research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 2,4-di­amino-6-phenyl-1,3,5-triazin-1-ium 4-methyl­benzene­sulfonate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Governemnt Arts College (Autonomous), Karur 639 005, Tamil Nadu, India, bDepartment of Chemistry, Government Arts College, Thiruchirappalli 620 022, Tamil Nadu, India, and cDepartment of Chemistry, Mother Teresa Womens University, Kodaikanal 624 102, Tamil Nadu, India
*Correspondence e-mail: manavaibala@gmail.com

Edited by J. Jasinsk, Keene State College, USA (Received 21 June 2018; accepted 18 July 2018; online 27 July 2018)

In the title mol­ecular salt, C9H10N5+·C7H7O3S, the asymmetric unit consists of a 2,4-di­amino-6-phenyl-1,3,5-triazin-1-ium cation and a 4-methyl­benzene­sulfonate anion. The cation is protonated at the N atom lying between the amine and phenyl substituents. The protonated N and amino-group N atoms are involved in hydrogen bonding with the sulfonate O atoms through a pair of inter­molecular N—H⋯O hydrogen bonds, giving rise to a hydrogen-bonded cyclic motif with R22(8) graph-set notation. The inversion-related mol­ecules are further linked by four N—H⋯O inter­molecular inter­actions to produce a complementary DDAA (D = donor, A = acceptor) hydrogen-bonded array, forming R22(8), R42(8) and R22(8) ring motifs. The centrosymmetrically paired cations form R22(8) ring motifs through base-pairing via N—H⋯N hydrogen bonds. In addition, another R33(10) motif is formed between centrosymetrically paired cations and a sulfonate anion via N—H⋯O hydrogen bonds. The crystal structure also features weak S=O⋯π and ππ inter­actions. Hirshfeld surface and fingerprint plots were employed in order to further study the inter­molecular inter­actions.

1. Chemical context

Triazine derivatives have been found to possess a wide variety of biological activities such as anti­cancer (El-Gendy et al., 2001[El-Gendy, Z., Morsy, J. M., Allimony, H. A., Ali, W. R. & Abdel-Rahman, R. M. (2001). Pharmazie, 56, 376-383.]; Abdel-Rahman et al., 1999[Abdel-Rahman, R. M., Morsy, J. M., Hanafy, F. & Amene, H. A. (1999). Pharmazie, 54, 347-351.]), anti­tumour (Menicagli et al., 2004[Menicagli, R., Samaritani, S., Signore, G., Vaglini, F. & Dalla Via, L. (2004). J. Med. Chem. 47, 4649-4652.]) and anti-inflammatory (El-Massry et al., 1999[El-Massry, A. M. (1999). Heterocycl. Commun. 5, 555-564.]) activities. In addition, many s-triazine derivatives have been found to exhibit anti­bacterial (Jyoti et al., 2003[Jyoti, M., Shirodkar, V. & Mulwad, V. (2003). Indian J. Chem. Sect. B, 42, 621-626.]) and herbicidal activity. The 1,3,5-triazine moieties are of particular inter­est because of their potentially large non-linear optical response (Marchewka et al., 2003[Marchewka, M. K., Janczak, J., Debrus, S., Baran, J. & Ratajczak, H. (2003). Solid State Sci. 5, 643-652.]). Triazine derivatives of melamine and benzoguanamine are used to manufacture resins (Ricciotti et al., 2013[Ricciotti, L., Roviello, G., Tarallo, O., Borbone, F., Ferone, C., Colangelo, F., Catauro, M. & Cioffi, R. (2013). Int. J. Mol. Sci. 14, 18200-18214.]). They are used as preservatives in oil-field applications and as disinfectants, industrial deodorants and as a biocide in water treatments. Triazine derivatives have been used appreciably as a valuable constructing unit of subtle architectures consisting of organic and inorganic hybrid frameworks (Ma­thias et al., 1994[Mathias, J. P., Simanek, E. E., Zerkowski, J. A., Seto, C. T. & Whitesides, G. M. (1994). J. Am. Chem. Soc. 116, 4316-4325.]; Zerkowski et al., 1994[Zerkowski, J. A. & Whitesides, G. M. (1994). J. Am. Chem. Soc. 116, 4298-4304.]; MacDonald & Whitesides, 1994[MacDonald, J. C. & Whitesides, G. M. (1994). Chem. Rev. 94, 2383-2420.]; Guru Row et al., 1999[Guru Row, T. N. (1999). Coord. Chem. Rev. 183, 81-100.]; Krische & Lehn, 2000[Krische, M. J. & Lehn, J. M. (2000). Struct. Bond. 96, 3-29.]; Sherrington & Taskinen, 2001[Sherrington, D. C. & Taskinen, K. A. (2001). Chem. Soc. Rev. 30, 83-93.]). Herein the crystal structure of 2,4-di­amino-6-phenyl-1,3,5-triazine-1-ium-4-methyl­benzene sulfonate is described. Hirshfeld surface analysis and two-dimensional fingerprint plots were employed to qu­antify the percentage contributions of the inter­molecular inter­actions present in the mol­ecule.

[Scheme 1]

2. Structural commentary

The mol­ecular structure with its atomic numbering scheme is shown in Fig. 1[link]. The asymmetric unit comprises a 2,4-di­amino-6-phenyl-1,3,5-triazin-1-ium cation and a 4-methyl­benzene sulfonate anion. The cation is protonated at atom N5, which lies between the amine and phenyl substituents: this proton­ation is reflected by an increase in the bond angle at N5 [C8—N5—C10 = 119.43 (15)°] compared to the unprotonated atom N3 [C8—N3—C9 = 115.88 (15)°] and the corresponding angle of 113.7 (4)° in neutral 2,4-di­amino-6-phenyl-1,3,5-triazine (Díaz-Ortiz et al., 2004[Díaz-Ortiz, Á, Elguero, J., Foces-Foces, C., de la Hoz, A., Moreno, A., del Carmen Mateo, M., Sánchez-Migallón, A. & Valiente, G. (2004). New J. Chem. 28, 952-958.]). Otherwise, bond lengths and angles are in normal ranges (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 40% probability level. N—H⋯O hydrogen bonds (dashed lines) form an R22(8) ring motif between the 2,4-di­amino-6-phenyl-1,3,5-triazin-1-ium cation and 4-methyl­benzene­sulfonate anion.

3. Supra­molecular features

In the crystal, the protonated nitro­gen (N5) and amino group nitro­gen (N4) atoms are involved in hydrogen bonding with the 4-methyl­benzene sulfonate oxygen atoms O2 and O3 through a pair of inter­molecular N—H⋯O hydrogen bonds, giving rise to a hydrogen-bonded R22(8) cyclic graph-set motif (Fig. 1[link], Table 1[link]). Here the sulfonate oxygen atoms mimic the role of carboxyl­ate oxygen atoms. The inversion-related mol­ecules are further linked by four N—H⋯O hydrogen bonds, forming an another R42(8) ring motif to produce a DDAA array of quadruple hydrogen bonds. This type of conjoined hydrogen-bonded ring motifs can be represented as R22(8), R42(8) and R22(8), repectively (Fig. 2[link]). The inversion-related triazinium bases are paired by two N—H⋯N hydrogen bonds, generating an R22(8) graph-set motif. In addition, another R33(10) ring motif is formed between centrosymetrically paired cations and a sulfonate anion via N—H⋯O hydrogen bonds. One of the sulfonate oxygen atoms acts as an acceptor of bifurcated hydrogen bonds. Overall, these hydrogen bonds generate chains along (100).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg3 are the centroids of the N1/C9/N3/C8/N5/C10 and C2–C5/C6/C7 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H2N4⋯O3i 0.86 2.10 2.877 (2) 150
N4—H1N4⋯O3 0.86 2.13 2.950 (2) 160
N2—H2N2⋯N3ii 0.86 2.25 3.089 (2) 164
N2—H1N2⋯O1iii 0.86 2.05 2.895 (2) 169
N5—H1N5⋯O2 0.86 1.95 2.789 (2) 165
C16—H16⋯O2 0.93 2.40 3.210 (3) 146
S1—O1⋯Cg1iv   2.93 (1) 4.1695 (8) 142 (1)
Cg3—Cg3     3.9192 (13)  
Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) -x+2, -y+2, -z+2; (iii) x+1, y, z; (iv) -x+1, -y+2, -z+1; (v) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Crystal packing of the title compound viewed along the b axis. Dashed lines indicate N—H⋯O and N—H⋯N hydrogen bonds, which form a complementary DDAA hydrogen bonded-array with R22(8), R42(8), R22(8) and R33(10) graph-set motifs, generating a one-dimensional hydrogen-bonded supra­molcular structure. (Red = oxygen, green = sulfur).

A weak inter­molecular π–ring inter­action between atom O1 of the anion and the π-system of the triazinium ring is observed in a slipped-parallel mode [S1—O1⋯Cg1; YX, π = 46.33°], (Fig. 3[link], Table 1[link]). A similar inter­action was observed in 1,3-dimeth­oxy-2-methyl­imidazolium bis­(tri­fluoro­methane­sulfon­yl)imide (Partl et al.,2016[Partl, G., Lampl, M., Laus, G., Wurst, K., Huppertz, H. & Schottenberger, H. (2016). IUCrData, 1, x160824.]). ππ inter­actions are also observed between the anionic rings, with a centroid-to-centroid distance of 3.9192 (13) Å.

[Figure 3]
Figure 3
A packing view along the c axis showing the weak inter­molecular S1= O1⋯Cg1 (dashed line) and ππ inter­actions.

4. Hirshfeld surface analysis

Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and two-dimensional fingerprint plots are useful tools for describing the surface characteristics of the crystal structure and were generated using CrystalExplorer3.0 (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer3.0. University of Western Australia.]). The normalized contact distance (dnorm) is based on the distances from the nearest atom inside (di) and outside (de) the surface. The three-dimensional dnorm surface of the title compound is shown in Fig. 4[link]. The red points represent closer contacts and negative dnorm values on the surface corres­ponding to N—H⋯O and N—H⋯N inter­actions. Two-dimensional fingerprint plots are shown in Fig. 5[link]. The H⋯H inter­actions (43.5%) and C⋯H (18.7%) inter­actions make the highest contributions with the O⋯H (15.9%) N⋯H (10.9%), C⋯C (3.9%), C⋯O (2.3%), N⋯O (1.6%) and O⋯O (0.3%) contacts also making significant contributions to the Hirshfeld surface.

[Figure 4]
Figure 4
A view of the three-dimensional Hirshfeld surface of the title compound.
[Figure 5]
Figure 5
Two-dimensional fingerprint plots for the title compound.

5. Database survey

A search of the Cambridge Structural Database (Version 5.37, update February 2016 Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for 2,4-di­amino-6-phenyl-1,3,5-triazine yielded five crystal structures of proton-transfer salts with carb­oxy­lic acids: HEVQAB (with oxalic acid; Aghabozorg et al., 2006[Aghabozorg, H., Ghadermazi, M. & Sadr-Khanlou, E. (2006). Anal. Sci. X, 22, x255-x256.]), HEWFOG (with picric acid; Goel et al., 2013[Goel, N., Singh, U. P., Singh, G. & Srivastava, P. (2013). J. Mol. Struct. 1036, 427-438.]), TEZNAP (with phthalic acid; Delori et al., 2013[Delori, A., Suresh, E. & Pedireddi, V. R. (2013). CrystEngComm, 15, 4811-4815.]), WEPBUP (with hydrogen chloride; Sheshmani et al., 2006[Sheshmani, S., Ghadermazi, M., Aghabozorg, H. & Nakhjavan, B. (2006). Acta Cryst. E62, o4681-o4682.]), and YOCZOH (with 2,3,5,6-tetra­fluoro­terephthalic acid; Wang et al., 2014[Wang, L., Hu, Y., Wang, W., Liu, F. & Huang, K. (2014). CrystEngComm, 16, 4142-4161.]).

6. Synthesis and crystallization

The title compound was prepared by mixing a hot methano­lic solution (20 ml) of 2,4-di­amino-6-phenyl-1,3,5-triazine (0.187 g) and a hot methano­lic solution (10 ml) of 4-methyl­benzene sulfonic acid (0.172 g) in 1:1 molar ratio. The reaction mixture was warmed over a water bath for a few minutes. The resultant solution was then allowed to cool slowly at room temperature. After a few days, colourless block-shaped crystals were separated out.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The C- and N- bound H atoms were placed in calculated positions and were included in the refinement in the riding-model approximation: C—H = 0.93 Å and N—H = 0.86 Å with Uiso(H) set to 1.2–1.5Ueq(C) or 1.3Ueq(N).

Table 2
Experimental details

Crystal data
Chemical formula C9H10N5+·C7H7O3S
Mr 359.41
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 11.0060 (6), 20.7269 (11), 7.6213 (4)
β (°) 97.468 (2)
V3) 1723.83 (16)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.21
Crystal size (mm) 0.35 × 0.35 × 0.30
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.929, 0.939
No. of measured, independent and observed [I > 2σ(I)] reflections 20842, 4273, 3325
Rint 0.033
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.151, 1.01
No. of reflections 4277
No. of parameters 227
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.49, −0.43
Computer programs: APEX2, SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

2,4-Diamino-6-phenyl-1,3,5-triazin-1-ium 4-methylbenzenesulfonate top
Crystal data top
C9H10N5+·C7H7O3SF(000) = 752
Mr = 359.41Dx = 1.385 Mg m3
Dm = 1.381 Mg m3
Dm measured by Not Measured
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6410 reflections
a = 11.0060 (6) Åθ = 5.7–56.4°
b = 20.7269 (11) ŵ = 0.21 mm1
c = 7.6213 (4) ÅT = 296 K
β = 97.468 (2)°Block, colourless
V = 1723.83 (16) Å30.35 × 0.35 × 0.30 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4273 independent reflections
Radiation source: fine-focus sealed tube3325 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 18.4 pixels mm-1θmax = 28.3°, θmin = 2.7°
ω and φ scanh = 1414
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 2724
Tmin = 0.929, Tmax = 0.939l = 910
20842 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0845P)2 + 0.7378P]
where P = (Fo2 + 2Fc2)/3
4277 reflections(Δ/σ)max = 0.004
227 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.43 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.34811 (4)0.91624 (2)0.65382 (7)0.0341 (2)
N10.90645 (14)0.92499 (8)0.5823 (2)0.0331 (5)
N21.04787 (14)0.97433 (9)0.7826 (2)0.0413 (5)
N30.85035 (14)0.97568 (8)0.8454 (2)0.0328 (5)
N40.64605 (15)0.97966 (9)0.8776 (2)0.0449 (6)
N50.70324 (13)0.92814 (7)0.6349 (2)0.0306 (4)
O10.24577 (13)0.95410 (7)0.5729 (2)0.0463 (5)
O20.45015 (13)0.91551 (8)0.5499 (2)0.0506 (5)
O30.38962 (15)0.93469 (8)0.8365 (2)0.0519 (5)
C80.73449 (16)0.96182 (9)0.7882 (2)0.0313 (5)
C90.93250 (16)0.95848 (9)0.7378 (2)0.0307 (5)
C100.79160 (16)0.91143 (8)0.5351 (2)0.0295 (5)
C110.75537 (17)0.87572 (10)0.3686 (3)0.0347 (5)
C120.8406 (2)0.83807 (18)0.3023 (4)0.0817 (13)
C130.8094 (3)0.8038 (2)0.1478 (5)0.1184 (18)
C140.6952 (3)0.80698 (17)0.0582 (4)0.0729 (10)
C150.6098 (2)0.84433 (17)0.1229 (3)0.0669 (9)
C160.6392 (2)0.87874 (14)0.2786 (3)0.0541 (8)
C10.1803 (4)0.63794 (13)0.6294 (4)0.0804 (13)
C20.2180 (3)0.70767 (11)0.6442 (3)0.0510 (8)
C30.1408 (2)0.75664 (11)0.5771 (3)0.0518 (8)
C40.17777 (18)0.82075 (10)0.5852 (3)0.0407 (6)
C50.29530 (17)0.83591 (9)0.6579 (2)0.0318 (5)
C60.3336 (3)0.72421 (12)0.7230 (3)0.0560 (8)
C70.3737 (2)0.78743 (11)0.7282 (3)0.0478 (7)
H2N40.662901.000700.975000.0540*
H1N40.571200.970300.838800.0540*
H2N21.069600.995300.878900.0500*
H1N21.101700.963800.715500.0500*
H1N50.628100.917600.602000.0370*
H120.919800.835500.361600.0980*
H130.868000.778100.104400.1420*
H140.675400.783900.046300.0870*
H150.530900.846800.062200.0800*
H160.580000.904000.322200.0650*
H1A0.219100.617500.538200.1200*
H1B0.093000.635200.600400.1200*
H1C0.204800.616600.740200.1200*
H30.062000.746500.525000.0620*
H40.123500.853200.541900.0490*
H60.385700.692100.773900.0670*
H70.453000.797400.778500.0570*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0234 (2)0.0389 (3)0.0409 (3)0.0040 (2)0.0079 (2)0.0090 (2)
N10.0236 (7)0.0420 (9)0.0334 (8)0.0026 (6)0.0021 (6)0.0055 (6)
N20.0245 (8)0.0586 (11)0.0406 (9)0.0045 (7)0.0039 (7)0.0133 (8)
N30.0253 (7)0.0397 (9)0.0335 (8)0.0046 (6)0.0041 (6)0.0066 (6)
N40.0271 (8)0.0616 (12)0.0476 (10)0.0097 (7)0.0107 (7)0.0249 (8)
N50.0222 (7)0.0370 (8)0.0325 (8)0.0047 (6)0.0035 (6)0.0067 (6)
O10.0344 (8)0.0381 (8)0.0674 (10)0.0022 (6)0.0108 (7)0.0063 (7)
O20.0286 (7)0.0702 (11)0.0558 (10)0.0100 (7)0.0157 (7)0.0144 (8)
O30.0491 (9)0.0605 (10)0.0462 (9)0.0117 (8)0.0070 (7)0.0225 (8)
C80.0267 (9)0.0337 (9)0.0341 (9)0.0044 (7)0.0062 (7)0.0047 (7)
C90.0248 (8)0.0346 (9)0.0321 (9)0.0003 (7)0.0013 (7)0.0009 (7)
C100.0254 (8)0.0310 (8)0.0316 (9)0.0018 (6)0.0018 (7)0.0023 (7)
C110.0289 (9)0.0420 (10)0.0331 (9)0.0006 (8)0.0032 (7)0.0071 (8)
C120.0373 (13)0.125 (3)0.078 (2)0.0236 (15)0.0105 (13)0.062 (2)
C130.0559 (18)0.187 (4)0.107 (3)0.037 (2)0.0091 (17)0.106 (3)
C140.0574 (16)0.104 (2)0.0551 (16)0.0007 (15)0.0010 (12)0.0444 (16)
C150.0394 (13)0.115 (2)0.0445 (13)0.0081 (14)0.0015 (10)0.0290 (15)
C160.0315 (11)0.0896 (19)0.0411 (12)0.0025 (11)0.0040 (9)0.0221 (12)
C10.127 (3)0.0380 (13)0.082 (2)0.0115 (15)0.036 (2)0.0056 (13)
C20.0741 (17)0.0371 (11)0.0458 (12)0.0021 (11)0.0234 (12)0.0037 (9)
C30.0452 (12)0.0456 (12)0.0647 (15)0.0135 (10)0.0078 (11)0.0042 (11)
C40.0290 (9)0.0396 (11)0.0525 (12)0.0024 (8)0.0014 (8)0.0017 (9)
C50.0291 (9)0.0363 (9)0.0302 (9)0.0009 (7)0.0046 (7)0.0066 (7)
C60.0739 (17)0.0424 (12)0.0526 (14)0.0203 (12)0.0120 (12)0.0052 (10)
C70.0408 (12)0.0542 (13)0.0454 (12)0.0129 (10)0.0057 (9)0.0053 (10)
Geometric parameters (Å, º) top
S1—O11.4437 (15)C14—C151.359 (4)
S1—O21.4560 (15)C15—C161.386 (4)
S1—O31.4588 (16)C12—H120.9300
S1—C51.7651 (19)C13—H130.9300
N1—C101.299 (2)C14—H140.9300
N1—C91.371 (2)C15—H150.9300
N2—C91.313 (2)C16—H160.9300
N3—C81.324 (2)C1—C21.504 (4)
N3—C91.345 (2)C2—C31.379 (3)
N4—C81.312 (2)C2—C61.378 (4)
N5—C101.355 (2)C3—C41.389 (3)
N5—C81.366 (2)C4—C51.376 (3)
N2—H2N20.8600C5—C71.386 (3)
N2—H1N20.8600C6—C71.382 (3)
N4—H2N40.8600C1—H1A0.9600
N4—H1N40.8600C1—H1B0.9600
N5—H1N50.8600C1—H1C0.9600
C10—C111.478 (3)C3—H30.9300
C11—C121.367 (4)C4—H40.9300
C11—C161.372 (3)C6—H60.9300
C12—C131.380 (5)C7—H70.9300
C13—C141.352 (5)
O1—S1—O2112.79 (9)C11—C12—H12120.00
O1—S1—O3113.29 (9)C13—C12—H12120.00
O1—S1—C5106.25 (9)C12—C13—H13119.00
O2—S1—O3110.72 (9)C14—C13—H13119.00
O2—S1—C5106.19 (9)C15—C14—H14120.00
O3—S1—C5107.07 (9)C13—C14—H14120.00
C9—N1—C10115.81 (15)C14—C15—H15120.00
C8—N3—C9115.88 (15)C16—C15—H15120.00
C8—N5—C10119.43 (15)C15—C16—H16120.00
C9—N2—H1N2120.00C11—C16—H16120.00
C9—N2—H2N2120.00C1—C2—C3121.9 (3)
H2N2—N2—H1N2120.00C1—C2—C6120.1 (3)
C8—N4—H1N4120.00C3—C2—C6117.9 (2)
H2N4—N4—H1N4120.00C2—C3—C4121.7 (2)
C8—N4—H2N4120.00C3—C4—C5119.42 (19)
C10—N5—H1N5120.00S1—C5—C4120.19 (15)
C8—N5—H1N5120.00S1—C5—C7120.05 (15)
N3—C8—N4121.04 (16)C4—C5—C7119.71 (18)
N4—C8—N5117.84 (16)C2—C6—C7121.5 (2)
N3—C8—N5121.13 (16)C5—C7—C6119.7 (2)
N1—C9—N2115.97 (16)C2—C1—H1A110.00
N1—C9—N3125.41 (16)C2—C1—H1B109.00
N2—C9—N3118.62 (15)C2—C1—H1C109.00
N1—C10—N5122.18 (15)H1A—C1—H1B109.00
N5—C10—C11118.46 (16)H1A—C1—H1C109.00
N1—C10—C11119.35 (16)H1B—C1—H1C109.00
C12—C11—C16118.8 (2)C2—C3—H3119.00
C10—C11—C12118.80 (19)C4—C3—H3119.00
C10—C11—C16122.43 (19)C3—C4—H4120.00
C11—C12—C13120.2 (2)C5—C4—H4120.00
C12—C13—C14121.2 (3)C2—C6—H6119.00
C13—C14—C15119.1 (3)C7—C6—H6119.00
C14—C15—C16120.6 (2)C5—C7—H7120.00
C11—C16—C15120.2 (2)C6—C7—H7120.00
O1—S1—C5—C42.32 (18)N1—C10—C11—C16156.7 (2)
O2—S1—C5—C4118.00 (16)N5—C10—C11—C12155.5 (2)
O3—S1—C5—C4123.67 (16)C16—C11—C12—C130.1 (4)
O1—S1—C5—C7179.78 (16)C10—C11—C16—C15180.0 (2)
O2—S1—C5—C759.47 (17)C10—C11—C12—C13179.6 (3)
O3—S1—C5—C758.87 (18)C12—C11—C16—C150.3 (4)
C10—N1—C9—N32.6 (3)C11—C12—C13—C140.6 (6)
C10—N1—C9—N2177.59 (17)C12—C13—C14—C150.5 (6)
C9—N1—C10—N51.3 (2)C13—C14—C15—C160.0 (5)
C9—N1—C10—C11179.67 (16)C14—C15—C16—C110.4 (4)
C8—N3—C9—N2176.08 (17)C1—C2—C6—C7175.7 (2)
C8—N3—C9—N14.1 (3)C1—C2—C3—C4177.5 (2)
C9—N3—C8—N54.3 (3)C6—C2—C3—C41.0 (4)
C9—N3—C8—N4176.10 (17)C3—C2—C6—C72.9 (4)
C10—N5—C8—N4177.08 (16)C2—C3—C4—C51.7 (3)
C8—N5—C10—C11179.23 (16)C3—C4—C5—C72.5 (3)
C10—N5—C8—N33.3 (3)C3—C4—C5—S1174.99 (16)
C8—N5—C10—N11.7 (3)S1—C5—C7—C6176.79 (17)
N5—C10—C11—C1624.2 (3)C4—C5—C7—C60.7 (3)
N1—C10—C11—C1223.6 (3)C2—C6—C7—C52.1 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg3 are the centroids of the N1/C9/N3/C8/N5/C10 and C2–C5/C6/C7 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N4—H2N4···O3i0.862.102.877 (2)150
N4—H1N4···O30.862.132.950 (2)160
N2—H2N2···N3ii0.862.253.089 (2)164
N2—H1N2···O1iii0.862.052.895 (2)169
N5—H1N5···O20.861.952.789 (2)165
C16—H16···O20.932.403.210 (3)146
S1—O1···Cg1iv2.93 (1)4.1695 (8)142 (1)
Cg3—Cg33.9192 (13)
Symmetry codes: (i) x+1, y+2, z+2; (ii) x+2, y+2, z+2; (iii) x+1, y, z; (iv) x+1, y+2, z+1; (v) x, y+3/2, z+1/2.
 

Acknowledgements

The authors wish to thank the SAIF–STIC, Cochin, Kerala, for the data collection.

Funding information

KB thanks the Department of Science and Technology (DST–SERB), New Delhi, India,for financial support (grant No. SB/ FT/CS-058/2013). RS thanks the Department of Science and Technology (DST), New Delhi, India, for financial support in the form of an INSPIRE fellowship (INSPIRE code No. IF131050).

References

First citationAbdel-Rahman, R. M., Morsy, J. M., Hanafy, F. & Amene, H. A. (1999). Pharmazie, 54, 347–351.  Web of Science PubMed CAS Google Scholar
First citationAghabozorg, H., Ghadermazi, M. & Sadr-Khanlou, E. (2006). Anal. Sci. X, 22, x255–x256.  CrossRef Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDelori, A., Suresh, E. & Pedireddi, V. R. (2013). CrystEngComm, 15, 4811–4815.  Web of Science CSD CrossRef CAS Google Scholar
First citationDíaz-Ortiz, Á, Elguero, J., Foces-Foces, C., de la Hoz, A., Moreno, A., del Carmen Mateo, M., Sánchez-Migallón, A. & Valiente, G. (2004). New J. Chem. 28, 952–958.  Google Scholar
First citationEl-Gendy, Z., Morsy, J. M., Allimony, H. A., Ali, W. R. & Abdel-Rahman, R. M. (2001). Pharmazie, 56, 376–383.  Google Scholar
First citationEl-Massry, A. M. (1999). Heterocycl. Commun. 5, 555–564.  Google Scholar
First citationGoel, N., Singh, U. P., Singh, G. & Srivastava, P. (2013). J. Mol. Struct. 1036, 427–438.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGuru Row, T. N. (1999). Coord. Chem. Rev. 183, 81–100.  CrossRef CAS Google Scholar
First citationJyoti, M., Shirodkar, V. & Mulwad, V. (2003). Indian J. Chem. Sect. B, 42, 621–626.  Google Scholar
First citationKrische, M. J. & Lehn, J. M. (2000). Struct. Bond. 96, 3–29.  CrossRef CAS Google Scholar
First citationMacDonald, J. C. & Whitesides, G. M. (1994). Chem. Rev. 94, 2383–2420.  CrossRef CAS Web of Science Google Scholar
First citationMarchewka, M. K., Janczak, J., Debrus, S., Baran, J. & Ratajczak, H. (2003). Solid State Sci. 5, 643–652.  Web of Science CSD CrossRef CAS Google Scholar
First citationMathias, J. P., Simanek, E. E., Zerkowski, J. A., Seto, C. T. & Whitesides, G. M. (1994). J. Am. Chem. Soc. 116, 4316–4325.  CrossRef Web of Science Google Scholar
First citationMenicagli, R., Samaritani, S., Signore, G., Vaglini, F. & Dalla Via, L. (2004). J. Med. Chem. 47, 4649–4652.  Web of Science CrossRef Google Scholar
First citationPartl, G., Lampl, M., Laus, G., Wurst, K., Huppertz, H. & Schottenberger, H. (2016). IUCrData, 1, x160824.  Google Scholar
First citationRicciotti, L., Roviello, G., Tarallo, O., Borbone, F., Ferone, C., Colangelo, F., Catauro, M. & Cioffi, R. (2013). Int. J. Mol. Sci. 14, 18200–18214.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSherrington, D. C. & Taskinen, K. A. (2001). Chem. Soc. Rev. 30, 83–93.  Web of Science CrossRef CAS Google Scholar
First citationSheshmani, S., Ghadermazi, M., Aghabozorg, H. & Nakhjavan, B. (2006). Acta Cryst. E62, o4681–o4682.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, L., Hu, Y., Wang, W., Liu, F. & Huang, K. (2014). CrystEngComm, 16, 4142–4161.  Web of Science CSD CrossRef CAS Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer3.0. University of Western Australia.  Google Scholar
First citationZerkowski, J. A. & Whitesides, G. M. (1994). J. Am. Chem. Soc. 116, 4298–4304.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds