research communications
and Hirshfeld surface analysis of 2,4-diamino-6-phenyl-1,3,5-triazin-1-ium 4-methylbenzenesulfonate
aDepartment of Chemistry, Governemnt Arts College (Autonomous), Karur 639 005, Tamil Nadu, India, bDepartment of Chemistry, Government Arts College, Thiruchirappalli 620 022, Tamil Nadu, India, and cDepartment of Chemistry, Mother Teresa Womens University, Kodaikanal 624 102, Tamil Nadu, India
*Correspondence e-mail: manavaibala@gmail.com
In the title molecular salt, C9H10N5+·C7H7O3S−, the consists of a 2,4-diamino-6-phenyl-1,3,5-triazin-1-ium cation and a 4-methylbenzenesulfonate anion. The cation is protonated at the N atom lying between the amine and phenyl substituents. The protonated N and amino-group N atoms are involved in hydrogen bonding with the sulfonate O atoms through a pair of intermolecular N—H⋯O hydrogen bonds, giving rise to a hydrogen-bonded cyclic motif with R22(8) graph-set notation. The inversion-related molecules are further linked by four N—H⋯O intermolecular interactions to produce a complementary DDAA (D = donor, A = acceptor) hydrogen-bonded array, forming R22(8), R42(8) and R22(8) ring motifs. The centrosymmetrically paired cations form R22(8) ring motifs through base-pairing via N—H⋯N hydrogen bonds. In addition, another R33(10) motif is formed between centrosymetrically paired cations and a sulfonate anion via N—H⋯O hydrogen bonds. The also features weak S=O⋯π and π–π interactions. Hirshfeld surface and fingerprint plots were employed in order to further study the intermolecular interactions.
Keywords: crystal structure; triazinium cation; 4-methylbenzenesulfonate anion; DDAA array; Hirshfeld surface analysis.
CCDC reference: 1820866
1. Chemical context
Triazine derivatives have been found to possess a wide variety of biological activities such as anticancer (El-Gendy et al., 2001; Abdel-Rahman et al., 1999), antitumour (Menicagli et al., 2004) and anti-inflammatory (El-Massry et al., 1999) activities. In addition, many s-triazine derivatives have been found to exhibit antibacterial (Jyoti et al., 2003) and herbicidal activity. The 1,3,5-triazine moieties are of particular interest because of their potentially large non-linear optical response (Marchewka et al., 2003). Triazine derivatives of melamine and benzoguanamine are used to manufacture resins (Ricciotti et al., 2013). They are used as preservatives in oil-field applications and as disinfectants, industrial deodorants and as a biocide in water treatments. Triazine derivatives have been used appreciably as a valuable constructing unit of subtle architectures consisting of organic and inorganic hybrid frameworks (Mathias et al., 1994; Zerkowski et al., 1994; MacDonald & Whitesides, 1994; Guru Row et al., 1999; Krische & Lehn, 2000; Sherrington & Taskinen, 2001). Herein the of 2,4-diamino-6-phenyl-1,3,5-triazine-1-ium-4-methylbenzene sulfonate is described. Hirshfeld surface analysis and two-dimensional fingerprint plots were employed to quantify the percentage contributions of the intermolecular interactions present in the molecule.
2. Structural commentary
The molecular structure with its atomic numbering scheme is shown in Fig. 1. The comprises a 2,4-diamino-6-phenyl-1,3,5-triazin-1-ium cation and a 4-methylbenzene sulfonate anion. The cation is protonated at atom N5, which lies between the amine and phenyl substituents: this protonation is reflected by an increase in the bond angle at N5 [C8—N5—C10 = 119.43 (15)°] compared to the unprotonated atom N3 [C8—N3—C9 = 115.88 (15)°] and the corresponding angle of 113.7 (4)° in neutral 2,4-diamino-6-phenyl-1,3,5-triazine (Díaz-Ortiz et al., 2004). Otherwise, bond lengths and angles are in normal ranges (Allen et al., 1987).
3. Supramolecular features
In the crystal, the protonated nitrogen (N5) and amino group nitrogen (N4) atoms are involved in hydrogen bonding with the 4-methylbenzene sulfonate oxygen atoms O2 and O3 through a pair of intermolecular N—H⋯O hydrogen bonds, giving rise to a hydrogen-bonded R22(8) cyclic graph-set motif (Fig. 1, Table 1). Here the sulfonate oxygen atoms mimic the role of carboxylate oxygen atoms. The inversion-related molecules are further linked by four N—H⋯O hydrogen bonds, forming an another R42(8) ring motif to produce a DDAA array of quadruple hydrogen bonds. This type of conjoined hydrogen-bonded ring motifs can be represented as R22(8), R42(8) and R22(8), repectively (Fig. 2). The inversion-related triazinium bases are paired by two N—H⋯N hydrogen bonds, generating an R22(8) graph-set motif. In addition, another R33(10) ring motif is formed between centrosymetrically paired cations and a sulfonate anion via N—H⋯O hydrogen bonds. One of the sulfonate oxygen atoms acts as an acceptor of bifurcated hydrogen bonds. Overall, these hydrogen bonds generate chains along (100).
A weak intermolecular π–ring interaction between atom O1 of the anion and the π-system of the triazinium ring is observed in a slipped-parallel mode [S1—O1⋯Cg1; Y—X, π = 46.33°], (Fig. 3, Table 1). A similar interaction was observed in 1,3-dimethoxy-2-methylimidazolium bis(trifluoromethanesulfonyl)imide (Partl et al.,2016). π–π interactions are also observed between the anionic rings, with a centroid-to-centroid distance of 3.9192 (13) Å.
4. Hirshfeld surface analysis
Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and two-dimensional fingerprint plots are useful tools for describing the surface characteristics of the and were generated using CrystalExplorer3.0 (Wolff et al., 2012). The normalized contact distance (dnorm) is based on the distances from the nearest atom inside (di) and outside (de) the surface. The three-dimensional dnorm surface of the title compound is shown in Fig. 4. The red points represent closer contacts and negative dnorm values on the surface corresponding to N—H⋯O and N—H⋯N interactions. Two-dimensional fingerprint plots are shown in Fig. 5. The H⋯H interactions (43.5%) and C⋯H (18.7%) interactions make the highest contributions with the O⋯H (15.9%) N⋯H (10.9%), C⋯C (3.9%), C⋯O (2.3%), N⋯O (1.6%) and O⋯O (0.3%) contacts also making significant contributions to the Hirshfeld surface.
5. Database survey
A search of the Cambridge Structural Database (Version 5.37, update February 2016 Groom et al., 2016) for 2,4-diamino-6-phenyl-1,3,5-triazine yielded five crystal structures of proton-transfer salts with carboxylic acids: HEVQAB (with oxalic acid; Aghabozorg et al., 2006), HEWFOG (with picric acid; Goel et al., 2013), TEZNAP (with phthalic acid; Delori et al., 2013), WEPBUP (with hydrogen chloride; Sheshmani et al., 2006), and YOCZOH (with 2,3,5,6-tetrafluoroterephthalic acid; Wang et al., 2014).
6. Synthesis and crystallization
The title compound was prepared by mixing a hot methanolic solution (20 ml) of 2,4-diamino-6-phenyl-1,3,5-triazine (0.187 g) and a hot methanolic solution (10 ml) of 4-methylbenzene sulfonic acid (0.172 g) in 1:1 molar ratio. The reaction mixture was warmed over a water bath for a few minutes. The resultant solution was then allowed to cool slowly at room temperature. After a few days, colourless block-shaped crystals were separated out.
7. Refinement
Crystal data, data collection and structure . The C- and N- bound H atoms were placed in calculated positions and were included in the in the riding-model approximation: C—H = 0.93 Å and N—H = 0.86 Å with Uiso(H) set to 1.2–1.5Ueq(C) or 1.3Ueq(N).
details are summarized in Table 2
|
Supporting information
CCDC reference: 1820866
https://doi.org/10.1107/S2056989018010368/jj2200sup1.cif
contains datablocks global, I. DOI:Supporting information file. DOI: https://doi.org/10.1107/S2056989018010368/jj2200Isup2.cml
Data collection: APEX2 (Bruker, 2004); cell
APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C9H10N5+·C7H7O3S− | F(000) = 752 |
Mr = 359.41 | Dx = 1.385 Mg m−3 Dm = 1.381 Mg m−3 Dm measured by Not Measured |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 6410 reflections |
a = 11.0060 (6) Å | θ = 5.7–56.4° |
b = 20.7269 (11) Å | µ = 0.21 mm−1 |
c = 7.6213 (4) Å | T = 296 K |
β = 97.468 (2)° | Block, colourless |
V = 1723.83 (16) Å3 | 0.35 × 0.35 × 0.30 mm |
Z = 4 |
Bruker Kappa APEXII CCD diffractometer | 4273 independent reflections |
Radiation source: fine-focus sealed tube | 3325 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
Detector resolution: 18.4 pixels mm-1 | θmax = 28.3°, θmin = 2.7° |
ω and φ scan | h = −14→14 |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | k = −27→24 |
Tmin = 0.929, Tmax = 0.939 | l = −9→10 |
20842 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.049 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.151 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0845P)2 + 0.7378P] where P = (Fo2 + 2Fc2)/3 |
4277 reflections | (Δ/σ)max = 0.004 |
227 parameters | Δρmax = 0.49 e Å−3 |
0 restraints | Δρmin = −0.43 e Å−3 |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.34811 (4) | 0.91624 (2) | 0.65382 (7) | 0.0341 (2) | |
N1 | 0.90645 (14) | 0.92499 (8) | 0.5823 (2) | 0.0331 (5) | |
N2 | 1.04787 (14) | 0.97433 (9) | 0.7826 (2) | 0.0413 (5) | |
N3 | 0.85035 (14) | 0.97568 (8) | 0.8454 (2) | 0.0328 (5) | |
N4 | 0.64605 (15) | 0.97966 (9) | 0.8776 (2) | 0.0449 (6) | |
N5 | 0.70324 (13) | 0.92814 (7) | 0.6349 (2) | 0.0306 (4) | |
O1 | 0.24577 (13) | 0.95410 (7) | 0.5729 (2) | 0.0463 (5) | |
O2 | 0.45015 (13) | 0.91551 (8) | 0.5499 (2) | 0.0506 (5) | |
O3 | 0.38962 (15) | 0.93469 (8) | 0.8365 (2) | 0.0519 (5) | |
C8 | 0.73449 (16) | 0.96182 (9) | 0.7882 (2) | 0.0313 (5) | |
C9 | 0.93250 (16) | 0.95848 (9) | 0.7378 (2) | 0.0307 (5) | |
C10 | 0.79160 (16) | 0.91143 (8) | 0.5351 (2) | 0.0295 (5) | |
C11 | 0.75537 (17) | 0.87572 (10) | 0.3686 (3) | 0.0347 (5) | |
C12 | 0.8406 (2) | 0.83807 (18) | 0.3023 (4) | 0.0817 (13) | |
C13 | 0.8094 (3) | 0.8038 (2) | 0.1478 (5) | 0.1184 (18) | |
C14 | 0.6952 (3) | 0.80698 (17) | 0.0582 (4) | 0.0729 (10) | |
C15 | 0.6098 (2) | 0.84433 (17) | 0.1229 (3) | 0.0669 (9) | |
C16 | 0.6392 (2) | 0.87874 (14) | 0.2786 (3) | 0.0541 (8) | |
C1 | 0.1803 (4) | 0.63794 (13) | 0.6294 (4) | 0.0804 (13) | |
C2 | 0.2180 (3) | 0.70767 (11) | 0.6442 (3) | 0.0510 (8) | |
C3 | 0.1408 (2) | 0.75664 (11) | 0.5771 (3) | 0.0518 (8) | |
C4 | 0.17777 (18) | 0.82075 (10) | 0.5852 (3) | 0.0407 (6) | |
C5 | 0.29530 (17) | 0.83591 (9) | 0.6579 (2) | 0.0318 (5) | |
C6 | 0.3336 (3) | 0.72421 (12) | 0.7230 (3) | 0.0560 (8) | |
C7 | 0.3737 (2) | 0.78743 (11) | 0.7282 (3) | 0.0478 (7) | |
H2N4 | 0.66290 | 1.00070 | 0.97500 | 0.0540* | |
H1N4 | 0.57120 | 0.97030 | 0.83880 | 0.0540* | |
H2N2 | 1.06960 | 0.99530 | 0.87890 | 0.0500* | |
H1N2 | 1.10170 | 0.96380 | 0.71550 | 0.0500* | |
H1N5 | 0.62810 | 0.91760 | 0.60200 | 0.0370* | |
H12 | 0.91980 | 0.83550 | 0.36160 | 0.0980* | |
H13 | 0.86800 | 0.77810 | 0.10440 | 0.1420* | |
H14 | 0.67540 | 0.78390 | −0.04630 | 0.0870* | |
H15 | 0.53090 | 0.84680 | 0.06220 | 0.0800* | |
H16 | 0.58000 | 0.90400 | 0.32220 | 0.0650* | |
H1A | 0.21910 | 0.61750 | 0.53820 | 0.1200* | |
H1B | 0.09300 | 0.63520 | 0.60040 | 0.1200* | |
H1C | 0.20480 | 0.61660 | 0.74020 | 0.1200* | |
H3 | 0.06200 | 0.74650 | 0.52500 | 0.0620* | |
H4 | 0.12350 | 0.85320 | 0.54190 | 0.0490* | |
H6 | 0.38570 | 0.69210 | 0.77390 | 0.0670* | |
H7 | 0.45300 | 0.79740 | 0.77850 | 0.0570* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0234 (2) | 0.0389 (3) | 0.0409 (3) | −0.0040 (2) | 0.0079 (2) | −0.0090 (2) |
N1 | 0.0236 (7) | 0.0420 (9) | 0.0334 (8) | 0.0026 (6) | 0.0021 (6) | −0.0055 (6) |
N2 | 0.0245 (8) | 0.0586 (11) | 0.0406 (9) | −0.0045 (7) | 0.0039 (7) | −0.0133 (8) |
N3 | 0.0253 (7) | 0.0397 (9) | 0.0335 (8) | −0.0046 (6) | 0.0041 (6) | −0.0066 (6) |
N4 | 0.0271 (8) | 0.0616 (12) | 0.0476 (10) | −0.0097 (7) | 0.0107 (7) | −0.0249 (8) |
N5 | 0.0222 (7) | 0.0370 (8) | 0.0325 (8) | −0.0047 (6) | 0.0035 (6) | −0.0067 (6) |
O1 | 0.0344 (8) | 0.0381 (8) | 0.0674 (10) | 0.0022 (6) | 0.0108 (7) | 0.0063 (7) |
O2 | 0.0286 (7) | 0.0702 (11) | 0.0558 (10) | −0.0100 (7) | 0.0157 (7) | −0.0144 (8) |
O3 | 0.0491 (9) | 0.0605 (10) | 0.0462 (9) | −0.0117 (8) | 0.0070 (7) | −0.0225 (8) |
C8 | 0.0267 (9) | 0.0337 (9) | 0.0341 (9) | −0.0044 (7) | 0.0062 (7) | −0.0047 (7) |
C9 | 0.0248 (8) | 0.0346 (9) | 0.0321 (9) | 0.0003 (7) | 0.0013 (7) | −0.0009 (7) |
C10 | 0.0254 (8) | 0.0310 (8) | 0.0316 (9) | 0.0018 (6) | 0.0018 (7) | −0.0023 (7) |
C11 | 0.0289 (9) | 0.0420 (10) | 0.0331 (9) | 0.0006 (8) | 0.0032 (7) | −0.0071 (8) |
C12 | 0.0373 (13) | 0.125 (3) | 0.078 (2) | 0.0236 (15) | −0.0105 (13) | −0.062 (2) |
C13 | 0.0559 (18) | 0.187 (4) | 0.107 (3) | 0.037 (2) | −0.0091 (17) | −0.106 (3) |
C14 | 0.0574 (16) | 0.104 (2) | 0.0551 (16) | 0.0007 (15) | −0.0010 (12) | −0.0444 (16) |
C15 | 0.0394 (13) | 0.115 (2) | 0.0445 (13) | −0.0081 (14) | −0.0015 (10) | −0.0290 (15) |
C16 | 0.0315 (11) | 0.0896 (19) | 0.0411 (12) | 0.0025 (11) | 0.0040 (9) | −0.0221 (12) |
C1 | 0.127 (3) | 0.0380 (13) | 0.082 (2) | −0.0115 (15) | 0.036 (2) | −0.0056 (13) |
C2 | 0.0741 (17) | 0.0371 (11) | 0.0458 (12) | −0.0021 (11) | 0.0234 (12) | −0.0037 (9) |
C3 | 0.0452 (12) | 0.0456 (12) | 0.0647 (15) | −0.0135 (10) | 0.0078 (11) | −0.0042 (11) |
C4 | 0.0290 (9) | 0.0396 (11) | 0.0525 (12) | −0.0024 (8) | 0.0014 (8) | 0.0017 (9) |
C5 | 0.0291 (9) | 0.0363 (9) | 0.0302 (9) | 0.0009 (7) | 0.0046 (7) | −0.0066 (7) |
C6 | 0.0739 (17) | 0.0424 (12) | 0.0526 (14) | 0.0203 (12) | 0.0120 (12) | 0.0052 (10) |
C7 | 0.0408 (12) | 0.0542 (13) | 0.0454 (12) | 0.0129 (10) | −0.0057 (9) | −0.0053 (10) |
S1—O1 | 1.4437 (15) | C14—C15 | 1.359 (4) |
S1—O2 | 1.4560 (15) | C15—C16 | 1.386 (4) |
S1—O3 | 1.4588 (16) | C12—H12 | 0.9300 |
S1—C5 | 1.7651 (19) | C13—H13 | 0.9300 |
N1—C10 | 1.299 (2) | C14—H14 | 0.9300 |
N1—C9 | 1.371 (2) | C15—H15 | 0.9300 |
N2—C9 | 1.313 (2) | C16—H16 | 0.9300 |
N3—C8 | 1.324 (2) | C1—C2 | 1.504 (4) |
N3—C9 | 1.345 (2) | C2—C3 | 1.379 (3) |
N4—C8 | 1.312 (2) | C2—C6 | 1.378 (4) |
N5—C10 | 1.355 (2) | C3—C4 | 1.389 (3) |
N5—C8 | 1.366 (2) | C4—C5 | 1.376 (3) |
N2—H2N2 | 0.8600 | C5—C7 | 1.386 (3) |
N2—H1N2 | 0.8600 | C6—C7 | 1.382 (3) |
N4—H2N4 | 0.8600 | C1—H1A | 0.9600 |
N4—H1N4 | 0.8600 | C1—H1B | 0.9600 |
N5—H1N5 | 0.8600 | C1—H1C | 0.9600 |
C10—C11 | 1.478 (3) | C3—H3 | 0.9300 |
C11—C12 | 1.367 (4) | C4—H4 | 0.9300 |
C11—C16 | 1.372 (3) | C6—H6 | 0.9300 |
C12—C13 | 1.380 (5) | C7—H7 | 0.9300 |
C13—C14 | 1.352 (5) | ||
O1—S1—O2 | 112.79 (9) | C11—C12—H12 | 120.00 |
O1—S1—O3 | 113.29 (9) | C13—C12—H12 | 120.00 |
O1—S1—C5 | 106.25 (9) | C12—C13—H13 | 119.00 |
O2—S1—O3 | 110.72 (9) | C14—C13—H13 | 119.00 |
O2—S1—C5 | 106.19 (9) | C15—C14—H14 | 120.00 |
O3—S1—C5 | 107.07 (9) | C13—C14—H14 | 120.00 |
C9—N1—C10 | 115.81 (15) | C14—C15—H15 | 120.00 |
C8—N3—C9 | 115.88 (15) | C16—C15—H15 | 120.00 |
C8—N5—C10 | 119.43 (15) | C15—C16—H16 | 120.00 |
C9—N2—H1N2 | 120.00 | C11—C16—H16 | 120.00 |
C9—N2—H2N2 | 120.00 | C1—C2—C3 | 121.9 (3) |
H2N2—N2—H1N2 | 120.00 | C1—C2—C6 | 120.1 (3) |
C8—N4—H1N4 | 120.00 | C3—C2—C6 | 117.9 (2) |
H2N4—N4—H1N4 | 120.00 | C2—C3—C4 | 121.7 (2) |
C8—N4—H2N4 | 120.00 | C3—C4—C5 | 119.42 (19) |
C10—N5—H1N5 | 120.00 | S1—C5—C4 | 120.19 (15) |
C8—N5—H1N5 | 120.00 | S1—C5—C7 | 120.05 (15) |
N3—C8—N4 | 121.04 (16) | C4—C5—C7 | 119.71 (18) |
N4—C8—N5 | 117.84 (16) | C2—C6—C7 | 121.5 (2) |
N3—C8—N5 | 121.13 (16) | C5—C7—C6 | 119.7 (2) |
N1—C9—N2 | 115.97 (16) | C2—C1—H1A | 110.00 |
N1—C9—N3 | 125.41 (16) | C2—C1—H1B | 109.00 |
N2—C9—N3 | 118.62 (15) | C2—C1—H1C | 109.00 |
N1—C10—N5 | 122.18 (15) | H1A—C1—H1B | 109.00 |
N5—C10—C11 | 118.46 (16) | H1A—C1—H1C | 109.00 |
N1—C10—C11 | 119.35 (16) | H1B—C1—H1C | 109.00 |
C12—C11—C16 | 118.8 (2) | C2—C3—H3 | 119.00 |
C10—C11—C12 | 118.80 (19) | C4—C3—H3 | 119.00 |
C10—C11—C16 | 122.43 (19) | C3—C4—H4 | 120.00 |
C11—C12—C13 | 120.2 (2) | C5—C4—H4 | 120.00 |
C12—C13—C14 | 121.2 (3) | C2—C6—H6 | 119.00 |
C13—C14—C15 | 119.1 (3) | C7—C6—H6 | 119.00 |
C14—C15—C16 | 120.6 (2) | C5—C7—H7 | 120.00 |
C11—C16—C15 | 120.2 (2) | C6—C7—H7 | 120.00 |
O1—S1—C5—C4 | 2.32 (18) | N1—C10—C11—C16 | −156.7 (2) |
O2—S1—C5—C4 | −118.00 (16) | N5—C10—C11—C12 | −155.5 (2) |
O3—S1—C5—C4 | 123.67 (16) | C16—C11—C12—C13 | −0.1 (4) |
O1—S1—C5—C7 | 179.78 (16) | C10—C11—C16—C15 | 180.0 (2) |
O2—S1—C5—C7 | 59.47 (17) | C10—C11—C12—C13 | 179.6 (3) |
O3—S1—C5—C7 | −58.87 (18) | C12—C11—C16—C15 | −0.3 (4) |
C10—N1—C9—N3 | 2.6 (3) | C11—C12—C13—C14 | 0.6 (6) |
C10—N1—C9—N2 | −177.59 (17) | C12—C13—C14—C15 | −0.5 (6) |
C9—N1—C10—N5 | −1.3 (2) | C13—C14—C15—C16 | 0.0 (5) |
C9—N1—C10—C11 | 179.67 (16) | C14—C15—C16—C11 | 0.4 (4) |
C8—N3—C9—N2 | 176.08 (17) | C1—C2—C6—C7 | 175.7 (2) |
C8—N3—C9—N1 | −4.1 (3) | C1—C2—C3—C4 | −177.5 (2) |
C9—N3—C8—N5 | 4.3 (3) | C6—C2—C3—C4 | 1.0 (4) |
C9—N3—C8—N4 | −176.10 (17) | C3—C2—C6—C7 | −2.9 (4) |
C10—N5—C8—N4 | 177.08 (16) | C2—C3—C4—C5 | 1.7 (3) |
C8—N5—C10—C11 | −179.23 (16) | C3—C4—C5—C7 | −2.5 (3) |
C10—N5—C8—N3 | −3.3 (3) | C3—C4—C5—S1 | 174.99 (16) |
C8—N5—C10—N1 | 1.7 (3) | S1—C5—C7—C6 | −176.79 (17) |
N5—C10—C11—C16 | 24.2 (3) | C4—C5—C7—C6 | 0.7 (3) |
N1—C10—C11—C12 | 23.6 (3) | C2—C6—C7—C5 | 2.1 (4) |
Cg1 and Cg3 are the centroids of the N1/C9/N3/C8/N5/C10 and C2–C5/C6/C7 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H2N4···O3i | 0.86 | 2.10 | 2.877 (2) | 150 |
N4—H1N4···O3 | 0.86 | 2.13 | 2.950 (2) | 160 |
N2—H2N2···N3ii | 0.86 | 2.25 | 3.089 (2) | 164 |
N2—H1N2···O1iii | 0.86 | 2.05 | 2.895 (2) | 169 |
N5—H1N5···O2 | 0.86 | 1.95 | 2.789 (2) | 165 |
C16—H16···O2 | 0.93 | 2.40 | 3.210 (3) | 146 |
S1—O1···Cg1iv | 2.93 (1) | 4.1695 (8) | 142 (1) | |
Cg3—Cg3 | 3.9192 (13) |
Symmetry codes: (i) −x+1, −y+2, −z+2; (ii) −x+2, −y+2, −z+2; (iii) x+1, y, z; (iv) −x+1, −y+2, −z+1; (v) x, −y+3/2, z+1/2. |
Acknowledgements
The authors wish to thank the SAIF–STIC, Cochin, Kerala, for the data collection.
Funding information
KB thanks the Department of Science and Technology (DST–SERB), New Delhi, India,for financial support (grant No. SB/ FT/CS-058/2013). RS thanks the Department of Science and Technology (DST), New Delhi, India, for financial support in the form of an INSPIRE fellowship (INSPIRE code No. IF131050).
References
Abdel-Rahman, R. M., Morsy, J. M., Hanafy, F. & Amene, H. A. (1999). Pharmazie, 54, 347–351. Web of Science PubMed CAS Google Scholar
Aghabozorg, H., Ghadermazi, M. & Sadr-Khanlou, E. (2006). Anal. Sci. X, 22, x255–x256. CrossRef Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19. CSD CrossRef Web of Science Google Scholar
Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Delori, A., Suresh, E. & Pedireddi, V. R. (2013). CrystEngComm, 15, 4811–4815. Web of Science CSD CrossRef CAS Google Scholar
Díaz-Ortiz, Á, Elguero, J., Foces-Foces, C., de la Hoz, A., Moreno, A., del Carmen Mateo, M., Sánchez-Migallón, A. & Valiente, G. (2004). New J. Chem. 28, 952–958. Google Scholar
El-Gendy, Z., Morsy, J. M., Allimony, H. A., Ali, W. R. & Abdel-Rahman, R. M. (2001). Pharmazie, 56, 376–383. Google Scholar
El-Massry, A. M. (1999). Heterocycl. Commun. 5, 555–564. Google Scholar
Goel, N., Singh, U. P., Singh, G. & Srivastava, P. (2013). J. Mol. Struct. 1036, 427–438. Web of Science CSD CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Guru Row, T. N. (1999). Coord. Chem. Rev. 183, 81–100. CrossRef CAS Google Scholar
Jyoti, M., Shirodkar, V. & Mulwad, V. (2003). Indian J. Chem. Sect. B, 42, 621–626. Google Scholar
Krische, M. J. & Lehn, J. M. (2000). Struct. Bond. 96, 3–29. CrossRef CAS Google Scholar
MacDonald, J. C. & Whitesides, G. M. (1994). Chem. Rev. 94, 2383–2420. CrossRef CAS Web of Science Google Scholar
Marchewka, M. K., Janczak, J., Debrus, S., Baran, J. & Ratajczak, H. (2003). Solid State Sci. 5, 643–652. Web of Science CSD CrossRef CAS Google Scholar
Mathias, J. P., Simanek, E. E., Zerkowski, J. A., Seto, C. T. & Whitesides, G. M. (1994). J. Am. Chem. Soc. 116, 4316–4325. CrossRef Web of Science Google Scholar
Menicagli, R., Samaritani, S., Signore, G., Vaglini, F. & Dalla Via, L. (2004). J. Med. Chem. 47, 4649–4652. Web of Science CrossRef Google Scholar
Partl, G., Lampl, M., Laus, G., Wurst, K., Huppertz, H. & Schottenberger, H. (2016). IUCrData, 1, x160824. Google Scholar
Ricciotti, L., Roviello, G., Tarallo, O., Borbone, F., Ferone, C., Colangelo, F., Catauro, M. & Cioffi, R. (2013). Int. J. Mol. Sci. 14, 18200–18214. CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sherrington, D. C. & Taskinen, K. A. (2001). Chem. Soc. Rev. 30, 83–93. Web of Science CrossRef CAS Google Scholar
Sheshmani, S., Ghadermazi, M., Aghabozorg, H. & Nakhjavan, B. (2006). Acta Cryst. E62, o4681–o4682. Web of Science CSD CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, L., Hu, Y., Wang, W., Liu, F. & Huang, K. (2014). CrystEngComm, 16, 4142–4161. Web of Science CSD CrossRef CAS Google Scholar
Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer3.0. University of Western Australia. Google Scholar
Zerkowski, J. A. & Whitesides, G. M. (1994). J. Am. Chem. Soc. 116, 4298–4304. CSD CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.