research communications
κO-methyl)amino-κN]ethyl}(carboxylato-κO-methyl)amino-κN)ethyl](carboxymethyl)azaniumyl}acetato)gallium(III) trihydrate
of aqua(2-{[2-({2-[bis(carboxylato-aAdvanced Drug Delivery Group, School of Pharmacy, University of Sydney, NSW, 2006, Australia, bSchool of Chemistry, University of Sydney, NSW 2006, Australia, cDepartment of PET & Nuclear Medicine, Royal Prince Alfred Hospital, NSW 2050, Australia, and dDepartment of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark
*Correspondence e-mail: peter.turner@sydney.edu.au, kim.chan@sydney.edu.au
In the title GaIII complex compound with pentetic acid, [Ga(C14H20N3O10)(H2O)]·3H2O, the GaIII centre is bound in a slightly distorted octahedral coordination sphere by two amine N atoms, three carboxylate O atoms and one water O atom. The complex molecule exists as a zwitterion. In the crystal, the complexes are linked to each other via O—H⋯O and C—H⋯O hydrogen bonds, forming layers parallel to (001). Three uncoordinating water molecules link the complex layers via O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds, forming a three-dimensional network.
Keywords: crystal structure; gallium radioisotopes; chelating agents; pentetic acid; DTPA.
CCDC reference: 1852608
1. Chemical context
The use of gallium-68 (68Ga) for molecular imaging of diseases has become increasingly popular and the number of 68Ga-related articles has increased drastically in the past 10 years, as pointed out by Velikyan (2014). The application span is wide and covers the diagnosis of cancer, cardiovascular disease, infection and inflammatory conditions (Brasse & Nonat, 2015; Jalilian & Akhlaghi, 2013; Banerjee & Pomper, 2013; Schultz et al., 2013). The increase in popularity and use can be ascribed to several factors. On the one hand, 68Ga produces high-quality PET images. On the other hand, it has a half-life of 68 min, which makes it suitable for use in patients as the radiation dose can be kept at a minimum (Hofman & Hicks, 2016). 68Ga can be eluted from a 68Ge/68Ga generator multiple times a day, which makes it easy for hospitals to prepare gallium solutions for patients on demand. It is vital that gallium ions are complexed, as free ions may cause undesirable effects in vivo. First, free gallium can cause iron release from transferrin, which may cause free-radical toxicity. Second, gallium ions may cause an additional and unnecessary radiation dose. 2-(Bis{2-[bis(carboxymethyl)amino]ethyl}amino)acetic acid (pentetic acid or DTPA) is an amino-polycarboxylic acid consisting of a diethylenetriamine backbone with five carboxy groups. A complex is easily formed between gallium and DTPA and it has a stability constant of 1023.32, which makes the complex stable against exchange with transferrin (Moerlein & Welch, 1981; Green & Welch, 1989). DTPA-peptides labelled with 68Ga have been used for liver-function imaging, determination of low-density lipoprotein metabolism, bone-marrow function and molecular identification of metastatic tumours (Haubner et al., 2013; Moerlein et al., 1991; Vera et al., 2012; Pitalúa-Cortés et al., 2017), but the molecular structure of our compound has not yet been reported. Here we present and describe the molecular structure of the title compound (Fig. 1).
2. Structural commentary
The complex molecule (abbreviated as Ga-DTPA) is a zwitterion and has a slightly distorted octahedral coordination geometry with one water and one amine in the axial positions, and three carboxylate groups and one amine in the equatorial positions. The complex consists of three five-membered Ga/N/C/C/O chelate rings and one five-membered Ga/N/C/C/N chelate ring. The Ga—N bonds [Ga1—N1 = 2.081 (4) Å and Ga1—N2 = 2.156 (3) Å] are significantly longer than the Ga—O bonds [Ga1—O1 = 1.933 (3) Å, Ga1—O3 = 1.925 (3) Å, Ga1—O5 = 1.964 (3) Å and Ga1—O1W = 1.916 (3) Å]. The C—O bond lengths coordinating to the GaIII atom vary little, with the shortest and longest bonds differing by only 0.019 Å [C2—O1 = 1.286 (5) Å, C4—O3 = 1.305 (5) Å and C8—O5 = 1.293 (5) Å]. The three trans angles, N1—Ga1—O1W, O1—Ga1—O5 and O3—Ga1—N2, are 174.57 (16), 174.05 (12) and 164.97 (13)°, respectively. The O—Ga—O, O—Ga—N and N—Ga—N bite angles in the chelate rings deviate somewhat from 90°, ranging from 81.75 (12) to 95.91 (12)°.
3. Supramolecular features
Packing depictions viewed along the a and b axes provided in Figs. 2 and 3, respectively, show pairs of layers containing the complexes parallel to the (001) plane. In the layer, the complexes are linked to each other by O—H⋯O and C—H⋯O hydrogen bonds (Table 1). Three uncoordinating water molecules link the complex layers via O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds, forming a three-dimensional network.
4. Database survey
In our survey of the Cambridge Structural Database (CSD version 5.39, update November 2017; Groom et al., 2016), we found 64 crystal structures of metal complexes with DTPA. In another search, we found 72 crystal structures of gallium complexes hexa-coordinated by two N and four O atoms.
5. Synthesis and crystallization
DTPA (50 mg) in acetate buffer (2 mL) adjusted to pH = 4.2 was heated with stirring for dissolution. Gallium nitrate (39.9 mg) was then added to the DTPA solution and the mixture was stirred for at least 10 min at 353 K. The solution was concentrated under ambient pressure at room temperature. When almost all of the solvent had evaporated, methanol was added dropwise to precipitate Ga-DTPA. The precipitate was collected on a 0.22 µm polyamide filter and dried at room temperature. The obtained Ga-DTPA (1.30 mg) was re-dissolved in ultra-pure water (1 mL) and single crystals suitable for X-ray diffraction were obtained after four weeks by slow diffusion of tetrahydrofuran into the aqueous solution, as illustrated in Fig. 4.
6. Refinement
Crystal data, data collection and structure . N- and O-bound H atoms were located in difference-Fourier maps and freely refined. C-bound H atoms were positioned geometrically (C—H = 0.99 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 2
|
Supporting information
CCDC reference: 1852608
https://doi.org/10.1107/S2056989018009428/is5497sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018009428/is5497Isup2.hkl
Data collection: CrysAlis PRO (Rigaku OOD, 2015); cell
CrysAlis PRO (Rigaku OOD, 2015); data reduction: CrysAlis PRO (Rigaku OOD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: WinGX (Farrugia, 2012).[Ga(C14H20N3O10)(H2O)]·3H2O | F(000) = 552 |
Mr = 532.11 | Dx = 1.733 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2yb | Cell parameters from 5696 reflections |
a = 7.1477 (2) Å | θ = 3.7–28.0° |
b = 11.0616 (3) Å | µ = 1.43 mm−1 |
c = 13.3460 (4) Å | T = 100 K |
β = 104.929 (3)° | Blade, colourless |
V = 1019.58 (5) Å3 | 0.13 × 0.06 × 0.03 mm |
Z = 2 |
Oxford Diffraction SuperNova Dual Source diffractometer with an Atlas detector | 6213 independent reflections |
Radiation source: micro-focus sealed X-ray tube | 5124 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.073 |
Detector resolution: 10.5861 pixels mm-1 | θmax = 30.5°, θmin = 3.2° |
ω scans | h = −10→10 |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015) | k = −15→15 |
Tmin = 0.915, Tmax = 1.00 | l = −19→19 |
23585 measured reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.044 | w = 1/[σ2(Fo2) + (0.02P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.073 | (Δ/σ)max < 0.001 |
S = 1.05 | Δρmax = 0.73 e Å−3 |
6213 reflections | Δρmin = −0.44 e Å−3 |
329 parameters | Absolute structure: Flack x determined using 2002 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
1 restraint | Absolute structure parameter: −0.009 (7) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ga1 | 0.67818 (6) | 0.35920 (4) | 0.14406 (3) | 0.00910 (10) | |
C1 | 0.8057 (6) | 0.3244 (4) | 0.3657 (3) | 0.0126 (9) | |
H1A | 0.919556 | 0.274628 | 0.399527 | 0.015* | |
H1B | 0.729278 | 0.337981 | 0.416943 | 0.015* | |
O1 | 0.8169 (4) | 0.4789 (3) | 0.2405 (2) | 0.0112 (6) | |
O2 | 0.9839 (4) | 0.5070 (3) | 0.4037 (2) | 0.0192 (7) | |
C2 | 0.8752 (6) | 0.4454 (4) | 0.3358 (3) | 0.0119 (9) | |
O3 | 0.9021 (4) | 0.2641 (3) | 0.1407 (2) | 0.0143 (7) | |
C3 | 0.7772 (6) | 0.1419 (4) | 0.2575 (3) | 0.0143 (9) | |
H3A | 0.676921 | 0.084101 | 0.220995 | 0.017* | |
H3B | 0.844674 | 0.105973 | 0.325046 | 0.017* | |
O4 | 1.0435 (5) | 0.0862 (3) | 0.1905 (3) | 0.0312 (9) | |
C4 | 0.9226 (6) | 0.1631 (4) | 0.1929 (4) | 0.0164 (10) | |
O5 | 0.5143 (4) | 0.2406 (3) | 0.0522 (2) | 0.0101 (6) | |
C5 | 0.4793 (6) | 0.2422 (4) | 0.2793 (3) | 0.0120 (9) | |
H5A | 0.474766 | 0.213062 | 0.348815 | 0.014* | |
H5B | 0.413340 | 0.181905 | 0.227326 | 0.014* | |
O6 | 0.2129 (4) | 0.1952 (3) | −0.0352 (2) | 0.0132 (6) | |
C6 | 0.3768 (5) | 0.3630 (5) | 0.2572 (3) | 0.0113 (7) | |
H6A | 0.237081 | 0.351202 | 0.251339 | 0.014* | |
H6B | 0.428383 | 0.418161 | 0.316320 | 0.014* | |
O7 | 0.5490 (4) | 0.9137 (3) | 0.1386 (2) | 0.0133 (6) | |
C7 | 0.2595 (5) | 0.3761 (4) | 0.0650 (3) | 0.0086 (9) | |
H7A | 0.237373 | 0.439360 | 0.010694 | 0.010* | |
H7B | 0.134525 | 0.359646 | 0.081351 | 0.010* | |
O8 | 0.5857 (4) | 0.7981 (3) | 0.2800 (2) | 0.0120 (6) | |
C8 | 0.3304 (6) | 0.2617 (4) | 0.0239 (3) | 0.0098 (8) | |
O9 | 0.2242 (4) | 0.9005 (3) | 0.3733 (2) | 0.0154 (7) | |
O10 | −0.0876 (4) | 0.8862 (3) | 0.3686 (2) | 0.0134 (7) | |
H10O | −0.199 (8) | 0.861 (7) | 0.331 (4) | 0.054 (18)* | |
O1W | 0.6862 (5) | 0.4657 (3) | 0.0320 (3) | 0.0124 (7) | |
C14 | 0.0674 (5) | 0.8541 (5) | 0.3389 (3) | 0.0106 (7) | |
C13 | 0.0341 (6) | 0.7512 (4) | 0.2622 (3) | 0.0100 (8) | |
H13A | −0.010336 | 0.678992 | 0.293384 | 0.012* | |
H13B | −0.068191 | 0.773773 | 0.199606 | 0.012* | |
H1WA | 0.717 (7) | 0.527 (5) | 0.037 (4) | 0.013 (15)* | |
H1WB | 0.596 (8) | 0.451 (5) | −0.036 (5) | 0.039 (17)* | |
N1 | 0.6840 (5) | 0.2560 (3) | 0.2752 (3) | 0.0108 (8) | |
N2 | 0.4008 (5) | 0.4211 (3) | 0.1594 (3) | 0.0084 (7) | |
N3 | 0.2166 (5) | 0.7221 (3) | 0.2324 (3) | 0.0091 (7) | |
H3N | 0.306 (7) | 0.719 (4) | 0.293 (4) | 0.017 (13)* | |
C9 | 0.3931 (6) | 0.5548 (4) | 0.1691 (3) | 0.0108 (8) | |
H9A | 0.416736 | 0.592496 | 0.106217 | 0.013* | |
H9B | 0.497536 | 0.581169 | 0.229345 | 0.013* | |
C10 | 0.1989 (6) | 0.5987 (4) | 0.1829 (3) | 0.0115 (9) | |
H10A | 0.103663 | 0.602054 | 0.114376 | 0.014* | |
H10B | 0.150619 | 0.540629 | 0.226776 | 0.014* | |
C12 | 0.4880 (5) | 0.8448 (4) | 0.1976 (3) | 0.0098 (8) | |
C11 | 0.2714 (6) | 0.8182 (4) | 0.1662 (3) | 0.0110 (9) | |
H11A | 0.199397 | 0.893211 | 0.171991 | 0.013* | |
H11B | 0.233493 | 0.791951 | 0.092846 | 0.013* | |
O2W | 0.4169 (6) | 0.6478 (4) | 0.4259 (3) | 0.0250 (9) | |
H2WA | 0.373 (9) | 0.581 (6) | 0.441 (5) | 0.05 (2)* | |
H2WB | 0.526 (9) | 0.660 (6) | 0.449 (5) | 0.04 (2)* | |
O3W | 0.3776 (6) | 0.4191 (4) | 0.4967 (3) | 0.0260 (9) | |
H3WA | 0.278 (14) | 0.409 (10) | 0.511 (8) | 0.15 (5)* | |
H3WB | 0.452 (9) | 0.390 (6) | 0.547 (5) | 0.06 (2)* | |
O4W | 0.8110 (5) | 0.6367 (3) | 0.5369 (3) | 0.0239 (8) | |
H4WA | 0.865 (8) | 0.603 (6) | 0.499 (5) | 0.04 (2)* | |
H4WB | 0.806 (9) | 0.574 (7) | 0.571 (5) | 0.06 (2)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ga1 | 0.00710 (17) | 0.00922 (19) | 0.01104 (19) | 0.0001 (2) | 0.00244 (14) | −0.0001 (2) |
C1 | 0.014 (2) | 0.013 (2) | 0.009 (2) | −0.0019 (17) | −0.0004 (17) | 0.0032 (16) |
O1 | 0.0069 (14) | 0.0131 (16) | 0.0119 (15) | −0.0001 (12) | −0.0005 (12) | 0.0006 (12) |
O2 | 0.0205 (17) | 0.0209 (18) | 0.0129 (16) | −0.0102 (14) | −0.0018 (14) | −0.0009 (14) |
C2 | 0.0083 (19) | 0.014 (2) | 0.014 (2) | 0.0032 (17) | 0.0043 (18) | 0.0001 (18) |
O3 | 0.0074 (14) | 0.0141 (16) | 0.0213 (17) | 0.0017 (13) | 0.0038 (13) | 0.0035 (13) |
C3 | 0.012 (2) | 0.011 (2) | 0.018 (2) | 0.0029 (17) | −0.0011 (18) | 0.0037 (18) |
O4 | 0.0219 (18) | 0.023 (2) | 0.054 (3) | 0.0120 (16) | 0.0190 (18) | 0.0114 (18) |
C4 | 0.0086 (19) | 0.016 (2) | 0.024 (3) | −0.0025 (18) | 0.0021 (19) | −0.0013 (19) |
O5 | 0.0080 (13) | 0.0093 (15) | 0.0128 (15) | 0.0013 (12) | 0.0022 (12) | −0.0041 (12) |
C5 | 0.0103 (19) | 0.012 (2) | 0.013 (2) | −0.0014 (17) | 0.0031 (17) | 0.0054 (17) |
O6 | 0.0120 (14) | 0.0107 (15) | 0.0154 (16) | −0.0012 (12) | 0.0007 (13) | −0.0020 (12) |
C6 | 0.0110 (16) | 0.0127 (18) | 0.0110 (17) | 0.001 (2) | 0.0044 (14) | 0.000 (2) |
O7 | 0.0138 (14) | 0.0143 (15) | 0.0121 (15) | −0.0054 (13) | 0.0039 (13) | 0.0009 (12) |
C7 | 0.0068 (16) | 0.010 (2) | 0.0087 (17) | −0.0003 (16) | 0.0006 (14) | −0.0033 (16) |
O8 | 0.0088 (14) | 0.0130 (15) | 0.0131 (15) | −0.0006 (12) | 0.0009 (12) | 0.0017 (12) |
C8 | 0.0118 (19) | 0.009 (2) | 0.009 (2) | −0.0005 (17) | 0.0037 (17) | 0.0019 (16) |
O9 | 0.0086 (13) | 0.0172 (16) | 0.0187 (16) | −0.0016 (12) | 0.0006 (12) | −0.0037 (13) |
O10 | 0.0080 (13) | 0.018 (2) | 0.0136 (15) | 0.0008 (12) | 0.0023 (12) | −0.0027 (12) |
O1W | 0.0157 (16) | 0.0096 (17) | 0.0120 (17) | 0.0001 (14) | 0.0041 (13) | 0.0004 (13) |
C14 | 0.0104 (16) | 0.0093 (17) | 0.0118 (17) | 0.004 (2) | 0.0025 (14) | 0.007 (2) |
C13 | 0.0051 (18) | 0.012 (2) | 0.013 (2) | 0.0008 (17) | 0.0033 (16) | −0.0022 (17) |
N1 | 0.0086 (17) | 0.0101 (18) | 0.0131 (19) | −0.0016 (15) | 0.0018 (15) | 0.0001 (15) |
N2 | 0.0074 (16) | 0.0080 (17) | 0.0097 (17) | 0.0015 (14) | 0.0021 (14) | −0.0005 (14) |
N3 | 0.0052 (16) | 0.0086 (17) | 0.0129 (19) | −0.0008 (14) | 0.0013 (15) | −0.0005 (14) |
C9 | 0.0082 (19) | 0.009 (2) | 0.016 (2) | −0.0019 (16) | 0.0042 (17) | −0.0022 (17) |
C10 | 0.0079 (19) | 0.009 (2) | 0.018 (2) | −0.0036 (16) | 0.0033 (17) | −0.0022 (17) |
C12 | 0.0094 (16) | 0.008 (2) | 0.0131 (18) | −0.0030 (18) | 0.0046 (15) | −0.0025 (18) |
C11 | 0.0099 (19) | 0.0107 (19) | 0.012 (2) | 0.0005 (16) | 0.0029 (17) | 0.0030 (16) |
O2W | 0.0194 (19) | 0.026 (2) | 0.026 (2) | −0.0052 (17) | −0.0019 (17) | 0.0104 (17) |
O3W | 0.0217 (19) | 0.033 (2) | 0.021 (2) | −0.0020 (17) | 0.0021 (17) | 0.0110 (17) |
O4W | 0.0231 (19) | 0.020 (2) | 0.026 (2) | 0.0017 (16) | 0.0015 (17) | 0.0028 (17) |
Ga1—O1W | 1.916 (3) | C7—H7A | 0.9900 |
Ga1—O3 | 1.925 (3) | C7—H7B | 0.9900 |
Ga1—O1 | 1.933 (3) | O8—C12 | 1.251 (5) |
Ga1—O5 | 1.964 (3) | O9—C14 | 1.211 (5) |
Ga1—N1 | 2.081 (4) | O10—C14 | 1.318 (4) |
Ga1—N2 | 2.156 (3) | O10—H10O | 0.87 (6) |
C1—N1 | 1.499 (5) | O1W—H1WA | 0.71 (5) |
C1—C2 | 1.517 (6) | O1W—H1WB | 0.99 (6) |
C1—H1A | 0.9900 | C14—C13 | 1.508 (6) |
C1—H1B | 0.9900 | C13—N3 | 1.493 (5) |
O1—C2 | 1.286 (5) | C13—H13A | 0.9900 |
O2—C2 | 1.236 (5) | C13—H13B | 0.9900 |
O3—C4 | 1.305 (5) | N2—C9 | 1.486 (5) |
C3—N1 | 1.474 (5) | N3—C11 | 1.497 (5) |
C3—C4 | 1.530 (6) | N3—C10 | 1.507 (5) |
C3—H3A | 0.9900 | N3—H3N | 0.90 (5) |
C3—H3B | 0.9900 | C9—C10 | 1.526 (5) |
O4—C4 | 1.219 (5) | C9—H9A | 0.9900 |
O5—C8 | 1.293 (5) | C9—H9B | 0.9900 |
C5—N1 | 1.486 (5) | C10—H10A | 0.9900 |
C5—C6 | 1.516 (6) | C10—H10B | 0.9900 |
C5—H5A | 0.9900 | C12—C11 | 1.525 (5) |
C5—H5B | 0.9900 | C11—H11A | 0.9900 |
O6—C8 | 1.236 (5) | C11—H11B | 0.9900 |
C6—N2 | 1.505 (5) | O2W—H2WA | 0.84 (7) |
C6—H6A | 0.9900 | O2W—H2WB | 0.77 (6) |
C6—H6B | 0.9900 | O3W—H3WA | 0.79 (10) |
O7—C12 | 1.252 (5) | O3W—H3WB | 0.81 (7) |
C7—N2 | 1.483 (5) | O4W—H4WA | 0.80 (6) |
C7—C8 | 1.517 (6) | O4W—H4WB | 0.83 (7) |
O1W—Ga1—O3 | 97.21 (13) | O5—C8—C7 | 117.1 (3) |
O1W—Ga1—O1 | 89.15 (14) | C14—O10—H10O | 117 (4) |
O3—Ga1—O1 | 95.91 (12) | Ga1—O1W—H1WA | 125 (4) |
O1W—Ga1—O5 | 93.24 (14) | Ga1—O1W—H1WB | 118 (3) |
O3—Ga1—O5 | 89.19 (12) | H1WA—O1W—H1WB | 111 (5) |
O1—Ga1—O5 | 174.05 (12) | O9—C14—O10 | 122.6 (4) |
O1W—Ga1—N1 | 174.57 (16) | O9—C14—C13 | 123.2 (4) |
O3—Ga1—N1 | 83.30 (14) | O10—C14—C13 | 114.2 (3) |
O1—Ga1—N1 | 85.42 (13) | N3—C13—C14 | 110.3 (3) |
O5—Ga1—N1 | 92.17 (13) | N3—C13—H13A | 109.6 |
O1W—Ga1—N2 | 95.26 (13) | C14—C13—H13A | 109.6 |
O3—Ga1—N2 | 164.97 (13) | N3—C13—H13B | 109.6 |
O1—Ga1—N2 | 92.62 (12) | C14—C13—H13B | 109.6 |
O5—Ga1—N2 | 81.75 (12) | H13A—C13—H13B | 108.1 |
N1—Ga1—N2 | 85.08 (13) | C3—N1—C5 | 114.1 (3) |
N1—C1—C2 | 113.2 (3) | C3—N1—C1 | 111.7 (3) |
N1—C1—H1A | 108.9 | C5—N1—C1 | 113.2 (3) |
C2—C1—H1A | 108.9 | C3—N1—Ga1 | 104.3 (3) |
N1—C1—H1B | 108.9 | C5—N1—Ga1 | 106.3 (2) |
C2—C1—H1B | 108.9 | C1—N1—Ga1 | 106.4 (2) |
H1A—C1—H1B | 107.7 | C7—N2—C9 | 112.0 (3) |
C2—O1—Ga1 | 116.2 (3) | C7—N2—C6 | 112.9 (3) |
O2—C2—O1 | 123.3 (4) | C9—N2—C6 | 109.5 (3) |
O2—C2—C1 | 118.6 (4) | C7—N2—Ga1 | 104.7 (2) |
O1—C2—C1 | 118.0 (4) | C9—N2—Ga1 | 112.3 (2) |
C4—O3—Ga1 | 115.8 (3) | C6—N2—Ga1 | 105.1 (2) |
N1—C3—C4 | 111.1 (4) | C13—N3—C11 | 112.6 (3) |
N1—C3—H3A | 109.4 | C13—N3—C10 | 109.4 (3) |
C4—C3—H3A | 109.4 | C11—N3—C10 | 112.9 (3) |
N1—C3—H3B | 109.4 | C13—N3—H3N | 104 (3) |
C4—C3—H3B | 109.4 | C11—N3—H3N | 109 (3) |
H3A—C3—H3B | 108.0 | C10—N3—H3N | 108 (3) |
O4—C4—O3 | 124.5 (4) | N2—C9—C10 | 112.5 (3) |
O4—C4—C3 | 119.8 (4) | N2—C9—H9A | 109.1 |
O3—C4—C3 | 115.7 (4) | C10—C9—H9A | 109.1 |
C8—O5—Ga1 | 117.3 (3) | N2—C9—H9B | 109.1 |
N1—C5—C6 | 109.5 (3) | C10—C9—H9B | 109.1 |
N1—C5—H5A | 109.8 | H9A—C9—H9B | 107.8 |
C6—C5—H5A | 109.8 | N3—C10—C9 | 111.5 (3) |
N1—C5—H5B | 109.8 | N3—C10—H10A | 109.3 |
C6—C5—H5B | 109.8 | C9—C10—H10A | 109.3 |
H5A—C5—H5B | 108.2 | N3—C10—H10B | 109.3 |
N2—C6—C5 | 112.8 (3) | C9—C10—H10B | 109.3 |
N2—C6—H6A | 109.0 | H10A—C10—H10B | 108.0 |
C5—C6—H6A | 109.0 | O8—C12—O7 | 126.7 (3) |
N2—C6—H6B | 109.0 | O8—C12—C11 | 117.3 (4) |
C5—C6—H6B | 109.0 | O7—C12—C11 | 115.9 (3) |
H6A—C6—H6B | 107.8 | N3—C11—C12 | 112.1 (3) |
N2—C7—C8 | 111.7 (3) | N3—C11—H11A | 109.2 |
N2—C7—H7A | 109.3 | C12—C11—H11A | 109.2 |
C8—C7—H7A | 109.3 | N3—C11—H11B | 109.2 |
N2—C7—H7B | 109.3 | C12—C11—H11B | 109.2 |
C8—C7—H7B | 109.3 | H11A—C11—H11B | 107.9 |
H7A—C7—H7B | 107.9 | H2WA—O2W—H2WB | 117 (6) |
O6—C8—O5 | 123.4 (4) | H3WA—O3W—H3WB | 101 (8) |
O6—C8—C7 | 119.5 (3) | H4WA—O4W—H4WB | 93 (6) |
Ga1—O1—C2—O2 | 171.5 (3) | C2—C1—N1—C3 | 116.1 (4) |
Ga1—O1—C2—C1 | −8.7 (4) | C2—C1—N1—C5 | −113.6 (4) |
N1—C1—C2—O2 | −176.8 (4) | C2—C1—N1—Ga1 | 2.9 (4) |
N1—C1—C2—O1 | 3.5 (5) | C8—C7—N2—C9 | 150.0 (3) |
Ga1—O3—C4—O4 | 172.0 (4) | C8—C7—N2—C6 | −85.8 (4) |
Ga1—O3—C4—C3 | −5.9 (5) | C8—C7—N2—Ga1 | 28.0 (4) |
N1—C3—C4—O4 | 163.3 (4) | C5—C6—N2—C7 | 83.8 (4) |
N1—C3—C4—O3 | −18.7 (5) | C5—C6—N2—C9 | −150.7 (3) |
N1—C5—C6—N2 | 51.6 (4) | C5—C6—N2—Ga1 | −29.8 (4) |
Ga1—O5—C8—O6 | 178.6 (3) | C14—C13—N3—C11 | −70.5 (4) |
Ga1—O5—C8—C7 | −0.2 (5) | C14—C13—N3—C10 | 163.1 (3) |
N2—C7—C8—O6 | 160.4 (4) | C7—N2—C9—C10 | 63.9 (4) |
N2—C7—C8—O5 | −20.7 (5) | C6—N2—C9—C10 | −62.1 (4) |
O9—C14—C13—N3 | −3.2 (6) | Ga1—N2—C9—C10 | −178.5 (3) |
O10—C14—C13—N3 | 179.4 (3) | C13—N3—C10—C9 | −169.5 (3) |
C4—C3—N1—C5 | 146.3 (4) | C11—N3—C10—C9 | 64.3 (4) |
C4—C3—N1—C1 | −83.8 (4) | N2—C9—C10—N3 | 158.1 (3) |
C4—C3—N1—Ga1 | 30.7 (4) | C13—N3—C11—C12 | 138.0 (4) |
C6—C5—N1—C3 | −158.9 (3) | C10—N3—C11—C12 | −97.6 (4) |
C6—C5—N1—C1 | 72.0 (4) | O8—C12—C11—N3 | −9.5 (6) |
C6—C5—N1—Ga1 | −44.5 (4) | O7—C12—C11—N3 | 171.9 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
O10—H10O···O8i | 0.87 (6) | 1.67 (6) | 2.525 (4) | 169 (6) |
O1W—H1WA···O6ii | 0.71 (5) | 1.93 (5) | 2.636 (5) | 174 (6) |
O1W—H1WB···O7iii | 0.99 (6) | 1.54 (6) | 2.524 (5) | 174 (5) |
O2W—H2WA···O3W | 0.84 (7) | 1.94 (7) | 2.741 (5) | 158 (6) |
O2W—H2WB···O4W | 0.77 (6) | 2.09 (6) | 2.828 (5) | 160 (6) |
O3W—H3WA···O2i | 0.79 (10) | 2.47 (10) | 2.934 (5) | 119 (9) |
O3W—H3WA···O10iv | 0.79 (10) | 2.37 (10) | 3.096 (5) | 153 (9) |
O3W—H3WB···O8v | 0.81 (7) | 2.60 (6) | 3.215 (5) | 134 (5) |
O3W—H3WB···O9v | 0.81 (7) | 2.28 (6) | 2.934 (5) | 138 (6) |
O4W—H4WA···O2 | 0.80 (6) | 2.00 (6) | 2.806 (5) | 175 (6) |
O4W—H4WB···O9v | 0.83 (7) | 2.09 (7) | 2.911 (5) | 168 (7) |
N3—H3N···O2W | 0.90 (5) | 1.91 (5) | 2.737 (5) | 152 (4) |
C1—H1A···O4Wvi | 0.99 | 2.43 | 3.417 (6) | 173 |
C3—H3A···O7vii | 0.99 | 2.25 | 3.197 (5) | 159 |
C3—H3B···O10viii | 0.99 | 2.52 | 3.225 (5) | 128 |
C6—H6B···O3W | 0.99 | 2.53 | 3.254 (5) | 130 |
C7—H7B···O3i | 0.99 | 2.28 | 3.227 (5) | 161 |
C9—H9B···O8 | 0.99 | 2.53 | 3.207 (5) | 126 |
C10—H10A···O6ix | 0.99 | 2.46 | 3.271 (5) | 139 |
C10—H10B···O1i | 0.99 | 2.53 | 3.300 (5) | 134 |
C11—H11A···O4x | 0.99 | 2.45 | 3.438 (5) | 176 |
C13—H13A···O1i | 0.99 | 2.54 | 3.367 (5) | 140 |
C13—H13A···O2i | 0.99 | 2.41 | 3.368 (5) | 162 |
C13—H13B···O6ix | 0.99 | 2.34 | 3.150 (5) | 139 |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, y+1/2, −z; (iii) −x+1, y−1/2, −z; (iv) −x, y−1/2, −z+1; (v) −x+1, y−1/2, −z+1; (vi) −x+2, y−1/2, −z+1; (vii) x, y−1, z; (viii) x+1, y−1, z; (ix) −x, y+1/2, −z; (x) x−1, y+1, z. |
Acknowledgements
The authors would like to thank Professor David Hibbs for his help regarding the
of Ga-DTPA. The authors would also like to thank Dr Lea Gagnon and Dr Philip Chi Lip Kwok for their editorial support. HKC is grateful to Mr Richard Stenlake for his generous financial support. Finally, the authors want to thank Dr Leo Corcilius for his input for this work.Funding information
Funding for this research was provided by: Australian Research Council (grant No. 160102577 to Hak-Kim Chan).
References
Banerjee, S. R. & Pomper, M. G. (2013). Appl. Radiat. Isot. 76, 2–13. Web of Science CrossRef Google Scholar
Brasse, D. & Nonat, A. (2015). Dalton Trans. 44, 4845–4858. Web of Science CrossRef Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Green, M. A. & Welch, M. J. (1989). Int. J. Radiat. Appl. Instrum. B, 16, 435–448. CrossRef Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Haubner, R., Vera, D. R., Farshchi-Heydari, S., Helbok, A., Rangger, C., Putzer, D. & Virgolini, I. J. (2013). Eur. J. Nucl. Med. Mol. Imaging, 40, 1245–1255. Web of Science CrossRef Google Scholar
Hofman, M. S. & Hicks, R. J. (2016). Semin. Nucl. Med. 46, 448–461. Web of Science CrossRef Google Scholar
Jalilian, A. R. & Akhlaghi, M. (2013). J. Liq. Chromatogr. Relat. Technol. 36, 731–739. Google Scholar
Moerlein, S. M., Daugherty, A., Sobel, B. E. & Welch, M. J. (1991). J. Nucl. Med. 32, 300–307. Google Scholar
Moerlein, S. M. & Welch, M. J. (1981). Int. J. Nucl. Med. Biol. 8, 277–287. CrossRef Web of Science Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Pitalúa-Cortés, Q. G., García-Pérez, F. O., Villaseñor-Navarro, Y., Lara-Medina, F. U., Matus-Santos, J. A. & Soldevilla-Gallardo, I. (2017). Br. J. Radiol. 3, 1–6. Google Scholar
Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Schultz, M. K., Donahue, P., Musgrave, N. I., Zhernosekov, K., Naidoo, C., Razbash, A., Tworovska, I. W., Dick, D., Leonard Watkins, G. M., Graham, M., Runde, W. A., Clanton, J. & Sunderland, J. J. (2013). J. Postgrad. Med. Educ. Res. 47, 26–30. Google Scholar
Velikyan, I. (2014). Theranostics, 4, 47–80. Web of Science CrossRef Google Scholar
Vera, D. R., Hoh, C., Mell, L., Corbeil, J., Farshchi-Heydari, S., James, C., Felton, M., Qin, Z. & Zhu, H. (2012). J. Nucl. Med. 53 (Suppl. 1), 1538. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.