research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of aqua­(2-{[2-({2-[bis­­(carboxyl­ato-κO-meth­yl)amino-κN]eth­yl}(carboxyl­ato-κO-meth­yl)amino-κN)eth­yl](carb­­oxy­meth­yl)aza­niumyl}acetato)­gallium(III) trihydrate

CROSSMARK_Color_square_no_text.svg

aAdvanced Drug Delivery Group, School of Pharmacy, University of Sydney, NSW, 2006, Australia, bSchool of Chemistry, University of Sydney, NSW 2006, Australia, cDepartment of PET & Nuclear Medicine, Royal Prince Alfred Hospital, NSW 2050, Australia, and dDepartment of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark
*Correspondence e-mail: peter.turner@sydney.edu.au, kim.chan@sydney.edu.au

Edited by H. Ishida, Okayama University, Japan (Received 5 June 2018; accepted 30 June 2018; online 6 July 2018)

In the title GaIII complex compound with pentetic acid, [Ga(C14H20N3O10)(H2O)]·3H2O, the GaIII centre is bound in a slightly distorted octa­hedral coordination sphere by two amine N atoms, three carboxyl­ate O atoms and one water O atom. The complex mol­ecule exists as a zwitterion. In the crystal, the complexes are linked to each other via O—H⋯O and C—H⋯O hydrogen bonds, forming layers parallel to (001). Three uncoordinating water mol­ecules link the complex layers via O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds, forming a three-dimensional network.

1. Chemical context

The use of gallium-68 (68Ga) for mol­ecular imaging of diseases has become increasingly popular and the number of 68Ga-related articles has increased drastically in the past 10 years, as pointed out by Velikyan (2014[Velikyan, I. (2014). Theranostics, 4, 47-80.]). The application span is wide and covers the diagnosis of cancer, cardiovascular disease, infection and inflammatory conditions (Brasse & Nonat, 2015[Brasse, D. & Nonat, A. (2015). Dalton Trans. 44, 4845-4858.]; Jalilian & Akhlaghi, 2013[Jalilian, A. R. & Akhlaghi, M. (2013). J. Liq. Chromatogr. Relat. Technol. 36, 731-739.]; Banerjee & Pomper, 2013[Banerjee, S. R. & Pomper, M. G. (2013). Appl. Radiat. Isot. 76, 2-13.]; Schultz et al., 2013[Schultz, M. K., Donahue, P., Musgrave, N. I., Zhernosekov, K., Naidoo, C., Razbash, A., Tworovska, I. W., Dick, D., Leonard Watkins, G. M., Graham, M., Runde, W. A., Clanton, J. & Sunderland, J. J. (2013). J. Postgrad. Med. Educ. Res. 47, 26-30.]). The increase in popularity and use can be ascribed to several factors. On the one hand, 68Ga produces high-quality PET images. On the other hand, it has a half-life of 68 min, which makes it suitable for use in patients as the radiation dose can be kept at a minimum (Hofman & Hicks, 2016[Hofman, M. S. & Hicks, R. J. (2016). Semin. Nucl. Med. 46, 448-461.]). 68Ga can be eluted from a 68Ge/68Ga generator multiple times a day, which makes it easy for hospitals to prepare gallium solutions for patients on demand. It is vital that gallium ions are complexed, as free ions may cause undesirable effects in vivo. First, free gallium can cause iron release from transferrin, which may cause free-radical toxicity. Second, gallium ions may cause an additional and unnecessary radiation dose. 2-(Bis{2-[bis­(carb­oxy­meth­yl)amino]­eth­yl}amino)­acetic acid (pentetic acid or DTPA) is an amino-polycarb­oxy­lic acid consisting of a di­ethyl­enetri­amine backbone with five carb­oxy groups. A complex is easily formed between gallium and DTPA and it has a stability constant of 1023.32, which makes the complex stable against exchange with transferrin (Moerlein & Welch, 1981[Moerlein, S. M. & Welch, M. J. (1981). Int. J. Nucl. Med. Biol. 8, 277-287.]; Green & Welch, 1989[Green, M. A. & Welch, M. J. (1989). Int. J. Radiat. Appl. Instrum. B, 16, 435-448.]). DTPA-peptides labelled with 68Ga have been used for liver-function imaging, determination of low-density lipoprotein metabolism, bone-marrow function and mol­ecular identification of metastatic tumours (Haubner et al., 2013[Haubner, R., Vera, D. R., Farshchi-Heydari, S., Helbok, A., Rangger, C., Putzer, D. & Virgolini, I. J. (2013). Eur. J. Nucl. Med. Mol. Imaging, 40, 1245-1255.]; Moerlein et al., 1991[Moerlein, S. M., Daugherty, A., Sobel, B. E. & Welch, M. J. (1991). J. Nucl. Med. 32, 300-307.]; Vera et al., 2012[Vera, D. R., Hoh, C., Mell, L., Corbeil, J., Farshchi-Heydari, S., James, C., Felton, M., Qin, Z. & Zhu, H. (2012). J. Nucl. Med. 53 (Suppl. 1), 1538.]; Pitalúa-Cortés et al., 2017[Pitalúa-Cortés, Q. G., García-Pérez, F. O., Villaseñor-Navarro, Y., Lara-Medina, F. U., Matus-Santos, J. A. & Soldevilla-Gallardo, I. (2017). Br. J. Radiol. 3, 1-6.]), but the mol­ecular structure of our compound has not yet been reported. Here we present and describe the mol­ecular structure of the title compound (Fig. 1[link]).

[Scheme 1]
[Figure 1]
Figure 1
OLEX2 generated depiction of the title compound, with displacement ellipsoids drawn at the 75% probability level. Dashed lines show O—H⋯O and N—H⋯O hydrogen bonds.

2. Structural commentary

The complex mol­ecule (abbreviated as Ga-DTPA) is a zwitterion and has a slightly distorted octa­hedral coordination geometry with one water and one amine in the axial positions, and three carboxyl­ate groups and one amine in the equatorial positions. The complex consists of three five-membered Ga/N/C/C/O chelate rings and one five-membered Ga/N/C/C/N chelate ring. The Ga—N bonds [Ga1—N1 = 2.081 (4) Å and Ga1—N2 = 2.156 (3) Å] are significantly longer than the Ga—O bonds [Ga1—O1 = 1.933 (3) Å, Ga1—O3 = 1.925 (3) Å, Ga1—O5 = 1.964 (3) Å and Ga1—O1W = 1.916 (3) Å]. The C—O bond lengths coordinating to the GaIII atom vary little, with the shortest and longest bonds differing by only 0.019 Å [C2—O1 = 1.286 (5) Å, C4—O3 = 1.305 (5) Å and C8—O5 = 1.293 (5) Å]. The three trans angles, N1—Ga1—O1W, O1—Ga1—O5 and O3—Ga1—N2, are 174.57 (16), 174.05 (12) and 164.97 (13)°, respectively. The O—Ga—O, O—Ga—N and N—Ga—N bite angles in the chelate rings deviate somewhat from 90°, ranging from 81.75 (12) to 95.91 (12)°.

3. Supra­molecular features

Packing depictions viewed along the a and b axes provided in Figs. 2[link] and 3[link], respectively, show pairs of layers containing the complexes parallel to the (001) plane. In the layer, the complexes are linked to each other by O—H⋯O and C—H⋯O hydrogen bonds (Table 1[link]). Three uncoordinating water mol­ecules link the complex layers via O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds, forming a three-dimensional network.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O10—H10O⋯O8i 0.87 (6) 1.67 (6) 2.525 (4) 169 (6)
O1W—H1WA⋯O6ii 0.71 (5) 1.93 (5) 2.636 (5) 174 (6)
O1W—H1WB⋯O7iii 0.99 (6) 1.54 (6) 2.524 (5) 174 (5)
O2W—H2WA⋯O3W 0.84 (7) 1.94 (7) 2.741 (5) 158 (6)
O2W—H2WB⋯O4W 0.77 (6) 2.09 (6) 2.828 (5) 160 (6)
O3W—H3WA⋯O2i 0.79 (10) 2.47 (10) 2.934 (5) 119 (9)
O3W—H3WA⋯O10iv 0.79 (10) 2.37 (10) 3.096 (5) 153 (9)
O3W—H3WB⋯O8v 0.81 (7) 2.60 (6) 3.215 (5) 134 (5)
O3W—H3WB⋯O9v 0.81 (7) 2.28 (6) 2.934 (5) 138 (6)
O4W—H4WA⋯O2 0.80 (6) 2.00 (6) 2.806 (5) 175 (6)
O4W—H4WB⋯O9v 0.83 (7) 2.09 (7) 2.911 (5) 168 (7)
N3—H3N⋯O2W 0.90 (5) 1.91 (5) 2.737 (5) 152 (4)
C1—H1A⋯O4Wvi 0.99 2.43 3.417 (6) 173
C3—H3A⋯O7vii 0.99 2.25 3.197 (5) 159
C3—H3B⋯O10viii 0.99 2.52 3.225 (5) 128
C6—H6B⋯O3W 0.99 2.53 3.254 (5) 130
C7—H7B⋯O3i 0.99 2.28 3.227 (5) 161
C9—H9B⋯O8 0.99 2.53 3.207 (5) 126
C10—H10A⋯O6ix 0.99 2.46 3.271 (5) 139
C10—H10B⋯O1i 0.99 2.53 3.300 (5) 134
C11—H11A⋯O4x 0.99 2.45 3.438 (5) 176
C13—H13A⋯O1i 0.99 2.54 3.367 (5) 140
C13—H13A⋯O2i 0.99 2.41 3.368 (5) 162
C13—H13B⋯O6ix 0.99 2.34 3.150 (5) 139
Symmetry codes: (i) x-1, y, z; (ii) [-x+1, y+{\script{1\over 2}}, -z]; (iii) [-x+1, y-{\script{1\over 2}}, -z]; (iv) [-x, y-{\script{1\over 2}}, -z+1]; (v) [-x+1, y-{\script{1\over 2}}, -z+1]; (vi) [-x+2, y-{\script{1\over 2}}, -z+1]; (vii) x, y-1, z; (viii) x+1, y-1, z; (ix) [-x, y+{\script{1\over 2}}, -z]; (x) x-1, y+1, z.
[Figure 2]
Figure 2
A packing diagram of the title compound, viewed along the a axis. Dashed lines show O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds.
[Figure 3]
Figure 3
A packing diagram of the title compound, viewed along the b axis. Dashed lines show O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds.

4. Database survey

In our survey of the Cambridge Structural Database (CSD version 5.39, update November 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), we found 64 crystal structures of metal complexes with DTPA. In another search, we found 72 crystal structures of gallium complexes hexa-coordinated by two N and four O atoms.

5. Synthesis and crystallization

DTPA (50 mg) in acetate buffer (2 mL) adjusted to pH = 4.2 was heated with stirring for dissolution. Gallium nitrate (39.9 mg) was then added to the DTPA solution and the mixture was stirred for at least 10 min at 353 K. The solution was concentrated under ambient pressure at room temperature. When almost all of the solvent had evaporated, methanol was added dropwise to precipitate Ga-DTPA. The precipitate was collected on a 0.22 µm polyamide filter and dried at room temperature. The obtained Ga-DTPA (1.30 mg) was re-dissolved in ultra-pure water (1 mL) and single crystals suitable for X-ray diffraction were obtained after four weeks by slow diffusion of tetra­hydro­furan into the aqueous solution, as illustrated in Fig. 4[link].

[Figure 4]
Figure 4
Vapor liquid diffusion technique illustration. (a) a HPLC vial containing Ga-DTPA dissolved in water was placed inside a bigger vial. The closed bigger vial contained THF. (b) THF diffused slowly into the small vial. After four weeks, visible Ga-DTPA crystals were formed.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. N- and O-bound H atoms were located in difference-Fourier maps and freely refined. C-bound H atoms were positioned geometrically (C—H = 0.99 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula [Ga(C14H20N3O10)(H2O)]·3H2O
Mr 532.11
Crystal system, space group Monoclinic, P21
Temperature (K) 100
a, b, c (Å) 7.1477 (2), 11.0616 (3), 13.3460 (4)
β (°) 104.929 (3)
V3) 1019.58 (5)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.43
Crystal size (mm) 0.13 × 0.06 × 0.03
 
Data collection
Diffractometer Oxford Diffraction SuperNova Dual Source diffractometer with an Atlas detector
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.915, 1.00
No. of measured, independent and observed [I > 2σ(I)] reflections 23585, 6213, 5124
Rint 0.073
(sin θ/λ)max−1) 0.714
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.073, 1.05
No. of reflections 6213
No. of parameters 329
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.73, −0.44
Absolute structure Flack x determined using 2002 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.009 (7)
Computer programs: CrysAlis PRO (Rigaku OOD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OOD, 2015); cell refinement: CrysAlis PRO (Rigaku OOD, 2015); data reduction: CrysAlis PRO (Rigaku OOD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: WinGX (Farrugia, 2012).

Aqua(2-{[2-({2-[bis(carboxylato-κO-methyl)amino-κN]ethyl}(carboxylato-κO-methyl)amino-κN)ethyl](carboxymethyl)azaniumyl}acetato)gallium(III) trihydrate top
Crystal data top
[Ga(C14H20N3O10)(H2O)]·3H2OF(000) = 552
Mr = 532.11Dx = 1.733 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 5696 reflections
a = 7.1477 (2) Åθ = 3.7–28.0°
b = 11.0616 (3) ŵ = 1.43 mm1
c = 13.3460 (4) ÅT = 100 K
β = 104.929 (3)°Blade, colourless
V = 1019.58 (5) Å30.13 × 0.06 × 0.03 mm
Z = 2
Data collection top
Oxford Diffraction SuperNova Dual Source
diffractometer with an Atlas detector
6213 independent reflections
Radiation source: micro-focus sealed X-ray tube5124 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.073
Detector resolution: 10.5861 pixels mm-1θmax = 30.5°, θmin = 3.2°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
k = 1515
Tmin = 0.915, Tmax = 1.00l = 1919
23585 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.044 w = 1/[σ2(Fo2) + (0.02P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.073(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.73 e Å3
6213 reflectionsΔρmin = 0.44 e Å3
329 parametersAbsolute structure: Flack x determined using 2002 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.009 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ga10.67818 (6)0.35920 (4)0.14406 (3)0.00910 (10)
C10.8057 (6)0.3244 (4)0.3657 (3)0.0126 (9)
H1A0.9195560.2746280.3995270.015*
H1B0.7292780.3379810.4169430.015*
O10.8169 (4)0.4789 (3)0.2405 (2)0.0112 (6)
O20.9839 (4)0.5070 (3)0.4037 (2)0.0192 (7)
C20.8752 (6)0.4454 (4)0.3358 (3)0.0119 (9)
O30.9021 (4)0.2641 (3)0.1407 (2)0.0143 (7)
C30.7772 (6)0.1419 (4)0.2575 (3)0.0143 (9)
H3A0.6769210.0841010.2209950.017*
H3B0.8446740.1059730.3250460.017*
O41.0435 (5)0.0862 (3)0.1905 (3)0.0312 (9)
C40.9226 (6)0.1631 (4)0.1929 (4)0.0164 (10)
O50.5143 (4)0.2406 (3)0.0522 (2)0.0101 (6)
C50.4793 (6)0.2422 (4)0.2793 (3)0.0120 (9)
H5A0.4747660.2130620.3488150.014*
H5B0.4133400.1819050.2273260.014*
O60.2129 (4)0.1952 (3)0.0352 (2)0.0132 (6)
C60.3768 (5)0.3630 (5)0.2572 (3)0.0113 (7)
H6A0.2370810.3512020.2513390.014*
H6B0.4283830.4181610.3163200.014*
O70.5490 (4)0.9137 (3)0.1386 (2)0.0133 (6)
C70.2595 (5)0.3761 (4)0.0650 (3)0.0086 (9)
H7A0.2373730.4393600.0106940.010*
H7B0.1345250.3596460.0813510.010*
O80.5857 (4)0.7981 (3)0.2800 (2)0.0120 (6)
C80.3304 (6)0.2617 (4)0.0239 (3)0.0098 (8)
O90.2242 (4)0.9005 (3)0.3733 (2)0.0154 (7)
O100.0876 (4)0.8862 (3)0.3686 (2)0.0134 (7)
H10O0.199 (8)0.861 (7)0.331 (4)0.054 (18)*
O1W0.6862 (5)0.4657 (3)0.0320 (3)0.0124 (7)
C140.0674 (5)0.8541 (5)0.3389 (3)0.0106 (7)
C130.0341 (6)0.7512 (4)0.2622 (3)0.0100 (8)
H13A0.0103360.6789920.2933840.012*
H13B0.0681910.7737730.1996060.012*
H1WA0.717 (7)0.527 (5)0.037 (4)0.013 (15)*
H1WB0.596 (8)0.451 (5)0.036 (5)0.039 (17)*
N10.6840 (5)0.2560 (3)0.2752 (3)0.0108 (8)
N20.4008 (5)0.4211 (3)0.1594 (3)0.0084 (7)
N30.2166 (5)0.7221 (3)0.2324 (3)0.0091 (7)
H3N0.306 (7)0.719 (4)0.293 (4)0.017 (13)*
C90.3931 (6)0.5548 (4)0.1691 (3)0.0108 (8)
H9A0.4167360.5924960.1062170.013*
H9B0.4975360.5811690.2293450.013*
C100.1989 (6)0.5987 (4)0.1829 (3)0.0115 (9)
H10A0.1036630.6020540.1143760.014*
H10B0.1506190.5406290.2267760.014*
C120.4880 (5)0.8448 (4)0.1976 (3)0.0098 (8)
C110.2714 (6)0.8182 (4)0.1662 (3)0.0110 (9)
H11A0.1993970.8932110.1719910.013*
H11B0.2334930.7919510.0928460.013*
O2W0.4169 (6)0.6478 (4)0.4259 (3)0.0250 (9)
H2WA0.373 (9)0.581 (6)0.441 (5)0.05 (2)*
H2WB0.526 (9)0.660 (6)0.449 (5)0.04 (2)*
O3W0.3776 (6)0.4191 (4)0.4967 (3)0.0260 (9)
H3WA0.278 (14)0.409 (10)0.511 (8)0.15 (5)*
H3WB0.452 (9)0.390 (6)0.547 (5)0.06 (2)*
O4W0.8110 (5)0.6367 (3)0.5369 (3)0.0239 (8)
H4WA0.865 (8)0.603 (6)0.499 (5)0.04 (2)*
H4WB0.806 (9)0.574 (7)0.571 (5)0.06 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ga10.00710 (17)0.00922 (19)0.01104 (19)0.0001 (2)0.00244 (14)0.0001 (2)
C10.014 (2)0.013 (2)0.009 (2)0.0019 (17)0.0004 (17)0.0032 (16)
O10.0069 (14)0.0131 (16)0.0119 (15)0.0001 (12)0.0005 (12)0.0006 (12)
O20.0205 (17)0.0209 (18)0.0129 (16)0.0102 (14)0.0018 (14)0.0009 (14)
C20.0083 (19)0.014 (2)0.014 (2)0.0032 (17)0.0043 (18)0.0001 (18)
O30.0074 (14)0.0141 (16)0.0213 (17)0.0017 (13)0.0038 (13)0.0035 (13)
C30.012 (2)0.011 (2)0.018 (2)0.0029 (17)0.0011 (18)0.0037 (18)
O40.0219 (18)0.023 (2)0.054 (3)0.0120 (16)0.0190 (18)0.0114 (18)
C40.0086 (19)0.016 (2)0.024 (3)0.0025 (18)0.0021 (19)0.0013 (19)
O50.0080 (13)0.0093 (15)0.0128 (15)0.0013 (12)0.0022 (12)0.0041 (12)
C50.0103 (19)0.012 (2)0.013 (2)0.0014 (17)0.0031 (17)0.0054 (17)
O60.0120 (14)0.0107 (15)0.0154 (16)0.0012 (12)0.0007 (13)0.0020 (12)
C60.0110 (16)0.0127 (18)0.0110 (17)0.001 (2)0.0044 (14)0.000 (2)
O70.0138 (14)0.0143 (15)0.0121 (15)0.0054 (13)0.0039 (13)0.0009 (12)
C70.0068 (16)0.010 (2)0.0087 (17)0.0003 (16)0.0006 (14)0.0033 (16)
O80.0088 (14)0.0130 (15)0.0131 (15)0.0006 (12)0.0009 (12)0.0017 (12)
C80.0118 (19)0.009 (2)0.009 (2)0.0005 (17)0.0037 (17)0.0019 (16)
O90.0086 (13)0.0172 (16)0.0187 (16)0.0016 (12)0.0006 (12)0.0037 (13)
O100.0080 (13)0.018 (2)0.0136 (15)0.0008 (12)0.0023 (12)0.0027 (12)
O1W0.0157 (16)0.0096 (17)0.0120 (17)0.0001 (14)0.0041 (13)0.0004 (13)
C140.0104 (16)0.0093 (17)0.0118 (17)0.004 (2)0.0025 (14)0.007 (2)
C130.0051 (18)0.012 (2)0.013 (2)0.0008 (17)0.0033 (16)0.0022 (17)
N10.0086 (17)0.0101 (18)0.0131 (19)0.0016 (15)0.0018 (15)0.0001 (15)
N20.0074 (16)0.0080 (17)0.0097 (17)0.0015 (14)0.0021 (14)0.0005 (14)
N30.0052 (16)0.0086 (17)0.0129 (19)0.0008 (14)0.0013 (15)0.0005 (14)
C90.0082 (19)0.009 (2)0.016 (2)0.0019 (16)0.0042 (17)0.0022 (17)
C100.0079 (19)0.009 (2)0.018 (2)0.0036 (16)0.0033 (17)0.0022 (17)
C120.0094 (16)0.008 (2)0.0131 (18)0.0030 (18)0.0046 (15)0.0025 (18)
C110.0099 (19)0.0107 (19)0.012 (2)0.0005 (16)0.0029 (17)0.0030 (16)
O2W0.0194 (19)0.026 (2)0.026 (2)0.0052 (17)0.0019 (17)0.0104 (17)
O3W0.0217 (19)0.033 (2)0.021 (2)0.0020 (17)0.0021 (17)0.0110 (17)
O4W0.0231 (19)0.020 (2)0.026 (2)0.0017 (16)0.0015 (17)0.0028 (17)
Geometric parameters (Å, º) top
Ga1—O1W1.916 (3)C7—H7A0.9900
Ga1—O31.925 (3)C7—H7B0.9900
Ga1—O11.933 (3)O8—C121.251 (5)
Ga1—O51.964 (3)O9—C141.211 (5)
Ga1—N12.081 (4)O10—C141.318 (4)
Ga1—N22.156 (3)O10—H10O0.87 (6)
C1—N11.499 (5)O1W—H1WA0.71 (5)
C1—C21.517 (6)O1W—H1WB0.99 (6)
C1—H1A0.9900C14—C131.508 (6)
C1—H1B0.9900C13—N31.493 (5)
O1—C21.286 (5)C13—H13A0.9900
O2—C21.236 (5)C13—H13B0.9900
O3—C41.305 (5)N2—C91.486 (5)
C3—N11.474 (5)N3—C111.497 (5)
C3—C41.530 (6)N3—C101.507 (5)
C3—H3A0.9900N3—H3N0.90 (5)
C3—H3B0.9900C9—C101.526 (5)
O4—C41.219 (5)C9—H9A0.9900
O5—C81.293 (5)C9—H9B0.9900
C5—N11.486 (5)C10—H10A0.9900
C5—C61.516 (6)C10—H10B0.9900
C5—H5A0.9900C12—C111.525 (5)
C5—H5B0.9900C11—H11A0.9900
O6—C81.236 (5)C11—H11B0.9900
C6—N21.505 (5)O2W—H2WA0.84 (7)
C6—H6A0.9900O2W—H2WB0.77 (6)
C6—H6B0.9900O3W—H3WA0.79 (10)
O7—C121.252 (5)O3W—H3WB0.81 (7)
C7—N21.483 (5)O4W—H4WA0.80 (6)
C7—C81.517 (6)O4W—H4WB0.83 (7)
O1W—Ga1—O397.21 (13)O5—C8—C7117.1 (3)
O1W—Ga1—O189.15 (14)C14—O10—H10O117 (4)
O3—Ga1—O195.91 (12)Ga1—O1W—H1WA125 (4)
O1W—Ga1—O593.24 (14)Ga1—O1W—H1WB118 (3)
O3—Ga1—O589.19 (12)H1WA—O1W—H1WB111 (5)
O1—Ga1—O5174.05 (12)O9—C14—O10122.6 (4)
O1W—Ga1—N1174.57 (16)O9—C14—C13123.2 (4)
O3—Ga1—N183.30 (14)O10—C14—C13114.2 (3)
O1—Ga1—N185.42 (13)N3—C13—C14110.3 (3)
O5—Ga1—N192.17 (13)N3—C13—H13A109.6
O1W—Ga1—N295.26 (13)C14—C13—H13A109.6
O3—Ga1—N2164.97 (13)N3—C13—H13B109.6
O1—Ga1—N292.62 (12)C14—C13—H13B109.6
O5—Ga1—N281.75 (12)H13A—C13—H13B108.1
N1—Ga1—N285.08 (13)C3—N1—C5114.1 (3)
N1—C1—C2113.2 (3)C3—N1—C1111.7 (3)
N1—C1—H1A108.9C5—N1—C1113.2 (3)
C2—C1—H1A108.9C3—N1—Ga1104.3 (3)
N1—C1—H1B108.9C5—N1—Ga1106.3 (2)
C2—C1—H1B108.9C1—N1—Ga1106.4 (2)
H1A—C1—H1B107.7C7—N2—C9112.0 (3)
C2—O1—Ga1116.2 (3)C7—N2—C6112.9 (3)
O2—C2—O1123.3 (4)C9—N2—C6109.5 (3)
O2—C2—C1118.6 (4)C7—N2—Ga1104.7 (2)
O1—C2—C1118.0 (4)C9—N2—Ga1112.3 (2)
C4—O3—Ga1115.8 (3)C6—N2—Ga1105.1 (2)
N1—C3—C4111.1 (4)C13—N3—C11112.6 (3)
N1—C3—H3A109.4C13—N3—C10109.4 (3)
C4—C3—H3A109.4C11—N3—C10112.9 (3)
N1—C3—H3B109.4C13—N3—H3N104 (3)
C4—C3—H3B109.4C11—N3—H3N109 (3)
H3A—C3—H3B108.0C10—N3—H3N108 (3)
O4—C4—O3124.5 (4)N2—C9—C10112.5 (3)
O4—C4—C3119.8 (4)N2—C9—H9A109.1
O3—C4—C3115.7 (4)C10—C9—H9A109.1
C8—O5—Ga1117.3 (3)N2—C9—H9B109.1
N1—C5—C6109.5 (3)C10—C9—H9B109.1
N1—C5—H5A109.8H9A—C9—H9B107.8
C6—C5—H5A109.8N3—C10—C9111.5 (3)
N1—C5—H5B109.8N3—C10—H10A109.3
C6—C5—H5B109.8C9—C10—H10A109.3
H5A—C5—H5B108.2N3—C10—H10B109.3
N2—C6—C5112.8 (3)C9—C10—H10B109.3
N2—C6—H6A109.0H10A—C10—H10B108.0
C5—C6—H6A109.0O8—C12—O7126.7 (3)
N2—C6—H6B109.0O8—C12—C11117.3 (4)
C5—C6—H6B109.0O7—C12—C11115.9 (3)
H6A—C6—H6B107.8N3—C11—C12112.1 (3)
N2—C7—C8111.7 (3)N3—C11—H11A109.2
N2—C7—H7A109.3C12—C11—H11A109.2
C8—C7—H7A109.3N3—C11—H11B109.2
N2—C7—H7B109.3C12—C11—H11B109.2
C8—C7—H7B109.3H11A—C11—H11B107.9
H7A—C7—H7B107.9H2WA—O2W—H2WB117 (6)
O6—C8—O5123.4 (4)H3WA—O3W—H3WB101 (8)
O6—C8—C7119.5 (3)H4WA—O4W—H4WB93 (6)
Ga1—O1—C2—O2171.5 (3)C2—C1—N1—C3116.1 (4)
Ga1—O1—C2—C18.7 (4)C2—C1—N1—C5113.6 (4)
N1—C1—C2—O2176.8 (4)C2—C1—N1—Ga12.9 (4)
N1—C1—C2—O13.5 (5)C8—C7—N2—C9150.0 (3)
Ga1—O3—C4—O4172.0 (4)C8—C7—N2—C685.8 (4)
Ga1—O3—C4—C35.9 (5)C8—C7—N2—Ga128.0 (4)
N1—C3—C4—O4163.3 (4)C5—C6—N2—C783.8 (4)
N1—C3—C4—O318.7 (5)C5—C6—N2—C9150.7 (3)
N1—C5—C6—N251.6 (4)C5—C6—N2—Ga129.8 (4)
Ga1—O5—C8—O6178.6 (3)C14—C13—N3—C1170.5 (4)
Ga1—O5—C8—C70.2 (5)C14—C13—N3—C10163.1 (3)
N2—C7—C8—O6160.4 (4)C7—N2—C9—C1063.9 (4)
N2—C7—C8—O520.7 (5)C6—N2—C9—C1062.1 (4)
O9—C14—C13—N33.2 (6)Ga1—N2—C9—C10178.5 (3)
O10—C14—C13—N3179.4 (3)C13—N3—C10—C9169.5 (3)
C4—C3—N1—C5146.3 (4)C11—N3—C10—C964.3 (4)
C4—C3—N1—C183.8 (4)N2—C9—C10—N3158.1 (3)
C4—C3—N1—Ga130.7 (4)C13—N3—C11—C12138.0 (4)
C6—C5—N1—C3158.9 (3)C10—N3—C11—C1297.6 (4)
C6—C5—N1—C172.0 (4)O8—C12—C11—N39.5 (6)
C6—C5—N1—Ga144.5 (4)O7—C12—C11—N3171.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H10O···O8i0.87 (6)1.67 (6)2.525 (4)169 (6)
O1W—H1WA···O6ii0.71 (5)1.93 (5)2.636 (5)174 (6)
O1W—H1WB···O7iii0.99 (6)1.54 (6)2.524 (5)174 (5)
O2W—H2WA···O3W0.84 (7)1.94 (7)2.741 (5)158 (6)
O2W—H2WB···O4W0.77 (6)2.09 (6)2.828 (5)160 (6)
O3W—H3WA···O2i0.79 (10)2.47 (10)2.934 (5)119 (9)
O3W—H3WA···O10iv0.79 (10)2.37 (10)3.096 (5)153 (9)
O3W—H3WB···O8v0.81 (7)2.60 (6)3.215 (5)134 (5)
O3W—H3WB···O9v0.81 (7)2.28 (6)2.934 (5)138 (6)
O4W—H4WA···O20.80 (6)2.00 (6)2.806 (5)175 (6)
O4W—H4WB···O9v0.83 (7)2.09 (7)2.911 (5)168 (7)
N3—H3N···O2W0.90 (5)1.91 (5)2.737 (5)152 (4)
C1—H1A···O4Wvi0.992.433.417 (6)173
C3—H3A···O7vii0.992.253.197 (5)159
C3—H3B···O10viii0.992.523.225 (5)128
C6—H6B···O3W0.992.533.254 (5)130
C7—H7B···O3i0.992.283.227 (5)161
C9—H9B···O80.992.533.207 (5)126
C10—H10A···O6ix0.992.463.271 (5)139
C10—H10B···O1i0.992.533.300 (5)134
C11—H11A···O4x0.992.453.438 (5)176
C13—H13A···O1i0.992.543.367 (5)140
C13—H13A···O2i0.992.413.368 (5)162
C13—H13B···O6ix0.992.343.150 (5)139
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1/2, z; (iii) x+1, y1/2, z; (iv) x, y1/2, z+1; (v) x+1, y1/2, z+1; (vi) x+2, y1/2, z+1; (vii) x, y1, z; (viii) x+1, y1, z; (ix) x, y+1/2, z; (x) x1, y+1, z.
 

Acknowledgements

The authors would like to thank Professor David Hibbs for his help regarding the crystal structure of Ga-DTPA. The authors would also like to thank Dr Lea Gagnon and Dr Philip Chi Lip Kwok for their editorial support. HKC is grateful to Mr Richard Stenlake for his generous financial support. Finally, the authors want to thank Dr Leo Corcilius for his input for this work.

Funding information

Funding for this research was provided by: Australian Research Council (grant No. 160102577 to Hak-Kim Chan).

References

First citationBanerjee, S. R. & Pomper, M. G. (2013). Appl. Radiat. Isot. 76, 2–13.  Web of Science CrossRef Google Scholar
First citationBrasse, D. & Nonat, A. (2015). Dalton Trans. 44, 4845–4858.  Web of Science CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGreen, M. A. & Welch, M. J. (1989). Int. J. Radiat. Appl. Instrum. B, 16, 435–448.  CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHaubner, R., Vera, D. R., Farshchi-Heydari, S., Helbok, A., Rangger, C., Putzer, D. & Virgolini, I. J. (2013). Eur. J. Nucl. Med. Mol. Imaging, 40, 1245–1255.  Web of Science CrossRef Google Scholar
First citationHofman, M. S. & Hicks, R. J. (2016). Semin. Nucl. Med. 46, 448–461.  Web of Science CrossRef Google Scholar
First citationJalilian, A. R. & Akhlaghi, M. (2013). J. Liq. Chromatogr. Relat. Technol. 36, 731–739.  Google Scholar
First citationMoerlein, S. M., Daugherty, A., Sobel, B. E. & Welch, M. J. (1991). J. Nucl. Med. 32, 300–307.  Google Scholar
First citationMoerlein, S. M. & Welch, M. J. (1981). Int. J. Nucl. Med. Biol. 8, 277–287.  CrossRef Web of Science Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPitalúa-Cortés, Q. G., García-Pérez, F. O., Villaseñor-Navarro, Y., Lara-Medina, F. U., Matus-Santos, J. A. & Soldevilla-Gallardo, I. (2017). Br. J. Radiol. 3, 1–6.  Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSchultz, M. K., Donahue, P., Musgrave, N. I., Zhernosekov, K., Naidoo, C., Razbash, A., Tworovska, I. W., Dick, D., Leonard Watkins, G. M., Graham, M., Runde, W. A., Clanton, J. & Sunderland, J. J. (2013). J. Postgrad. Med. Educ. Res. 47, 26–30.  Google Scholar
First citationVelikyan, I. (2014). Theranostics, 4, 47–80.  Web of Science CrossRef Google Scholar
First citationVera, D. R., Hoh, C., Mell, L., Corbeil, J., Farshchi-Heydari, S., James, C., Felton, M., Qin, Z. & Zhu, H. (2012). J. Nucl. Med. 53 (Suppl. 1), 1538.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds