research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2R,3R)-1,4-Dioxa­spiro­[4.4]nonane-2,3-di­carb­­oxy­lic and (2R,3R)-1,4-dioxa­spiro­[4.5]decane-2,3-di­carb­­oxy­lic acids

CROSSMARK_Color_square_no_text.svg

aA.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospect, 119991, Moscow, Russian Federation, bN.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow, 119991, Russian Federation, cA.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova Str., Moscow, 119991, Russian Federation, and dChemistry Department, M.V. Lomonosov Moscow State University, 1 Leninskie Gory Str., Building 3, Moscow, 119991, Russian Federation
*Correspondence e-mail: mminyaev@mail.ru

Edited by E. V. Boldyreva, Russian Academy of Sciences, Russia (Received 11 June 2018; accepted 4 July 2018; online 6 July 2018)

The title compounds, C9H12O6 and C10H14O6, were formed by careful hydrolysis of the corresponding diethyl esters. Their single crystals were grown from an ethyl acetate/hexane mixture. Crystals of both compounds have monoclinic (P21) symmetry with a single mol­ecule in the asymmetric unit. Both crystal structures are very similar and display four –CO—OH⋯O=C(OH)– hydrogen bonds, forming a two-dimensional double-layered framework.

1. Chemical context

Transition-metal catalysis has developed as a powerful tool to create a variety of carbon–carbon and carbon–heteroatom bonds. Enanti­oselective versions of these reactions are especially inter­esting in the light of the possible pharmaceutical applications. The general route to such processes supposes the use of transition metal complexes with chiral ligands (Yang et al., 2017[Yang, L., Melot, R., Neuburger, M. & Baudoin, O. (2017). Chem. Sci. 8, 1344-1349.]). Therefore, easily accessible ligands of this type are of great importance for homogenous catalysis. Chiral phosphine ligands and amino acids are the most popular in this respect (Crassous, 2009[Crassous, J. (2009). Chem. Soc. Rev. 38, 830-845.]). Examples of chiral carboxyl­ate ligands are also known (Saget et al., 2012[Saget, T., Lemouzy, S. J. & Cramer, N. (2012). Angew. Chem. Int. Ed. 51, 2238-2242.]), which can be useful in the synthesis of chiral coordination compounds and mat­erials derived from them (Lam et al., 2011[Lam, F. L., Kwong, F. Y. & Chan, A. S. C. (2011). Top. Organomet. Chem. 36, 29-66.]). Various tartaric acid derivatives, which are also used in organic synthesis as chiral auxiliary agents to create chiral building blocks (Kassai et al., 2000[Kassai, C., Juvancz, Z., Bálint, J., Fogassy, E. & Kozma, D. (2000). Tetrahedron, 56, 8355-8359.]; Seebach et al., 2001[Seebach, D., Beck, A. K. & Heckel, A. (2001). Angew. Chem. Int. Ed. 40, 92-138.]), might be particularly useful in solving the stated problem. Herein we report the synthesis and structures of two tartaric acid derivatives that may potentially be used as synthetic precursors of chiral transition-metal catalysts.

[Scheme 1]

Condensation of cyclo­penta­none or cyclo­hexa­none with (2R,3R) diethyl tartrate led to the formation of the corres­ponding ketals, careful hydrolysis of which allowed us to prepare the title acids (Fig. 1[link]).

[Figure 1]
Figure 1
The synthesis of the title compounds (I)[link] and (II)[link].

2. Structural commentary

The structures of tartaric acid derivatives (I)[link] and (II)[link] were found as anti­cipated (Figs. 2[link] and 3[link], respectively), having a single mol­ecule in the asymmetric unit. The 1,3-dioxolane, cyclo­pentane [in (I)] and cyclo­hexane [in (II)] fragments have the usual conformations. The C—C, C—O and C=O bond lengths are within regular distances (Tables 1[link] and 2[link]). A detailed structural and conformational analysis for the crystal structures of some related acetals R′C3H3O2(COR)2 (R = NH2, OAlkyl, OH; substituent R′ is at the 2-position of the 1,3-dioxolane ring) was given by Eissmann et al. (2012[Eissmann, D., Katzsch, F. & Weber, E. (2012). Struct. Chem. 23, 1131-1142.]). Although the absolute structures of (I)[link] and (II)[link] cannot be unambiguously determined using the Flack parameter (Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]; Parsons, et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) with the SHELXL program (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), the chirality at carbon atoms C2, C3 (2R,3R) is initially known from their synthetic precursor (diethyl L-tartrate), and has been also confirmed for (2R,3R)-diethyl 1,4-dioxa­spiro­[4.5]decane-2,3-di­carboxyl­ate, and for (II)[link] by optical rotation measurements (see the experimental section). The mol­ecules of (I)[link] and (II)[link] have very similar positions in the unit cells, making the structures nearly isomorphous, but the c axis in (II)[link] is elongated by almost 1.5 Å compared with that in (I)[link] (see Table 5[link] below) because of the presence of an additional –(CH2)– unit in the cyclo­alkane fragment in (II)[link] (see Fig. 4[link] for the alignment of the cyclo­alkane fragments in the unit cell).

Table 1
Selected bond lengths (Å) for (I)[link]

O1—C1 1.325 (3) C1—C2 1.521 (4)
O2—C1 1.208 (3) C2—C3 1.541 (4)
O3—C4 1.222 (3) C3—C4 1.519 (4)
O4—C4 1.314 (3) C5—C9 1.529 (4)
O5—C2 1.409 (3) C5—C6 1.539 (4)
O5—C5 1.443 (3) C6—C7 1.533 (4)
O6—C3 1.409 (3) C7—C8 1.529 (4)
O6—C5 1.439 (3) C8—C9 1.522 (4)

Table 2
Selected bond lengths (Å) for (II)[link]

O1—C1 1.322 (2) C2—C3 1.541 (2)
O2—C1 1.208 (2) C3—C4 1.532 (2)
O3—C4 1.2229 (19) C5—C6 1.519 (2)
O4—C4 1.3135 (18) C5—C10 1.525 (2)
O5—C2 1.4107 (18) C6—C7 1.533 (2)
O5—C5 1.4398 (18) C7—C8 1.526 (3)
O6—C3 1.4135 (17) C8—C9 1.532 (2)
O6—C5 1.441 (2) C9—C10 1.538 (2)
C1—C2 1.529 (2)    

Table 5
Experimental details

  (I) (II)
Crystal data
Chemical formula C9H12O6 C10H14O6
Mr 216.19 230.21
Crystal system, space group Monoclinic, P21 Monoclinic, P21
Temperature (K) 100 100
a, b, c (Å) 6.2930 (8), 5.3712 (7), 14.0916 (17) 6.4272 (8), 5.2976 (6), 15.5678 (19)
β (°) 92.885 (2) 94.469 (2)
V3) 475.71 (10) 528.45 (11)
Z 2 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.13 0.12
Crystal size (mm) 0.21 × 0.07 × 0.03 0.39 × 0.15 × 0.05
 
Data collection
Diffractometer Bruker SMART APEXII Bruker SMART APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.827, 0.996 0.917, 0.995
No. of measured, independent and observed [I > 2σ(I)] reflections 4142, 2455, 1914 4329, 2612, 2503
Rint 0.030 0.015
(sin θ/λ)max−1) 0.682 0.682
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.083, 1.06 0.028, 0.072, 1.05
No. of reflections 2455 2612
No. of parameters 144 153
No. of restraints 1 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.29, −0.24 0.30, −0.20
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2017 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).
[Figure 2]
Figure 2
The structure of (2R,3R)-1,4-dioxa­spiro­[4.4]nonane-2,3-di­carb­oxy­lic acid, (I)[link]. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3]
Figure 3
The structure of (2R,3R)-1,4-dioxa­spiro­[4.5]decane-2,3-di­carb­oxy­lic acid, (II)[link]. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 4]
Figure 4
The packing of (I)[link] parallel to (010). Two inter­acting mol­ecular layers are shown. Only the H atoms involved in hydrogen bonding (blue dashed lines) have been included. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

The mol­ecules of both structures are packed in two-dimensional frameworks by four –CO—OH⋯O=C(OH)– hydrogen bonds between neighboring carboxyl groups (Tables 3[link] and 4[link]). The packing diagrams for (I)[link] (Figs. 4[link], 5[link]a) are nearly identical to those of (II)[link] (not shown). The mol­ecules form double layers parallel to the ab plane and sterically shielded from other layers by the cyclo­alkane fragments (Fig. 4[link]). Hydrogen-bonded chains within the same layer are formed via two inter­actions involving the O1—H1 and O3 atoms of each mol­ecule. These chains are inter­connected into a two-dimensional hydrogen-bonded double-layered framework parallel to (001) by the O4—H4 and O2 atoms. The complicated structure of the two-dimensional double-layered framework is shown in Fig. 5[link]a, but it can best be visualized in the simplified scheme in Fig. 5[link]b. It might be noted that some weak C—H⋯O inter­molecular inter­actions are also present (see the supporting information).

Table 3
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3i 0.78 (4) 1.87 (4) 2.620 (3) 159 (4)
O4—H4⋯O2ii 0.84 (4) 1.92 (4) 2.723 (3) 159 (3)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+1]; (ii) x+1, y-1, z.

Table 4
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3i 0.84 (3) 1.80 (3) 2.6230 (16) 164 (3)
O4—H4⋯O2ii 0.85 (3) 1.88 (3) 2.7116 (16) 164 (2)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+1]; (ii) x+1, y-1, z.
[Figure 5]
Figure 5
(a) The packing of (I)[link] parallel to (001). Two inter­acting mol­ecular layers are shown. Only the H atoms involved in hydrogen bonding (blue dashed lines) have been included. Displacement ellipsoids are drawn at the 50% probability level. (b) The simplified structure of the two-dimensional double-layered framework. Mol­ecules (circles) and hydrogen bonds (solid lines) within the same layers are shown in the same colour (blue or red). Hydrogen bonds between two layers are shown as solid black lines.

4. Database survey

Twenty crystal structures of tartaric acid ester derivatives possessing the 1,3-dioxolane cycle, RR′′C3H2O2(COOR)2, are known to date [Cambridge Structural Database (CSD) Version 5.39, latest update Feb 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]]. There are 10 crystal structures of esters bearing one substit­uent R′ (R′′ = H) at the 2-position of the 1,3-dioxolane fragment (acetals): CSD refcodes DAZJET (Lee et al., 1999[Lee, D., Sello, J. K. & Schreiber, S. L. (1999). J. Am. Chem. Soc. 121, 10648-10649.]), LACREM, LACRUC (Roush et al., 1992[Roush, W. R., Ratz, A. M. & Jablonowski, J. A. (1992). J. Org. Chem. 57, 2047-2052.]), LEPHAR, LEPHEV (Eissmann et al., 2012[Eissmann, D., Katzsch, F. & Weber, E. (2012). Struct. Chem. 23, 1131-1142.]), OLEGAN (Karisalmi et al., 2003[Karisalmi, K., Rissanen, K. & Koskinen, A. M. P. (2003). Org. Biomol. Chem. 1, 3193-3196.]), WEGXOW (Belokon' et al., 2005[Belokon', Yu. N., Gagieva, S. Ch., Sukhova, T. A., Dmitriev, A. V., Lyssenko, K. A., Bravaya, N. M., Bulychev, B. M. & Seebach, D. (2005). Russ. Chem. Bull. 54, 2348-2353.]), XEYSEA (Jiang et al., 2007[Jiang, J., Pan, Y., Wang, D.-C. & Ou-yang, P.-K. (2007). Acta Cryst. E63, o1093-o1094.]), YAXHIQ (Lv et al., 2012[Lv, C.-L., Chen, J.-H., Zhang, Y.-Z., Lu, D.-Q. & OuYang, P.-K. (2012). Acta Cryst. E68, o1128.]) and YIVGUF (Barrett et al., 1995[Barrett, A. G. M., Doubleday, W. W., Kasdorf, K., Tustin, G. J., White, A. J. P. & Williams, D. J. (1995). J. Chem. Soc. Chem. Commun. pp. 407-408.]). The crystal structures of esters with two substituents R′ and R′′ (ketals) are represented by GAGHAY, GUHGUL (Pelphrey et al., 2004[Pelphrey, P. M., Abboud, K. A. & Wright, D. L. (2004). J. Org. Chem. 69, 6931-6933.]), KEMRID (Wink & Dewan, 1990[Wink, D. J. & Dewan, J. C. (1990). Acta Cryst. C46, 1058-1061.]), MIWDIF (Ates & Curran, 2001[Ates, A. & Curran, D. P. (2001). J. Am. Chem. Soc. 123, 5130-5131.]), NAFWEW (Mikołajczyk et al., 1996[Mikołajczyk, M., Mikina, M., Wieczorek, M. W. & Błaszczyk, J. (1996). Angew. Chem. Int. Ed. Engl. 35, 1560-1562.]), QOTVUQ (Maezaki et al., 2000[Maezaki, N., Sakamoto, A., Nagahashi, N., Soejima, M., Li, Y.-X., Imamura, T., Kojima, N., Ohishi, H., Sakaguchi, K., Iwata, C. & Tanaka, T. (2000). J. Org. Chem. 65, 3284-3291.]), VICXOU/VICXOU10 (Giordano et al., 1990[Giordano, C., Coppi, L. & Restelli, A. (1990). J. Org. Chem. 55, 5400-5402.]; Ianelli et al., 1992[Ianelli, S., Nardelli, M., Giordano, C., Coppi, L. & Restelli, A. (1992). Acta Cryst. C48, 1722-1727.]), VIHVAL (Linker et al., 2013[Linker, T., Fudickar, W., Kelling, A. & Schilde, U. (2013). Z. Kristallogr. New Cryst. Struct. 228, 241-242.]) and VUCHAC, VUCHEG (Ianelli et al., 1992[Ianelli, S., Nardelli, M., Giordano, C., Coppi, L. & Restelli, A. (1992). Acta Cryst. C48, 1722-1727.]). The crystal structures of 14 related amide derivatives RR′′C3H2O2(CONR2)2 are also known (see the CSD and also Eissmann et al., 2012[Eissmann, D., Katzsch, F. & Weber, E. (2012). Struct. Chem. 23, 1131-1142.] and references therein). However, established crystal structures of related acids, RR′′C3H2O2(COOH)2, are limited to only one structure with R′ = –C6H4-4-COOH and R′′ = H (LEPHIZ; Eissmann et al., 2012[Eissmann, D., Katzsch, F. & Weber, E. (2012). Struct. Chem. 23, 1131-1142.]). This fact can be explained by some subtle problems with the individual isolation of pure acid samples because of the facile hydrolysis of the 1,3-dioxolane fragment during their preparation. Therefore, the synthesis and especially the crystallization of RR′′C3H2O2(COOH)2 acids is a challenging task.

5. Synthesis and crystallization

5.1. General experimental remarks

(+)-Diethyl L-tartrate [Sigma–Aldrich, >99%, found [α]D297K = +12° (acetone, 20.5mg ml−1); lit. data [α]D293K = +10° (ethanol, 53 mg ml−1), see Černý, 1977[Černý, M. (1977). Collect. Czech. Chem. Commun. 42, 3069-3078.]] was used as purchased. 1H and 13C{1H} NMR spectra were recorded with Bruker AM-300 and Bruker DRX-500 spectrometers in CDCl3 (Cambridge Isotope Laboratories, Inc., 99.8% 2H) and in acetone-d6 (Sigma–Aldrich, 99.9 atom % 2H).

5.2. Synthesis of (2R,3R)-diethyl 1,4-dioxa­spiro­[4.5]decane-2,3-di­carboxyl­ate

A 1000 ml round-bottomed flask equipped with a reflux condenser and a Dean–Stark trap was charged with diethyl L-tartrate (85.56 ml, 500 mmol), cyclo­hexa­none (51.82 ml, 500 mmol), toluene (600 ml) and p-toluene­sulfonic acid monohydrate (2.80 g, 147 mmol). The mixture was refluxed for 62 h. The resulting dark-brown mixture was washed with a saturated aqueous solution of NaHCO3 (2 × 100ml) and with water (2 × 100ml). The organic layer was dried over anhydrous Na2SO4. The solvent was removed on a rotary evaporator. The obtained dark-brown oil was distilled under reduced pressure (388–391 K, 250 Pa). The yield of the colourless liquid was 84% (120.25 g, 420 mmol). ηD293K = 1.4625, [α]D297K = −28.7 (acetone, 20.5 mg ml−1) [Lit. data ηD293K = 1.4605, [α]D293K = −35.57 (Tsuzuki, 1937[Tsuzuki, Y. (1937). Bull. Chem. Soc. Jpn, 12, 487-492.])]. 1H NMR (CDCl3) δ: 1.12 (t, 6H, CH3—CH2–O), 1.30–1.45 (m, 10H, –C5H10–), 4.10 (quartet, 4H, CH3—CH2—O), 4.55 (s, 2H, CH).

5.3. Synthesis of (2R,3R)-diethyl 1,4-dioxa­spiro­[4.4]nonane-2,3-di­carboxyl­ate

The synthesis of (2R,3R)-diethyl 1,4-dioxa­spiro­[4.4]nonane-2,3-di­carboxyl­ate was carried out analogously to that of (2R,3R)-diethyl 1,4-dioxa­spiro­[4.5]decane-2,3-di­carboxyl­ate, starting from 85.47 ml (500 mmol) of diethyl L-tartrate, 44.23 ml (500 mmol) of cyclo­penta­none, 600 ml of toluene and 2.80 g (14.7 mmol) of p-toluene­sulfonic acid monohydrate. The yield of the colourless liquid after vacuum distillation (383–385 K, 265 Pa) was 78% (106.08 g, 390 mmol). 1H NMR (CDCl3) δ: 1.17 (t, 6H, CH3—CH2—O), 1.51–1.63 (m, 4H, –C4H8–), 1.64–1.77 (m, 2H, –C4H8–), 1.77–1.91 (m, 2H, –C4H8–), 4.12 (quartet, 4H, CH3—CH2—O), 4.57 (s, 2H, CH).

5.4. Synthesis and crystallization of (2R,3R)-1,4-dioxa­spiro[4.5]decane-2,3-di­carb­oxy­lic acid, (II)

A 100 ml round-bottomed flask was charged with 2.130 g (7.52 mmol) of (2R,3R)-diethyl 1,4-dioxa­spiro­[4.5]decane-2,3-di­carboxyl­ate, 22.5 ml of THF, 22.5 ml of methanol and 22.5 ml of 2 M aqueous solution of LiOH. The reaction mixture was stirred for 6 h. It was then washed with diethyl ether (3 × 20 ml). The aqueous solution was acidified with a 2 M solution of HCl to pH ≃ 1 at 273 K. The formed acid was extracted with ethyl acetate (3 × 20 ml). The organic layer was dried over Na2SO4. The solution was removed on a rotary evaporator. The yield of the resulting white powder was 72% (1.250 g, 5.43 mmol). M.p. = 413K, [α]D297K = −27.3 (acetone, 20.5 mg ml−1) [Lit. data [α]D20 = −24.0, ethanol, 304 mg ml−1 (Innis & Lamaty, 1977[Innis, C. & Lamaty, G. (1977). Nouv. J. Chim. 1, 503-509.])]. 1H NMR (acetone-d6) δ: 1.36–1.44 (m, 2H, —C5H10—), 1.53-1.74 (m, 8H, –C5H10–), 4.82 (s, 2H, CH), 7.0 (br.s, 2H, –COOH). 13C{1H} NMR (acetone-d6) δ: 24.6, 25.6, 36.8, 77.7, 114.7, 171.7. Crystals of (II)[link] were grown from an ethyl acetate/hexane (1:1 v/v) mixture.

5.5. Synthesis and crystallization of (2R,3R)-1,4-dioxa­spiro[4.4]nonane-2,3-di­carb­oxy­lic acid, (I)

The synthesis of (I)[link] was carried out analogously to that of (II)[link], starting from 2.723 g (10 mmol) of (2R,3R)-diethyl 1,4-dioxa­spiro­[4.4]nonane-2,3-di­carboxyl­ate, 22.5 ml of THF, 22.5 ml of methanol and 22.5 ml of 2 M aqueous solution of LiOH. The yield of the resulting white powder was 50% (1.081 g, 5 mmol). 1H NMR (acetone-d6) δ: 1.59–1.72 (m, 4H, –C4H8–), 1.74–1.87 (m, 2H, –C4H8–), 1.90–2.02 (m, 2H, –C4H8–), 4.78 (s, 2H, CH), 7.5 (br.s, 2H, -COOH). 13C{1H} NMR (acetone-d6) δ: 24.0, 37.4, 77.9, 123.6, 171.4. Crystals of (I)[link] were grown from an ethyl acetate/hexane (1:1 v/v) mixture.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. The positions of all non-H and the hy­droxy H atoms were found from the electron difference density maps. These atoms were refined with individual anisotropic (non-H) or isotropic (hy­droxy H) displacement parameters. The positions of the other H atoms were also found from the difference map but they were positioned geometrically (C—H distance = 0.99 Å for methyl­ene, 1.00 Å for tertiary hydrogen atoms) and refined as riding atoms with Uiso(H) = 1.2Ueq(C). Reflection (001) in (II)[link] was affected by the beam stop, and was therefore omitted from the refinement.

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2017 (Sheldrick, 2015) and publCIF (Westrip, 2010).

(2R,3R)-1,4-Dioxaspiro[4.4]nonane-2,3-dicarboxylic acid (I) top
Crystal data top
C9H12O6F(000) = 228
Mr = 216.19Dx = 1.509 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 6.2930 (8) ÅCell parameters from 621 reflections
b = 5.3712 (7) Åθ = 3–29°
c = 14.0916 (17) ŵ = 0.13 mm1
β = 92.885 (2)°T = 100 K
V = 475.71 (10) Å3Needle, colourless
Z = 20.21 × 0.07 × 0.03 mm
Data collection top
Bruker SMART APEXII
diffractometer
2455 independent reflections
Radiation source: fine-focus sealed tube1914 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scansθmax = 29.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 88
Tmin = 0.827, Tmax = 0.996k = 77
4142 measured reflectionsl = 1419
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: mixed
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.031P)2]
where P = (Fo2 + 2Fc2)/3
2455 reflections(Δ/σ)max < 0.001
144 parametersΔρmax = 0.29 e Å3
1 restraintΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3838 (4)0.5521 (4)0.45124 (15)0.0153 (5)
H10.271 (6)0.587 (8)0.468 (3)0.039 (13)*
O20.3808 (3)0.8867 (4)0.35486 (14)0.0156 (5)
O30.9421 (3)0.1722 (4)0.44956 (14)0.0133 (5)
O41.0688 (3)0.2205 (4)0.30548 (14)0.0141 (5)
H41.173 (6)0.144 (7)0.332 (2)0.026 (10)*
O50.7890 (3)0.7805 (3)0.30380 (14)0.0123 (5)
O60.6993 (3)0.4106 (4)0.23156 (13)0.0127 (4)
C10.4679 (4)0.7060 (5)0.38994 (19)0.0108 (6)
C20.6954 (4)0.6301 (5)0.3722 (2)0.0113 (6)
H20.7829880.6399800.4332890.014*
C30.7155 (4)0.3667 (5)0.33022 (19)0.0103 (6)
H30.5915220.2639330.3484930.012*
C40.9202 (4)0.2424 (5)0.3672 (2)0.0105 (6)
C50.7661 (4)0.6609 (5)0.2121 (2)0.0124 (6)
C60.6025 (5)0.7952 (6)0.1454 (2)0.0174 (7)
H6A0.4815490.6836190.1278870.021*
H6B0.5471710.9454530.1764710.021*
C70.7213 (5)0.8670 (7)0.0571 (2)0.0276 (8)
H7A0.7042270.7375140.0073040.033*
H7B0.6691651.0279090.0307320.033*
C80.9535 (5)0.8873 (7)0.0939 (2)0.0220 (7)
H8A1.0515050.8695350.0414940.026*
H8B0.9810591.0484630.1262900.026*
C90.9776 (4)0.6711 (6)0.1634 (2)0.0161 (6)
H9A1.0971960.7009380.2103520.019*
H9B1.0035360.5135400.1294160.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0145 (11)0.0154 (11)0.0167 (13)0.0014 (9)0.0066 (9)0.0018 (10)
O20.0148 (10)0.0150 (10)0.0172 (12)0.0050 (9)0.0011 (8)0.0010 (10)
O30.0147 (10)0.0140 (10)0.0112 (11)0.0015 (8)0.0007 (8)0.0017 (9)
O40.0120 (10)0.0154 (11)0.0153 (11)0.0031 (8)0.0034 (8)0.0025 (9)
O50.0164 (10)0.0109 (10)0.0100 (11)0.0014 (8)0.0030 (8)0.0012 (8)
O60.0178 (10)0.0102 (9)0.0099 (11)0.0003 (8)0.0003 (8)0.0005 (9)
C10.0146 (13)0.0093 (12)0.0085 (14)0.0004 (11)0.0002 (11)0.0040 (12)
C20.0136 (14)0.0087 (13)0.0117 (16)0.0012 (10)0.0015 (11)0.0005 (11)
C30.0127 (13)0.0083 (12)0.0103 (15)0.0005 (10)0.0021 (11)0.0001 (12)
C40.0100 (13)0.0063 (13)0.0151 (16)0.0005 (10)0.0001 (11)0.0031 (12)
C50.0171 (14)0.0110 (13)0.0091 (15)0.0011 (11)0.0019 (11)0.0020 (12)
C60.0183 (15)0.0182 (14)0.0155 (17)0.0050 (12)0.0003 (13)0.0006 (13)
C70.0310 (18)0.035 (2)0.0167 (18)0.0068 (16)0.0021 (14)0.0092 (16)
C80.0258 (16)0.0225 (16)0.0185 (18)0.0003 (14)0.0089 (13)0.0071 (15)
C90.0164 (14)0.0163 (15)0.0160 (17)0.0014 (12)0.0047 (12)0.0012 (14)
Geometric parameters (Å, º) top
O1—C11.325 (3)C3—H31.0000
O1—H10.78 (4)C5—C91.529 (4)
O2—C11.208 (3)C5—C61.539 (4)
O3—C41.222 (3)C6—C71.533 (4)
O4—C41.314 (3)C6—H6A0.9900
O4—H40.84 (4)C6—H6B0.9900
O5—C21.409 (3)C7—C81.529 (4)
O5—C51.443 (3)C7—H7A0.9900
O6—C31.409 (3)C7—H7B0.9900
O6—C51.439 (3)C8—C91.522 (4)
C1—C21.521 (4)C8—H8A0.9900
C2—C31.541 (4)C8—H8B0.9900
C2—H21.0000C9—H9A0.9900
C3—C41.519 (4)C9—H9B0.9900
C1—O1—H1117 (3)O5—C5—C6111.9 (2)
C4—O4—H4108 (2)C9—C5—C6106.2 (2)
C2—O5—C5109.3 (2)C7—C6—C5106.0 (2)
C3—O6—C5109.7 (2)C7—C6—H6A110.5
O2—C1—O1125.4 (2)C5—C6—H6A110.5
O2—C1—C2124.0 (2)C7—C6—H6B110.5
O1—C1—C2110.5 (2)C5—C6—H6B110.5
O5—C2—C1112.8 (2)H6A—C6—H6B108.7
O5—C2—C3102.6 (2)C8—C7—C6103.9 (3)
C1—C2—C3113.9 (2)C8—C7—H7A111.0
O5—C2—H2109.1C6—C7—H7A111.0
C1—C2—H2109.1C8—C7—H7B111.0
C3—C2—H2109.1C6—C7—H7B111.0
O6—C3—C4115.5 (2)H7A—C7—H7B109.0
O6—C3—C2102.8 (2)C9—C8—C7103.1 (3)
C4—C3—C2110.9 (2)C9—C8—H8A111.1
O6—C3—H3109.1C7—C8—H8A111.1
C4—C3—H3109.1C9—C8—H8B111.1
C2—C3—H3109.1C7—C8—H8B111.1
O3—C4—O4123.4 (2)H8A—C8—H8B109.1
O3—C4—C3121.0 (2)C8—C9—C5104.8 (2)
O4—C4—C3115.6 (2)C8—C9—H9A110.8
O6—C5—O5105.2 (2)C5—C9—H9A110.8
O6—C5—C9112.9 (2)C8—C9—H9B110.8
O5—C5—C9109.6 (2)C5—C9—H9B110.8
O6—C5—C6111.2 (2)H9A—C9—H9B108.9
C5—O5—C2—C195.7 (2)C3—O6—C5—O59.5 (3)
C5—O5—C2—C327.4 (3)C3—O6—C5—C9110.0 (2)
O2—C1—C2—O55.2 (4)C3—O6—C5—C6130.8 (2)
O1—C1—C2—O5177.0 (2)C2—O5—C5—O612.6 (3)
O2—C1—C2—C3121.7 (3)C2—O5—C5—C9134.3 (2)
O1—C1—C2—C360.5 (3)C2—O5—C5—C6108.2 (2)
C5—O6—C3—C495.4 (3)O6—C5—C6—C7120.1 (3)
C5—O6—C3—C225.5 (3)O5—C5—C6—C7122.6 (3)
O5—C2—C3—O632.0 (2)C9—C5—C6—C73.0 (3)
C1—C2—C3—O690.3 (3)C5—C6—C7—C826.1 (3)
O5—C2—C3—C492.0 (3)C6—C7—C8—C939.3 (3)
C1—C2—C3—C4145.7 (2)C7—C8—C9—C537.6 (3)
O6—C3—C4—O3172.3 (2)O6—C5—C9—C8143.4 (3)
C2—C3—C4—O371.3 (3)O5—C5—C9—C899.7 (3)
O6—C3—C4—O48.6 (3)C6—C5—C9—C821.4 (3)
C2—C3—C4—O4107.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.78 (4)1.87 (4)2.620 (3)159 (4)
O4—H4···O2ii0.84 (4)1.92 (4)2.723 (3)159 (3)
C2—H2···O3iii1.002.343.315 (4)166
C3—H3···O2iv1.002.433.358 (3)155
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+1, y1, z; (iii) x+2, y+1/2, z+1; (iv) x, y1, z.
(2R,3R)-1,4-Dioxaspiro[4.5]decane-2,3-dicarboxylic acid (II) top
Crystal data top
C10H14O6Dx = 1.447 Mg m3
Mr = 230.21Melting point: 413(1) K
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 6.4272 (8) ÅCell parameters from 361 reflections
b = 5.2976 (6) Åθ = 3–29°
c = 15.5678 (19) ŵ = 0.12 mm1
β = 94.469 (2)°T = 100 K
V = 528.45 (11) Å3Needle, colourless
Z = 20.39 × 0.15 × 0.05 mm
F(000) = 244
Data collection top
Bruker SMART APEXII
diffractometer
2612 independent reflections
Radiation source: fine-focus sealed tube2503 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ω scansθmax = 29.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 88
Tmin = 0.917, Tmax = 0.995k = 75
4329 measured reflectionsl = 2120
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: mixed
wR(F2) = 0.072H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0411P)2 + 0.0783P]
where P = (Fo2 + 2Fc2)/3
2612 reflections(Δ/σ)max < 0.001
153 parametersΔρmax = 0.30 e Å3
1 restraintΔρmin = 0.20 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.38484 (18)0.5840 (2)0.45476 (7)0.0142 (2)
H10.275 (4)0.638 (6)0.4745 (17)0.046 (8)*
O20.37180 (17)0.9308 (2)0.37124 (7)0.0150 (2)
O30.92950 (17)0.2135 (2)0.45684 (7)0.0124 (2)
O41.05961 (17)0.2630 (2)0.32878 (7)0.0134 (2)
H41.158 (4)0.171 (5)0.3519 (15)0.027 (6)*
O50.76550 (18)0.8366 (2)0.32166 (7)0.0118 (2)
O60.70176 (17)0.4547 (2)0.25475 (7)0.0116 (2)
C10.4607 (2)0.7451 (3)0.40041 (9)0.0104 (3)
C20.6846 (2)0.6758 (3)0.38313 (9)0.0099 (3)
H20.7746890.6882580.4382950.012*
C30.7100 (2)0.4108 (3)0.34451 (9)0.0099 (3)
H30.5883240.3038770.3577640.012*
C40.9117 (2)0.2852 (3)0.38196 (10)0.0103 (3)
C50.7505 (2)0.7152 (3)0.23867 (9)0.0109 (3)
C60.9603 (2)0.7413 (3)0.20088 (9)0.0145 (3)
H6A1.0695120.6589280.2395690.017*
H6B0.9962550.9223930.1966470.017*
C70.9553 (3)0.6204 (4)0.11126 (11)0.0208 (4)
H7A1.0907490.6485730.0865790.025*
H7B0.9342040.4359920.1163240.025*
C80.7800 (3)0.7324 (4)0.05127 (10)0.0233 (4)
H8A0.7754790.6461870.0052670.028*
H8B0.8079020.9137250.0419280.028*
C90.5691 (3)0.7025 (4)0.08968 (10)0.0191 (3)
H9A0.5356280.5208080.0943780.023*
H9B0.4584920.7821780.0509600.023*
C100.5734 (2)0.8254 (3)0.17929 (10)0.0151 (3)
H10A0.5930001.0098890.1739410.018*
H10B0.4386020.7956420.2043230.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0135 (5)0.0139 (6)0.0160 (5)0.0025 (5)0.0065 (4)0.0026 (5)
O20.0139 (5)0.0142 (6)0.0172 (5)0.0044 (4)0.0029 (4)0.0027 (5)
O30.0127 (5)0.0125 (6)0.0122 (5)0.0009 (4)0.0014 (4)0.0004 (4)
O40.0115 (5)0.0133 (6)0.0157 (5)0.0032 (4)0.0036 (4)0.0017 (5)
O50.0156 (5)0.0092 (5)0.0111 (5)0.0026 (4)0.0036 (4)0.0012 (4)
O60.0156 (5)0.0087 (5)0.0104 (5)0.0011 (4)0.0005 (4)0.0002 (4)
C10.0114 (6)0.0102 (7)0.0097 (6)0.0006 (5)0.0010 (5)0.0031 (6)
C20.0101 (6)0.0087 (7)0.0110 (6)0.0007 (5)0.0020 (5)0.0006 (5)
C30.0097 (6)0.0090 (7)0.0111 (6)0.0015 (5)0.0011 (5)0.0007 (5)
C40.0099 (6)0.0066 (7)0.0145 (7)0.0003 (5)0.0008 (5)0.0011 (5)
C50.0125 (6)0.0095 (7)0.0108 (6)0.0003 (5)0.0020 (5)0.0007 (6)
C60.0141 (7)0.0158 (8)0.0142 (6)0.0018 (6)0.0048 (5)0.0016 (6)
C70.0203 (8)0.0265 (10)0.0165 (7)0.0028 (7)0.0079 (6)0.0053 (7)
C80.0288 (9)0.0291 (10)0.0126 (7)0.0068 (8)0.0054 (6)0.0003 (7)
C90.0208 (8)0.0239 (10)0.0122 (7)0.0016 (7)0.0008 (6)0.0028 (7)
C100.0149 (7)0.0158 (8)0.0145 (7)0.0015 (6)0.0000 (5)0.0029 (6)
Geometric parameters (Å, º) top
O1—C11.322 (2)C5—C101.525 (2)
O1—H10.84 (3)C6—C71.533 (2)
O2—C11.208 (2)C6—H6A0.9900
O3—C41.2229 (19)C6—H6B0.9900
O4—C41.3135 (18)C7—C81.526 (3)
O4—H40.85 (3)C7—H7A0.9900
O5—C21.4107 (18)C7—H7B0.9900
O5—C51.4398 (18)C8—C91.532 (2)
O6—C31.4135 (17)C8—H8A0.9900
O6—C51.441 (2)C8—H8B0.9900
C1—C21.529 (2)C9—C101.538 (2)
C2—C31.541 (2)C9—H9A0.9900
C2—H21.0000C9—H9B0.9900
C3—C41.532 (2)C10—H10A0.9900
C3—H31.0000C10—H10B0.9900
C5—C61.519 (2)
C1—O1—H1112 (2)C5—C6—H6A109.4
C4—O4—H4109.4 (15)C7—C6—H6A109.4
C2—O5—C5109.65 (12)C5—C6—H6B109.4
C3—O6—C5109.70 (12)C7—C6—H6B109.4
O2—C1—O1125.41 (14)H6A—C6—H6B108.0
O2—C1—C2123.59 (14)C8—C7—C6110.88 (15)
O1—C1—C2110.89 (13)C8—C7—H7A109.5
O5—C2—C1112.10 (12)C6—C7—H7A109.5
O5—C2—C3103.28 (11)C8—C7—H7B109.5
C1—C2—C3114.66 (12)C6—C7—H7B109.5
O5—C2—H2108.9H7A—C7—H7B108.1
C1—C2—H2108.9C7—C8—C9110.75 (14)
C3—C2—H2108.9C7—C8—H8A109.5
O6—C3—C4114.38 (12)C9—C8—H8A109.5
O6—C3—C2103.84 (12)C7—C8—H8B109.5
C4—C3—C2111.08 (12)C9—C8—H8B109.5
O6—C3—H3109.1H8A—C8—H8B108.1
C4—C3—H3109.1C8—C9—C10110.87 (14)
C2—C3—H3109.1C8—C9—H9A109.5
O3—C4—O4123.68 (14)C10—C9—H9A109.5
O3—C4—C3120.74 (14)C8—C9—H9B109.5
O4—C4—C3115.58 (13)C10—C9—H9B109.5
O5—C5—O6105.80 (12)H9A—C9—H9B108.1
O5—C5—C6107.89 (12)C5—C10—C9110.35 (14)
O6—C5—C6111.46 (13)C5—C10—H10A109.6
O5—C5—C10111.57 (13)C9—C10—H10A109.6
O6—C5—C10108.05 (13)C5—C10—H10B109.6
C6—C5—C10111.92 (13)C9—C10—H10B109.6
C5—C6—C7110.97 (13)H10A—C10—H10B108.1
C5—O5—C2—C199.25 (14)C2—O5—C5—O612.62 (15)
C5—O5—C2—C324.70 (14)C2—O5—C5—C6132.02 (13)
O2—C1—C2—O56.9 (2)C2—O5—C5—C10104.65 (14)
O1—C1—C2—O5176.76 (12)C3—O6—C5—O56.39 (15)
O2—C1—C2—C3124.22 (16)C3—O6—C5—C6110.62 (13)
O1—C1—C2—C359.43 (16)C3—O6—C5—C10126.00 (13)
C5—O6—C3—C4100.36 (14)O5—C5—C6—C7178.91 (14)
C5—O6—C3—C220.87 (14)O6—C5—C6—C765.34 (17)
O5—C2—C3—O627.60 (14)C10—C5—C6—C755.80 (19)
C1—C2—C3—O694.65 (14)C5—C6—C7—C855.80 (19)
O5—C2—C3—C495.81 (13)C6—C7—C8—C956.5 (2)
C1—C2—C3—C4141.94 (13)C7—C8—C9—C1056.9 (2)
O6—C3—C4—O3172.39 (14)O5—C5—C10—C9176.83 (13)
C2—C3—C4—O370.47 (18)O6—C5—C10—C967.27 (16)
O6—C3—C4—O47.99 (19)C6—C5—C10—C955.82 (18)
C2—C3—C4—O4109.15 (15)C8—C9—C10—C556.08 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.84 (3)1.80 (3)2.6230 (16)164 (3)
O4—H4···O2ii0.85 (3)1.88 (3)2.7116 (16)164 (2)
C2—H2···O3iii1.002.413.3818 (19)164
C3—H3···O2iv1.002.443.392 (2)160
C6—H6A···O40.992.523.255 (2)131
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+1, y1, z; (iii) x+2, y+1/2, z+1; (iv) x, y1, z.
 

Acknowledgements

Equipment from the collective exploitation center `New petrochemical processes, polymer composites and adhesives' of TIPS RAS was used.

Funding information

Funding for this research was provided by: the TIPS RAS State Plan.

References

First citationAtes, A. & Curran, D. P. (2001). J. Am. Chem. Soc. 123, 5130–5131.  Web of Science CrossRef Google Scholar
First citationBarrett, A. G. M., Doubleday, W. W., Kasdorf, K., Tustin, G. J., White, A. J. P. & Williams, D. J. (1995). J. Chem. Soc. Chem. Commun. pp. 407–408.  CrossRef Web of Science Google Scholar
First citationBelokon', Yu. N., Gagieva, S. Ch., Sukhova, T. A., Dmitriev, A. V., Lyssenko, K. A., Bravaya, N. M., Bulychev, B. M. & Seebach, D. (2005). Russ. Chem. Bull. 54, 2348–2353.  Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationČerný, M. (1977). Collect. Czech. Chem. Commun. 42, 3069–3078.  Google Scholar
First citationCrassous, J. (2009). Chem. Soc. Rev. 38, 830–845.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEissmann, D., Katzsch, F. & Weber, E. (2012). Struct. Chem. 23, 1131–1142.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGiordano, C., Coppi, L. & Restelli, A. (1990). J. Org. Chem. 55, 5400–5402.  CSD CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIanelli, S., Nardelli, M., Giordano, C., Coppi, L. & Restelli, A. (1992). Acta Cryst. C48, 1722–1727.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationInnis, C. & Lamaty, G. (1977). Nouv. J. Chim. 1, 503–509.  Google Scholar
First citationJiang, J., Pan, Y., Wang, D.-C. & Ou-yang, P.-K. (2007). Acta Cryst. E63, o1093–o1094.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKarisalmi, K., Rissanen, K. & Koskinen, A. M. P. (2003). Org. Biomol. Chem. 1, 3193–3196.  Web of Science CrossRef Google Scholar
First citationKassai, C., Juvancz, Z., Bálint, J., Fogassy, E. & Kozma, D. (2000). Tetrahedron, 56, 8355–8359.  Web of Science CrossRef Google Scholar
First citationLam, F. L., Kwong, F. Y. & Chan, A. S. C. (2011). Top. Organomet. Chem. 36, 29–66.  Web of Science CrossRef Google Scholar
First citationLee, D., Sello, J. K. & Schreiber, S. L. (1999). J. Am. Chem. Soc. 121, 10648–10649.  Web of Science CrossRef Google Scholar
First citationLinker, T., Fudickar, W., Kelling, A. & Schilde, U. (2013). Z. Kristallogr. New Cryst. Struct. 228, 241–242.  Google Scholar
First citationLv, C.-L., Chen, J.-H., Zhang, Y.-Z., Lu, D.-Q. & OuYang, P.-K. (2012). Acta Cryst. E68, o1128.  CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMaezaki, N., Sakamoto, A., Nagahashi, N., Soejima, M., Li, Y.-X., Imamura, T., Kojima, N., Ohishi, H., Sakaguchi, K., Iwata, C. & Tanaka, T. (2000). J. Org. Chem. 65, 3284–3291.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMikołajczyk, M., Mikina, M., Wieczorek, M. W. & Błaszczyk, J. (1996). Angew. Chem. Int. Ed. Engl. 35, 1560–1562.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPelphrey, P. M., Abboud, K. A. & Wright, D. L. (2004). J. Org. Chem. 69, 6931–6933.  Web of Science CrossRef Google Scholar
First citationRoush, W. R., Ratz, A. M. & Jablonowski, J. A. (1992). J. Org. Chem. 57, 2047–2052.  CrossRef Web of Science Google Scholar
First citationSaget, T., Lemouzy, S. J. & Cramer, N. (2012). Angew. Chem. Int. Ed. 51, 2238–2242.  Web of Science CrossRef Google Scholar
First citationSeebach, D., Beck, A. K. & Heckel, A. (2001). Angew. Chem. Int. Ed. 40, 92–138.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTsuzuki, Y. (1937). Bull. Chem. Soc. Jpn, 12, 487–492.  CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWink, D. J. & Dewan, J. C. (1990). Acta Cryst. C46, 1058–1061.  CrossRef Web of Science IUCr Journals Google Scholar
First citationYang, L., Melot, R., Neuburger, M. & Baudoin, O. (2017). Chem. Sci. 8, 1344–1349.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds