research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{N1-[2-(Butyl­selan­yl)benz­yl]-N2,N2-di­methyl­ethane-1,2-di­amine}­di­chlorido­mercury(II)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Dr. Shakuntala Misra National Rehabilitation University, Mohaan Road Lucknow, 226017, India, bDepartment of Chemistry, Indian Institute of Technology Bombay, Powai 400 076, Mumbai, India, and cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com

Edited by A. J. Lough, University of Toronto, Canada (Received 9 July 2018; accepted 18 July 2018; online 27 July 2018)

In the title compound, [HgCl2(C16H28N2Se)], the primary geometry around the Se and Hg atoms is distorted trigonal–pyramidal and distorted square-pyramidal, respectively. The distortion of the mol­ecular geometry in the complex is caused by the steric demands of the ligands attached to the Se atom. The Hg atom is coordinated through two chloride anions, an N atom and an Se atom, making up an unusual HgNSeCl2 coordination sphere with an additional long Hg⋯N inter­action. Inter­molecular C—H⋯Cl inter­actions are the only identified inter­molecular hydrogen-bonding inter­actions that seem to be responsible for the self assembly. These relatively weak C—H⋯Cl hydrogen bonds possess the required linearity and donor–acceptor distances. They act as mol­ecular associative forces that result in a supra­molecular assembly along the b-axis direction in the solid state of the title compound.

1. Chemical context

The chemistry of mercuric compounds with multidentate amine ligands is of inter­est because of the low coordination number and geometry preferences of the HgII atom, which facilitates extraordinarily rapid exchange of simple ligands (Bebout et al., 2013[Bebout, D. C., Bowers, E. V., Freer, R. E., Kastner, M. E., Parrish, D. A. & Butcher, R. J. (2013). J. Chem. Crystallogr. 43, 108-115.]; Carra et al., 2013[Carra, B. J., Berry, S. M., Pike, R. D. & Bebout, D. C. (2013). Dalton Trans. 42, 14424-14431.]). The enhanced binding thermodynamics of these multidentate ligands has been used to suppress inter­molecular ligand-exchange rates for a variety of HgII complexes in solution, greatly enhancing the meaningfulness of NMR characterization. Significantly, under conditions of slow inter­molecular exchange, the rates of intra­molecular isomerization processes for HgII can still exceed both the chemical shift and coupling constant time scale, particularly when bond cleavage is unnecessary and the structures of these complexes have been determined (Bebout et al., 2013[Bebout, D. C., Bowers, E. V., Freer, R. E., Kastner, M. E., Parrish, D. A. & Butcher, R. J. (2013). J. Chem. Crystallogr. 43, 108-115.]; Carra et al., 2013[Carra, B. J., Berry, S. M., Pike, R. D. & Bebout, D. C. (2013). Dalton Trans. 42, 14424-14431.]).

[Scheme 1]

As part of our continuing studies in this area, we have been investigating the structural chemistry of mercuric compounds with multidentate amine ligands combined with either Se (Manjare et al., 2014[Manjare, S. T., Singh, H. B. & Butcher, R. J. (2014). Acta Cryst. E70, 118-120.]) or Te (Singh et al., 2003[Singh, G., Singh, A. K., Sharma, P., Drake, J. E., Hursthouse, M. B. & Light, M. E. (2003). J. Organomet. Chem. 688, 20-26.]) as an additional ligand in the presence of an HgX2 group (X = Cl, Br, or I) and the structure of the title compound is reported herein.

2. Structural commentary

The title compound, C16H28N2SeHgCl2, crystallizes in the monoclinic crystal system and the mol­ecular structure is shown in Fig. 1[link]. The primary geometry around the Se and Hg atoms of [2-{Me2NCH2CH2N(Me)}C6H4SeBu]HgCl2 is distorted trigonal–pyramidal and distorted square-pyramidal, respectively. The distortion of the mol­ecular geometry in the complex is caused by the steric demands of the ligands attached to the selenium atom. The mercury atom is coordinated through two chloride anions, a nitro­gen atom and a selenium atom to make up an unusual HgNSeCl2 coordination sphere. In this complex the 2-{Me2NCH2CH2N(Me)}C6H4SeBu ligand is acting in a bidentate fashion, leading to the formation of a nine-membered chelate ring. There is only one such example in the Cambridge Structural Database (CSD Version 5.39, November 2017 update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) of an HgCl2 complex containing a similar set of coordinated donor atoms (Apte et al., 2003[Apte, S. D., Zade, S. S., Singh, H. B. & Butcher, R. J. (2003). Organometallics, 22, 5473-5477.]). In addition to the coordinated atoms, there is an inter­action between Hg and N1 [2.712 (2) Å; Table 1[link]] that is greater than Σrcov (Hg,N), 2.03 Å, but significantly shorter than Σrvdw (Hg,N), 3.53 Å and indicates the presence of an attractive N⋯Hg inter­action (Bondi, 1964[Bondi, A. J. (1964). J. Phys. Chem. 68, 441-451.]; Canty & Deacon, 1980[Canty, A. J. & Deacon, G. B. (1980). Inorg. Chim. Acta, 45, L255-L227.]; Pyykkö & Straka, 2000[Pyykkö, P. & Straka, M. (2000). Phys. Chem. Chem. Phys. 2, 2489-2493.]; Batsanov, 2001[Batsanov, S. S. (2001). Inorg. Mater. 36, 1031-1046.]); this is clearly shown in Fig. 1[link], where the ligand has adopted a conformation which brings N1 close to Hg1.

Table 1
Selected geometric parameters (Å, °)

Se1—C1 1.925 (3) Hg1—Cl2 2.4515 (7)
Se1—C13 1.956 (3) Hg1—Cl1 2.5380 (8)
Se1—Hg1 2.6950 (3) Hg1—N1 2.712 (2)
Hg1—N2 2.359 (2)    
       
C1—Se1—C13 101.89 (13) Cl2—Hg1—Se1 116.79 (2)
C1—Se1—Hg1 93.12 (8) Cl1—Hg1—Se1 97.86 (2)
C13—Se1—Hg1 103.00 (9) N2—Hg1—N1 71.81 (8)
N2—Hg1—Cl2 103.62 (6) Cl2—Hg1—N1 96.11 (5)
N2—Hg1—Cl1 91.40 (7) Cl1—Hg1—N1 150.49 (5)
Cl2—Hg1—Cl1 111.65 (3) Se1—Hg1—N1 77.25 (5)
N2—Hg1—Se1 131.01 (6)    
[Figure 1]
Figure 1
The mol­ecular structure of {N1-[2-(Butyl­selan­yl)benz­yl]-N2,N2-di­methyl­ethane-1,2-di­amine}­dichlorido­mercury(II). The inter­action between Hg1 and N1 is shown with a dashed line. Anisotropic displacement parameters are at the 30% probability level.

In the title complex, the Hg—Cl distances, 2.4515 (7) and 2.5380 (8) Å, are in the normal range for such distances [a survey of the CSD for N–Hg–Cl complexes gave 87 hits with a mean Hg—Cl distance of 2.45 (18) Å], while the Hg—N2 distance is 2.359 (2) Å, which is shorter than the mean value for such distances [a survey of the CSD for Cl–Hg–N compounds gave 82 hits with a mean Hg—N distance of 2.50 (16) Å]. A related HgCl2 complex with a similar ligand but without the n-butyl­selenium substituent has been reported [N1-benzyl-N1,N2,N2-tri­methyl­ethane-1,2-di­amine; Manjare et al., 2014[Manjare, S. T., Singh, H. B. & Butcher, R. J. (2014). Acta Cryst. E70, 118-120.]] in which the Hg atom is coordinated to both N donors with Hg—N distances of 2.355 (4) and 2.411 (4) Å. The Hg—Se distance of 2.6950 (3) Å in the title compound is in the normal range [a survey of the CSD for phen­yl–Hg–Se compounds gave 82 hits with a mean Hg—Se distance of 2.67 (11) Å] and is close to Σrcov (Se—Hg), 2.52 Å and much smaller than the Σrvdw (3.88 Å), thus indicating the presence of a very strong Se—Hg inter­action (Bondi, 1964[Bondi, A. J. (1964). J. Phys. Chem. 68, 441-451.]; Canty & Deacon, 1980[Canty, A. J. & Deacon, G. B. (1980). Inorg. Chim. Acta, 45, L255-L227.]; Pyykkö & Straka, 2000[Pyykkö, P. & Straka, M. (2000). Phys. Chem. Chem. Phys. 2, 2489-2493.]; Batsanov, 2001[Batsanov, S. S. (2001). Inorg. Mater. 36, 1031-1046.]). This bond length is close that observed in [C6H4(C5H8NO)]2SeHgCl2 [2.750 (7) Å; Apte et al., 2003[Apte, S. D., Zade, S. S., Singh, H. B. & Butcher, R. J. (2003). Organometallics, 22, 5473-5477.]] but is longer than the reported value in the tetra­hedral complex of an Hg seleno­phene, HgBr2(C4H8Se)2 [2.648 (1) Å; Stålhandske & Zintl, 1988[Stålhandske, C. & Zintl, F. (1988). Acta Cryst. C44, 253-255.]].

3. Supra­molecular features

Inter­molecular C—H⋯Cl inter­actions (Table 2[link], Fig. 2[link]) are the only identified inter­molecular hydrogen-bonding inter­action that seems to be responsible for the self-assembly. These relatively weak C—H⋯Cl hydrogen bonds possess the required linearity and donor–acceptor distances. They act as mol­ecular associative forces that result in a supra­molecular assembly along the b-axis direction.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯Cl1i 0.95 2.71 3.538 (3) 146
C11—H11A⋯Cl2ii 0.98 2.83 3.726 (3) 152
C11—H11C⋯Cl1 0.98 2.92 3.576 (4) 125
C12—H12B⋯Cl1 0.98 2.98 3.636 (4) 125
C13—H13B⋯Cl1 0.99 2.85 3.560 (3) 130
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Packing diagram of the title compound viewed along the c axis showing how the C—H⋯Cl inter­actions (shown with dashed lines) link the mol­ecules into chains along the b-axis direction.

4. Database survey

There is only one such example of an HgCl2 complex containing a similar set of coordinated donor atoms in the CSD [Version 5.39, November 2017 update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]] viz. ERIBAI (Apte et al., 2003[Apte, S. D., Zade, S. S., Singh, H. B. & Butcher, R. J. (2003). Organometallics, 22, 5473-5477.]).

5. Synthesis and crystallization

Synthesis of 2-{Me2NCH2CH2N(Me)}C6H4Se(n-but­yl)

The 2-{Me2NCH2CH2N(Me)}C6H4Br ligand was prepared by following the reported procedure (Rietveld et al., 1994[Rietveld, M. H. P., Wehman-Ooyevaar, I. C. M., Kapteijn, G. M., Grove, D. M., Smeets, W. J. J., Kooijman, H., Spek, A. L. & van Koten, G. (1994). Organometallics, 13, 3782-3787.]). A stirred solution of 2-{Me2NCH2CH2N(Me)}C6H4Br (1.10 ml, 5.34 mmol) in dry THF (15 mL) was treated dropwise with an 1.6 M solution of n-BuLi in hexane (6.20 mL, 10.0 mmol) via syringe under N2 at 273 K. After stirring the reaction mixture for 2 h at this temperature, the li­thia­ted product was obtained. Selenium powder (0.45 g, 5.70 mmol) was added to the solution under a brisk flow of N2 gas and stirring was continued for an additional 2 h at 273 K. The reaction mixture was then removed from the N2 line and poured into a beaker containing water. The organic phase was separated, dried over Na2SO4, and filtered. The filtrate was evaporated to dryness to give a yellow oil of 2-{Me2NCH2CH2N(Me)}C6H4Se(n-but­yl). The product was used as such without further purification. 77Se NMR (76.3 MHz, CDCl3) δ 247.5.

Synthesis of [2-{Me2NCH2CH2N(Me)}C6H4SenBu]HgCl2

To a 50 mL two-necked flask, was taken a chloro­form solution (7 mL) of 2-{Me2NCH2CH2N(Me)}C6H4Se(n-but­yl) (0.51 g, 1.56 mmol). To it was added an aceto­nitrile solution (5 mL) of HgCl2 (0.43 g, 1.56 mmol). The mixture was stirred for 1 h to obtain a white precipitate, which was recrystallized from chloro­form to give [2-{Me2NCH2CH2N(Me)}C6H4SenBu]HgCl2 (0.52 g, 55% yield), m.p. 431 K. 1H NMR (400 MHz, CDCl3) δ 0.95 (t, J = 7.0 Hz, 3H), 1.50 (sextet, J = 7.0 and 8.0 Hz, 2H), 1.80 (quintet, J = 7.0 and 8.0 Hz, 2H), 2.13 (s, br, NCH3), 2.49 (s, N(CH3)2), 3.38 (s, br, 2H), 3.76 (s, br, 2H), 7.24–7.36 (m, 3H-ar­yl), 7.46 (b, J = 7.6 Hz, 1H-ar­yl); 13C NMR (100.6 MHz, CDCl3) δ 13.8, 23.2, 29.4, 30.5, 43.9, 52.5, 56.5, 63.6, 127.5, 126.4, 129.7, 131.3, 131.8, 136.0; 77Se NMR (76.3 MHz, CDCl3) δ 223.6. Anaysis calculated for C16H28N2SeHgCl2: C, 32.09; N, 4.68; H, 4.71. Found C, 31.49; N, 4.98; H, 4.19.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = ranging from 0.95 to 0.99 Å and Uiso(H) = xUeq(C), where x = 1.5 for methyl H atoms and 1.2 for all other C-bound H atoms.

Table 3
Experimental details

Crystal data
Chemical formula [HgCl2(C16H28N2Se)]
Mr 598.85
Crystal system, space group Monoclinic, P21/n
Temperature (K) 173
a, b, c (Å) 8.5532 (1), 19.6993 (3), 11.9128 (2)
β (°) 91.935 (1)
V3) 2006.07 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 9.75
Crystal size (mm) 0.14 × 0.12 × 0.10
 
Data collection
Diffractometer Oxford Diffraction Xcalibur Eos Gemini
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.342, 0.442
No. of measured, independent and observed [I > 2σ(I)] reflections 18326, 5418, 4692
Rint 0.035
(sin θ/λ)max−1) 0.709
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.048, 1.05
No. of reflections 5418
No. of parameters 204
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.76, −0.68
Computer programs: CrysAlis PRO and CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

{N1-[2-(Butylselanyl)benzyl]-N2,N2-dimethylethane-1,2-diamine}dichloridomercury(II) top
Crystal data top
[HgCl2(C16H28N2Se)]F(000) = 1144
Mr = 598.85Dx = 1.983 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.5532 (1) ÅCell parameters from 9237 reflections
b = 19.6993 (3) Åθ = 3.1–30.2°
c = 11.9128 (2) ŵ = 9.75 mm1
β = 91.935 (1)°T = 173 K
V = 2006.07 (5) Å3Block, colorless
Z = 40.14 × 0.12 × 0.10 mm
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
4692 reflections with I > 2σ(I)
Detector resolution: 16.1500 pixels mm-1Rint = 0.035
ω scansθmax = 30.3°, θmin = 3.1°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
h = 1111
Tmin = 0.342, Tmax = 0.442k = 2527
18326 measured reflectionsl = 1616
5418 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.048 w = 1/[σ2(Fo2) + (0.0172P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.004
5418 reflectionsΔρmax = 0.76 e Å3
204 parametersΔρmin = 0.68 e Å3
0 restraintsExtinction correction: SHELXL2018 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00039 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.88460 (3)0.58884 (2)0.51900 (3)0.02289 (7)
Hg10.69533 (2)0.68781 (2)0.59155 (2)0.02300 (5)
Cl10.43933 (9)0.64178 (4)0.50887 (8)0.0387 (2)
Cl20.74703 (10)0.80320 (4)0.52526 (7)0.03128 (18)
N10.9280 (3)0.68551 (11)0.7519 (2)0.0206 (5)
N20.5831 (3)0.70509 (12)0.7674 (2)0.0240 (5)
C10.8665 (3)0.53631 (14)0.6542 (2)0.0205 (6)
C20.7814 (3)0.47607 (15)0.6550 (3)0.0252 (6)
H2A0.7281280.4604990.5886280.030*
C30.7754 (4)0.43925 (15)0.7532 (3)0.0304 (7)
H3A0.7169040.3982750.7543980.036*
C40.8531 (4)0.46117 (16)0.8497 (3)0.0331 (8)
H4A0.8484440.4353990.9169440.040*
C50.9380 (4)0.52084 (16)0.8482 (3)0.0291 (7)
H5A0.9920370.5355960.9147590.035*
C60.9457 (3)0.55990 (14)0.7506 (3)0.0214 (6)
C71.0347 (3)0.62626 (14)0.7524 (3)0.0225 (6)
H7A1.1043420.6279910.8204180.027*
H7B1.1009790.6285750.6859540.027*
C80.8476 (3)0.69056 (15)0.8591 (3)0.0244 (6)
H8A0.9194120.7113480.9162500.029*
H8B0.8213840.6443540.8852040.029*
C90.6990 (3)0.73248 (16)0.8492 (3)0.0276 (7)
H9A0.6515440.7348280.9237820.033*
H9B0.7262850.7793070.8269400.033*
C101.0194 (3)0.74751 (15)0.7331 (3)0.0297 (7)
H10A0.9500500.7870940.7343830.045*
H10B1.0680370.7447600.6599270.045*
H10C1.1008720.7519670.7924400.045*
C110.5182 (4)0.64009 (16)0.8056 (3)0.0340 (8)
H11A0.4746670.6460630.8799890.051*
H11B0.6014150.6058870.8098450.051*
H11C0.4354830.6250920.7523370.051*
C120.4560 (4)0.75489 (18)0.7502 (3)0.0379 (8)
H12A0.4087710.7646990.8221970.057*
H12B0.3763670.7362630.6977390.057*
H12C0.4984690.7968300.7191060.057*
C130.7492 (4)0.53852 (15)0.4128 (3)0.0255 (6)
H13A0.7892310.4917670.4036980.031*
H13B0.6418410.5358080.4411210.031*
C140.7473 (4)0.57511 (15)0.3018 (3)0.0288 (7)
H14A0.8561970.5822610.2788030.035*
H14B0.6982000.6202250.3105790.035*
C150.6578 (4)0.53556 (17)0.2105 (3)0.0321 (7)
H15A0.7089080.4909840.2004330.038*
H15B0.5499990.5271320.2348600.038*
C160.6505 (5)0.5727 (2)0.0989 (3)0.0530 (11)
H16A0.5884900.5461060.0439710.080*
H16B0.7566750.5786950.0720750.080*
H16C0.6016840.6171970.1086100.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.02570 (15)0.02228 (15)0.02057 (16)0.00100 (11)0.00104 (12)0.00145 (12)
Hg10.02578 (7)0.01907 (6)0.02407 (7)0.00076 (4)0.00037 (5)0.00041 (5)
Cl10.0347 (4)0.0346 (4)0.0457 (5)0.0054 (3)0.0151 (4)0.0067 (4)
Cl20.0425 (5)0.0220 (4)0.0292 (4)0.0023 (3)0.0005 (4)0.0049 (3)
N10.0184 (11)0.0194 (12)0.0237 (14)0.0023 (9)0.0028 (10)0.0028 (10)
N20.0185 (12)0.0240 (13)0.0296 (15)0.0016 (10)0.0031 (11)0.0002 (11)
C10.0192 (14)0.0190 (14)0.0232 (15)0.0049 (11)0.0003 (12)0.0008 (12)
C20.0263 (15)0.0208 (15)0.0283 (17)0.0014 (12)0.0025 (13)0.0051 (13)
C30.0333 (17)0.0203 (15)0.038 (2)0.0031 (13)0.0034 (15)0.0016 (14)
C40.044 (2)0.0263 (16)0.0286 (18)0.0018 (14)0.0015 (16)0.0076 (14)
C50.0340 (17)0.0264 (16)0.0266 (17)0.0014 (13)0.0071 (14)0.0005 (13)
C60.0187 (13)0.0210 (14)0.0244 (16)0.0032 (11)0.0009 (12)0.0008 (12)
C70.0206 (14)0.0240 (15)0.0227 (16)0.0004 (11)0.0032 (12)0.0036 (12)
C80.0264 (15)0.0252 (15)0.0213 (16)0.0016 (12)0.0038 (13)0.0049 (13)
C90.0286 (16)0.0284 (16)0.0258 (17)0.0008 (13)0.0010 (13)0.0075 (13)
C100.0253 (16)0.0266 (16)0.0367 (19)0.0077 (13)0.0046 (14)0.0003 (14)
C110.0311 (17)0.0340 (18)0.037 (2)0.0088 (14)0.0084 (15)0.0047 (15)
C120.0229 (16)0.041 (2)0.050 (2)0.0099 (14)0.0028 (15)0.0018 (17)
C130.0299 (16)0.0234 (15)0.0231 (16)0.0015 (13)0.0024 (13)0.0067 (13)
C140.0330 (17)0.0224 (15)0.0307 (18)0.0026 (13)0.0009 (14)0.0036 (14)
C150.0317 (17)0.0388 (19)0.0254 (18)0.0045 (14)0.0031 (14)0.0016 (15)
C160.075 (3)0.057 (3)0.026 (2)0.015 (2)0.012 (2)0.0016 (18)
Geometric parameters (Å, º) top
Se1—C11.925 (3)C8—C91.517 (4)
Se1—C131.956 (3)C8—H8A0.9900
Se1—Hg12.6950 (3)C8—H8B0.9900
Hg1—N22.359 (2)C9—H9A0.9900
Hg1—Cl22.4515 (7)C9—H9B0.9900
Hg1—Cl12.5380 (8)C10—H10A0.9800
Hg1—N12.712 (2)C10—H10B0.9800
N1—C101.471 (3)C10—H10C0.9800
N1—C81.474 (4)C11—H11A0.9800
N1—C71.482 (3)C11—H11B0.9800
N2—C91.470 (4)C11—H11C0.9800
N2—C121.473 (4)C12—H12A0.9800
N2—C111.473 (4)C12—H12B0.9800
C1—C21.392 (4)C12—H12C0.9800
C1—C61.393 (4)C13—C141.505 (4)
C2—C31.379 (4)C13—H13A0.9900
C2—H2A0.9500C13—H13B0.9900
C3—C41.378 (5)C14—C151.523 (5)
C3—H3A0.9500C14—H14A0.9900
C4—C51.382 (4)C14—H14B0.9900
C4—H4A0.9500C15—C161.516 (5)
C5—C61.398 (4)C15—H15A0.9900
C5—H5A0.9500C15—H15B0.9900
C6—C71.512 (4)C16—H16A0.9800
C7—H7A0.9900C16—H16B0.9800
C7—H7B0.9900C16—H16C0.9800
C1—Se1—C13101.89 (13)C9—C8—H8B109.1
C1—Se1—Hg193.12 (8)H8A—C8—H8B107.8
C13—Se1—Hg1103.00 (9)N2—C9—C8113.4 (2)
N2—Hg1—Cl2103.62 (6)N2—C9—H9A108.9
N2—Hg1—Cl191.40 (7)C8—C9—H9A108.9
Cl2—Hg1—Cl1111.65 (3)N2—C9—H9B108.9
N2—Hg1—Se1131.01 (6)C8—C9—H9B108.9
Cl2—Hg1—Se1116.79 (2)H9A—C9—H9B107.7
Cl1—Hg1—Se197.86 (2)N1—C10—H10A109.5
N2—Hg1—N171.81 (8)N1—C10—H10B109.5
Cl2—Hg1—N196.11 (5)H10A—C10—H10B109.5
Cl1—Hg1—N1150.49 (5)N1—C10—H10C109.5
Se1—Hg1—N177.25 (5)H10A—C10—H10C109.5
C10—N1—C8110.0 (2)H10B—C10—H10C109.5
C10—N1—C7108.9 (2)N2—C11—H11A109.5
C8—N1—C7110.8 (2)N2—C11—H11B109.5
C9—N2—C12109.0 (2)H11A—C11—H11B109.5
C9—N2—C11111.5 (3)N2—C11—H11C109.5
C12—N2—C11109.8 (2)H11A—C11—H11C109.5
C9—N2—Hg1110.86 (17)H11B—C11—H11C109.5
C12—N2—Hg1107.0 (2)N2—C12—H12A109.5
C11—N2—Hg1108.51 (19)N2—C12—H12B109.5
C2—C1—C6121.2 (3)H12A—C12—H12B109.5
C2—C1—Se1121.4 (2)N2—C12—H12C109.5
C6—C1—Se1117.4 (2)H12A—C12—H12C109.5
C3—C2—C1119.2 (3)H12B—C12—H12C109.5
C3—C2—H2A120.4C14—C13—Se1108.3 (2)
C1—C2—H2A120.4C14—C13—H13A110.0
C4—C3—C2120.8 (3)Se1—C13—H13A110.0
C4—C3—H3A119.6C14—C13—H13B110.0
C2—C3—H3A119.6Se1—C13—H13B110.0
C3—C4—C5119.6 (3)H13A—C13—H13B108.4
C3—C4—H4A120.2C13—C14—C15111.9 (3)
C5—C4—H4A120.2C13—C14—H14A109.2
C4—C5—C6121.3 (3)C15—C14—H14A109.2
C4—C5—H5A119.4C13—C14—H14B109.2
C6—C5—H5A119.4C15—C14—H14B109.2
C1—C6—C5117.8 (3)H14A—C14—H14B107.9
C1—C6—C7122.0 (3)C16—C15—C14112.6 (3)
C5—C6—C7120.1 (3)C16—C15—H15A109.1
N1—C7—C6111.8 (2)C14—C15—H15A109.1
N1—C7—H7A109.3C16—C15—H15B109.1
C6—C7—H7A109.3C14—C15—H15B109.1
N1—C7—H7B109.3H15A—C15—H15B107.8
C6—C7—H7B109.3C15—C16—H16A109.5
H7A—C7—H7B107.9C15—C16—H16B109.5
N1—C8—C9112.5 (3)H16A—C16—H16B109.5
N1—C8—H8A109.1C15—C16—H16C109.5
C9—C8—H8A109.1H16A—C16—H16C109.5
N1—C8—H8B109.1H16B—C16—H16C109.5
C6—C1—C2—C30.2 (4)C8—N1—C7—C669.1 (3)
Se1—C1—C2—C3178.2 (2)C1—C6—C7—N173.8 (3)
C1—C2—C3—C40.4 (4)C5—C6—C7—N1104.7 (3)
C2—C3—C4—C50.1 (5)C10—N1—C8—C980.3 (3)
C3—C4—C5—C60.5 (5)C7—N1—C8—C9159.3 (2)
C2—C1—C6—C50.4 (4)C12—N2—C9—C8170.6 (3)
Se1—C1—C6—C5177.7 (2)C11—N2—C9—C868.0 (3)
C2—C1—C6—C7178.1 (3)Hg1—N2—C9—C853.0 (3)
Se1—C1—C6—C73.7 (3)N1—C8—C9—N259.7 (3)
C4—C5—C6—C10.7 (4)Se1—C13—C14—C15174.2 (2)
C4—C5—C6—C7177.8 (3)C13—C14—C15—C16178.3 (3)
C10—N1—C7—C6169.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···Cl1i0.952.713.538 (3)146
C11—H11A···Cl2ii0.982.833.726 (3)152
C11—H11C···Cl10.982.923.576 (4)125
C12—H12B···Cl10.982.983.636 (4)125
C13—H13B···Cl10.992.853.560 (3)130
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1/2, y+3/2, z+1/2.
 

Funding information

RJB is grateful for NSF award 1205608, Partnership for Reduced Dimensional Materials, for partial funding of this research, to Howard University Nanoscience Facility to access to liquid nitro­gen, and the NSF–MRI program (grant No. CHE0619278) for funds to purchase the X-ray diffractometer. HBS is grateful to the DST, New Delhi, for a J. C. Bose National Fellowship. PS thanks Science and Engineering Research Board (SERB), New Delhi, for a Start-Up Research Grant for Young Scientists (grant No. SB/FT/CS-036/2012).

References

First citationApte, S. D., Zade, S. S., Singh, H. B. & Butcher, R. J. (2003). Organometallics, 22, 5473–5477.  CrossRef Google Scholar
First citationBatsanov, S. S. (2001). Inorg. Mater. 36, 1031–1046.  Google Scholar
First citationBebout, D. C., Bowers, E. V., Freer, R. E., Kastner, M. E., Parrish, D. A. & Butcher, R. J. (2013). J. Chem. Crystallogr. 43, 108–115.  CrossRef Google Scholar
First citationBondi, A. J. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationCanty, A. J. & Deacon, G. B. (1980). Inorg. Chim. Acta, 45, L255–L227.  CrossRef Google Scholar
First citationCarra, B. J., Berry, S. M., Pike, R. D. & Bebout, D. C. (2013). Dalton Trans. 42, 14424–14431.  CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationManjare, S. T., Singh, H. B. & Butcher, R. J. (2014). Acta Cryst. E70, 118–120.  CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPyykkö, P. & Straka, M. (2000). Phys. Chem. Chem. Phys. 2, 2489–2493.  Google Scholar
First citationRietveld, M. H. P., Wehman-Ooyevaar, I. C. M., Kapteijn, G. M., Grove, D. M., Smeets, W. J. J., Kooijman, H., Spek, A. L. & van Koten, G. (1994). Organometallics, 13, 3782–3787.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, G., Singh, A. K., Sharma, P., Drake, J. E., Hursthouse, M. B. & Light, M. E. (2003). J. Organomet. Chem. 688, 20–26.  CrossRef Google Scholar
First citationStålhandske, C. & Zintl, F. (1988). Acta Cryst. C44, 253–255.  CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds