research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Mol­ecular structure, DFT studies and UV–Vis absorption of two new linear fused ring chalcones: (E)-1-(anthracen-9-yl)-3-(2-meth­­oxy­phen­yl)prop-2-en-1-one and (E)-1-(anthracen-9-yl)-3-(3-fluoro-4-meth­­oxy­phen­yl)prop-2-en-1-one

CROSSMARK_Color_square_no_text.svg

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: suhanaarshad@usm.my

Edited by J. Jasinsk, Keene State College, USA (Received 6 June 2018; accepted 9 July 2018; online 13 July 2018)

The title compounds, C24H18O2 and C24H17FO2, were synthesized using the Claisen–Schmidt condensation method and characterized by UV–Vis spectroscopy. Weak inter­molecular C—H⋯O, C—H⋯π and ππ hydrogen-bonding inter­actions help to stabilize the crystal structures of both compounds. The geometrical parameters obtained from the mol­ecular structure were optimized using density functional theory (DFT) calculations at the B3LYP/6–311++G(d,p) level, showing a good correlation with the experimental results. The small HOMO–LUMO energy gaps of 3.11 and 3.07 eV enhances the non-linear responses of these mol­ecular systems.

1. Chemical context

Conjugated organic systems contain delocalized π electrons, which often show excellent NLO properties as they can easily be polarized. There are three features essential for high non-linear activity in an organic compound which are: a strong electron donor, a highly polarizable π-conjugated bridged moiety and a strong π-electron acceptor. Chalcones generally satisfy these criteria given their π-conjugated bridged structures that can be functionalized with a wide range of substitutions. Recently, we found that the presence of an anthracene fused-ring system positioned at the terminal ring of these derivative compounds is useful in getting good quality single crystals with an easily synthesizable method. The structure of anthracene is benzene-like, having three six-membered rings fused together in a planar-like arrangement. These polyaromatic hydro­carbons containing π-conjugated materials show unique properties in terms of conductivity that have led to significant advancements in the field of organic electronics (Li et al., 2016[Li, X. C., Wang, C. Y., Lai, W. Y. & Huang, W. (2016). J. Mater. Chem. C, 4, 10574-10587.]). In this work, we report the synthesis and combined experimental and theoretical studies of two new anthracene chalcones C24H18O2 (I)[link] and C24H17FO2 (II)[link], containing methoxyphenyl (I)[link] and fluoromethoxyphenyl (II)[link] groups as substituents. Additionally, the UV–Vis absorption and HOMO–LUMO analysis are also reported herein.

2. Structural commentary

The new chalcones C24H18O2 (I)[link] and C24H17FO2 (II)[link] consist of an anthracene fused-ring system and the substituent units 1-meth­oxy-2-methyl­benzene (A) and 2-fluoro-1-meth­oxy-4-methyl­benzene (B), respectively. These compounds represent DA π inter­molecular charge-transfer systems. Displacement ellipsoid plots and DFT optimized structures of the title compounds with their atom-labeling schemes are shown in Fig. 1[link]. Compounds (I)[link] and (II)[link] crystallize in the monoclinic P21/c and triclinic P[\overline{1}] space groups, respectively. Selected B3LYP/6-311++G(d,p) geometry-optimized calculated values (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, V., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. C., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. Gaussian 09, Revision A1. Gaussian, Inc., Wallingford CT, USA.]) for the bond lengths and angles of both compounds based on geometries in the gaseous state are compared to those of the crystalline structures in the solid state in Table S1 in the supporting information. The theoretical bond lengths and bond angles correlate well with the experimental data and are in normal ranges.

[Scheme 1]
[Figure 1]
Figure 1
(a) The mol­ecular structure for compounds (I)[link] and (II)[link] showing the atom-numbering schemes and 50% probability ellipsoids; (b) The DFT-optimized structures at the B3LYP 6–311++G(d,p) level for compounds (I)[link] and (II)[link].

Both mol­ecular structures adopt an s-trans configuration with respect to the C16=C17 double bond across the ethyl­enic bridge (O1/C15–C17). The anthracene unit in both (I)[link] and (II)[link] is found to be twisted at the C14—C15 bond with the C1—C14—C15—C16 torsion angles being −95.91 (18)° in (I)[link] and −106.3 (2)° in (II)[link]. This is probably due to the bulkiness of the strong electron donor. The corresponding DFT-calculated results give values of −95.94° (I)[link] and −91.27°(II), respectively. The experimental and theoretical torsion-angle difference of 15.0° observed in (II)[link] is most likely due to the formation of a weak inter­molecular C12—H12 O2 inter­action involving the anthracene fused-ring system with the terminal meth­oxy substituent unit.

The mean plane of the enone moiety in (I)[link] [O1/C15–C17, maximum deviation of 0.0085 (18) Å at C16] forms dihedral angles of 88.15 (18) and 1.44 (19)° with the mean plane of the anthracene ring system (C1–C14) and the 1-meth­oxy-2-methyl­benzene (A) ring, respectively. The DFT geometry-optimization calculations give the same values as the experimental values. In (II)[link] the mean plane of the enone moiety [O1/C15–C17, maximum deviation of 0.0092 (18) Å at C16] forms dihedral angles of 73.65 (18) and 2.40 (19)° with the mean planes of the anthracene ring system (C1–C14) and the 2-fluoro-1-meth­oxy-4-methyl­benzene ring (B). The corresponding DFT geometry-optimization calculation gives values of 89.99 and 0.01°, respectively. Additionally, the mean plane of the anthracene ring system (C1–C14) in the two compounds form dihedral angles of 87.52 (8)° (experimental and DFT) and 71.31 (7)° (experimental) and 90.00° (DFT) with the mean planes of A and B, respectively.

3. Supra­molecular features

The crystal packing of both compounds is shown in Fig. 2[link] and details of the weak inter­molecular hydrogen-bonding inter­actions are given in Table 1[link]. No classical hydrogen bonds are observed in either structure. The crystal packing of (I)[link] shows only weak ππ inter­actions (Table 2[link]) with centroid–centroid distances of 3.8804 (12) and 3.6725 (13) Å. The mol­ecules are further linked into infinite zigzag chains along the c-axis direction.

Table 1
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg4 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯O2i 0.93 2.48 3.345 (2) 154
C19—H19A⋯O1ii 0.93 2.48 3.393 (3) 166
C24—H24DCg4iii 0.96 2.77 3.391 (3) 123
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x, -y, -z+1; (iii) -x+1, -y+1, -z+1.

Table 2
Weak π–π inter­actions in compounds (I)[link] and (II)

Cg1 and Cg2 are the centroids of the C1–C6 and C18–C23 rings, respectively, in compound (I)[link]. Cg3 and Cg4 are the centroids of the C8–C13 and C1–C6 rings, respectively, in compound (II)[link].

I J IJ Symmetry
Cg1 Cg1 3.8804 (12) 1 − x, 2 − y, 2 − z
Cg2 Cg2 3.6725 (13) 1 − x, 2 − y, 1 − z
Cg3 Cg3 3.7891 (12) 1 − x, 1 − y, 2 − z
Cg3 Cg4 3.8126 (11) 1 − x, −y, 2 − z
[Figure 2]
Figure 2
(a) Crystal packing for compound (I)[link] viewed along the a axis showing weak ππ inter­actions (dashed lines), where Cg1 and Cg2 are the centroids of the C1–C6 and C18–C22 rings, respectively, and (b) Weak C—H⋯ O, C—H⋯π and ππ inter­actions (dashed lines) for compound (II)[link],, forming R22(14) ring graph-set motifs, where Cg3 and Cg4 are the centroids of the C8–C13 and C1–C6 rings, respectively.

In (II)[link], weak C19—H19A⋯O1ii and C12—H12A⋯O2i hydrogen bonds (Table 1[link]) connect the mol­ecules into centrosymmetric dimers with R22(14) ring motifs. These dimers are further linked into infinite sheets stacked along the a-axis direction. Weak C24—H24⋯Cg4iii (Table 1[link]) and ππ inter­actions [centroid–centroid distances = 3.8126 (11) and 3.789 (12) Å; Table 2[link]] are also observed in the crystal packing and further stabilize the crystal structure. These weak inter­molecular C—H⋯O, C—H⋯π and ππ inter­actions are significant in bridging the mol­ecules into a three-dimensional supra­molecular network.

4. UV–Vis absorption analysis

Experimental electronic absorption spectra of (I)[link] and (II)[link] have been measured and compared to the ground state (HOMO) and excited state (LUMO) mol­ecular orbital energies, calculated using time-dependent DFT B3LYP/6-311++G(d,p) theoretical calculations in the gas phase. The experimental absorption peaks (Fig. 3[link]) of (I)[link] and (II)[link] are found at the same maximum wavelength of 387 nm, whereas the simulated values are observed at 386 nm and 394 nm, respectively. The shift of the theoretical values to higher wavelengths are due to the fact that the calculations are confined to a gaseous environment, whereas the observations are obtained from the solution state (Zainuri et al., 2017[Zainuri, D. A., Arshad, S., Khalib, N. C., Razak, A. I., Pillai, R. R., Sulaiman, F., Hashim, N. S., Ooi, K. L., Armaković, S., Armaković, S. J., Panicker, Y. & Van Alsenoy, C. (2017). J. Mol. Struct. 1128, 520-533.]).

[Figure 3]
Figure 3
UV–Vis absorption spectra of compounds (I)[link] and (II)[link].

The HOMO and LUMO energies characterize the ability of donating and accepting electrons, whereas the value of the energy gap between the HOMO and LUMO mol­ecular orbitals characterizes the mol­ecular chemical stability. The energy gaps are largely responsible for the chemical and spectroscopic properties of the compounds. In Fig. 4[link], the charge densities in the ground state (HOMO) are mainly delocalized over the entire anthrancenyl donor ring, while in the excited state (LUMO), the charge densities are accumulated on the π-conjugated enone bridge and the terminal electron-acceptor group. The HOMO and LUMO energy gaps were computed to be 3.24 eV for (I)[link] and 3.25 eV for (II)[link]. Through an extrapolation of the linear trend observed in the optical spectra, the experimental energy band gaps for (I)[link] and (II)[link] become 3.11 eV and 3.07 eV, respectively. These optical band-gap values indicate the suitability of these compounds for opto-electronic applications as for structures of chalcones previously reported by Prabhu et al. (2016[Prabhu, A. N., Upadhyaya, V., Jayarama, A. & Bhat, K. B. (2016). Mol. Cryst. Liq. Cryst. 637, 76-86.]).

[Figure 4]
Figure 4
Mol­ecular orbital electron distributions of the HOMO and LUMO energy levels for (I)[link] and (II)[link].

5. Database survey

A survey of the Cambridge Structural Database (CSD, Version 5.39, last update November 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed several fused-ring substituted chalcones similar to (I)[link] and (II)[link]. There are four compounds that have an anthrancene-ketone subtituent on the chalcone, including 9-anthryl styryl ketone and 9,10-anthryl bis­(styryl ketone) reported by Harlow et al. (1975[Harlow, R. L., Loghry, R. A., Williams, H. J. & Simonsen, S. H. (1975). Acta Cryst. B31, 1344-1350.]). (2E)-1-(Anthracen-9-yl)-3-[4-(propan-2-yl)phenyl]prop-2-en-1-one was reported by Girisha et al. (2016[Girisha, M., Yathirajan, H. S., Jasinski, J. P. & Glidewell, C. (2016). Acta Cryst. E72, 1153-1158.]), while (E)-1-(anthracen-9-yl)-3-(2-chloro-6-fluoro­phen­yl)prop-2-en-1-one was reported by Abdullah et al. (2016[Abdullah, A. A., Hassan, N. H. H., Arshad, S., Khalib, N. C. & Razak, I. A. (2016). Acta Cryst. E72, 648-651.]). Zainuri et al. (2018a[Zainuri, D. A., Razak, I. A. & Arshad, S. (2018a). Acta Cryst. E74, 492-496.]) reported a chalcone with two anthrancene substit­uents, viz. (E)-1,3-bis­(anthracen-9-yl)prop-2-en-1-one. Other related compounds include 1-(anthracen-9-yl)-2-methyl­prop-2-en-1-one (Agrahari et al., 2015[Agrahari, A., Wagers, P. O., Schildcrout, S. M., Masnovi, J. & Youngs, W. J. (2015). Acta Cryst. E71, 357-359.]), 9-anthroylacetone (Cicogna et al., 2004[Cicogna, F., Ingrosso, G., Lodato, F., Marchetti, F. & Zandomeneghi, M. (2004). Tetrahedron, 60, 11959-11968.]), (E)-1-(anthracen-9-yl)-3-(naphthalen-2-yl)prop-2-en-1-one and (E)-1-(anthracen-9-yl)-3-(pyren-1-yl)prop-2-en-1-one (Zainuri et al., 2018b[Zainuri, D. A., Razak, I. A. & Arshad, S. (2018b). Acta Cryst. E74, 650-655.],c[Zainuri, D. A., Razak, I. A. & Arshad, S. (2018c). Acta Cryst. E74, 780-785.]).

6. Synthesis and crystallization

A mixture of 9-acetyl­anthracene (0.5 mmol) and 2-meth­oxy­benzaldehyde (0.5 mmol) and 3-fluoro-4-meth­oxy­benzaldehyde (0.5 mmol) for compounds (I)[link] and (II)[link], respectively, was dissolved in methanol (20 ml). A catalytic amount of NaOH (5 ml, 20%) was added to the solutions, dropwise under vigorous stirring. The reaction mixtures were stirred for about 5-6 h at room temperature. After stirring, the contents of the flask were poured into ice-cold water (50 ml). The resultant crude products were filtered, washed successively with distilled water and recrystallized to get the corres­ponding chalcones (see scheme). Single crystals of (I)[link] and (II)[link] suitable for X-ray diffraction were obtained by the slow evaporation technique using acetone.

7. Refinement

Crystal data collection and structure refinement details are summarized in Table 3[link]. All H atoms were positioned geom­etrically [C—H = 0.93 and 0.96 Å in (I)[link] and (II)] and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl group. In the final refinement of (I)[link], one outlier ([\overline{2}] 2 15) was omitted.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C24H18O2 C24H17FO2
Mr 338.38 356.37
Crystal system, space group Monoclinic, P21/c Triclinic, P[\overline{1}]
Temperature (K) 294 296
a, b, c (Å) 9.0554 (8), 17.4260 (15), 12.9217 (9) 8.6646 (5), 9.5752 (5), 11.5636 (6)
α, β, γ (°) 90, 119.916 (5), 90 100.593 (2), 105.443 (2), 92.422 (2)
V3) 1767.3 (3) 904.76 (9)
Z 4 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.08 0.09
Crystal size (mm) 0.60 × 0.23 × 0.15 0.99 × 0.31 × 0.25
 
Data collection
Diffractometer Bruker SMART APEXII DUO CCD area-detector Bruker SMART APEXII DUO CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
No. of measured, independent and observed [I > 2σ(I)] reflections 30614, 4249, 2916 34988, 5394, 3307
Rint 0.045 0.045
(sin θ/λ)max−1) 0.661 0.711
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.146, 1.08 0.059, 0.183, 1.02
No. of reflections 4249 5394
No. of parameters 236 245
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.17, −0.19 0.27, −0.20
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXL2014 (Sheldrick, 2014), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008). Program(s) used to refine structure: SHELXL2013 (Sheldrick, 2013) for (I); SHELXL2014 (Sheldrick, 2014) for (II). For both structures, molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

(I) top
Crystal data top
C24H18O2F(000) = 712
Mr = 338.38Dx = 1.272 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.0554 (8) ÅCell parameters from 6535 reflections
b = 17.4260 (15) Åθ = 2.6–28.0°
c = 12.9217 (9) ŵ = 0.08 mm1
β = 119.916 (5)°T = 294 K
V = 1767.3 (3) Å3Needle, yellow
Z = 40.60 × 0.23 × 0.15 mm
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
2916 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.045
φ and ω scansθmax = 28.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
k = 2223
30614 measured reflectionsl = 1717
4249 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.146 w = 1/[σ2(Fo2) + (0.063P)2 + 0.2604P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
4249 reflectionsΔρmax = 0.17 e Å3
236 parametersΔρmin = 0.19 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.53861 (18)0.72502 (7)0.79211 (12)0.0752 (4)
O20.20209 (16)1.03186 (6)0.56513 (10)0.0642 (3)
C10.53056 (19)0.86680 (8)0.94301 (13)0.0478 (3)
C20.6917 (2)0.88894 (10)0.95792 (15)0.0592 (4)
H2A0.72150.87400.90170.071*
C30.8018 (3)0.93154 (11)1.05315 (18)0.0738 (5)
H3A0.90520.94651.06040.089*
C40.7618 (3)0.95337 (12)1.14117 (18)0.0802 (6)
H4A0.84000.98151.20710.096*
C50.6114 (3)0.93389 (11)1.13057 (16)0.0731 (5)
H5A0.58700.94871.18960.088*
C60.4886 (2)0.89110 (9)1.03106 (13)0.0552 (4)
C70.3300 (2)0.87229 (10)1.01595 (15)0.0615 (4)
H7A0.30360.88761.07380.074*
C80.2100 (2)0.83166 (9)0.91831 (15)0.0538 (4)
C90.0457 (3)0.81257 (11)0.90222 (19)0.0713 (5)
H9A0.01760.82820.95910.086*
C100.0685 (3)0.77249 (12)0.8065 (2)0.0787 (6)
H10A0.17440.76090.79770.094*
C110.0284 (2)0.74811 (11)0.7196 (2)0.0757 (6)
H11A0.10870.72090.65350.091*
C120.1255 (2)0.76379 (9)0.73108 (16)0.0605 (4)
H12A0.14970.74660.67300.073*
C130.25104 (19)0.80611 (8)0.83027 (14)0.0478 (3)
C140.41240 (18)0.82319 (8)0.84557 (13)0.0445 (3)
C150.4659 (2)0.78700 (8)0.76321 (14)0.0500 (4)
C160.4322 (2)0.82415 (9)0.65306 (14)0.0526 (4)
H16A0.46480.79870.60440.063*
C170.35781 (19)0.89218 (8)0.61731 (12)0.0459 (3)
H17A0.32780.91710.66780.055*
C180.3182 (2)0.93191 (9)0.50726 (13)0.0489 (4)
C190.3583 (2)0.90106 (11)0.42487 (15)0.0640 (5)
H19A0.41280.85380.44050.077*
C200.3189 (3)0.93900 (14)0.32089 (17)0.0804 (6)
H20A0.34700.91760.26700.096*
C210.2377 (3)1.00888 (14)0.29715 (17)0.0813 (6)
H21A0.21011.03430.22650.098*
C220.1965 (2)1.04188 (11)0.37628 (16)0.0686 (5)
H22A0.14241.08930.35940.082*
C230.2366 (2)1.00373 (9)0.48149 (13)0.0527 (4)
C240.1245 (3)1.10560 (10)0.54615 (19)0.0769 (6)
H24A0.10281.11700.61000.115*
H24B0.01901.10570.47170.115*
H24C0.19941.14370.54400.115*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0919 (9)0.0621 (7)0.0778 (9)0.0293 (7)0.0470 (8)0.0145 (6)
O20.0823 (8)0.0544 (6)0.0513 (7)0.0117 (6)0.0300 (6)0.0043 (5)
C10.0516 (8)0.0490 (8)0.0389 (8)0.0037 (6)0.0197 (7)0.0081 (6)
C20.0552 (10)0.0622 (10)0.0545 (10)0.0019 (8)0.0231 (8)0.0058 (8)
C30.0619 (11)0.0723 (12)0.0692 (13)0.0113 (9)0.0191 (10)0.0034 (10)
C40.0840 (15)0.0739 (12)0.0522 (12)0.0120 (11)0.0110 (10)0.0062 (9)
C50.0892 (15)0.0761 (12)0.0414 (10)0.0018 (10)0.0231 (10)0.0041 (9)
C60.0686 (11)0.0583 (9)0.0341 (8)0.0049 (8)0.0221 (8)0.0073 (7)
C70.0750 (12)0.0749 (11)0.0449 (9)0.0106 (9)0.0377 (9)0.0105 (8)
C80.0590 (10)0.0583 (9)0.0513 (10)0.0092 (7)0.0328 (8)0.0177 (7)
C90.0678 (12)0.0830 (12)0.0783 (13)0.0143 (10)0.0479 (11)0.0273 (11)
C100.0582 (11)0.0746 (12)0.1062 (17)0.0024 (10)0.0433 (12)0.0263 (12)
C110.0574 (11)0.0589 (10)0.0954 (16)0.0060 (8)0.0265 (11)0.0023 (10)
C120.0555 (10)0.0526 (9)0.0668 (11)0.0000 (7)0.0254 (9)0.0020 (8)
C130.0499 (8)0.0445 (7)0.0482 (9)0.0056 (6)0.0241 (7)0.0103 (6)
C140.0485 (8)0.0440 (7)0.0398 (8)0.0056 (6)0.0211 (7)0.0077 (6)
C150.0499 (8)0.0483 (8)0.0502 (9)0.0035 (7)0.0237 (7)0.0006 (7)
C160.0621 (10)0.0557 (9)0.0459 (9)0.0033 (7)0.0315 (8)0.0045 (7)
C170.0504 (8)0.0504 (8)0.0375 (8)0.0048 (6)0.0223 (7)0.0066 (6)
C180.0541 (9)0.0543 (8)0.0354 (8)0.0121 (7)0.0202 (7)0.0058 (6)
C190.0771 (12)0.0733 (11)0.0459 (9)0.0143 (9)0.0340 (9)0.0113 (8)
C200.0965 (15)0.1083 (17)0.0450 (11)0.0302 (13)0.0418 (11)0.0149 (11)
C210.0902 (15)0.1026 (16)0.0408 (10)0.0332 (13)0.0249 (10)0.0068 (10)
C220.0707 (12)0.0707 (11)0.0470 (10)0.0156 (9)0.0162 (9)0.0103 (8)
C230.0546 (9)0.0565 (9)0.0367 (8)0.0135 (7)0.0149 (7)0.0019 (7)
C240.0823 (13)0.0525 (10)0.0829 (14)0.0105 (9)0.0313 (11)0.0054 (9)
Geometric parameters (Å, º) top
O1—C151.2226 (18)C11—H11A0.9300
O2—C231.3574 (19)C12—C131.423 (2)
O2—C241.426 (2)C12—H12A0.9300
C1—C141.401 (2)C13—C141.405 (2)
C1—C21.426 (2)C14—C151.509 (2)
C1—C61.431 (2)C15—C161.451 (2)
C2—C31.355 (3)C16—C171.327 (2)
C2—H2A0.9300C16—H16A0.9300
C3—C41.408 (3)C17—C181.457 (2)
C3—H3A0.9300C17—H17A0.9300
C4—C51.343 (3)C18—C191.393 (2)
C4—H4A0.9300C18—C231.406 (2)
C5—C61.421 (3)C19—C201.375 (3)
C5—H5A0.9300C19—H19A0.9300
C6—C71.389 (2)C20—C211.376 (3)
C7—C81.381 (2)C20—H20A0.9300
C7—H7A0.9300C21—C221.377 (3)
C8—C131.433 (2)C21—H21A0.9300
C8—C91.435 (2)C22—C231.389 (2)
C9—C101.346 (3)C22—H22A0.9300
C9—H9A0.9300C24—H24A0.9600
C10—C111.406 (3)C24—H24B0.9600
C10—H10A0.9300C24—H24C0.9600
C11—C121.354 (2)
C23—O2—C24118.55 (13)C14—C13—C8119.06 (14)
C14—C1—C2122.63 (14)C12—C13—C8117.99 (14)
C14—C1—C6119.23 (14)C1—C14—C13121.04 (13)
C2—C1—C6118.13 (15)C1—C14—C15119.37 (13)
C3—C2—C1120.73 (17)C13—C14—C15119.27 (13)
C3—C2—H2A119.6O1—C15—C16120.75 (14)
C1—C2—H2A119.6O1—C15—C14117.85 (14)
C2—C3—C4120.82 (19)C16—C15—C14121.40 (13)
C2—C3—H3A119.6C17—C16—C15124.17 (13)
C4—C3—H3A119.6C17—C16—H16A117.9
C5—C4—C3120.41 (19)C15—C16—H16A117.9
C5—C4—H4A119.8C16—C17—C18126.82 (14)
C3—C4—H4A119.8C16—C17—H17A116.6
C4—C5—C6121.37 (19)C18—C17—H17A116.6
C4—C5—H5A119.3C19—C18—C23117.97 (14)
C6—C5—H5A119.3C19—C18—C17122.13 (15)
C7—C6—C5122.56 (16)C23—C18—C17119.90 (13)
C7—C6—C1118.96 (15)C20—C19—C18121.46 (19)
C5—C6—C1118.48 (16)C20—C19—H19A119.3
C8—C7—C6122.45 (15)C18—C19—H19A119.3
C8—C7—H7A118.8C19—C20—C21119.51 (18)
C6—C7—H7A118.8C19—C20—H20A120.2
C7—C8—C13119.20 (14)C21—C20—H20A120.2
C7—C8—C9122.52 (16)C20—C21—C22121.12 (17)
C13—C8—C9118.27 (17)C20—C21—H21A119.4
C10—C9—C8121.30 (18)C22—C21—H21A119.4
C10—C9—H9A119.4C21—C22—C23119.45 (19)
C8—C9—H9A119.4C21—C22—H22A120.3
C9—C10—C11120.29 (17)C23—C22—H22A120.3
C9—C10—H10A119.9O2—C23—C22123.70 (16)
C11—C10—H10A119.9O2—C23—C18115.80 (13)
C12—C11—C10120.88 (19)C22—C23—C18120.49 (16)
C12—C11—H11A119.6O2—C24—H24A109.5
C10—C11—H11A119.6O2—C24—H24B109.5
C11—C12—C13121.27 (18)H24A—C24—H24B109.5
C11—C12—H12A119.4O2—C24—H24C109.5
C13—C12—H12A119.4H24A—C24—H24C109.5
C14—C13—C12122.95 (14)H24B—C24—H24C109.5
C14—C1—C2—C3179.60 (15)C2—C1—C14—C1510.2 (2)
C6—C1—C2—C30.2 (2)C6—C1—C14—C15170.46 (13)
C1—C2—C3—C41.6 (3)C12—C13—C14—C1178.29 (13)
C2—C3—C4—C51.7 (3)C8—C13—C14—C12.2 (2)
C3—C4—C5—C60.1 (3)C12—C13—C14—C158.3 (2)
C4—C5—C6—C7177.89 (18)C8—C13—C14—C15171.27 (13)
C4—C5—C6—C11.9 (3)C1—C14—C15—O184.19 (18)
C14—C1—C6—C71.5 (2)C13—C14—C15—O189.38 (19)
C2—C1—C6—C7177.85 (14)C1—C14—C15—C1695.91 (18)
C14—C1—C6—C5178.68 (14)C13—C14—C15—C1690.53 (18)
C2—C1—C6—C51.9 (2)O1—C15—C16—C17178.25 (16)
C5—C6—C7—C8179.05 (16)C14—C15—C16—C171.8 (2)
C1—C6—C7—C80.7 (2)C15—C16—C17—C18178.99 (14)
C6—C7—C8—C131.5 (2)C16—C17—C18—C190.7 (2)
C6—C7—C8—C9179.64 (16)C16—C17—C18—C23179.15 (15)
C7—C8—C9—C10179.61 (17)C23—C18—C19—C200.3 (3)
C13—C8—C9—C100.8 (3)C17—C18—C19—C20179.50 (16)
C8—C9—C10—C110.2 (3)C18—C19—C20—C210.2 (3)
C9—C10—C11—C120.6 (3)C19—C20—C21—C220.6 (3)
C10—C11—C12—C130.8 (3)C20—C21—C22—C230.5 (3)
C11—C12—C13—C14179.68 (15)C24—O2—C23—C221.7 (2)
C11—C12—C13—C80.1 (2)C24—O2—C23—C18177.97 (15)
C7—C8—C13—C140.1 (2)C21—C22—C23—O2179.57 (16)
C9—C8—C13—C14178.96 (13)C21—C22—C23—C180.1 (2)
C7—C8—C13—C12179.47 (14)C19—C18—C23—O2179.20 (14)
C9—C8—C13—C120.6 (2)C17—C18—C23—O20.9 (2)
C2—C1—C14—C13176.37 (13)C19—C18—C23—C220.5 (2)
C6—C1—C14—C133.0 (2)C17—C18—C23—C22179.34 (14)
(E)-1-(Anthracen-9-yl)-3-(3-fluoro-4-methoxyphenyl)prop-2-en-1-one (II) top
Crystal data top
C24H17FO2Z = 2
Mr = 356.37F(000) = 372
Triclinic, P1Dx = 1.308 Mg m3
a = 8.6646 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.5752 (5) ÅCell parameters from 8625 reflections
c = 11.5636 (6) Åθ = 2.2–30.2°
α = 100.593 (2)°µ = 0.09 mm1
β = 105.443 (2)°T = 296 K
γ = 92.422 (2)°Block, yellow
V = 904.76 (9) Å30.99 × 0.31 × 0.25 mm
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
3307 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.045
φ and ω scansθmax = 30.4°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1212
k = 1313
34988 measured reflectionsl = 1616
5394 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.183 w = 1/[σ2(Fo2) + (0.0672P)2 + 0.4075P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
5394 reflectionsΔρmax = 0.27 e Å3
245 parametersΔρmin = 0.20 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.05579 (15)0.41714 (15)0.24083 (12)0.0805 (4)
O10.1312 (2)0.03230 (17)0.68989 (16)0.0842 (6)
O20.12761 (17)0.65677 (16)0.28147 (14)0.0642 (4)
C10.49638 (19)0.04101 (17)0.81471 (15)0.0403 (4)
C20.5049 (3)0.0702 (2)0.71696 (18)0.0572 (5)
H2A0.41850.09310.64670.069*
C30.6364 (3)0.1434 (2)0.7244 (2)0.0700 (6)
H3A0.63910.21520.65890.084*
C40.7689 (3)0.1126 (2)0.8295 (2)0.0661 (6)
H4A0.85790.16440.83330.079*
C50.7672 (2)0.0079 (2)0.92466 (19)0.0548 (5)
H5A0.85510.01110.99400.066*
C60.63319 (19)0.07396 (18)0.92079 (15)0.0409 (4)
C70.63115 (19)0.18423 (19)1.01674 (15)0.0436 (4)
H7A0.71990.20541.08540.052*
C80.5005 (2)0.26367 (18)1.01297 (14)0.0413 (4)
C90.5007 (2)0.3788 (2)1.11086 (17)0.0556 (5)
H9A0.59130.40241.17790.067*
C100.3724 (3)0.4537 (2)1.1079 (2)0.0659 (6)
H10A0.37460.52801.17280.079*
C110.2345 (3)0.4199 (2)1.0066 (2)0.0655 (6)
H11A0.14610.47191.00590.079*
C120.2286 (2)0.3125 (2)0.90999 (18)0.0533 (4)
H12A0.13640.29240.84400.064*
C130.36166 (19)0.23022 (17)0.90848 (15)0.0399 (3)
C140.36231 (19)0.11926 (17)0.81074 (14)0.0390 (3)
C150.2162 (2)0.07711 (19)0.70129 (17)0.0494 (4)
C160.1775 (2)0.1640 (2)0.60830 (16)0.0516 (4)
H16A0.08930.13150.54070.062*
C170.2592 (2)0.28637 (19)0.61334 (15)0.0442 (4)
H17A0.34920.31500.68030.053*
C180.22475 (19)0.38103 (18)0.52646 (14)0.0412 (4)
C190.0943 (2)0.35137 (19)0.42003 (16)0.0453 (4)
H19A0.02590.26810.40220.054*
C200.0689 (2)0.4455 (2)0.34319 (16)0.0477 (4)
C210.1660 (2)0.57237 (19)0.36488 (16)0.0453 (4)
C220.2941 (2)0.6011 (2)0.46933 (17)0.0498 (4)
H22A0.36210.68470.48690.060*
C230.3221 (2)0.50661 (19)0.54785 (15)0.0481 (4)
H23A0.40940.52810.61750.058*
C240.2160 (3)0.7934 (3)0.3095 (3)0.0818 (7)
H24D0.17550.84360.24470.123*
H24A0.32760.78170.31770.123*
H24B0.20430.84700.38500.123*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0667 (8)0.0865 (9)0.0653 (8)0.0140 (7)0.0250 (6)0.0267 (7)
O10.0745 (10)0.0659 (10)0.0862 (11)0.0277 (8)0.0240 (8)0.0265 (8)
O20.0579 (8)0.0682 (9)0.0672 (9)0.0042 (7)0.0063 (7)0.0323 (7)
C10.0414 (8)0.0376 (8)0.0392 (8)0.0023 (6)0.0078 (6)0.0073 (6)
C20.0593 (11)0.0508 (10)0.0517 (10)0.0007 (9)0.0088 (9)0.0033 (8)
C30.0745 (15)0.0583 (12)0.0732 (14)0.0090 (11)0.0272 (12)0.0069 (11)
C40.0548 (12)0.0603 (12)0.0862 (16)0.0168 (10)0.0260 (11)0.0099 (11)
C50.0412 (9)0.0592 (11)0.0631 (12)0.0090 (8)0.0107 (8)0.0148 (9)
C60.0360 (8)0.0430 (8)0.0430 (8)0.0015 (6)0.0078 (6)0.0118 (7)
C70.0357 (8)0.0511 (9)0.0380 (8)0.0005 (7)0.0010 (6)0.0086 (7)
C80.0413 (8)0.0440 (9)0.0353 (8)0.0010 (7)0.0054 (6)0.0080 (6)
C90.0580 (11)0.0593 (11)0.0410 (9)0.0038 (9)0.0063 (8)0.0002 (8)
C100.0721 (14)0.0636 (13)0.0555 (12)0.0125 (11)0.0162 (10)0.0036 (10)
C110.0611 (12)0.0653 (13)0.0708 (14)0.0223 (10)0.0195 (10)0.0102 (11)
C120.0448 (9)0.0571 (11)0.0535 (10)0.0096 (8)0.0043 (8)0.0127 (8)
C130.0373 (8)0.0400 (8)0.0399 (8)0.0028 (6)0.0050 (6)0.0104 (6)
C140.0379 (8)0.0378 (8)0.0367 (8)0.0014 (6)0.0015 (6)0.0102 (6)
C150.0455 (9)0.0454 (9)0.0474 (9)0.0023 (7)0.0021 (7)0.0083 (7)
C160.0462 (9)0.0560 (11)0.0412 (9)0.0004 (8)0.0056 (7)0.0085 (8)
C170.0378 (8)0.0524 (10)0.0355 (8)0.0037 (7)0.0019 (6)0.0039 (7)
C180.0384 (8)0.0469 (9)0.0349 (8)0.0055 (7)0.0076 (6)0.0036 (7)
C190.0417 (8)0.0443 (9)0.0440 (9)0.0001 (7)0.0048 (7)0.0057 (7)
C200.0379 (8)0.0561 (10)0.0411 (9)0.0029 (7)0.0011 (7)0.0077 (7)
C210.0419 (9)0.0502 (10)0.0451 (9)0.0073 (7)0.0115 (7)0.0128 (7)
C220.0485 (10)0.0479 (10)0.0490 (10)0.0036 (8)0.0097 (8)0.0072 (8)
C230.0432 (9)0.0553 (10)0.0372 (8)0.0027 (8)0.0017 (7)0.0037 (7)
C240.0764 (16)0.0712 (15)0.104 (2)0.0004 (12)0.0183 (14)0.0456 (14)
Geometric parameters (Å, º) top
F1—C201.3485 (19)C11—C121.361 (3)
O1—C151.220 (2)C11—H11A0.9300
O2—C211.354 (2)C12—C131.426 (2)
O2—C241.425 (3)C12—H12A0.9300
C1—C141.404 (2)C13—C141.403 (2)
C1—C21.424 (2)C14—C151.511 (2)
C1—C61.436 (2)C15—C161.457 (3)
C2—C31.354 (3)C16—C171.327 (3)
C2—H2A0.9300C16—H16A0.9300
C3—C41.407 (3)C17—C181.455 (2)
C3—H3A0.9300C17—H17A0.9300
C4—C51.349 (3)C18—C231.383 (2)
C4—H4A0.9300C18—C191.406 (2)
C5—C61.424 (2)C19—C201.363 (3)
C5—H5A0.9300C19—H19A0.9300
C6—C71.388 (2)C20—C211.391 (3)
C7—C81.386 (2)C21—C221.380 (2)
C7—H7A0.9300C22—C231.380 (3)
C8—C91.427 (2)C22—H22A0.9300
C8—C131.436 (2)C23—H23A0.9300
C9—C101.345 (3)C24—H24D0.9600
C9—H9A0.9300C24—H24A0.9600
C10—C111.409 (3)C24—H24B0.9600
C10—H10A0.9300
C21—O2—C24117.53 (17)C14—C13—C8119.19 (14)
C14—C1—C2123.01 (15)C12—C13—C8117.62 (15)
C14—C1—C6119.47 (15)C13—C14—C1120.71 (14)
C2—C1—C6117.52 (16)C13—C14—C15120.79 (15)
C3—C2—C1121.23 (19)C1—C14—C15118.45 (15)
C3—C2—H2A119.4O1—C15—C16119.73 (16)
C1—C2—H2A119.4O1—C15—C14119.46 (16)
C2—C3—C4121.1 (2)C16—C15—C14120.80 (15)
C2—C3—H3A119.5C17—C16—C15124.58 (16)
C4—C3—H3A119.5C17—C16—H16A117.7
C5—C4—C3120.13 (19)C15—C16—H16A117.7
C5—C4—H4A119.9C16—C17—C18127.67 (15)
C3—C4—H4A119.9C16—C17—H17A116.2
C4—C5—C6121.11 (19)C18—C17—H17A116.2
C4—C5—H5A119.4C23—C18—C19117.44 (16)
C6—C5—H5A119.4C23—C18—C17119.75 (14)
C7—C6—C5121.83 (16)C19—C18—C17122.81 (15)
C7—C6—C1119.24 (15)C20—C19—C18119.55 (16)
C5—C6—C1118.93 (16)C20—C19—H19A120.2
C8—C7—C6121.79 (15)C18—C19—H19A120.2
C8—C7—H7A119.1F1—C20—C19119.69 (16)
C6—C7—H7A119.1F1—C20—C21117.16 (16)
C7—C8—C9121.43 (15)C19—C20—C21123.15 (15)
C7—C8—C13119.59 (15)O2—C21—C22125.48 (17)
C9—C8—C13118.98 (16)O2—C21—C20117.35 (15)
C10—C9—C8121.19 (18)C22—C21—C20117.17 (16)
C10—C9—H9A119.4C23—C22—C21120.44 (17)
C8—C9—H9A119.4C23—C22—H22A119.8
C9—C10—C11120.17 (19)C21—C22—H22A119.8
C9—C10—H10A119.9C22—C23—C18122.25 (15)
C11—C10—H10A119.9C22—C23—H23A118.9
C12—C11—C10121.12 (19)C18—C23—H23A118.9
C12—C11—H11A119.4O2—C24—H24D109.5
C10—C11—H11A119.4O2—C24—H24A109.5
C11—C12—C13120.89 (17)H24D—C24—H24A109.5
C11—C12—H12A119.6O2—C24—H24B109.5
C13—C12—H12A119.6H24D—C24—H24B109.5
C14—C13—C12123.18 (15)H24A—C24—H24B109.5
C14—C1—C2—C3179.92 (19)C8—C13—C14—C15177.67 (15)
C6—C1—C2—C30.8 (3)C2—C1—C14—C13178.46 (16)
C1—C2—C3—C40.4 (4)C6—C1—C14—C130.8 (2)
C2—C3—C4—C50.6 (4)C2—C1—C14—C154.1 (2)
C3—C4—C5—C60.5 (3)C6—C1—C14—C15176.59 (15)
C4—C5—C6—C7178.44 (19)C13—C14—C15—O1104.9 (2)
C4—C5—C6—C11.7 (3)C1—C14—C15—O172.5 (3)
C14—C1—C6—C71.0 (2)C13—C14—C15—C1676.3 (2)
C2—C1—C6—C7178.36 (16)C1—C14—C15—C16106.3 (2)
C14—C1—C6—C5178.85 (16)O1—C15—C16—C17178.2 (2)
C2—C1—C6—C51.8 (2)C14—C15—C16—C173.0 (3)
C5—C6—C7—C8179.87 (16)C15—C16—C17—C18177.76 (17)
C1—C6—C7—C80.0 (3)C16—C17—C18—C23178.73 (18)
C6—C7—C8—C9178.66 (17)C16—C17—C18—C190.9 (3)
C6—C7—C8—C131.2 (3)C23—C18—C19—C200.0 (3)
C7—C8—C9—C10178.64 (19)C17—C18—C19—C20179.61 (16)
C13—C8—C9—C101.5 (3)C18—C19—C20—F1179.80 (16)
C8—C9—C10—C110.4 (3)C18—C19—C20—C210.5 (3)
C9—C10—C11—C120.5 (4)C24—O2—C21—C226.9 (3)
C10—C11—C12—C130.3 (3)C24—O2—C21—C20173.58 (19)
C11—C12—C13—C14179.42 (18)F1—C20—C21—O20.1 (3)
C11—C12—C13—C80.8 (3)C19—C20—C21—O2179.88 (17)
C7—C8—C13—C141.3 (2)F1—C20—C21—C22179.69 (17)
C9—C8—C13—C14178.55 (16)C19—C20—C21—C220.6 (3)
C7—C8—C13—C12178.46 (16)O2—C21—C22—C23179.74 (17)
C9—C8—C13—C121.7 (2)C20—C21—C22—C230.2 (3)
C12—C13—C14—C1179.46 (16)C21—C22—C23—C180.2 (3)
C8—C13—C14—C10.3 (2)C19—C18—C23—C220.3 (3)
C12—C13—C14—C152.1 (3)C17—C18—C23—C22179.30 (16)
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C12—H12A···O2i0.932.483.345 (2)154
C19—H19A···O1ii0.932.483.393 (3)166
C24—H24D···Cg4iii0.962.773.391 (3)123
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z+1; (iii) x+1, y+1, z+1.
Weak ππ interactions in compounds (I) and (II) top
Cg1 and Cg2 are the centroids of the C1–C6 C18–C23 rings, respectively, in compound (I). Cg3 and Cg4 are the centroids of the C8–C13 and C1–C6 rings, respectively, in compound (II).
IJI···JSymmetry
Cg1Cg13.8804 (12)1 - x, 2 - y, 2 - z
Cg2Cg23.6725 (13)1 - x, 2 - y, 1 - z
Cg3Cg33.7891 (12)1 - x, 1 - y, 2 - z
Cg3Cg43.8126 (11)1 - x, -y, 2 - z
 

Funding information

The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for the research facilities and the Fundamental Research Grant Scheme (FRGS) No. 203/PFIZIK/6711606 and No. 203/PFIZIK/6711572 and for the Short Term Grant Scheme (304/PFIZIK/6313336) to conduct this work. DAZ thanks the Malaysian Government for a My Brain15 scholarship.

References

First citationAbdullah, A. A., Hassan, N. H. H., Arshad, S., Khalib, N. C. & Razak, I. A. (2016). Acta Cryst. E72, 648–651.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAgrahari, A., Wagers, P. O., Schildcrout, S. M., Masnovi, J. & Youngs, W. J. (2015). Acta Cryst. E71, 357–359.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCicogna, F., Ingrosso, G., Lodato, F., Marchetti, F. & Zandomeneghi, M. (2004). Tetrahedron, 60, 11959–11968.  Web of Science CSD CrossRef CAS Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, V., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. C., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. Gaussian 09, Revision A1. Gaussian, Inc., Wallingford CT, USA.  Google Scholar
First citationGirisha, M., Yathirajan, H. S., Jasinski, J. P. & Glidewell, C. (2016). Acta Cryst. E72, 1153–1158.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarlow, R. L., Loghry, R. A., Williams, H. J. & Simonsen, S. H. (1975). Acta Cryst. B31, 1344–1350.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationLi, X. C., Wang, C. Y., Lai, W. Y. & Huang, W. (2016). J. Mater. Chem. C, 4, 10574–10587.  Web of Science CrossRef Google Scholar
First citationPrabhu, A. N., Upadhyaya, V., Jayarama, A. & Bhat, K. B. (2016). Mol. Cryst. Liq. Cryst. 637, 76–86.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZainuri, D. A., Arshad, S., Khalib, N. C., Razak, A. I., Pillai, R. R., Sulaiman, F., Hashim, N. S., Ooi, K. L., Armaković, S., Armaković, S. J., Panicker, Y. & Van Alsenoy, C. (2017). J. Mol. Struct. 1128, 520–533.  Web of Science CSD CrossRef CAS Google Scholar
First citationZainuri, D. A., Razak, I. A. & Arshad, S. (2018a). Acta Cryst. E74, 492–496.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZainuri, D. A., Razak, I. A. & Arshad, S. (2018b). Acta Cryst. E74, 650–655.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZainuri, D. A., Razak, I. A. & Arshad, S. (2018c). Acta Cryst. E74, 780–785.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds