.02 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3452 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.078
ω scansθmax = 24.8°, θmin = 3.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1414
Tmin = 0.000, Tmax = 0.998k = 1414
19245 measured reflectionsl = 2222
8604 independent reflections
Refinement top
Refinement on F244 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.094H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.349 w = 1/[σ2(Fo2) + (0.2P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max = 0.006
8604 reflectionsΔρmax = 0.36 e Å3
606 parametersΔρmin = 0.27 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7998 (4)0.4416 (4)0.5308 (2)0.0863 (12)
H10.873 (4)0.497 (8)0.537 (6)0.26 (6)*
H1B0.8643 (19)0.2821 (17)0.283 (3)0.9 (3)*
H1A0.926 (2)0.402 (4)0.266 (2)1.075*
O20.5570 (4)0.6085 (3)0.35282 (19)0.0828 (11)
O31.0480 (4)0.7681 (4)0.3574 (2)0.0900 (12)
O40.7543 (4)0.6894 (4)0.1205 (2)0.0960 (12)
O51.1318 (4)0.5864 (4)0.1524 (2)0.1013 (13)
O60.6840 (4)0.2542 (4)0.0134 (2)0.0930 (12)
O70.9401 (4)0.1253 (4)0.1904 (2)0.1032 (14)
O80.4150 (4)0.0913 (4)0.1898 (2)0.0999 (13)
O90.7136 (3)0.0036 (3)0.41713 (19)0.0793 (10)
O100.3518 (4)0.1570 (3)0.3987 (2)0.0856 (11)
O110.9620 (6)0.3882 (5)0.4297 (4)0.1282 (17)
H11A0.952 (8)0.382 (8)0.3873 (8)0.14 (4)*
H11B0.895 (6)0.381 (14)0.444 (4)0.36 (10)*
N10.8665 (8)0.3545 (9)0.2964 (4)0.187 (3)
C10.6093 (5)0.4038 (4)0.4726 (2)0.0616 (13)
C20.7389 (5)0.4832 (4)0.4870 (3)0.0646 (13)
C30.8014 (5)0.5997 (4)0.4566 (2)0.0657 (13)
H30.8881070.6521690.4678120.079*
C40.7446 (5)0.6424 (4)0.4117 (2)0.0619 (13)
C50.6149 (5)0.5637 (4)0.3974 (2)0.0648 (13)
C60.5476 (5)0.4457 (5)0.4282 (3)0.0663 (13)
H60.4600410.3948960.4185050.080*
C70.8171 (5)0.7667 (4)0.3762 (3)0.0717 (14)
H7A0.7616020.8039750.3710360.086*
H7B0.8903630.8240200.4055320.086*
C80.8632 (5)0.7517 (4)0.3053 (3)0.0653 (13)
C90.9770 (5)0.7500 (4)0.2978 (3)0.0703 (14)
C101.0164 (5)0.7319 (4)0.2321 (3)0.0711 (14)
H101.0950150.7332650.2279720.085*
C110.9414 (5)0.7118 (4)0.1728 (3)0.0671 (14)
C120.8273 (5)0.7131 (4)0.1804 (3)0.0651 (13)
C130.7897 (5)0.7325 (4)0.2446 (3)0.0723 (14)
H130.7119090.7329310.2481820.087*
C140.9834 (5)0.6858 (5)0.1028 (3)0.0783 (16)
H14A0.9448390.7105990.0656260.094*
H14B1.0761110.7370020.0996920.094*
C150.9459 (5)0.5487 (5)0.0917 (3)0.0677 (13)
C161.0202 (5)0.4986 (5)0.1180 (3)0.0708 (14)
C170.9803 (5)0.3735 (5)0.1099 (3)0.0775 (16)
H171.0307740.3423420.1293890.093*
C180.8681 (5)0.2895 (5)0.0741 (2)0.0645 (13)
C190.7951 (5)0.3381 (5)0.0473 (3)0.0673 (13)
C200.8359 (5)0.4660 (5)0.0550 (2)0.0698 (14)
H200.7865510.4975250.0344850.084*
C210.8264 (5)0.1518 (5)0.0693 (3)0.0744 (15)
H21A0.9019990.1413890.0655170.089*
H21B0.7748350.1156750.0267280.089*
C220.7501 (5)0.0799 (4)0.1308 (3)0.0659 (13)
C230.8092 (5)0.0688 (5)0.1907 (3)0.0726 (14)
C240.7356 (5)0.0045 (5)0.2471 (3)0.0703 (14)
H240.7770060.0031120.2867970.084*
C250.6053 (5)0.0481 (4)0.2471 (3)0.0613 (12)
C260.5478 (5)0.0366 (4)0.1869 (3)0.0703 (14)
C270.6189 (5)0.0249 (4)0.1303 (3)0.0690 (14)
H270.5767680.0295650.0900890.083*
C280.5313 (5)0.1097 (4)0.3107 (3)0.0677 (14)
H28A0.5687330.1557950.3329250.081*
H28B0.4431990.1698880.2970940.081*
C290.5322 (5)0.0127 (4)0.3623 (3)0.0620 (13)
C300.6251 (5)0.0447 (4)0.4141 (3)0.0644 (13)
C310.6250 (5)0.1358 (4)0.4595 (3)0.0625 (13)
H310.6885530.1726270.4944620.075*
C320.5330 (5)0.1733 (4)0.4541 (3)0.0623 (13)
C330.4413 (5)0.1172 (4)0.4021 (3)0.0639 (13)
C340.4409 (5)0.0264 (4)0.3580 (3)0.0667 (14)
H340.3765980.0107530.3234030.080*
C350.5383 (5)0.2750 (4)0.5031 (3)0.0696 (14)
H35A0.4512300.2564290.5137520.084*
H35B0.5802570.2747800.5469040.084*
C360.4254 (6)0.5339 (6)0.3381 (3)0.0957 (19)
H36A0.4080990.4519730.3203460.115*
H36B0.3997260.5740280.3034250.115*
H36C0.3779790.5245400.3803320.115*
C371.1307 (6)0.7168 (6)0.3582 (4)0.112 (2)
H37A1.0813500.6261700.3531120.134*
H37B1.1780580.7394080.4020660.134*
H37C1.1896920.7495390.3200810.134*
C380.6446 (7)0.7030 (7)0.1244 (4)0.123 (3)
H38A0.6123100.7008930.0778040.148*
H38B0.6661720.7825340.1475990.148*
H38C0.5799480.6350150.1506100.148*
C391.2011 (6)0.5426 (7)0.1908 (4)0.123 (3)
H39A1.2729540.6129810.2142020.147*
H39B1.2317520.4998500.1596690.147*
H39C1.1463320.4847520.2252190.147*
C400.6167 (6)0.2999 (6)0.0255 (4)0.108 (2)
H40A0.6738500.3608640.0579170.130*
H40B0.5826870.3394610.0057260.130*
H40C0.5472910.2308610.0511650.130*
C411.0011 (6)0.1111 (8)0.2487 (4)0.148 (4)
H41A1.0926200.1624450.2443200.178*
H41B0.9793150.0237970.2519130.178*
H41C0.9738320.1372790.2903440.178*
C420.3518 (6)0.0589 (6)0.1393 (4)0.111 (2)
H42A0.2612870.1004300.1486970.133*
H42B0.3650180.0851500.0934130.133*
H42C0.3853800.0312670.1409190.133*
C430.8110 (6)0.0576 (6)0.4702 (3)0.0908 (17)
H43A0.8662910.1457620.4615150.109*
H43B0.8606000.0144390.4697940.109*
H43C0.7719970.0492240.5153310.109*
C440.2507 (6)0.0996 (6)0.3489 (4)0.106 (2)
H44A0.1986680.1401940.3513560.128*
H44B0.1987380.0113650.3587420.128*
H44C0.2854130.1078410.3026390.128*
C450.7525 (8)0.3574 (8)0.2971 (4)0.122 (2)
H45A0.7693610.4364530.3203850.146*
H45B0.6938210.2896130.3265640.146*
C460.6862 (9)0.3467 (8)0.2329 (4)0.127 (3)
H46A0.7437110.4180690.2051910.152*
H46B0.6764670.2711790.2082790.152*
C470.5660 (9)0.3407 (9)0.2301 (5)0.151 (3)
H47A0.5749300.4168450.2535250.181*
H47B0.5075090.2697080.2577730.181*
C480.5038 (11)0.3280 (11)0.1620 (5)0.167 (3)
H48A0.5573350.4046210.1368910.201*
H48B0.5059170.2589180.1361660.201*
C490.3773 (12)0.3068 (13)0.1576 (6)0.204 (4)
H49A0.3747640.3757600.1834280.244*
H49B0.3233320.2299430.1823880.244*
C500.3154 (13)0.2945 (13)0.0869 (6)0.231 (4)
H50A0.2755980.3479510.0892200.278*
H50B0.3848620.3325880.0537090.278*
C510.2189 (15)0.1723 (13)0.0547 (8)0.284 (6)
H51A0.2681350.1460930.0248310.341*
H51B0.1690540.1939080.0230200.341*
C520.1227 (15)0.0544 (14)0.0877 (9)0.293 (7)
H52A0.1651120.0281660.1210640.439*
H52B0.0803490.0110130.0520490.439*
H52C0.0601800.0696460.1114300.439*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.082 (3)0.084 (2)0.094 (3)0.040 (2)0.007 (2)0.024 (2)
O20.090 (3)0.090 (2)0.084 (3)0.056 (2)0.009 (2)0.008 (2)
O30.081 (3)0.106 (3)0.077 (3)0.042 (2)0.021 (2)0.002 (2)
O40.101 (3)0.128 (3)0.082 (3)0.074 (3)0.016 (2)0.003 (2)
O50.076 (3)0.101 (3)0.130 (4)0.045 (2)0.020 (3)0.003 (3)
O60.099 (3)0.097 (3)0.090 (3)0.053 (2)0.031 (2)0.006 (2)
O70.072 (3)0.140 (3)0.103 (3)0.054 (3)0.004 (2)0.041 (3)
O80.074 (3)0.113 (3)0.093 (3)0.031 (2)0.015 (2)0.008 (2)
O90.084 (3)0.083 (2)0.083 (3)0.051 (2)0.013 (2)0.0055 (19)
O100.074 (3)0.087 (2)0.103 (3)0.046 (2)0.010 (2)0.005 (2)
O110.101 (4)0.122 (4)0.140 (6)0.038 (3)0.012 (4)0.000 (4)
N10.177 (8)0.276 (11)0.143 (7)0.138 (8)0.019 (6)0.021 (7)
C10.071 (4)0.062 (3)0.060 (3)0.038 (3)0.005 (3)0.001 (2)
C20.070 (4)0.060 (3)0.064 (3)0.032 (3)0.005 (3)0.005 (2)
C30.068 (3)0.064 (3)0.063 (3)0.031 (3)0.001 (3)0.001 (2)
C40.077 (4)0.058 (3)0.058 (3)0.039 (3)0.003 (3)0.002 (2)
C50.090 (4)0.068 (3)0.055 (3)0.053 (3)0.002 (3)0.002 (2)
C60.067 (3)0.077 (3)0.064 (3)0.043 (3)0.000 (3)0.006 (3)
C70.087 (4)0.058 (3)0.073 (4)0.038 (3)0.005 (3)0.002 (2)
C80.085 (4)0.050 (3)0.059 (3)0.031 (3)0.001 (3)0.007 (2)
C90.065 (3)0.062 (3)0.073 (4)0.023 (3)0.011 (3)0.008 (3)
C100.066 (3)0.072 (3)0.070 (4)0.030 (3)0.003 (3)0.014 (3)
C110.080 (4)0.061 (3)0.059 (3)0.033 (3)0.001 (3)0.010 (2)
C120.074 (4)0.069 (3)0.057 (3)0.038 (3)0.010 (3)0.004 (2)
C130.079 (4)0.073 (3)0.073 (4)0.044 (3)0.003 (3)0.010 (3)
C140.080 (4)0.078 (3)0.075 (4)0.036 (3)0.007 (3)0.016 (3)
C150.061 (3)0.077 (3)0.061 (3)0.030 (3)0.010 (3)0.014 (3)
C160.052 (3)0.081 (4)0.075 (4)0.029 (3)0.003 (3)0.008 (3)
C170.075 (4)0.098 (4)0.077 (4)0.055 (3)0.011 (3)0.017 (3)
C180.067 (3)0.081 (3)0.049 (3)0.038 (3)0.006 (3)0.005 (2)
C190.071 (4)0.076 (3)0.053 (3)0.035 (3)0.006 (3)0.002 (3)
C200.072 (4)0.092 (4)0.055 (3)0.046 (3)0.006 (3)0.016 (3)
C210.086 (4)0.086 (4)0.067 (4)0.054 (3)0.006 (3)0.003 (3)
C220.081 (4)0.067 (3)0.059 (3)0.043 (3)0.001 (3)0.001 (2)
C230.071 (4)0.079 (3)0.077 (4)0.044 (3)0.002 (3)0.006 (3)
C240.083 (4)0.074 (3)0.064 (3)0.046 (3)0.006 (3)0.008 (3)
C250.064 (3)0.055 (3)0.065 (3)0.028 (2)0.008 (3)0.006 (2)
C260.060 (3)0.063 (3)0.078 (4)0.022 (3)0.015 (3)0.007 (3)
C270.084 (4)0.070 (3)0.051 (3)0.037 (3)0.012 (3)0.008 (2)
C280.069 (3)0.048 (2)0.076 (4)0.021 (2)0.011 (3)0.004 (2)
C290.060 (3)0.053 (3)0.064 (3)0.021 (2)0.005 (3)0.012 (2)
C300.063 (3)0.064 (3)0.067 (3)0.031 (3)0.002 (3)0.010 (3)
C310.061 (3)0.058 (3)0.058 (3)0.022 (2)0.003 (2)0.007 (2)
C320.064 (3)0.057 (3)0.065 (3)0.028 (2)0.011 (3)0.014 (2)
C330.055 (3)0.060 (3)0.072 (4)0.025 (2)0.002 (3)0.004 (3)
C340.061 (3)0.058 (3)0.067 (3)0.018 (2)0.006 (2)0.007 (3)
C350.071 (3)0.069 (3)0.065 (3)0.031 (3)0.010 (3)0.004 (3)
C360.100 (5)0.109 (4)0.095 (5)0.065 (4)0.023 (4)0.005 (4)
C370.101 (5)0.111 (5)0.120 (6)0.048 (4)0.038 (4)0.008 (4)
C380.130 (6)0.174 (7)0.110 (6)0.110 (6)0.029 (5)0.014 (5)
C390.086 (5)0.139 (6)0.143 (7)0.055 (5)0.029 (5)0.002 (5)
C400.113 (5)0.126 (5)0.103 (5)0.072 (4)0.035 (4)0.015 (4)
C410.077 (5)0.207 (8)0.151 (7)0.058 (5)0.008 (5)0.080 (6)
C420.079 (4)0.128 (5)0.119 (6)0.045 (4)0.024 (4)0.000 (4)
C430.087 (4)0.098 (4)0.101 (5)0.056 (3)0.014 (4)0.006 (3)
C440.088 (5)0.118 (5)0.121 (6)0.056 (4)0.023 (4)0.002 (4)
C450.114 (6)0.152 (7)0.094 (6)0.060 (5)0.000 (5)0.008 (5)
C460.141 (7)0.147 (6)0.107 (6)0.082 (6)0.020 (6)0.015 (5)
C470.137 (8)0.208 (10)0.106 (7)0.084 (7)0.018 (6)0.000 (6)
C480.197 (9)0.218 (8)0.118 (6)0.125 (8)0.005 (6)0.009 (6)
C490.212 (8)0.273 (8)0.146 (6)0.134 (8)0.011 (6)0.003 (6)
C500.248 (10)0.291 (9)0.162 (8)0.137 (8)0.038 (6)0.002 (7)
C510.294 (12)0.301 (11)0.205 (10)0.105 (9)0.034 (8)0.016 (8)
C520.302 (16)0.275 (12)0.300 (16)0.141 (10)0.016 (12)0.015 (11)
Geometric parameters (Å, º) top
O1—C21.387 (6)C25—C281.516 (7)
O1—H10.822 (11)C26—C271.391 (7)
O2—C51.396 (5)C27—H270.9500
O2—C361.426 (7)C28—C291.538 (7)
O3—C91.387 (6)C28—H28A0.9900
O3—C371.426 (7)C28—H28B0.9900
O4—C121.395 (6)C29—C301.401 (7)
O4—C381.423 (7)C29—C341.411 (7)
O5—C161.408 (6)C30—C311.411 (7)
O5—C391.421 (7)C31—C321.407 (7)
O6—C191.387 (6)C31—H310.9500
O6—C401.422 (6)C32—C331.394 (7)
O7—C231.390 (6)C32—C351.531 (7)
O7—C411.411 (7)C33—C341.392 (7)
O8—C261.414 (6)C34—H340.9500
O8—C421.423 (7)C35—H35A0.9900
O9—C301.396 (6)C35—H35B0.9900
O9—C431.447 (7)C36—H36A0.9800
O10—C331.396 (6)C36—H36B0.9800
O10—C441.434 (7)C36—H36C0.9800
O11—H11A0.827 (10)C37—H37A0.9800
O11—H11B0.823 (10)C37—H37B0.9800
N1—C451.403 (9)C37—H37C0.9800
N1—H1B0.9100 (13)C38—H38A0.9800
N1—H1A0.9102 (12)C38—H38B0.9800
C1—C61.403 (6)C38—H38C0.9800
C1—C21.413 (7)C39—H39A0.9800
C1—C351.528 (6)C39—H39B0.9800
C2—C31.404 (6)C39—H39C0.9800
C3—C41.374 (6)C40—H40A0.9800
C3—H30.9500C40—H40B0.9800
C4—C51.412 (7)C40—H40C0.9800
C4—C71.530 (6)C41—H41A0.9800
C5—C61.425 (7)C41—H41B0.9800
C6—H60.9500C41—H41C0.9800
C7—C81.528 (7)C42—H42A0.9800
C7—H7A0.9900C42—H42B0.9800
C7—H7B0.9900C42—H42C0.9800
C8—C91.401 (7)C43—H43A0.9800
C8—C131.419 (7)C43—H43B0.9800
C9—C101.414 (7)C43—H43C0.9800
C10—C111.405 (7)C44—H44A0.9800
C10—H100.9500C44—H44B0.9800
C11—C121.402 (7)C44—H44C0.9800
C11—C141.534 (7)C45—C461.448 (10)
C12—C131.383 (7)C45—H45A0.9900
C13—H130.9500C45—H45B0.9900
C14—C151.532 (7)C46—C471.428 (10)
C14—H14A0.9900C46—H46A0.9900
C14—H14B0.9900C46—H46B0.9900
C15—C201.400 (7)C47—C481.486 (12)
C15—C161.420 (7)C47—H47A0.9900
C16—C171.378 (7)C47—H47B0.9900
C17—C181.412 (7)C48—C491.429 (13)
C17—H170.9500C48—H48A0.9900
C18—C191.397 (7)C48—H48B0.9900
C18—C211.519 (7)C49—C501.529 (8)
C19—C201.409 (7)C49—H49A0.9900
C20—H200.9500C49—H49B0.9900
C21—C221.526 (7)C50—C511.505 (9)
C21—H21A0.9900C50—H50A0.9900
C21—H21B0.9900C50—H50B0.9900
C22—C271.394 (7)C51—C521.512 (9)
C22—C231.408 (7)C51—H51A0.9900
C23—C241.409 (7)C51—H51B0.9900
C24—C251.387 (7)C52—H52A0.9800
C24—H240.9500C52—H52B0.9800
C25—C261.405 (7)C52—H52C0.9800
C2—O1—H1109 (8)C30—C31—H31119.2
C5—O2—C36118.7 (4)C33—C32—C31117.6 (5)
C9—O3—C37117.5 (5)C33—C32—C35122.4 (5)
C12—O4—C38117.8 (5)C31—C32—C35119.9 (5)
C16—O5—C39118.3 (5)C34—C33—C32120.7 (5)
C19—O6—C40119.1 (4)C34—C33—O10123.6 (5)
C23—O7—C41117.6 (4)C32—C33—O10115.7 (5)
C26—O8—C42118.3 (4)C33—C34—C29122.8 (5)
C30—O9—C43117.9 (4)C33—C34—H34118.6
C33—O10—C44119.2 (5)C29—C34—H34118.6
H11A—O11—H11B103.8 (17)C1—C35—C32112.3 (4)
C45—N1—H1B118.2 (13)C1—C35—H35A109.1
C45—N1—H1A118.1 (13)C32—C35—H35A109.1
H1B—N1—H1A95.8 (10)C1—C35—H35B109.1
C6—C1—C2118.0 (4)C32—C35—H35B109.1
C6—C1—C35120.7 (5)H35A—C35—H35B107.9
C2—C1—C35121.4 (4)O2—C36—H36A109.5
O1—C2—C3122.5 (5)O2—C36—H36B109.5
O1—C2—C1117.9 (4)H36A—C36—H36B109.5
C3—C2—C1119.6 (4)O2—C36—H36C109.5
C4—C3—C2123.9 (5)H36A—C36—H36C109.5
C4—C3—H3118.0H36B—C36—H36C109.5
C2—C3—H3118.0O3—C37—H37A109.5
C3—C4—C5116.7 (4)O3—C37—H37B109.5
C3—C4—C7122.6 (5)H37A—C37—H37B109.5
C5—C4—C7120.6 (4)O3—C37—H37C109.5
O2—C5—C4116.5 (4)H37A—C37—H37C109.5
O2—C5—C6122.4 (5)H37B—C37—H37C109.5
C4—C5—C6121.1 (4)O4—C38—H38A109.5
C1—C6—C5120.7 (5)O4—C38—H38B109.5
C1—C6—H6119.6H38A—C38—H38B109.5
C5—C6—H6119.6O4—C38—H38C109.5
C8—C7—C4111.9 (4)H38A—C38—H38C109.5
C8—C7—H7A109.2H38B—C38—H38C109.5
C4—C7—H7A109.2O5—C39—H39A109.5
C8—C7—H7B109.2O5—C39—H39B109.5
C4—C7—H7B109.2H39A—C39—H39B109.5
H7A—C7—H7B107.9O5—C39—H39C109.5
C9—C8—C13117.1 (5)H39A—C39—H39C109.5
C9—C8—C7121.3 (5)H39B—C39—H39C109.5
C13—C8—C7121.5 (5)O6—C40—H40A109.5
O3—C9—C8116.8 (5)O6—C40—H40B109.5
O3—C9—C10122.5 (5)H40A—C40—H40B109.5
C8—C9—C10120.7 (5)O6—C40—H40C109.5
C11—C10—C9121.2 (5)H40A—C40—H40C109.5
C11—C10—H10119.4H40B—C40—H40C109.5
C9—C10—H10119.4O7—C41—H41A109.5
C12—C11—C10118.1 (5)O7—C41—H41B109.5
C12—C11—C14121.9 (5)H41A—C41—H41B109.5
C10—C11—C14120.0 (5)O7—C41—H41C109.5
C13—C12—O4123.2 (5)H41A—C41—H41C109.5
C13—C12—C11120.7 (5)H41B—C41—H41C109.5
O4—C12—C11116.1 (5)O8—C42—H42A109.5
C12—C13—C8122.3 (5)O8—C42—H42B109.5
C12—C13—H13118.8H42A—C42—H42B109.5
C8—C13—H13118.8O8—C42—H42C109.5
C15—C14—C11112.3 (4)H42A—C42—H42C109.5
C15—C14—H14A109.1H42B—C42—H42C109.5
C11—C14—H14A109.1O9—C43—H43A109.5
C15—C14—H14B109.1O9—C43—H43B109.5
C11—C14—H14B109.1H43A—C43—H43B109.5
H14A—C14—H14B107.9O9—C43—H43C109.5
C20—C15—C16116.5 (5)H43A—C43—H43C109.5
C20—C15—C14121.5 (5)H43B—C43—H43C109.5
C16—C15—C14122.0 (5)O10—C44—H44A109.5
C17—C16—O5125.5 (5)O10—C44—H44B109.5
C17—C16—C15120.4 (5)H44A—C44—H44B109.5
O5—C16—C15114.2 (5)O10—C44—H44C109.5
C16—C17—C18123.2 (5)H44A—C44—H44C109.5
C16—C17—H17118.4H44B—C44—H44C109.5
C18—C17—H17118.4N1—C45—C46119.9 (7)
C19—C18—C17116.9 (5)N1—C45—H45A107.3
C19—C18—C21122.2 (5)C46—C45—H45A107.3
C17—C18—C21120.8 (4)N1—C45—H45B107.3
O6—C19—C18116.3 (5)C46—C45—H45B107.3
O6—C19—C20123.6 (4)H45A—C45—H45B106.9
C18—C19—C20120.1 (5)C47—C46—C45122.9 (8)
C15—C20—C19122.9 (5)C47—C46—H46A106.6
C15—C20—H20118.6C45—C46—H46A106.6
C19—C20—H20118.6C47—C46—H46B106.6
C18—C21—C22113.7 (4)C45—C46—H46B106.6
C18—C21—H21A108.8H46A—C46—H46B106.6
C22—C21—H21A108.8C46—C47—C48119.4 (8)
C18—C21—H21B108.8C46—C47—H47A107.5
C22—C21—H21B108.8C48—C47—H47A107.5
H21A—C21—H21B107.7C46—C47—H47B107.5
C27—C22—C23117.5 (5)C48—C47—H47B107.5
C27—C22—C21121.0 (4)H47A—C47—H47B107.0
C23—C22—C21121.4 (5)C49—C48—C47120.8 (9)
O7—C23—C22116.6 (5)C49—C48—H48A107.1
O7—C23—C24123.6 (5)C47—C48—H48A107.1
C22—C23—C24119.7 (5)C49—C48—H48B107.1
C25—C24—C23122.8 (5)C47—C48—H48B107.1
C25—C24—H24118.6H48A—C48—H48B106.8
C23—C24—H24118.6C48—C49—C50119.8 (11)
C24—C25—C26116.8 (5)C48—C49—H49A107.4
C24—C25—C28120.6 (4)C50—C49—H49A107.4
C26—C25—C28122.5 (5)C48—C49—H49B107.4
C27—C26—C25121.2 (5)C50—C49—H49B107.4
C27—C26—O8124.3 (5)H49A—C49—H49B106.9
C25—C26—O8114.4 (5)C51—C50—C49123.4 (13)
C26—C27—C22122.0 (5)C51—C50—H50A106.5
C26—C27—H27119.0C49—C50—H50A106.5
C22—C27—H27119.0C51—C50—H50B106.5
C25—C28—C29110.9 (4)C49—C50—H50B106.5
C25—C28—H28A109.5H50A—C50—H50B106.5
C29—C28—H28A109.5C50—C51—C52130.4 (16)
C25—C28—H28B109.5C50—C51—H51A104.7
C29—C28—H28B109.5C52—C51—H51A104.7
H28A—C28—H28B108.0C50—C51—H51B104.7
C30—C29—C34116.6 (5)C52—C51—H51B104.7
C30—C29—C28122.4 (5)H51A—C51—H51B105.7
C34—C29—C28121.1 (5)C51—C52—H52A109.5
O9—C30—C29115.1 (5)C51—C52—H52B109.5
O9—C30—C31124.0 (5)H52A—C52—H52B109.5
C29—C30—C31120.9 (5)C51—C52—H52C109.5
C32—C31—C30121.5 (5)H52A—C52—H52C109.5
C32—C31—H31119.2H52B—C52—H52C109.5
C6—C1—C2—O1179.9 (4)C16—C15—C20—C193.5 (7)
C35—C1—C2—O11.1 (7)C14—C15—C20—C19176.3 (4)
C6—C1—C2—C30.3 (7)O6—C19—C20—C15177.5 (5)
C35—C1—C2—C3178.5 (5)C18—C19—C20—C152.9 (8)
O1—C2—C3—C4178.3 (5)C19—C18—C21—C2290.5 (6)
C1—C2—C3—C41.3 (8)C17—C18—C21—C2285.6 (6)
C2—C3—C4—C51.6 (7)C18—C21—C22—C2791.1 (6)
C2—C3—C4—C7176.4 (5)C18—C21—C22—C2387.4 (6)
C36—O2—C5—C4178.5 (5)C41—O7—C23—C22177.5 (6)
C36—O2—C5—C60.6 (7)C41—O7—C23—C243.5 (9)
C3—C4—C5—O2178.7 (4)C27—C22—C23—O7179.4 (4)
C7—C4—C5—O23.3 (7)C21—C22—C23—O70.8 (7)
C3—C4—C5—C60.4 (7)C27—C22—C23—C240.3 (7)
C7—C4—C5—C6177.6 (4)C21—C22—C23—C24178.3 (4)
C2—C1—C6—C51.4 (7)O7—C23—C24—C25178.1 (5)
C35—C1—C6—C5177.4 (4)C22—C23—C24—C250.9 (8)
O2—C5—C6—C1179.8 (4)C23—C24—C25—C261.1 (7)
C4—C5—C6—C11.1 (7)C23—C24—C25—C28176.3 (4)
C3—C4—C7—C893.5 (6)C24—C25—C26—C270.1 (7)
C5—C4—C7—C884.4 (6)C28—C25—C26—C27177.3 (4)
C4—C7—C8—C985.0 (6)C24—C25—C26—O8179.7 (4)
C4—C7—C8—C1391.6 (5)C28—C25—C26—O82.3 (7)
C37—O3—C9—C8153.9 (5)C42—O8—C26—C2714.8 (8)
C37—O3—C9—C1026.7 (7)C42—O8—C26—C25164.8 (5)
C13—C8—C9—O3179.6 (4)C25—C26—C27—C221.2 (8)
C7—C8—C9—O32.8 (6)O8—C26—C27—C22178.3 (5)
C13—C8—C9—C101.0 (7)C23—C22—C27—C261.4 (7)
C7—C8—C9—C10177.8 (4)C21—C22—C27—C26177.2 (4)
O3—C9—C10—C11179.0 (4)C24—C25—C28—C2982.2 (6)
C8—C9—C10—C111.7 (7)C26—C25—C28—C2995.1 (5)
C9—C10—C11—C121.4 (7)C25—C28—C29—C3090.2 (5)
C9—C10—C11—C14176.9 (4)C25—C28—C29—C3487.3 (5)
C38—O4—C12—C139.0 (8)C43—O9—C30—C29179.0 (4)
C38—O4—C12—C11173.3 (5)C43—O9—C30—C310.2 (7)
C10—C11—C12—C130.6 (7)C34—C29—C30—O9179.8 (4)
C14—C11—C12—C13177.7 (4)C28—C29—C30—O92.5 (6)
C10—C11—C12—O4178.3 (4)C34—C29—C30—C310.7 (6)
C14—C11—C12—O40.0 (7)C28—C29—C30—C31178.3 (4)
O4—C12—C13—C8177.5 (4)O9—C30—C31—C32179.8 (4)
C11—C12—C13—C80.0 (7)C29—C30—C31—C320.7 (7)
C9—C8—C13—C120.2 (7)C30—C31—C32—C330.0 (6)
C7—C8—C13—C12177.0 (4)C30—C31—C32—C35178.3 (4)
C12—C11—C14—C1594.5 (5)C31—C32—C33—C340.7 (7)
C10—C11—C14—C1583.8 (6)C35—C32—C33—C34179.0 (4)
C11—C14—C15—C2096.3 (6)C31—C32—C33—O10179.9 (4)
C11—C14—C15—C1683.4 (6)C35—C32—C33—O101.8 (6)
C39—O5—C16—C179.9 (8)C44—O10—C33—C342.3 (7)
C39—O5—C16—C15169.1 (5)C44—O10—C33—C32176.9 (5)
C20—C15—C16—C172.9 (7)C32—C33—C34—C290.8 (7)
C14—C15—C16—C17176.8 (5)O10—C33—C34—C29179.9 (4)
C20—C15—C16—O5178.0 (4)C30—C29—C34—C330.0 (7)
C14—C15—C16—O52.3 (7)C28—C29—C34—C33177.6 (4)
O5—C16—C17—C18179.1 (5)C6—C1—C35—C3284.2 (6)
C15—C16—C17—C181.9 (8)C2—C1—C35—C3294.6 (6)
C16—C17—C18—C191.2 (8)C33—C32—C35—C184.7 (6)
C16—C17—C18—C21177.5 (5)C31—C32—C35—C193.5 (5)
C40—O6—C19—C18168.9 (5)N1—C45—C46—C47175.8 (8)
C40—O6—C19—C2010.7 (8)C45—C46—C47—C48179.2 (9)
C17—C18—C19—O6178.8 (4)C46—C47—C48—C49172.4 (10)
C21—C18—C19—O62.5 (7)C47—C48—C49—C50179.8 (10)
C17—C18—C19—C201.6 (7)C48—C49—C50—C51103.8 (18)
C21—C18—C19—C20177.9 (4)C49—C50—C51—C5230 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11A···N10.83 (2)1.98 (5)2.770 (10)159 (7)
O11—H11B···O10.80 (10)2.40 (10)3.060 (10)145 (10)
O1—H1···O11i0.82 (5)1.90 (5)2.711 (7)168 (9)
Symmetry code: (i) x+2, y+1, z+1.
Summary of weak interactions (C—H···π and C—H···O; Å, °) between the pillararene and 1-octanamine molecules top
Cg1, Cg2, Cg3 and Cg4 are the centroids of the C1–C6, C29–C34, C15–C20 and C22–C27 rings, respectively.
D—H···AH···AD···AD—H···A
C45—H45A···Cg13.023.815 (10)139
C45—H45B···Cg22.893.867 (8)175
C46—H46A···Cg33.103.790 (9)128
C46—H46B···Cg43.184.106 (12)157
C47—H47A···O23.104.070 (13)166
C47—H47B···O103.264.158 (10)151
C48—H48A···O43.174.094 (12)156
C48—H48B···O63.243.974 (14)132
C52—H52C···O7ii2.433.39 (2)168
C44—H44B···O3ii2.653.611 (8)167
Symmetry codes: (ii) x - 1, y, z; (iii) x - 1, y - 1, z.
 

Funding information

The support of the Kuwait University (research grant No. SC 03/16) and the facilities of RSPU through grant Nos. GS 03/08 (Rigaku RAPID II, Japan), GS 01/03 (NMR–Bruker DPX Avance 600, Germany and GC MS Thermo Scientific, Germany) are gratefully acknowledged.

References

First citationAl-Azemi, T. F., Mohamod, A. A., Vinodh, M. & Alipour, F. H. (2018). Org. Chem. Front. 5, 10–18.  Google Scholar
First citationAl-Azemi, T. F., Vinodh, M., Alipour, F. H. & Mohamod, A. A. (2017). J. Org. Chem. 82, 10945–10952.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHan, J., Hou, X., Ke, C., Zhang, H., Strutt, N. L., Stern, C. L. & Stoddart, J. F. (2015). Org. Lett. 17, 3260–3263.  CrossRef Google Scholar
First citationHan, C., Ma, F., Zhang, Z., Xia, B., Yu, Y. & Huang, F. (2010). Org. Lett. 12, 4360–4363.  CrossRef Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHu, W. B., Hu, W. J., Zhao, X. L., Liu, Y. A., Li, J. S., Jiang, B. & Wen, K. (2016). J. Org. Chem. 81, 3877–3881.  CrossRef Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOgoshi, T., Kanai, S., Fujinami, S., Yamagishi, T. A. & Nakamoto, Y. (2008). J. Am. Chem. Soc. 130, 5022–5023.  CrossRef Google Scholar
First citationPan, M. & Xue, M. (2013). Eur. J. Org. Chem. pp. 4787–4793.  CrossRef Google Scholar
First citationRigaku (2009). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds