research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

M+M3+2As(HAsO4)6 (M+M3+ = TlGa, CsGa, CsAl): three new metal arsenates containing AsO6 octa­hedra

CROSSMARK_Color_square_no_text.svg

aInstitute for Chemical Technology and Analytics, Division of Structural Chemistry, TU Wien, Getreidemarkt 9/164-SC, 1060 Wien, Austria, bNaturhistorisches Museum, Burgring 7, 1010 Wien, Austria, and cInstitut für Mineralogie und Kristallographie, Universität Wien, Althanstrasse 14, 1090 Wien, Austria
*Correspondence e-mail: karolina.schwendtner@tuwien.ac.at

Edited by T. J. Prior, University of Hull, England (Received 20 July 2018; accepted 24 July 2018; online 27 July 2018)

The crystal structures of hydro­thermally synthesized (T = 493 K, 7 d) thallium(I) digallium arsenic(V) hexa­kis­[hydrogenarsenate(V)], TlGa2As(HAsO4)6, caes­ium digallium arsenic(V) hexa­kis­[hydrogenarsenate(V)], CsGa2As(HAsO4)6, and caesium dialuminium arsenic(V) hexa­kis­[hydrogenarsenate(V)], CsAl2As(HAsO4)6, were solved by single-crystal X-ray diffraction. The three compounds are isotypic and adopt the structure type of RbAl2As(HAsO4)6 (R[\overline{3}]c), which itself represents a modification of the RbFe(HPO4)2 structure type and consists of a tetra­hedral–octa­hedral framework in which the slightly disordered M+ cations are located in channels. The three new compounds contain AsO6 octa­hedra assuming the topological role of M3+O6 octa­hedra. The As—O bond lengths are among the shortest As—O bond lengths known so far in AsO6 octa­hedra.

1. Chemical context

Compounds with mixed tetra­hedral–octa­hedral (T–O) framework structures feature a broad range of different atomic arrangements, resulting in topologies with various inter­esting properties such as ion exchange (Masquelier et al., 1996[Masquelier, C., Padhi, A. K., Nanjundaswamy, K. S., Okada, S. & Goodenough, J. B. (1996). Proceedings of the 37th Power Sources Conference, June 17-20, 1996, pp. 188-191. Cherry Hill, New Jersey. Fort Monmouth, NJ: US Army Research Laboratory.]) and ion conductivity (Chouchene et al., 2017[Chouchene, S., Jaouadi, K., Mhiri, T. & Zouari, N. (2017). Solid State Ionics, 301, 78-85.]), as well as unusual piezoelectric (Ren et al., 2015[Ren, J., Ma, Z., He, C., Sa, R., Li, Q. & Wu, K. (2015). Comput. Mater. Sci. 106, 1-4.]), magnetic (Ouerfelli et al., 2007[Ouerfelli, N., Guesmi, A., Molinié, P., Mazza, D., Zid, M. F. & Driss, A. (2007). J. Solid State Chem. 180, 2942-2949.]) or non-linear optical features (frequency doubling) (Sun et al., 2017[Sun, Y., Yang, Z., Hou, D. & Pan, S. (2017). RSC Adv. 7, 2804-2809.]).

The three new compounds were obtained during an extensive experimental study of the system M+M3+–O–(H)–As5+ (M+ = Li, Na, K, Rb, Cs, Ag, Tl, NH4; M3+ = Al, Ga, In, Sc, Fe, Cr, Tl). This system was found to contain representatives of a large variety of new structure types (Schwendtner & Kolitsch, 2004[Schwendtner, K. & Kolitsch, U. (2004). Acta Cryst. C60, i79-i83.], 2005[Schwendtner, K. & Kolitsch, U. (2005). Acta Cryst. C61, i90-i93.], 2007a[Schwendtner, K. & Kolitsch, U. (2007a). Acta Cryst. B63, 205-215.],b[Schwendtner, K. & Kolitsch, U. (2007b). Acta Cryst. C63, i17-i20.],c[Schwendtner, K. & Kolitsch, U. (2007c). Eur. J. Mineral. 19, 399-409.], 2017a[Schwendtner, K. & Kolitsch, U. (2017a). Acta Cryst. C73, 600-608.], 2018a[Schwendtner, K. & Kolitsch, U. (2018a). Acta Cryst. C74, 721-727.]; Schwendtner, 2006[Schwendtner, K. (2006). J. Alloys Compd. 421, 57-63.]).

Among the many different structure types found during our study, one atomic arrangement, the RbFe(HPO4)2-type (Lii & Wu, 1994[Lii, K.-H. & Wu, L.-S. (1994). J. Chem. Soc. A, 10, 1577-1580.]; R[\overline{3}]c), and relatives thereof (Schwendtner & Kolitsch, 2018a[Schwendtner, K. & Kolitsch, U. (2018a). Acta Cryst. C74, 721-727.]) was observed to show a large crystal–chemical flexibility that allows the incorporation of a wide variety of cations. The three title compounds, TlGa2As(H­AsO4)6, CsGa2As(HAsO4)6 and CsAl2As(HAsO4)6 are further representatives of one of these recently described variations of the RbFe(HPO4)2 type, viz. the RbAl2As(H­AsO4)6 type (Schwendtner & Kolitsch, 2018a[Schwendtner, K. & Kolitsch, U. (2018a). Acta Cryst. C74, 721-727.]). It also crystallizes in R[\overline{3}]c and up to now members with RbAl and CsFe (Schwendtner & Kolitsch, 2018a[Schwendtner, K. & Kolitsch, U. (2018a). Acta Cryst. C74, 721-727.]) and RbGa (Schwendtner & Kolitsch, 2018c[Schwendtner, K. & Kolitsch, U. (2018c). Acta Cryst. E74. Submitted (Co-editor code ff2155).]) as M+M3+ cation combinations are known (Table 1[link]). While all previously known M+M3+ combinations adopting this structure type also have representatives adopting the RbFe(HPO4)2 type, this is not the case for the three new members.

Table 1
Comparison of unit-cell parameters (Å, Å3) for the six known isotypic compounds

Compound a c V
TlGa2As(HAsO4)6 8.484 (1) 50.724 (11) 3161.9 (10)
RbGa2As(HAsO4)6 8.491 (1) 50.697 (11) 3165.4 (10)
CsGa2As(HAsO4)6 8.520 (1) 50.608 (11) 3181.4 (10)
RbAl2As(HAsO4)6 8.410 (1) 50.287 (11) 3080.2 (10)
CsAl2As(HAsO4)6 8.439 (1) 50.169 (11) 3094.2 (10)
CsFe2As(HAsO4)6 8.582 (1) 50.942 (11) 3249.3 (10)

The title compounds are rare examples of compounds containing AsO6 octa­hedra. According to our review article, only about 3% of all reported arsenates(V) contain AsO6 polyhedra (Schwendtner & Kolitsch, 2007a[Schwendtner, K. & Kolitsch, U. (2007a). Acta Cryst. B63, 205-215.]). Presently (Schwendtner & Kolitsch, 2018a[Schwendtner, K. & Kolitsch, U. (2018a). Acta Cryst. C74, 721-727.]), 41 inorganic compounds containing As in an octa­hedral coordination are known, including the recently published RbGa2As(HAsO4)6 (Schwendtner & Kolitsch, 2018c[Schwendtner, K. & Kolitsch, U. (2018c). Acta Cryst. E74. Submitted (Co-editor code ff2155).]) and the three new compounds of this study. While no arsenates(V) containing both Tl and Ga are known in the ICSD (FIZ, 2018[FIZ (2018). Inorganic Crystal Structure Database. Version build, 20180504-0745, 2018.1. Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany.]) so far, there are two arsenates(V) containing both Cs and Ga, namely Cs2Ga3(As3O10)(AsO4)2 (Lin & Lii, 1996[Lin, K.-J. & Lii, K.-H. (1996). Chem. Commun. pp. 1137-1138.]) and CsGa(H1.5AsO4)2(H2AsO4) (Schwendtner & Kolitsch, 2005[Schwendtner, K. & Kolitsch, U. (2005). Acta Cryst. C61, i90-i93.]), and one arsenate(V) containing both Cs and Al, CsAl(H2AsO4)(HAsO4) (Schwendtner & Kolitsch, 2007b[Schwendtner, K. & Kolitsch, U. (2007b). Acta Cryst. C63, i17-i20.]). In addition to the crystal structures contained in the ICSD, an indexed powder diffraction pattern of the diarsenate CsAlAs2O7 has been published (Boughzala & Jouini, 1992[Boughzala, H. & Jouini, T. (1992). C. R. Acad. Sci. II, 314, 1419-1422.]).

2. Structural commentary

The three title compounds are isotypic and new representatives of the RbAl2As(HAsO4)6-structure type (R[\overline{3}]c; Schwendtner & Kolitsch, 2018a[Schwendtner, K. & Kolitsch, U. (2018a). Acta Cryst. C74, 721-727.]), which is a recently described variation of the RbFe(HPO4)2 structure type (R[\overline{3}]c; Lii & Wu, 1994[Lii, K.-H. & Wu, L.-S. (1994). J. Chem. Soc. A, 10, 1577-1580.]) and closely related to the following two structure types: (NH4)Fe(HPO4)2 (P[\overline{1}]; Yakubovich, 1993[Yakubovich, O. V. (1993). Kristallografiya, 38, 43-48.]) and RbAl(HAsO4)2 (R32; Schwendtner & Kolitsch, 2018a[Schwendtner, K. & Kolitsch, U. (2018a). Acta Cryst. C74, 721-727.]). The reader is referred to our latest papers for a detailed discussion of the four related structure types (Schwendtner & Kolitsch, 2018a[Schwendtner, K. & Kolitsch, U. (2018a). Acta Cryst. C74, 721-727.]) and a review of compounds crystallizing in the RbFe(HPO4)2 and (NH4)Fe(HPO4)2 structure types (Schwendtner & Kolitsch, 2018b[Schwendtner, K. & Kolitsch, U. (2018b). Acta Cryst. E74, 766-771.]). All of these modifications share a basic tetra­hedral–octa­hedral framework structure featuring inter­penetrating channels, which host the M+ cations (Figs. 1[link], 2[link]). The fundamental building unit in all these structure types contains M3+O6 octa­hedra, which are connected via their six corners to six protonated AsO4 tetra­hedra, thereby forming an M3+As6O24 unit (Fig. 3[link]). These units are in turn connected via three corners to other M3+O6 octa­hedra. The free, protonated corner of each AsO4 tetra­hedron forms a hydrogen bond to the neighbouring M3+As6O24 group (Table 2[link]). The M3+As6O24 units are arranged in layers perpendicular to the chex axis (Fig. 2[link]). When compared to the RbFe(HPO4)2 structure type, in TlGa2As(HAsO4)6, CsGa2As(HAsO4)6 and CsAl2As(HAsO4)6 one third of all M3+ cations are replaced by As5+. This requires that two thirds of all M+ cations are omitted to achieve charge balance.

Table 2
Hydrogen-bond geometry (Å, °) for CsAl2As(HAsO4)6, CsGa2As(HAsO4)6 and TlGa2As(HAsO4)6

  D—H⋯A D—H H⋯A DA D—H⋯A
CsAl2As(HAsO4)6 O3—H⋯O4xiv 0.875 (19) 1.94 (2) 2.7321 (18) 150 (3)
CsGa2As(HAsO4)6 O3—H⋯O4xiv 0.861 (18) 1.93 (2) 2.727 (2) 154 (3)
TlGa2As(HAsO4)6 O3—H⋯O4xiv 0.871 (19) 1.94 (3) 2.728 (2) 150 (4)
Symmetry code: (xiv) y, x − 1, −z + [{3\over 2}].
[Figure 1]
Figure 1
Structure drawing of the framework structure of TlGa2As(HAsO4)6 viewed along a. The unit cell is outlined.
[Figure 2]
Figure 2
Structure drawing of TlGa2As(HAsO4)6 viewed along c. Red octa­hedra = AsO6, blue–green octa­hedra = GaO6, yellow tetra­hedra = AsO4; hydrogen atoms are shown as small grey spheres. Hydrogen bonds are shown as blue lines (solid for D—H and dotted for H⋯A). For the three disordered Tl positions, the displacement parameters are drawn at the 80% probability level. The unit cell is outlined.
[Figure 3]
Figure 3
Comparison of the Cs atom disorder, Cs—O bonds and hydrogen-bonding scheme in (a) CsGa2As(HAsO4)6 and (b) CsAl2As(HAsO4)6, viewed along c. Displacement ellipsoids for Cs are drawn at the 80% probability level.

Like many other and all isotypic compounds containing AsO6 octa­hedra, the three title compounds were grown by `dry' hydro­thermal techniques (using arsenic acid without the addition of water). The extreme abundance of As during the synthesis and the formation of a melt of arsenic acid promotes the octa­hedral coordination of As. As a result of the smaller ionic radius of As5+ this substitution also has an effect on the unit-cell parameters (Table 3[link]) and the pore diameter. While the lengths of the c axis of all so far known RbFe(HPO4)2-type arsenates range from 52.87 (1) to 56.99 (1) Å (Schwendtner and Kolitsch, 2018b[Schwendtner, K. & Kolitsch, U. (2018b). Acta Cryst. E74, 766-771.]) and correlate well with the sizes of the involved M+ and M3+ cations, the length of this axis in the RbAl2As(HAsO4)6-type compounds is much smaller and the range of lengths much narrower [50.17 (1)–50.94 (1) Å, see Table 1[link]]. The c unit-cell parameter correlates with the size of the involved M3+ cation, while the M+ cations seem to show a negative correlation with the c parameter (Table 1[link]). The unit-cell parameters a and V correlate well with the size of both cations, but the influence of the M+ cations is stronger. It seems that in order to incorporate the small AsO6 octa­hedron in the structure the cell widens along the a axis to incorporate the large M+ cations and is strongly compressed along c. This effect is also visible in the hydrogen bonds that are very strong in the RbFe(HPO4)2-type arsenates with D—H⋯A bond lengths ranging from 2.598 (2) to 2.634 (2) Å, while for the RbAl2As(HAsO4)6-type arsenates they range from 2.727 (2) to 2.7481 (19) Å (Schwendtner & Kolitsch, 2017b[Schwendtner, K. & Kolitsch, U. (2017b). Acta Cryst. E73, 1580-1586.], 2018a[Schwendtner, K. & Kolitsch, U. (2018a). Acta Cryst. C74, 721-727.],b[Schwendtner, K. & Kolitsch, U. (2018b). Acta Cryst. E74, 766-771.],c[Schwendtner, K. & Kolitsch, U. (2018c). Acta Cryst. E74. Submitted (Co-editor code ff2155).]; this paper).

Table 3
Comparison of selected bond lengths (Å) and BVSsa for CsAl2As(HAsO4)6, CsGa2As(HAsO4)6 and TlGa2As(HAsO4)6

  CsAl2As(HAsO4)6 CsGa2As(HAsO4)6 TlGa2As(HAsO4)6
M+1A—O2 (6×) 3.4707 (12) 3.4719 (15) 3.4419 (15)
M+1A—O3 (6×) 3.4066 (16) 3.4829 (19) 3.4358 (19)
<M+1A—O>/BVS 3.439/0.75 3.477/0.68 3.439/0.46
M3+—O2 (3×) 1.8933 (13) 1.9612 (15) 1.9648 (14)
M3+—O4 (3×) 1.8963 (12) 1.9679 (15) 1.9609 (14)
<M3+—O>/BVS 1.895/3.07 1.965/3.09 1.963/3.11
[6]As—O (6×) 1.8104 (11) 1.8109 (14) 1.8062 (14)
<[6]As—O>/BVS 1.810/5.27 1.811/5.27 1.806/5.34
[4]As—O1 1.7094 (12) 1.7089 (14) 1.7094 (14)
[4]As—O2 1.6641 (11) 1.6646 (14) 1.6641 (14)
[4]As—O4 1.6639 (12) 1.6670 (15) 1.6672 (14)
[4]As—O3(H) 1.7108 (13) 1.7125 (17) 1.7115 (16)
<[4]As—O>/BVS 1.687/5.00 1.688/4.98 1.688/4.99
Note: (a) Gagné & Hawthorne (2015[Gagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562-578.]).

In all three title compounds, the M+ cations are 12-coord­in­ated (Figs. 3[link], 4[link]), and the average M+—O bond lengths (Table 3[link]) are longer than the average bond lengths of M+O12 polyhedra of 3.377 Å for Cs (Gagné & Hawthorne, 2016[Gagné, O. C. & Hawthorne, F. C. (2016). Acta Cryst. B72, 602-625.]) and 3.195 Å for Tl+ (Gagné & Hawthorne, 2018[Gagné, O. C. & Hawthorne, F. C. (2018). Acta Cryst. B74, 63-78.]), thus leading to rather low bond-valence sums (BVSs) (Gagné & Hawthorne, 2015[Gagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562-578.]) of only 0.46–0.75 valence units (v.u.). The lowest BVS sum was found for [12]Tl, which shows an extremely long average Tl—O bond length (3.439 Å), considerably longer than the longest previously reported value in the literature, 3.304 Å (Gagné & Hawthorne, 2018[Gagné, O. C. & Hawthorne, F. C. (2018). Acta Cryst. B74, 63-78.]). Considering the positions of the disordered Tl-atom positions, the BVSs would increase to 0.54 (Tl1B) and 0.68 v.u. (Tl1C).

[Figure 4]
Figure 4
Tl positional disorder and Tl—O bonding scheme for TlGa2As(HAsO4)6 viewed along a (a) and c (b). Displacement ellipsoids for Tl are drawn at the 80% probability level.

These loose bondings lead to considerable positional disorder of the M+ cations in their hosting voids, which were modelled by two overlapping Cs positions between 0.15 (2) and 0.25 (5) Å apart (Fig. 3[link]). The main Cs-atom electron densities with 62 and 72% for the Al- and Ga-containing compounds, respectively, are located on the central position Cs1A. For the Tl compound, only 33% of the electron-density distribution is explained by the central Tl1A position, 36% by the next nearest position Tl1B 0.407 (7) Å away and 27% by the furthest Tl1C position 0.766 (9) Å apart from the central position – so three positions for Tl were needed to get a good fit explaining the electron-density distribution (Fig. 4[link]). The effect of slightly disordered M+ cations in this type of compound is well known and was found for most of the previously cited compounds crystallizing in these related structure types; in TlGa2As(HAsO4)6 the positional disorder shows its most extreme form, probably as a result of the influence of the lone electron pair on the Tl+ cation.

In contrast to the underbonded M+ cations the AsO6 octa­hedra are overbonded. The six As—O distances in each of these isotypic compounds are identical and among the shortest of all known AsO6-containing compounds. TlGa2As(HAsO4)6 shows the shortest average [6]As—O distance known so far of 1.806 Å, leading to rather high BVSs of 5.34 v.u. (after Gagné & Hawthorne, 2015[Gagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562-578.]). The grand mean As—O bond distance in AsO6 octa­hedra in inorganic compounds is 1.830 (2) Å according to Schwendtner & Kolitsch (2007a[Schwendtner, K. & Kolitsch, U. (2007a). Acta Cryst. B63, 205-215.]); this value was determined from 33 AsO6 octa­hedra of 31 compounds. Gagné & Hawthorne (2018[Gagné, O. C. & Hawthorne, F. C. (2018). Acta Cryst. B74, 63-78.]) determined an identical, but less precise, value of 1.83 (3) Å, based on only 13 AsO6 octa­hedra in AsO6-containing compounds.

A further, indirect effect of the substituting AsO6 octa­hedra is a notable change in the As—O distances of the protonated AsO4 tetra­hedra. The average As—O distance in these AsO4 tetra­hedra, with values between 1.687 and 1.688 Å, is slightly larger in all three compounds than the statistical average of 1.686 (10) Å (Schwendtner, 2008[Schwendtner, K. (2008). PhD thesis, Universität Wien, Austria.]). The BVSs (Gagné & Hawthorne, 2015[Gagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562-578.]) are close to ideal values (4.98–5.00 v.u.). The AsO4 tetra­hedra have two short bond lengths to connected M3+O6 octa­hedra, but the [4]As—O bond length of the O atom shared with the AsO6 octa­hedra is elongated (Table 3[link]) because of [4]As—O—[6]As repulsion. The [4]As—O⋯H bond is therefore shorter than the average distance of As—O⋯H bonds in HAsO4 groups [1.72 (3) Å; Schwendtner, 2008[Schwendtner, K. (2008). PhD thesis, Universität Wien, Austria.]].

The average M3+—O bond lengths of the octa­hedrally coordinated Ga cations (1.963–1.965 Å) and Al cations (1.895 Å) are slightly shorter than the grand mean averages of 1.978 (17) and 1.903 (14) Å for [6]Ga—O and [6]Al—O, respectively (Gagné & Hawthorne, 2018[Gagné, O. C. & Hawthorne, F. C. (2018). Acta Cryst. B74, 63-78.]), explaining the slightly higher corresponding BVSs of 3.07 to 3.11 v.u.

3. Synthesis and crystallization

The compounds were grown by hydro­thermal synthesis at 493 K (7 d, autogeneous pressure, slow furnace cooling) using Teflon-lined stainless steel autoclaves with an approximate filling volume of 2 cm3. Reagent-grade Cs2CO3, Tl2CO3, Ga2O3, Al2O3 and H3AsO4·0.5H2O were used as starting reagents in approximate volume ratios of M+:M3+:As of 1:1:3, 1:2:4 and 1:1:2 for the TlGa-, CsGa- and CsAl-synthesis batches, respectively. No additional water was added and arsenic acid was present in excess to promote the growth of crystals from a melt or even vapor of arsenic acid under extremely acidic conditions. All three compounds formed large, colourless, pseudo-octa­hedral crystals, TlGa2As(HAsO4)6 was accompanied by colourless, acicular-to-prismatic crystals of Ga(H2AsO4)(H2As2O7) (Schwendtner & Kolitsch, 2017a[Schwendtner, K. & Kolitsch, U. (2017a). Acta Cryst. C73, 600-608.]). All crystals were extracted mechanically and not further washed; they are slightly hygroscopic and decompose slowly over a period of several years.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link].

Table 4
Experimental details

  CsAl2As(HAsO4)6 CsGa2As(HAsO4)6 TlGa2As(HAsO4)6
Crystal data
Mr 1101.36 1186.84 1258.30
Crystal system, space group Trigonal, R[\overline{3}]c:H Trigonal, R[\overline{3}]c:H Trigonal, R[\overline{3}]c:H
Temperature (K) 293 293 293
a, c (Å) 8.439 (1), 50.169 (11) 8.5199 (10), 50.608 (11) 8.484 (1), 50.724 (11)
V3) 3094.2 (10) 3181.4 (10) 3161.9 (10)
Z 6 6 6
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 13.14 15.18 21.18
Crystal size (mm) 0.08 × 0.07 × 0.06 0.07 × 0.07 × 0.07 0.08 × 0.07 × 0.05
 
Data collection
Diffractometer Nonius KappaCCD single-crystal four-circle Nonius KappaCCD single-crystal four-circle Nonius KappaCCD single-crystal four-circle
Absorption correction Multi-scan (HKL SCALEPACK; Otwinowski et al., 2003[Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228-234.]) Multi-scan (HKL SCALEPACK; Otwinowski et al., 2003[Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228-234.]) Multi-scan HKL SCALEPACK (Otwinowski et al., 2003[Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228-234.])
Tmin, Tmax 0.420, 0.506 0.416, 0.416 0.200, 0.347
No. of measured, independent and observed [I > 2σ(I)] reflections 4584, 1259, 1153 4712, 1293, 1134 4682, 1285, 1129
Rint 0.014 0.018 0.024
(sin θ/λ)max−1) 0.757 0.757 0.757
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.015, 0.034, 1.11 0.018, 0.041, 1.16 0.018, 0.041, 1.10
No. of reflections 1259 1293 1285
No. of parameters 65 65 71
No. of restraints 2 2 2
H-atom treatment All H-atom parameters refined All H-atom parameters refined All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.61, −0.45 0.86, −0.73 0.74, −0.73
Computer programs: COLLECT (Nonius, 2003[Nonius, B. V. (2003). COLLECT. Nonius BV, Delft, The Netherlands.]), HKL DENZO, SCALEPACK (Otwinowski et al., 2003[Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228-234.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016/6 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

For reasons of comparison, the coordinates of RbAl2As(HAsO4)6 (Schwendtner & Kolitsch, 2018a[Schwendtner, K. & Kolitsch, U. (2018a). Acta Cryst. C74, 721-727.]) were used for the refinement. These coordinates are also comparable to the related RbFe(HPO4)2 structure type (R[\overline{3}]c; Lii & Wu, 1994[Lii, K.-H. & Wu, L.-S. (1994). J. Chem. Soc. A, 10, 1577-1580.]). In all compounds, O—H bonds were restrained to 0.9±0.02 Å. During the last refinement steps, residual electron-density peaks of up to 5.54 e Å−3 were located close to the M+ sites, suggesting irregular displacement parameters and split positions, similar to what was found for many other RbFe(HPO4)2-type compounds and relatives thereof (Lesage et al., 2007[Lesage, J., Adam, L., Guesdon, A. & Raveau, B. (2007). J. Solid State Chem. 180, 1799-1808.]; Schwendtner and Kolitsch, 2018a[Schwendtner, K. & Kolitsch, U. (2018a). Acta Cryst. C74, 721-727.],b[Schwendtner, K. & Kolitsch, U. (2018b). Acta Cryst. E74, 766-771.]). Therefore, a further position M+1B was included in the refinements, which refined to low occupancies and led to considerable decreases in the R factors and weight parameters for all compounds.

This, however, was not satisfactory for TlGa2As(HAsO4)6, where it led to negative electron densities of −2.3 e Å−3 at the centre of the Tl1A position, probably an effect of the lone electron pair. Therefore, the Tl atoms were again removed from the model and the three highest residual electron densities from the difference-Fourier map were then refined simultaneously as Tl1a, Tl1b and Tl1c. This led to a much better fit explaining the disordered electron density. The refined bulk occupancies on the disordered M+ positions in all compounds were very close to 1, but a restraint was still set in all cases to give a total occupancy of 1.00. The final residual electron densities in all title compounds are < 1 e Å−3.

Supporting information


Computing details top

For all structures, data collection: COLLECT (Nonius, 2003). Cell refinement: (HKL SCALEPACK; Otwinowski et al., 2003) for CsAl2AsHAsO46; HKL SCALEPACK (Otwinowski et al., 2003) for CsGa2AsHAsO46, TlGa2AsHAsO46. For all structures, data reduction: HKL DENZO, SCALEPACK (Otwinowski et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: publCIF (Westrip, 2010).

Caesium dialuminium arsenic(V) hexakis[hydrogen arsenate(V)] (CsAl2AsHAsO46) top
Crystal data top
CsAl2As(HAsO4)6Dx = 3.546 Mg m3
Mr = 1101.36Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3c:HCell parameters from 2513 reflections
a = 8.439 (1) Åθ = 2.4–32.5°
c = 50.169 (11) ŵ = 13.14 mm1
V = 3094.2 (10) Å3T = 293 K
Z = 6Large pseudo-octahedra, colourless
F(000) = 30600.08 × 0.07 × 0.06 mm
Data collection top
Nonius KappaCCD single-crystal four-circle
diffractometer
1153 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.014
φ and ω scansθmax = 32.5°, θmin = 2.4°
Absorption correction: multi-scan
(HKL SCALEPACK; Otwinowski et al., 2003)
h = 1212
Tmin = 0.420, Tmax = 0.506k = 1010
4584 measured reflectionsl = 7575
1259 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.015All H-atom parameters refined
wR(F2) = 0.034 w = 1/[σ2(Fo2) + (0.0121P)2 + 14.2108P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.007
1259 reflectionsΔρmax = 0.61 e Å3
65 parametersΔρmin = 0.45 e Å3
2 restraintsExtinction correction: SHELXL-2016/6 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.000152 (15)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cs1A0.0000000.0000000.7500000.0317 (19)0.624 (3)
Cs1B0.0000000.018 (3)0.7500000.023 (2)0.1254 (9)
Al10.3333330.6666670.75637 (2)0.00616 (14)
As20.3333330.6666670.6666670.00670 (8)
As10.44835 (2)0.41203 (2)0.71182 (2)0.00739 (5)
O10.39564 (16)0.47264 (16)0.68660 (2)0.0100 (2)
O20.46035 (16)0.27705 (16)0.73495 (2)0.0099 (2)
O30.23352 (18)0.28644 (19)0.69863 (3)0.0178 (3)
O40.48577 (16)0.13040 (16)0.77831 (2)0.0102 (2)
H0.184 (5)0.355 (5)0.7004 (7)0.066 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cs1A0.029 (2)0.029 (2)0.0366 (19)0.0146 (12)0.0000.000
Cs1B0.016 (3)0.028 (4)0.021 (2)0.0082 (15)0.0021 (18)0.0011 (9)
Al10.0066 (2)0.0066 (2)0.0053 (3)0.00329 (11)0.0000.000
As20.00756 (11)0.00756 (11)0.00499 (15)0.00378 (5)0.0000.000
As10.00831 (8)0.00780 (8)0.00710 (8)0.00481 (6)0.00008 (5)0.00030 (5)
O10.0132 (5)0.0097 (5)0.0085 (5)0.0067 (4)0.0030 (4)0.0000 (4)
O20.0106 (5)0.0099 (5)0.0097 (5)0.0055 (4)0.0007 (4)0.0017 (4)
O30.0104 (5)0.0177 (6)0.0245 (6)0.0065 (5)0.0071 (5)0.0057 (5)
O40.0115 (5)0.0082 (5)0.0123 (5)0.0060 (4)0.0028 (4)0.0035 (4)
Geometric parameters (Å, º) top
Cs1A—Cs1Bi0.15 (2)Cs1B—O2iii3.457 (2)
Cs1A—Cs1Bii0.15 (2)Cs1B—O3ii3.507 (14)
Cs1A—O3iii3.4066 (15)Cs1B—O3v3.507 (14)
Cs1A—O3ii3.4066 (16)Cs1B—O2v3.609 (19)
Cs1A—O3iv3.4066 (16)Cs1B—O2ii3.609 (19)
Cs1A—O33.4066 (16)Cs1B—O4vi4.018 (19)
Cs1A—O3v3.4066 (15)Cs1B—O4vii4.018 (19)
Cs1A—O3i3.4066 (16)Cs1B—As1i4.039 (10)
Cs1A—O23.4707 (13)Cs1B—As1iv4.039 (10)
Cs1A—O2v3.4707 (12)Cs1B—As14.057 (7)
Cs1A—O2i3.4707 (12)Cs1B—As1iii4.057 (7)
Cs1A—O2iv3.4708 (13)Al1—O2viii1.8933 (12)
Cs1A—O2iii3.4708 (13)Al1—O2ii1.8933 (13)
Cs1A—O2ii3.4708 (13)Al1—O2ix1.8934 (12)
Cs1A—As14.1132 (5)Al1—O4x1.8963 (13)
Cs1A—As1v4.1132 (4)Al1—O4i1.8963 (12)
Cs1A—As1i4.1132 (5)Al1—O4xi1.8963 (12)
Cs1A—As1iv4.1133 (4)As2—O1xii1.8103 (12)
Cs1A—As1iii4.1133 (4)As2—O1xiii1.8103 (12)
Cs1A—As1ii4.1133 (5)As2—O1xi1.8104 (11)
Cs1B—Cs1Bi0.27 (4)As2—O1i1.8104 (12)
Cs1B—Cs1Bii0.27 (4)As2—O1xiv1.8104 (11)
Cs1B—O3iii3.345 (8)As2—O1x1.8104 (11)
Cs1B—O33.345 (8)As1—O4iii1.6639 (12)
Cs1B—O2i3.352 (16)As1—O21.6641 (11)
Cs1B—O2iv3.352 (16)As1—O1xv1.7094 (12)
Cs1B—O3iv3.376 (4)As1—O31.7108 (13)
Cs1B—O3i3.376 (4)O3—H0.875 (19)
Cs1B—O23.457 (2)
Cs1Bi—Cs1A—Cs1Bii120.0 (2)O3v—Cs1B—O4vii153.1 (3)
Cs1Bi—Cs1A—O3iii77.07 (3)O2v—Cs1B—O4vii143.57 (3)
Cs1Bii—Cs1A—O3iii130.09 (4)O2ii—Cs1B—O4vii146.38 (3)
Cs1Bi—Cs1A—O3ii77.07 (3)O4vi—Cs1B—O4vii50.4 (3)
Cs1Bii—Cs1A—O3ii65.14 (12)Cs1Bi—Cs1B—As1i91.9 (2)
O3iii—Cs1A—O3ii154.15 (5)Cs1Bii—Cs1B—As1i141.11 (14)
Cs1Bi—Cs1A—O3iv130.09 (3)O3iii—Cs1B—As1i78.8 (2)
Cs1Bii—Cs1A—O3iv65.14 (12)O3—Cs1B—As1i80.6 (2)
O3iii—Cs1A—O3iv68.99 (4)O2i—Cs1B—As1i23.77 (5)
O3ii—Cs1A—O3iv130.29 (5)O2iv—Cs1B—As1i101.5 (5)
Cs1Bi—Cs1A—O3130.09 (3)O3iv—Cs1B—As1i137.7 (6)
Cs1Bii—Cs1A—O377.07 (14)O3i—Cs1B—As1i24.66 (9)
O3iii—Cs1A—O3130.29 (5)O2—Cs1B—As1i126.1 (3)
O3ii—Cs1A—O368.99 (4)O2iii—Cs1B—As1i49.09 (10)
O3iv—Cs1A—O399.81 (5)O3ii—Cs1B—As1i92.71 (5)
Cs1Bi—Cs1A—O3v65.14 (4)O3v—Cs1B—As1i125.43 (12)
Cs1Bii—Cs1A—O3v77.07 (14)O2v—Cs1B—As1i143.1 (4)
O3iii—Cs1A—O3v68.99 (4)O2ii—Cs1B—As1i92.74 (12)
O3ii—Cs1A—O3v99.81 (5)O4vi—Cs1B—As1i64.3 (3)
O3iv—Cs1A—O3v68.99 (4)O4vii—Cs1B—As1i65.5 (3)
O3—Cs1A—O3v154.15 (5)Cs1Bi—Cs1B—As1iv141.1 (3)
Cs1Bi—Cs1A—O3i65.14 (4)Cs1Bii—Cs1B—As1iv91.9 (4)
Cs1Bii—Cs1A—O3i130.09 (4)O3iii—Cs1B—As1iv80.6 (2)
O3iii—Cs1A—O3i99.81 (5)O3—Cs1B—As1iv78.8 (2)
O3ii—Cs1A—O3i68.99 (4)O2i—Cs1B—As1iv101.5 (5)
O3iv—Cs1A—O3i154.15 (5)O2iv—Cs1B—As1iv23.77 (5)
O3—Cs1A—O3i68.99 (4)O3iv—Cs1B—As1iv24.66 (9)
O3v—Cs1A—O3i130.29 (5)O3i—Cs1B—As1iv137.7 (6)
Cs1Bi—Cs1A—O2153.70 (4)O2—Cs1B—As1iv49.09 (10)
Cs1Bii—Cs1A—O238.5 (2)O2iii—Cs1B—As1iv126.1 (3)
O3iii—Cs1A—O2127.04 (3)O3ii—Cs1B—As1iv125.43 (12)
O3ii—Cs1A—O278.39 (3)O3v—Cs1B—As1iv92.71 (5)
O3iv—Cs1A—O262.83 (3)O2v—Cs1B—As1iv92.74 (12)
O3—Cs1A—O245.72 (3)O2ii—Cs1B—As1iv143.1 (4)
O3v—Cs1A—O2110.37 (3)O4vi—Cs1B—As1iv65.5 (3)
O3i—Cs1A—O2113.93 (3)O4vii—Cs1B—As1iv64.3 (3)
Cs1Bi—Cs1A—O2v83.46 (2)As1i—Cs1B—As1iv124.1 (5)
Cs1Bii—Cs1A—O2v38.5 (2)Cs1Bi—Cs1B—As1135.2 (3)
O3iii—Cs1A—O2v113.93 (3)Cs1Bii—Cs1B—As184.4 (4)
O3ii—Cs1A—O2v62.83 (3)O3iii—Cs1B—As1129.9 (5)
O3iv—Cs1A—O2v78.39 (3)O3—Cs1B—As124.38 (5)
O3—Cs1A—O2v110.37 (3)O2i—Cs1B—As196.4 (4)
O3v—Cs1A—O2v45.72 (3)O2iv—Cs1B—As149.35 (14)
O3i—Cs1A—O2v127.04 (3)O3iv—Cs1B—As178.22 (15)
O2—Cs1A—O2v77.02 (4)O3i—Cs1B—As194.4 (2)
Cs1Bi—Cs1A—O2i83.46 (2)O2—Cs1B—As123.92 (7)
Cs1Bii—Cs1A—O2i153.70 (19)O2iii—Cs1B—As1149.8 (5)
O3iii—Cs1A—O2i62.83 (3)O3ii—Cs1B—As178.48 (6)
O3ii—Cs1A—O2i113.93 (3)O3v—Cs1B—As1132.2 (2)
O3iv—Cs1A—O2i110.37 (3)O2v—Cs1B—As196.79 (18)
O3—Cs1A—O2i78.39 (3)O2ii—Cs1B—As1121.4 (3)
O3v—Cs1A—O2i127.04 (3)O4vi—Cs1B—As192.2 (4)
O3i—Cs1A—O2i45.72 (3)O4vii—Cs1B—As147.32 (16)
O2—Cs1A—O2i115.404 (13)As1i—Cs1B—As1102.3 (3)
O2v—Cs1A—O2i166.91 (4)As1iv—Cs1B—As157.07 (13)
Cs1Bi—Cs1A—O2iv153.70 (4)Cs1Bi—Cs1B—As1iii84.4 (2)
Cs1Bii—Cs1A—O2iv83.5 (2)Cs1Bii—Cs1B—As1iii135.20 (15)
O3iii—Cs1A—O2iv78.39 (3)O3iii—Cs1B—As1iii24.38 (5)
O3ii—Cs1A—O2iv127.04 (3)O3—Cs1B—As1iii129.9 (5)
O3iv—Cs1A—O2iv45.72 (3)O2i—Cs1B—As1iii49.35 (14)
O3—Cs1A—O2iv62.83 (3)O2iv—Cs1B—As1iii96.4 (4)
O3v—Cs1A—O2iv113.93 (3)O3iv—Cs1B—As1iii94.4 (2)
O3i—Cs1A—O2iv110.37 (3)O3i—Cs1B—As1iii78.22 (15)
O2—Cs1A—O2iv52.60 (4)O2—Cs1B—As1iii149.8 (5)
O2v—Cs1A—O2iv115.404 (13)O2iii—Cs1B—As1iii23.92 (7)
O2i—Cs1A—O2iv77.02 (4)O3ii—Cs1B—As1iii132.2 (2)
Cs1Bi—Cs1A—O2iii38.51 (2)O3v—Cs1B—As1iii78.48 (6)
Cs1Bii—Cs1A—O2iii153.70 (19)O2v—Cs1B—As1iii121.4 (3)
O3iii—Cs1A—O2iii45.72 (3)O2ii—Cs1B—As1iii96.80 (18)
O3ii—Cs1A—O2iii110.37 (3)O4vi—Cs1B—As1iii47.32 (16)
O3iv—Cs1A—O2iii113.93 (3)O4vii—Cs1B—As1iii92.2 (4)
O3—Cs1A—O2iii127.04 (3)As1i—Cs1B—As1iii57.07 (13)
O3v—Cs1A—O2iii78.39 (3)As1iv—Cs1B—As1iii102.3 (3)
O3i—Cs1A—O2iii62.83 (3)As1—Cs1B—As1iii138.7 (6)
O2—Cs1A—O2iii166.91 (4)O2viii—Al1—O2ii90.96 (6)
O2v—Cs1A—O2iii115.403 (13)O2viii—Al1—O2ix90.96 (6)
O2i—Cs1A—O2iii52.60 (4)O2ii—Al1—O2ix90.96 (6)
O2iv—Cs1A—O2iii115.402 (13)O2viii—Al1—O4x88.82 (5)
Cs1Bi—Cs1A—O2ii38.51 (2)O2ii—Al1—O4x178.50 (6)
Cs1Bii—Cs1A—O2ii83.5 (2)O2ix—Al1—O4x90.53 (5)
O3iii—Cs1A—O2ii110.37 (3)O2viii—Al1—O4i178.50 (6)
O3ii—Cs1A—O2ii45.72 (3)O2ii—Al1—O4i90.53 (5)
O3iv—Cs1A—O2ii127.04 (3)O2ix—Al1—O4i88.82 (5)
O3—Cs1A—O2ii113.93 (3)O4x—Al1—O4i89.70 (6)
O3v—Cs1A—O2ii62.83 (3)O2viii—Al1—O4xi90.53 (5)
O3i—Cs1A—O2ii78.39 (3)O2ii—Al1—O4xi88.82 (5)
O2—Cs1A—O2ii115.404 (13)O2ix—Al1—O4xi178.50 (6)
O2v—Cs1A—O2ii52.60 (4)O4x—Al1—O4xi89.70 (6)
O2i—Cs1A—O2ii115.404 (13)O4i—Al1—O4xi89.70 (6)
O2iv—Cs1A—O2ii166.91 (4)O2viii—Al1—Cs1Bx123.30 (10)
O2iii—Cs1A—O2ii77.02 (4)O2ii—Al1—Cs1Bx99.54 (13)
Cs1Bi—Cs1A—As1151.960 (16)O2ix—Al1—Cs1Bx33.98 (6)
Cs1Bii—Cs1A—As160.19 (18)O4x—Al1—Cs1Bx81.81 (12)
O3iii—Cs1A—As1126.11 (2)O4i—Al1—Cs1Bx56.21 (9)
O3ii—Cs1A—As178.79 (2)O4xi—Al1—Cs1Bx144.65 (7)
O3iv—Cs1A—As177.08 (3)O2viii—Al1—Cs1Bi99.54 (12)
O3—Cs1A—As124.02 (2)O2ii—Al1—Cs1Bi33.98 (5)
O3v—Cs1A—As1133.70 (2)O2ix—Al1—Cs1Bi123.30 (9)
O3i—Cs1A—As192.93 (3)O4x—Al1—Cs1Bi144.65 (6)
O2—Cs1A—As123.442 (18)O4i—Al1—Cs1Bi81.81 (12)
O2v—Cs1A—As198.010 (19)O4xi—Al1—Cs1Bi56.21 (9)
O2i—Cs1A—As193.54 (2)Cs1Bx—Al1—Cs1Bi119.552 (13)
O2iv—Cs1A—As148.32 (2)O2viii—Al1—Cs1Bxi33.98 (6)
O2iii—Cs1A—As1146.060 (19)O2ii—Al1—Cs1Bxi123.30 (10)
O2ii—Cs1A—As1123.48 (2)O2ix—Al1—Cs1Bxi99.54 (14)
Cs1Bi—Cs1A—As1v67.330 (11)O4x—Al1—Cs1Bxi56.21 (10)
Cs1Bii—Cs1A—As1v60.19 (18)O4i—Al1—Cs1Bxi144.65 (7)
O3iii—Cs1A—As1v92.93 (3)O4xi—Al1—Cs1Bxi81.81 (14)
O3ii—Cs1A—As1v77.09 (3)Cs1Bx—Al1—Cs1Bxi119.552 (7)
O3iv—Cs1A—As1v78.78 (2)Cs1Bi—Al1—Cs1Bxi119.552 (4)
O3—Cs1A—As1v133.71 (2)O2viii—Al1—Cs1Ax122.73 (4)
O3v—Cs1A—As1v24.02 (2)O2ii—Al1—Cs1Ax100.35 (4)
O3i—Cs1A—As1v126.11 (2)O2ix—Al1—Cs1Ax33.72 (4)
O2—Cs1A—As1v98.010 (19)O4x—Al1—Cs1Ax81.01 (3)
O2v—Cs1A—As1v23.441 (19)O4i—Al1—Cs1Ax56.75 (4)
O2i—Cs1A—As1v146.06 (2)O4xi—Al1—Cs1Ax144.92 (4)
O2iv—Cs1A—As1v123.484 (19)Cs1Bx—Al1—Cs1Ax0.93 (14)
O2iii—Cs1A—As1v93.54 (2)Cs1Bi—Al1—Cs1Ax120.48 (13)
O2ii—Cs1A—As1v48.32 (2)Cs1Bxi—Al1—Cs1Ax118.65 (14)
As1—Cs1A—As1v120.371 (6)O2viii—Al1—Cs1A100.35 (4)
Cs1Bi—Cs1A—As1i67.330 (8)O2ii—Al1—Cs1A33.72 (4)
Cs1Bii—Cs1A—As1i151.96 (3)O2ix—Al1—Cs1A122.73 (4)
O3iii—Cs1A—As1i77.09 (3)O4x—Al1—Cs1A144.92 (4)
O3ii—Cs1A—As1i92.93 (3)O4i—Al1—Cs1A81.01 (4)
O3iv—Cs1A—As1i133.71 (2)O4xi—Al1—Cs1A56.75 (4)
O3—Cs1A—As1i78.79 (2)Cs1Bx—Al1—Cs1A118.65 (14)
O3v—Cs1A—As1i126.11 (2)Cs1Bi—Al1—Cs1A0.93 (13)
O3i—Cs1A—As1i24.02 (2)Cs1Bxi—Al1—Cs1A120.48 (13)
O2—Cs1A—As1i123.48 (2)Cs1Ax—Al1—Cs1A119.576 (2)
O2v—Cs1A—As1i146.06 (2)O2viii—Al1—Cs1Aviii33.72 (4)
O2i—Cs1A—As1i23.441 (19)O2ii—Al1—Cs1Aviii122.74 (4)
O2iv—Cs1A—As1i98.010 (19)O2ix—Al1—Cs1Aviii100.35 (4)
O2iii—Cs1A—As1i48.32 (2)O4x—Al1—Cs1Aviii56.75 (4)
O2ii—Cs1A—As1i93.54 (2)O4i—Al1—Cs1Aviii144.92 (4)
As1—Cs1A—As1i100.065 (9)O4xi—Al1—Cs1Aviii81.01 (4)
As1v—Cs1A—As1i134.660 (5)Cs1Bx—Al1—Cs1Aviii120.48 (14)
Cs1Bi—Cs1A—As1iv151.959 (16)Cs1Bi—Al1—Cs1Aviii118.65 (13)
Cs1Bii—Cs1A—As1iv67.33 (18)Cs1Bxi—Al1—Cs1Aviii0.93 (14)
O3iii—Cs1A—As1iv78.79 (2)Cs1Ax—Al1—Cs1Aviii119.576 (2)
O3ii—Cs1A—As1iv126.11 (2)Cs1A—Al1—Cs1Aviii119.576 (2)
O3iv—Cs1A—As1iv24.02 (2)O1xii—As2—O1xiii92.41 (5)
O3—Cs1A—As1iv77.08 (3)O1xii—As2—O1xi180.0
O3v—Cs1A—As1iv92.93 (3)O1xiii—As2—O1xi87.59 (5)
O3i—Cs1A—As1iv133.70 (2)O1xii—As2—O1i87.59 (5)
O2—Cs1A—As1iv48.31 (2)O1xiii—As2—O1i180.00 (10)
O2v—Cs1A—As1iv93.54 (2)O1xi—As2—O1i92.41 (5)
O2i—Cs1A—As1iv98.010 (19)O1xii—As2—O1xiv92.41 (5)
O2iv—Cs1A—As1iv23.441 (18)O1xiii—As2—O1xiv92.41 (5)
O2iii—Cs1A—As1iv123.482 (19)O1xi—As2—O1xiv87.59 (5)
O2ii—Cs1A—As1iv146.060 (19)O1i—As2—O1xiv87.59 (5)
As1—Cs1A—As1iv56.080 (13)O1xii—As2—O1x87.59 (5)
As1v—Cs1A—As1iv100.065 (7)O1xiii—As2—O1x87.59 (5)
As1i—Cs1A—As1iv120.371 (6)O1xi—As2—O1x92.40 (5)
Cs1Bi—Cs1A—As1iii60.186 (15)O1i—As2—O1x92.40 (5)
Cs1Bii—Cs1A—As1iii151.96 (3)O1xiv—As2—O1x180.00 (7)
O3iii—Cs1A—As1iii24.02 (2)O4iii—As1—O2117.14 (6)
O3ii—Cs1A—As1iii133.70 (2)O4iii—As1—O1xv101.04 (6)
O3iv—Cs1A—As1iii92.93 (3)O2—As1—O1xv114.80 (6)
O3—Cs1A—As1iii126.11 (2)O4iii—As1—O3110.50 (6)
O3v—Cs1A—As1iii78.79 (2)O2—As1—O3104.71 (7)
O3i—Cs1A—As1iii77.08 (3)O1xv—As1—O3108.55 (7)
O2—Cs1A—As1iii146.058 (19)O4iii—As1—Cs1Bii111.95 (18)
O2v—Cs1A—As1iii123.483 (19)O2—As1—Cs1Bii54.3 (3)
O2i—Cs1A—As1iii48.32 (2)O1xv—As1—Cs1Bii146.59 (15)
O2iv—Cs1A—As1iii93.54 (2)O3—As1—Cs1Bii55.4 (2)
O2iii—Cs1A—As1iii23.441 (19)O4iii—As1—Cs1B108.9 (3)
O2ii—Cs1A—As1iii98.011 (19)O2—As1—Cs1B57.4 (2)
As1—Cs1A—As1iii134.660 (5)O1xv—As1—Cs1B149.1 (2)
As1v—Cs1A—As1iii100.065 (7)O3—As1—Cs1B53.82 (8)
As1i—Cs1A—As1iii56.081 (12)Cs1Bii—As1—Cs1B3.7 (5)
As1iv—Cs1A—As1iii100.064 (7)O4iii—As1—Cs1A110.78 (4)
Cs1Bi—Cs1A—As1ii60.186 (14)O2—As1—Cs1A56.07 (4)
Cs1Bii—Cs1A—As1ii67.33 (18)O1xv—As1—Cs1A147.44 (4)
O3iii—Cs1A—As1ii133.70 (2)O3—As1—Cs1A54.16 (5)
O3ii—Cs1A—As1ii24.02 (2)Cs1Bii—As1—Cs1A1.9 (3)
O3iv—Cs1A—As1ii126.11 (2)Cs1B—As1—Cs1A2.0 (3)
O3—Cs1A—As1ii92.93 (3)O4iii—As1—Cs1Bi111.44 (10)
O3v—Cs1A—As1ii77.08 (3)O2—As1—Cs1Bi56.52 (7)
O3i—Cs1A—As1ii78.79 (2)O1xv—As1—Cs1Bi146.64 (11)
O2—Cs1A—As1ii93.55 (2)O3—As1—Cs1Bi53.34 (12)
O2v—Cs1A—As1ii48.32 (2)Cs1Bii—As1—Cs1Bi2.2 (3)
O2i—Cs1A—As1ii123.48 (2)Cs1B—As1—Cs1Bi2.5 (4)
O2iv—Cs1A—As1ii146.060 (19)Cs1A—As1—Cs1Bi0.97 (13)
O2iii—Cs1A—As1ii98.011 (19)O4iii—As1—Cs1Bxvi44.17 (5)
O2ii—Cs1A—As1ii23.441 (19)O2—As1—Cs1Bxvi93.27 (8)
As1—Cs1A—As1ii100.065 (9)O1xv—As1—Cs1Bxvi78.98 (10)
As1v—Cs1A—As1ii56.081 (13)O3—As1—Cs1Bxvi154.47 (5)
As1i—Cs1A—As1ii100.065 (9)Cs1Bii—As1—Cs1Bxvi129.10 (15)
As1iv—Cs1A—As1ii134.660 (5)Cs1B—As1—Cs1Bxvi128.6 (2)
As1iii—Cs1A—As1ii120.371 (6)Cs1A—As1—Cs1Bxvi129.41 (10)
Cs1Bi—Cs1B—Cs1Bii60.00 (4)Cs1Bi—As1—Cs1Bxvi130.38 (4)
Cs1Bi—Cs1B—O3iii94.4 (3)O4iii—As1—Cs1Axvii44.29 (4)
Cs1Bii—Cs1B—O3iii125.9 (2)O2—As1—Cs1Axvii93.71 (4)
Cs1Bi—Cs1B—O3125.9 (3)O1xv—As1—Cs1Axvii78.36 (4)
Cs1Bii—Cs1B—O394.4 (4)O3—As1—Cs1Axvii154.48 (5)
O3iii—Cs1B—O3135.1 (7)Cs1Bii—As1—Cs1Axvii129.75 (5)
Cs1Bi—Cs1B—O2i111.1 (2)Cs1B—As1—Cs1Axvii129.29 (11)
Cs1Bii—Cs1B—O2i164.59 (9)Cs1A—As1—Cs1Axvii130.055 (13)
O3iii—Cs1B—O2i64.7 (3)Cs1Bi—As1—Cs1Axvii131.03 (14)
O3—Cs1B—O2i80.9 (4)Cs1Bxvi—As1—Cs1Axvii0.65 (10)
Cs1Bi—Cs1B—O2iv164.6 (2)O4iii—As1—Cs1Bxviii45.8 (2)
Cs1Bii—Cs1B—O2iv111.1 (4)O2—As1—Cs1Bxviii92.99 (12)
O3iii—Cs1B—O2iv80.9 (4)O1xv—As1—Cs1Bxviii77.45 (15)
O3—Cs1B—O2iv64.7 (3)O3—As1—Cs1Bxviii155.9 (2)
O2i—Cs1B—O2iv80.3 (5)Cs1Bii—As1—Cs1Bxviii130.167 (13)
Cs1Bi—Cs1B—O3iv117.8 (3)Cs1B—As1—Cs1Bxviii129.84 (3)
Cs1Bii—Cs1B—O3iv81.1 (4)Cs1A—As1—Cs1Bxviii130.54 (7)
O3iii—Cs1B—O3iv70.08 (15)Cs1Bi—As1—Cs1Bxviii131.5 (2)
O3—Cs1B—O3iv101.7 (3)Cs1Bxvi—As1—Cs1Bxviii1.8 (3)
O2i—Cs1B—O3iv114.1 (5)Cs1Axvii—As1—Cs1Bxviii1.5 (2)
O2iv—Cs1B—O3iv46.81 (15)O4iii—As1—Cs1Bxvii42.9 (2)
Cs1Bi—Cs1B—O3i81.1 (3)O2—As1—Cs1Bxvii94.85 (18)
Cs1Bii—Cs1B—O3i117.8 (2)O1xv—As1—Cs1Bxvii78.69 (8)
O3iii—Cs1B—O3i101.7 (3)O3—As1—Cs1Bxvii153.1 (2)
O3—Cs1B—O3i70.08 (15)Cs1Bii—As1—Cs1Bxvii129.92 (2)
O2i—Cs1B—O3i46.81 (15)Cs1B—As1—Cs1Bxvii129.35 (12)
O2iv—Cs1B—O3i114.1 (5)Cs1A—As1—Cs1Bxvii130.167 (19)
O3iv—Cs1B—O3i159.2 (7)Cs1Bi—As1—Cs1Bxvii131.14 (15)
Cs1Bi—Cs1B—O2123.2 (4)Cs1Bxvi—As1—Cs1Bxvii1.6 (2)
Cs1Bii—Cs1B—O264.8 (5)Cs1Axvii—As1—Cs1Bxvii1.4 (2)
O3iii—Cs1B—O2129.6 (3)Cs1Bxviii—As1—Cs1Bxvii2.9 (4)
O3—Cs1B—O246.24 (7)As1xix—O1—As2xx130.17 (7)
O2i—Cs1B—O2119.0 (5)As1xix—O1—Cs1Bvi81.42 (16)
O2iv—Cs1B—O253.68 (15)As2xx—O1—Cs1Bvi129.94 (11)
O3iv—Cs1B—O263.29 (6)As1xix—O1—Cs1Axx82.55 (4)
O3i—Cs1B—O2115.10 (14)As2xx—O1—Cs1Axx129.26 (5)
Cs1Bi—Cs1B—O2iii64.8 (3)Cs1Bvi—O1—Cs1Axx1.14 (17)
Cs1Bii—Cs1B—O2iii123.2 (2)As1xix—O1—Cs1Bxxi83.66 (17)
O3iii—Cs1B—O2iii46.23 (7)As2xx—O1—Cs1Bxxi127.6 (2)
O3—Cs1B—O2iii129.7 (3)Cs1Bvi—O1—Cs1Bxxi2.5 (3)
O2i—Cs1B—O2iii53.68 (15)Cs1Axx—O1—Cs1Bxxi1.7 (2)
O2iv—Cs1B—O2iii119.0 (5)As1—O2—Al1xvii125.94 (7)
O3iv—Cs1B—O2iii115.10 (14)As1—O2—Cs1Bii101.9 (2)
O3i—Cs1B—O2iii63.29 (6)Al1xvii—O2—Cs1Bii127.63 (17)
O2—Cs1B—O2iii172.0 (7)As1—O2—Cs1B98.7 (3)
Cs1Bi—Cs1B—O3ii58.4 (2)Al1xvii—O2—Cs1B129.54 (14)
Cs1Bii—Cs1B—O3ii50.60 (16)Cs1Bii—O2—Cs1B4.1 (6)
O3iii—Cs1B—O3ii151.4 (4)As1—O2—Cs1A100.49 (5)
O3—Cs1B—O3ii68.50 (9)Al1xvii—O2—Cs1A128.67 (5)
O2i—Cs1B—O3ii114.37 (6)Cs1Bii—O2—Cs1A1.6 (2)
O2iv—Cs1B—O3ii127.63 (7)Cs1B—O2—Cs1A2.5 (4)
O3iv—Cs1B—O3ii127.8 (4)As1—O2—Cs1Bi100.86 (7)
O3i—Cs1B—O3ii68.17 (13)Al1xvii—O2—Cs1Bi128.74 (5)
O2—Cs1B—O3ii77.24 (17)Cs1Bii—O2—Cs1Bi1.12 (16)
O2iii—Cs1B—O3ii108.3 (3)Cs1B—O2—Cs1Bi3.5 (5)
Cs1Bi—Cs1B—O3v50.6 (2)Cs1A—O2—Cs1Bi1.08 (14)
Cs1Bii—Cs1B—O3v58.37 (14)As1—O3—Cs1B101.80 (6)
O3iii—Cs1B—O3v68.50 (9)As1—O3—Cs1Bii99.9 (3)
O3—Cs1B—O3v151.4 (4)Cs1B—O3—Cs1Bii4.5 (6)
O2i—Cs1B—O3v127.63 (7)As1—O3—Cs1A101.82 (6)
O2iv—Cs1B—O3v114.37 (6)Cs1B—O3—Cs1A2.4 (3)
O3iv—Cs1B—O3v68.17 (13)Cs1Bii—O3—Cs1A2.5 (4)
O3i—Cs1B—O3v127.8 (4)As1—O3—Cs1Bi103.6 (2)
O2—Cs1B—O3v108.3 (3)Cs1B—O3—Cs1Bi3.5 (5)
O2iii—Cs1B—O3v77.24 (17)Cs1Bii—O3—Cs1Bi3.8 (5)
O3ii—Cs1B—O3v96.0 (5)Cs1A—O3—Cs1Bi1.9 (3)
Cs1Bi—Cs1B—O2v53.28 (17)As1—O3—H105 (3)
Cs1Bii—Cs1B—O2v14.29 (7)Cs1B—O3—H93 (3)
O3iii—Cs1B—O2v112.0 (3)Cs1Bii—O3—H98 (2)
O3—Cs1B—O2v108.5 (3)Cs1A—O3—H96 (2)
O2i—Cs1B—O2v164.4 (4)Cs1Bi—O3—H96 (3)
O2iv—Cs1B—O2v114.85 (9)As1iii—O4—Al1xx127.34 (7)
O3iv—Cs1B—O2v76.9 (2)As1iii—O4—Cs1Bxxii119.06 (10)
O3i—Cs1B—O2v123.6 (5)Al1xx—O4—Cs1Bxxii100.69 (5)
O2—Cs1B—O2v75.4 (2)As1iii—O4—Cs1Axix119.48 (5)
O2iii—Cs1B—O2v112.3 (4)Al1xx—O4—Cs1Axix100.82 (4)
O3ii—Cs1B—O2v60.5 (3)Cs1Bxxii—O4—Cs1Axix0.90 (13)
O3v—Cs1B—O2v44.1 (2)As1iii—O4—Cs1Bxix121.4 (3)
Cs1Bi—Cs1B—O2ii14.29 (3)Al1xx—O4—Cs1Bxix99.51 (19)
Cs1Bii—Cs1B—O2ii53.28 (3)Cs1Bxxii—O4—Cs1Bxix2.7 (4)
O3iii—Cs1B—O2ii108.5 (3)Cs1Axix—O4—Cs1Bxix2.0 (3)
O3—Cs1B—O2ii112.0 (3)As1iii—O4—Cs1Bxxiii117.9 (2)
O2i—Cs1B—O2ii114.85 (9)Al1xx—O4—Cs1Bxxiii102.2 (2)
O2iv—Cs1B—O2ii164.4 (4)Cs1Bxxii—O4—Cs1Bxxiii1.5 (2)
O3iv—Cs1B—O2ii123.6 (5)Cs1Axix—O4—Cs1Bxxiii1.6 (2)
O3i—Cs1B—O2ii76.9 (2)Cs1Bxix—O4—Cs1Bxxiii3.5 (5)
O2—Cs1B—O2ii112.3 (4)As1iii—O4—Cs1B52.18 (19)
O2iii—Cs1B—O2ii75.4 (2)Al1xx—O4—Cs1B75.5 (2)
O3ii—Cs1B—O2ii44.1 (2)Cs1Bxxii—O4—Cs1B135.11 (6)
O3v—Cs1B—O2ii60.5 (3)Cs1Axix—O4—Cs1B136.01 (8)
O2v—Cs1B—O2ii50.4 (3)Cs1Bxix—O4—Cs1B137.3 (2)
Cs1Bi—Cs1B—O4vi131.69 (8)Cs1Bxxiii—O4—Cs1B135.55 (3)
Cs1Bii—Cs1B—O4vi154.46 (10)As1iii—O4—Cs1Bi49.73 (17)
O3iii—Cs1B—O4vi42.3 (2)Al1xx—O4—Cs1Bi78.1 (2)
O3—Cs1B—O4vi92.7 (5)Cs1Bxxii—O4—Cs1Bi133.5 (3)
O2i—Cs1B—O4vi40.9 (2)Cs1Axix—O4—Cs1Bi134.38 (18)
O2iv—Cs1B—O4vi51.1 (3)Cs1Bxix—O4—Cs1Bi135.76 (3)
O3iv—Cs1B—O4vi73.4 (3)Cs1Bxxiii—O4—Cs1Bi133.8 (3)
O3i—Cs1B—O4vi87.7 (4)Cs1B—O4—Cs1Bi3.1 (4)
O2—Cs1B—O4vi104.2 (4)As1iii—O4—Cs1A50.92 (3)
O2iii—Cs1B—O4vi68.2 (2)Al1xx—O4—Cs1A76.77 (3)
O3ii—Cs1B—O4vi153.1 (3)Cs1Bxxii—O4—Cs1A134.61 (13)
O3v—Cs1B—O4vi108.65 (13)Cs1Axix—O4—Cs1A135.51 (3)
O2v—Cs1B—O4vi146.38 (3)Cs1Bxix—O4—Cs1A136.84 (18)
O2ii—Cs1B—O4vi143.57 (3)Cs1Bxxiii—O4—Cs1A135.01 (8)
Cs1Bi—Cs1B—O4vii154.46 (3)Cs1B—O4—Cs1A1.4 (2)
Cs1Bii—Cs1B—O4vii131.7 (2)Cs1Bi—O4—Cs1A1.7 (3)
O3iii—Cs1B—O4vii92.7 (5)As1iii—O4—Cs1Bii50.88 (4)
O3—Cs1B—O4vii42.3 (2)Al1xx—O4—Cs1Bii76.75 (4)
O2i—Cs1B—O4vii51.1 (3)Cs1Bxxii—O4—Cs1Bii135.21 (5)
O2iv—Cs1B—O4vii40.9 (2)Cs1Axix—O4—Cs1Bii136.11 (9)
O3iv—Cs1B—O4vii87.7 (4)Cs1Bxix—O4—Cs1Bii137.4 (3)
O3i—Cs1B—O4vii73.4 (3)Cs1Bxxiii—O4—Cs1Bii135.61 (3)
O2—Cs1B—O4vii68.2 (2)Cs1B—O4—Cs1Bii1.30 (19)
O2iii—Cs1B—O4vii104.2 (4)Cs1Bi—O4—Cs1Bii2.1 (3)
O3ii—Cs1B—O4vii108.65 (13)Cs1A—O4—Cs1Bii0.59 (8)
Symmetry codes: (i) y, xy, z; (ii) x+y, x, z; (iii) x, x+y, z+3/2; (iv) y, x, z+3/2; (v) xy, y, z+3/2; (vi) y, xy1, z; (vii) y, x1, z+3/2; (viii) x+1, y+1, z; (ix) y, xy+1, z; (x) x, y+1, z; (xi) x+y+1, x+1, z; (xii) xy1/3, x+1/3, z+4/3; (xiii) y+2/3, x+y+4/3, z+4/3; (xiv) x+2/3, y+1/3, z+4/3; (xv) x1, y, z; (xvi) y1, xy1, z; (xvii) x1, y1, z; (xviii) x+y1, x1, z; (xix) x+1, y, z; (xx) x, y1, z; (xxi) x+y, x1, z; (xxii) x+y+1, x, z; (xxiii) y+1, xy, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H···O4vii0.88 (2)1.94 (2)2.7321 (18)150 (3)
Symmetry code: (vii) y, x1, z+3/2.
Caesium digallium arsenic(V) hexakis[hydrogen arsenate(V)] (CsGa2AsHAsO46) top
Crystal data top
CsGa2As(HAsO4)6Dx = 3.717 Mg m3
Mr = 1186.84Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3c:HCell parameters from 2582 reflections
a = 8.5199 (10) Åθ = 2.9–32.6°
c = 50.608 (11) ŵ = 15.18 mm1
V = 3181.4 (10) Å3T = 293 K
Z = 6Pseudo-octahedra, colourless
F(000) = 32760.07 × 0.07 × 0.07 mm
Data collection top
Nonius KappaCCD single-crystal four-circle
diffractometer
1134 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.018
φ and ω scansθmax = 32.6°, θmin = 2.9°
Absorption correction: multi-scan
(HKL SCALEPACK; Otwinowski et al., 2003)
h = 1212
Tmin = 0.416, Tmax = 0.416k = 1010
4712 measured reflectionsl = 7676
1293 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018All H-atom parameters refined
wR(F2) = 0.041 w = 1/[σ2(Fo2) + (0.0155P)2 + 13.7864P]
where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max = 0.004
1293 reflectionsΔρmax = 0.86 e Å3
65 parametersΔρmin = 0.72 e Å3
2 restraintsExtinction correction: SHELXL-2016/6 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.000080 (16)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cs1A0.0000000.0000000.7500000.033 (3)0.720 (3)
Cs1B0.0000000.030 (5)0.7500000.0264 (19)0.0932 (9)
Ga10.3333330.6666670.75610 (2)0.00886 (8)
As20.3333330.6666670.6666670.00779 (10)
As10.44795 (3)0.41187 (3)0.71128 (2)0.00894 (6)
O10.3969 (2)0.47002 (19)0.68643 (3)0.0119 (3)
O20.4545 (2)0.27504 (19)0.73418 (3)0.0113 (3)
O30.2351 (2)0.2915 (2)0.69800 (4)0.0203 (3)
O40.4903 (2)0.1257 (2)0.77880 (3)0.0121 (3)
H0.179 (5)0.350 (5)0.7009 (7)0.045 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cs1A0.030 (4)0.030 (4)0.041 (2)0.015 (2)0.0000.000
Cs1B0.021 (6)0.024 (4)0.034 (5)0.010 (3)0.002 (2)0.0011 (11)
Ga10.00933 (11)0.00933 (11)0.00791 (16)0.00466 (6)0.0000.000
As20.00862 (13)0.00862 (13)0.00615 (19)0.00431 (7)0.0000.000
As10.00989 (10)0.00944 (10)0.00872 (9)0.00576 (8)0.00007 (7)0.00054 (7)
O10.0154 (7)0.0121 (6)0.0097 (6)0.0081 (6)0.0034 (5)0.0000 (5)
O20.0114 (6)0.0108 (6)0.0114 (6)0.0054 (5)0.0004 (5)0.0020 (5)
O30.0122 (7)0.0210 (8)0.0281 (9)0.0086 (7)0.0080 (6)0.0067 (7)
O40.0143 (7)0.0101 (6)0.0143 (6)0.0079 (6)0.0036 (5)0.0039 (5)
Geometric parameters (Å, º) top
Cs1A—Cs1Bi0.25 (5)Cs1B—O23.451 (2)
Cs1A—Cs1Bii0.25 (4)Cs1B—O2iii3.451 (2)
Cs1A—O23.4719 (16)Cs1B—O3ii3.65 (3)
Cs1A—O2iii3.4719 (15)Cs1B—O3v3.65 (3)
Cs1A—O2iv3.4719 (16)Cs1B—O2ii3.70 (4)
Cs1A—O2ii3.4719 (15)Cs1B—O2v3.70 (4)
Cs1A—O2v3.4719 (15)Cs1B—O4vi3.95 (4)
Cs1A—O2i3.4719 (15)Cs1B—O4vii3.95 (4)
Cs1A—O3iii3.4828 (19)Cs1B—As1iv4.043 (19)
Cs1A—O3ii3.4828 (19)Cs1B—As1i4.043 (19)
Cs1A—O3iv3.4829 (19)Cs1B—As1iii4.072 (14)
Cs1A—O3v3.4829 (19)Cs1B—As14.072 (14)
Cs1A—O3i3.4829 (19)Ga1—O2viii1.9612 (14)
Cs1A—O33.483 (2)Ga1—O2ii1.9612 (15)
Cs1A—As1iii4.1625 (5)Ga1—O2ix1.9612 (15)
Cs1A—As1v4.1625 (5)Ga1—O4x1.9679 (15)
Cs1A—As1iv4.1625 (5)Ga1—O4i1.9679 (15)
Cs1A—As1ii4.1625 (5)Ga1—O4xi1.9679 (15)
Cs1A—As1i4.1625 (5)As2—O1xii1.8109 (14)
Cs1A—As14.1626 (5)As2—O1xiii1.8109 (15)
Cs1B—Cs1Bi0.44 (8)As2—O1xiv1.8109 (14)
Cs1B—Cs1Bii0.44 (7)As2—O1i1.8109 (15)
Cs1B—O2iv3.28 (3)As2—O1xi1.8109 (14)
Cs1B—O2i3.28 (3)As2—O1x1.8109 (14)
Cs1B—O3iii3.383 (16)As1—O21.6646 (14)
Cs1B—O33.383 (16)As1—O4iii1.6670 (15)
Cs1B—O3iv3.436 (7)As1—O1xv1.7089 (14)
Cs1B—O3i3.436 (7)As1—O31.7125 (17)
Cs1Bi—Cs1A—Cs1Bii120.0 (3)Cs1Bii—Cs1B—O4vii153.66 (17)
Cs1Bi—Cs1A—O2153.53 (4)O2iv—Cs1B—O4vii52.0 (6)
Cs1Bii—Cs1A—O238.9 (2)O2i—Cs1B—O4vii43.4 (5)
Cs1Bi—Cs1A—O2iii38.93 (3)O3iii—Cs1B—O4vii42.8 (4)
Cs1Bii—Cs1A—O2iii153.5 (2)O3—Cs1B—O4vii94.6 (9)
O2—Cs1A—O2iii166.53 (5)O3iv—Cs1B—O4vii74.4 (6)
Cs1Bi—Cs1A—O2iv153.53 (4)O3i—Cs1B—O4vii90.2 (7)
Cs1Bii—Cs1A—O2iv83.3 (3)O2—Cs1B—O4vii105.9 (9)
O2—Cs1A—O2iv52.94 (5)O2iii—Cs1B—O4vii69.3 (5)
O2iii—Cs1A—O2iv114.848 (17)O3ii—Cs1B—O4vii155.2 (6)
Cs1Bi—Cs1A—O2ii38.93 (3)O3v—Cs1B—O4vii108.8 (2)
Cs1Bii—Cs1A—O2ii83.3 (3)O2ii—Cs1B—O4vii144.37 (3)
O2—Cs1A—O2ii114.849 (17)O2v—Cs1B—O4vii145.20 (3)
O2iii—Cs1A—O2ii77.86 (5)O4vi—Cs1B—O4vii51.9 (5)
O2iv—Cs1A—O2ii166.53 (5)Cs1Bi—Cs1B—As1iv139.7 (5)
Cs1Bi—Cs1A—O2v83.27 (2)Cs1Bii—Cs1B—As1iv90.7 (7)
Cs1Bii—Cs1A—O2v38.9 (2)O2iv—Cs1B—As1iv23.43 (7)
O2—Cs1A—O2v77.86 (5)O2i—Cs1B—As1iv104.5 (10)
O2iii—Cs1A—O2v114.847 (17)O3iii—Cs1B—As1iv81.1 (5)
O2iv—Cs1A—O2v114.848 (17)O3—Cs1B—As1iv80.2 (5)
O2ii—Cs1A—O2v52.94 (5)O3iv—Cs1B—As1iv24.81 (16)
Cs1Bi—Cs1A—O2i83.27 (2)O3i—Cs1B—As1iv140.9 (11)
Cs1Bii—Cs1A—O2i153.5 (2)O2—Cs1B—As1iv50.4 (2)
O2—Cs1A—O2i114.848 (17)O2iii—Cs1B—As1iv126.7 (7)
O2iii—Cs1A—O2i52.94 (5)O3ii—Cs1B—As1iv124.7 (3)
O2iv—Cs1A—O2i77.86 (5)O3v—Cs1B—As1iv92.41 (13)
O2ii—Cs1A—O2i114.848 (17)O2ii—Cs1B—As1iv141.3 (8)
O2v—Cs1A—O2i166.53 (5)O2v—Cs1B—As1iv91.9 (3)
Cs1Bi—Cs1A—O3iii77.37 (3)O4vi—Cs1B—As1iv66.4 (5)
Cs1Bii—Cs1A—O3iii130.09 (5)O4vii—Cs1B—As1iv66.1 (5)
O2—Cs1A—O3iii127.26 (4)Cs1Bi—Cs1B—As1i90.7 (5)
O2iii—Cs1A—O3iii45.15 (4)Cs1Bii—Cs1B—As1i139.7 (4)
O2iv—Cs1A—O3iii77.63 (4)O2iv—Cs1B—As1i104.5 (10)
O2ii—Cs1A—O3iii111.42 (4)O2i—Cs1B—As1i23.43 (7)
O2v—Cs1A—O3iii113.36 (4)O3iii—Cs1B—As1i80.2 (5)
O2i—Cs1A—O3iii63.40 (4)O3—Cs1B—As1i81.1 (5)
Cs1Bi—Cs1A—O3ii77.37 (3)O3iv—Cs1B—As1i140.9 (11)
Cs1Bii—Cs1A—O3ii64.82 (14)O3i—Cs1B—As1i24.81 (16)
O2—Cs1A—O3ii77.64 (4)O2—Cs1B—As1i126.7 (7)
O2iii—Cs1A—O3ii111.42 (4)O2iii—Cs1B—As1i50.4 (2)
O2iv—Cs1A—O3ii127.26 (4)O3ii—Cs1B—As1i92.41 (13)
O2ii—Cs1A—O3ii45.15 (4)O3v—Cs1B—As1i124.7 (3)
O2v—Cs1A—O3ii63.40 (4)O2ii—Cs1B—As1i91.9 (3)
O2i—Cs1A—O3ii113.36 (4)O2v—Cs1B—As1i141.3 (8)
O3iii—Cs1A—O3ii154.75 (6)O4vi—Cs1B—As1i66.1 (5)
Cs1Bi—Cs1A—O3iv130.09 (3)O4vii—Cs1B—As1i66.4 (5)
Cs1Bii—Cs1A—O3iv64.82 (15)As1iv—Cs1B—As1i126.9 (11)
O2—Cs1A—O3iv63.40 (4)Cs1Bi—Cs1B—As1iii83.1 (5)
O2iii—Cs1A—O3iv113.36 (4)Cs1Bii—Cs1B—As1iii133.8 (4)
O2iv—Cs1A—O3iv45.15 (4)O2iv—Cs1B—As1iii97.9 (8)
O2ii—Cs1A—O3iv127.26 (4)O2i—Cs1B—As1iii50.8 (3)
O2v—Cs1A—O3iv77.63 (4)O3iii—Cs1B—As1iii24.39 (9)
O2i—Cs1A—O3iv111.42 (4)O3—Cs1B—As1iii132.1 (10)
O3iii—Cs1A—O3iv69.12 (4)O3iv—Cs1B—As1iii95.2 (4)
O3ii—Cs1A—O3iv129.64 (6)O3i—Cs1B—As1iii79.1 (3)
Cs1Bi—Cs1A—O3v64.82 (4)O2—Cs1B—As1iii152.4 (10)
Cs1Bii—Cs1A—O3v77.37 (17)O2iii—Cs1B—As1iii23.78 (13)
O2—Cs1A—O3v111.41 (4)O3ii—Cs1B—As1iii131.7 (5)
O2iii—Cs1A—O3v77.64 (4)O3v—Cs1B—As1iii77.69 (14)
O2iv—Cs1A—O3v113.36 (4)O2ii—Cs1B—As1iii96.6 (4)
O2ii—Cs1A—O3v63.40 (4)O2v—Cs1B—As1iii119.1 (6)
O2v—Cs1A—O3v45.15 (4)O4vi—Cs1B—As1iii94.1 (8)
O2i—Cs1A—O3v127.26 (4)O4vii—Cs1B—As1iii48.3 (3)
O3iii—Cs1A—O3v69.12 (4)As1iv—Cs1B—As1iii103.2 (6)
O3ii—Cs1A—O3v99.81 (6)As1i—Cs1B—As1iii58.3 (3)
O3iv—Cs1A—O3v69.12 (4)Cs1Bi—Cs1B—As1133.8 (6)
Cs1Bi—Cs1A—O3i64.82 (3)Cs1Bii—Cs1B—As183.1 (7)
Cs1Bii—Cs1A—O3i130.09 (5)O2iv—Cs1B—As150.8 (3)
O2—Cs1A—O3i113.36 (4)O2i—Cs1B—As197.9 (8)
O2iii—Cs1A—O3i63.40 (4)O3iii—Cs1B—As1132.1 (10)
O2iv—Cs1A—O3i111.42 (4)O3—Cs1B—As124.39 (9)
O2ii—Cs1A—O3i77.64 (4)O3iv—Cs1B—As179.2 (3)
O2v—Cs1A—O3i127.26 (4)O3i—Cs1B—As195.2 (4)
O2i—Cs1A—O3i45.15 (4)O2—Cs1B—As123.78 (13)
O3iii—Cs1A—O3i99.81 (6)O2iii—Cs1B—As1152.4 (10)
O3ii—Cs1A—O3i69.12 (5)O3ii—Cs1B—As177.69 (14)
O3iv—Cs1A—O3i154.75 (5)O3v—Cs1B—As1131.7 (5)
O3v—Cs1A—O3i129.64 (6)O2ii—Cs1B—As1119.1 (6)
Cs1Bi—Cs1A—O3130.09 (3)O2v—Cs1B—As196.6 (4)
Cs1Bii—Cs1A—O377.37 (17)O4vi—Cs1B—As148.3 (3)
O2—Cs1A—O345.15 (4)O4vii—Cs1B—As194.1 (8)
O2iii—Cs1A—O3127.26 (4)As1iv—Cs1B—As158.3 (3)
O2iv—Cs1A—O363.40 (4)As1i—Cs1B—As1103.2 (6)
O2ii—Cs1A—O3113.36 (4)As1iii—Cs1B—As1141.4 (11)
O2v—Cs1A—O3111.42 (4)O2viii—Ga1—O2ii91.15 (6)
O2i—Cs1A—O377.63 (4)O2viii—Ga1—O2ix91.15 (6)
O3iii—Cs1A—O3129.64 (6)O2ii—Ga1—O2ix91.15 (6)
O3ii—Cs1A—O369.12 (5)O2viii—Ga1—O4x90.84 (6)
O3iv—Cs1A—O399.81 (6)O2ii—Ga1—O4x178.00 (6)
O3v—Cs1A—O3154.75 (6)O2ix—Ga1—O4x88.66 (6)
O3i—Cs1A—O369.12 (5)O2viii—Ga1—O4i88.66 (6)
Cs1Bi—Cs1A—As1iii60.306 (12)O2ii—Ga1—O4i90.84 (6)
Cs1Bii—Cs1A—As1iii151.64 (4)O2ix—Ga1—O4i178.00 (6)
O2—Cs1A—As1iii146.15 (2)O4x—Ga1—O4i89.35 (6)
O2iii—Cs1A—As1iii22.98 (2)O2viii—Ga1—O4xi178.00 (6)
O2iv—Cs1A—As1iii93.23 (2)O2ii—Ga1—O4xi88.66 (6)
O2ii—Cs1A—As1iii98.62 (2)O2ix—Ga1—O4xi90.84 (6)
O2v—Cs1A—As1iii122.59 (2)O4x—Ga1—O4xi89.35 (6)
O2i—Cs1A—As1iii49.10 (2)O4i—Ga1—O4xi89.35 (7)
O3iii—Cs1A—As1iii23.83 (3)O2viii—Ga1—Cs1Bx34.15 (10)
O3ii—Cs1A—As1iii134.28 (3)O2ii—Ga1—Cs1Bx99.2 (3)
O3iv—Cs1A—As1iii92.90 (3)O2ix—Ga1—Cs1Bx123.8 (2)
O3v—Cs1A—As1iii78.30 (3)O4x—Ga1—Cs1Bx82.5 (2)
O3i—Cs1A—As1iii77.37 (3)O4i—Ga1—Cs1Bx55.68 (16)
O3—Cs1A—As1iii125.98 (3)O4xi—Ga1—Cs1Bx143.97 (12)
Cs1Bi—Cs1A—As1v67.383 (11)O2viii—Ga1—Cs1Bi123.79 (17)
Cs1Bii—Cs1A—As1v60.3 (2)O2ii—Ga1—Cs1Bi34.15 (9)
O2—Cs1A—As1v98.62 (2)O2ix—Ga1—Cs1Bi99.2 (2)
O2iii—Cs1A—As1v93.23 (2)O4x—Ga1—Cs1Bi143.97 (10)
O2iv—Cs1A—As1v122.59 (2)O4i—Ga1—Cs1Bi82.5 (2)
O2ii—Cs1A—As1v49.10 (2)O4xi—Ga1—Cs1Bi55.68 (16)
O2v—Cs1A—As1v22.98 (2)Cs1Bx—Ga1—Cs1Bi119.57 (2)
O2i—Cs1A—As1v146.15 (2)O2viii—Ga1—Cs1Bxi99.2 (3)
O3iii—Cs1A—As1v92.90 (3)O2ii—Ga1—Cs1Bxi123.79 (19)
O3ii—Cs1A—As1v77.37 (3)O2ix—Ga1—Cs1Bxi34.15 (12)
O3iv—Cs1A—As1v78.29 (3)O4x—Ga1—Cs1Bxi55.68 (19)
O3v—Cs1A—As1v23.82 (3)O4i—Ga1—Cs1Bxi143.97 (13)
O3i—Cs1A—As1v125.98 (3)O4xi—Ga1—Cs1Bxi82.5 (3)
O3—Cs1A—As1v134.28 (3)Cs1Bx—Ga1—Cs1Bxi119.575 (14)
As1iii—Cs1A—As1v99.647 (7)Cs1Bi—Ga1—Cs1Bxi119.575 (5)
Cs1Bi—Cs1A—As1iv151.635 (12)O2viii—Ga1—Cs1Ax33.70 (4)
Cs1Bii—Cs1A—As1iv67.4 (2)O2ii—Ga1—Cs1Ax100.57 (4)
O2—Cs1A—As1iv49.10 (2)O2ix—Ga1—Cs1Ax122.84 (4)
O2iii—Cs1A—As1iv122.59 (2)O4x—Ga1—Cs1Ax81.19 (4)
O2iv—Cs1A—As1iv22.98 (2)O4i—Ga1—Cs1Ax56.58 (4)
O2ii—Cs1A—As1iv146.15 (2)O4xi—Ga1—Cs1Ax144.45 (5)
O2v—Cs1A—As1iv93.23 (2)Cs1Bx—Ga1—Cs1Ax1.6 (3)
O2i—Cs1A—As1iv98.62 (2)Cs1Bi—Ga1—Cs1Ax121.1 (3)
O3iii—Cs1A—As1iv78.30 (3)Cs1Bxi—Ga1—Cs1Ax118.1 (3)
O3ii—Cs1A—As1iv125.98 (3)O2viii—Ga1—Cs1A122.84 (4)
O3iv—Cs1A—As1iv23.83 (3)O2ii—Ga1—Cs1A33.70 (4)
O3v—Cs1A—As1iv92.90 (3)O2ix—Ga1—Cs1A100.57 (4)
O3i—Cs1A—As1iv134.28 (3)O4x—Ga1—Cs1A144.45 (5)
O3—Cs1A—As1iv77.37 (3)O4i—Ga1—Cs1A81.19 (4)
As1iii—Cs1A—As1iv99.647 (7)O4xi—Ga1—Cs1A56.58 (4)
As1v—Cs1A—As1iv99.647 (8)Cs1Bx—Ga1—Cs1A118.1 (3)
Cs1Bi—Cs1A—As1ii60.306 (11)Cs1Bi—Ga1—Cs1A1.6 (3)
Cs1Bii—Cs1A—As1ii67.4 (2)Cs1Bxi—Ga1—Cs1A121.1 (3)
O2—Cs1A—As1ii93.23 (2)Cs1Ax—Ga1—Cs1A119.612 (1)
O2iii—Cs1A—As1ii98.62 (2)O2viii—Ga1—Cs1Aix100.57 (4)
O2iv—Cs1A—As1ii146.15 (2)O2ii—Ga1—Cs1Aix122.84 (4)
O2ii—Cs1A—As1ii22.98 (2)O2ix—Ga1—Cs1Aix33.70 (4)
O2v—Cs1A—As1ii49.10 (2)O4x—Ga1—Cs1Aix56.58 (4)
O2i—Cs1A—As1ii122.59 (2)O4i—Ga1—Cs1Aix144.45 (5)
O3iii—Cs1A—As1ii134.28 (3)O4xi—Ga1—Cs1Aix81.19 (4)
O3ii—Cs1A—As1ii23.83 (3)Cs1Bx—Ga1—Cs1Aix121.1 (3)
O3iv—Cs1A—As1ii125.98 (3)Cs1Bi—Ga1—Cs1Aix118.1 (3)
O3v—Cs1A—As1ii77.37 (3)Cs1Bxi—Ga1—Cs1Aix1.6 (3)
O3i—Cs1A—As1ii78.30 (3)Cs1Ax—Ga1—Cs1Aix119.612 (1)
O3—Cs1A—As1ii92.90 (3)Cs1A—Ga1—Cs1Aix119.612 (1)
As1iii—Cs1A—As1ii120.612 (7)O1xii—As2—O1xiii92.46 (6)
As1v—Cs1A—As1ii56.729 (13)O1xii—As2—O1xiv92.45 (6)
As1iv—Cs1A—As1ii134.766 (6)O1xiii—As2—O1xiv92.45 (6)
Cs1Bi—Cs1A—As1i67.383 (6)O1xii—As2—O1i87.55 (6)
Cs1Bii—Cs1A—As1i151.64 (4)O1xiii—As2—O1i180.00 (12)
O2—Cs1A—As1i122.59 (2)O1xiv—As2—O1i87.55 (6)
O2iii—Cs1A—As1i49.10 (2)O1xii—As2—O1xi180.0
O2iv—Cs1A—As1i98.62 (2)O1xiii—As2—O1xi87.55 (6)
O2ii—Cs1A—As1i93.23 (2)O1xiv—As2—O1xi87.55 (6)
O2v—Cs1A—As1i146.15 (2)O1i—As2—O1xi92.45 (6)
O2i—Cs1A—As1i22.98 (2)O1xii—As2—O1x87.55 (6)
O3iii—Cs1A—As1i77.37 (3)O1xiii—As2—O1x87.55 (6)
O3ii—Cs1A—As1i92.90 (3)O1xiv—As2—O1x180.00 (8)
O3iv—Cs1A—As1i134.29 (3)O1i—As2—O1x92.45 (6)
O3v—Cs1A—As1i125.98 (3)O1xi—As2—O1x92.45 (6)
O3i—Cs1A—As1i23.82 (3)O2—As1—O4iii117.09 (7)
O3—Cs1A—As1i78.30 (3)O2—As1—O1xv115.06 (7)
As1iii—Cs1A—As1i56.729 (13)O4iii—As1—O1xv100.76 (7)
As1v—Cs1A—As1i134.766 (7)O2—As1—O3104.49 (8)
As1iv—Cs1A—As1i120.612 (7)O4iii—As1—O3110.80 (8)
As1ii—Cs1A—As1i99.647 (9)O1xv—As1—O3108.60 (8)
Cs1Bi—Cs1A—As1151.634 (13)O2—As1—Cs1Bii51.6 (5)
Cs1Bii—Cs1A—As160.3 (2)O4iii—As1—Cs1Bii113.4 (3)
O2—Cs1A—As122.98 (2)O1xv—As1—Cs1Bii145.8 (3)
O2iii—Cs1A—As1146.15 (2)O3—As1—Cs1Bii57.4 (4)
O2iv—Cs1A—As149.10 (2)O2—As1—Cs1B56.7 (4)
O2ii—Cs1A—As1122.58 (2)O4iii—As1—Cs1B108.4 (6)
O2v—Cs1A—As198.62 (2)O1xv—As1—Cs1B150.0 (5)
O2i—Cs1A—As193.23 (2)O3—As1—Cs1B54.65 (13)
O3iii—Cs1A—As1125.98 (3)Cs1Bii—As1—Cs1B6.2 (11)
O3ii—Cs1A—As178.29 (3)O2—As1—Cs1A54.52 (5)
O3iv—Cs1A—As177.37 (3)O4iii—As1—Cs1A111.50 (5)
O3v—Cs1A—As1134.29 (3)O1xv—As1—Cs1A147.27 (5)
O3i—Cs1A—As192.89 (3)O3—As1—Cs1A55.24 (6)
O3—Cs1A—As123.82 (3)Cs1Bii—As1—Cs1A3.1 (5)
As1iii—Cs1A—As1134.766 (6)Cs1B—As1—Cs1A3.3 (6)
As1v—Cs1A—As1120.613 (7)O2—As1—Cs1Bi55.25 (13)
As1iv—Cs1A—As156.731 (13)O4iii—As1—Cs1Bi112.60 (18)
As1ii—Cs1A—As199.647 (9)O1xv—As1—Cs1Bi146.0 (2)
As1i—Cs1A—As199.646 (9)O3—As1—Cs1Bi53.9 (2)
Cs1Bi—Cs1B—Cs1Bii60.00 (6)Cs1Bii—As1—Cs1Bi3.7 (6)
Cs1Bi—Cs1B—O2iv162.9 (4)Cs1B—As1—Cs1Bi4.2 (7)
Cs1Bii—Cs1B—O2iv109.7 (7)Cs1A—As1—Cs1Bi1.6 (3)
Cs1Bi—Cs1B—O2i109.7 (5)O2—As1—Cs1Bxvi93.88 (14)
Cs1Bii—Cs1B—O2i162.9 (3)O4iii—As1—Cs1Bxvi42.74 (6)
O2iv—Cs1B—O2i83.4 (10)O1xv—As1—Cs1Bxvi79.72 (19)
Cs1Bi—Cs1B—O3iii93.3 (6)O3—As1—Cs1Bxvi153.38 (6)
Cs1Bii—Cs1B—O3iii124.8 (5)Cs1Bii—As1—Cs1Bxvi127.8 (3)
O2iv—Cs1B—O3iii81.8 (7)Cs1B—As1—Cs1Bxvi127.1 (4)
O2i—Cs1B—O3iii66.5 (5)Cs1A—As1—Cs1Bxvi128.4 (2)
Cs1Bi—Cs1B—O3124.8 (6)Cs1Bi—As1—Cs1Bxvi129.96 (7)
Cs1Bii—Cs1B—O393.3 (7)O2—As1—Cs1Axvii94.63 (5)
O2iv—Cs1B—O366.5 (5)O4iii—As1—Cs1Axvii42.93 (5)
O2i—Cs1B—O381.8 (7)O1xv—As1—Cs1Axvii78.68 (5)
O3iii—Cs1B—O3137.4 (14)O3—As1—Cs1Axvii153.41 (6)
Cs1Bi—Cs1B—O3iv116.2 (7)Cs1Bii—As1—Cs1Axvii128.92 (12)
Cs1Bii—Cs1B—O3iv79.3 (8)Cs1B—As1—Cs1Axvii128.2 (2)
O2iv—Cs1B—O3iv46.8 (3)Cs1A—As1—Cs1Axvii129.479 (13)
O2i—Cs1B—O3iv117.7 (11)Cs1Bi—As1—Cs1Axvii131.1 (3)
O3iii—Cs1B—O3iv70.8 (3)Cs1Bxvi—As1—Cs1Axvii1.1 (2)
O3—Cs1B—O3iv102.8 (5)O2—As1—Cs1Bxviii93.5 (2)
Cs1Bi—Cs1B—O3i79.3 (6)O4iii—As1—Cs1Bxviii45.4 (4)
Cs1Bii—Cs1B—O3i116.2 (5)O1xv—As1—Cs1Bxviii77.2 (3)
O2iv—Cs1B—O3i117.7 (11)O3—As1—Cs1Bxviii155.7 (4)
O2i—Cs1B—O3i46.8 (3)Cs1Bii—As1—Cs1Bxviii129.53 (5)
O3iii—Cs1B—O3i102.8 (5)Cs1B—As1—Cs1Bxviii129.12 (6)
O3—Cs1B—O3i70.8 (3)Cs1A—As1—Cs1Bxviii130.25 (12)
O3iv—Cs1B—O3i163.0 (14)Cs1Bi—As1—Cs1Bxviii131.8 (4)
Cs1Bi—Cs1B—O2121.6 (7)Cs1Bxvi—As1—Cs1Bxviii3.0 (5)
Cs1Bii—Cs1B—O263.4 (9)Cs1Axvii—As1—Cs1Bxviii2.5 (4)
O2iv—Cs1B—O254.7 (3)O2—As1—Cs1Bxvii96.5 (3)
O2i—Cs1B—O2120.8 (10)O4iii—As1—Cs1Bxvii40.7 (4)
O3iii—Cs1B—O2131.5 (6)O1xv—As1—Cs1Bxvii79.23 (14)
O3—Cs1B—O245.98 (12)O3—As1—Cs1Bxvii151.1 (4)
O3iv—Cs1B—O264.09 (9)Cs1Bii—As1—Cs1Bxvii129.27 (4)
O3i—Cs1B—O2115.1 (2)Cs1B—As1—Cs1Bxvii128.2 (3)
Cs1Bi—Cs1B—O2iii63.4 (7)Cs1A—As1—Cs1Bxvii129.66 (3)
Cs1Bii—Cs1B—O2iii121.6 (5)Cs1Bi—As1—Cs1Bxvii131.2 (3)
O2iv—Cs1B—O2iii120.8 (10)Cs1Bxvi—As1—Cs1Bxvii2.7 (4)
O2i—Cs1B—O2iii54.7 (3)Cs1Axvii—As1—Cs1Bxvii2.3 (4)
O3iii—Cs1B—O2iii45.98 (12)Cs1Bxviii—As1—Cs1Bxvii4.7 (8)
O3—Cs1B—O2iii131.5 (6)As1xix—O1—As2xx131.05 (8)
O3iv—Cs1B—O2iii115.1 (2)As1xix—O1—Cs1Bvii80.6 (3)
O3i—Cs1B—O2iii64.09 (9)As2xx—O1—Cs1Bvii130.0 (2)
O2—Cs1B—O2iii174.9 (14)As1—O2—Ga1xvii124.47 (8)
Cs1Bi—Cs1B—O3ii57.6 (4)As1—O2—Cs1Bii105.0 (5)
Cs1Bii—Cs1B—O3ii49.5 (3)Ga1xvii—O2—Cs1Bii126.2 (4)
O2iv—Cs1B—O3ii128.02 (8)As1—O2—Cs1B99.5 (5)
O2i—Cs1B—O3ii113.88 (5)Ga1xvii—O2—Cs1B129.4 (2)
O3iii—Cs1B—O3ii150.1 (9)Cs1Bii—O2—Cs1B6.9 (12)
O3—Cs1B—O3ii68.2 (2)As1—O2—Cs1A102.50 (6)
O3iv—Cs1B—O3ii125.6 (7)Ga1xvii—O2—Cs1A128.04 (6)
O3i—Cs1B—O3ii67.7 (3)Cs1Bii—O2—Cs1A2.8 (5)
O2—Cs1B—O3ii75.7 (4)Cs1B—O2—Cs1A4.2 (7)
O2iii—Cs1B—O3ii108.0 (6)As1—O2—Cs1Bi103.06 (11)
Cs1Bi—Cs1B—O3v49.5 (4)Ga1xvii—O2—Cs1Bi128.20 (6)
Cs1Bii—Cs1B—O3v57.6 (3)Cs1Bii—O2—Cs1Bi2.0 (4)
O2iv—Cs1B—O3v113.88 (5)Cs1B—O2—Cs1Bi5.8 (10)
O2i—Cs1B—O3v128.02 (8)Cs1A—O2—Cs1Bi1.8 (3)
O3iii—Cs1B—O3v68.2 (2)As1—O3—Cs1B100.96 (8)
O3—Cs1B—O3v150.1 (8)As1—O3—Cs1Bii97.8 (5)
O3iv—Cs1B—O3v67.7 (3)Cs1B—O3—Cs1Bii7.3 (13)
O3i—Cs1B—O3v125.6 (7)As1—O3—Cs1A100.94 (7)
O2—Cs1B—O3v107.9 (6)Cs1B—O3—Cs1A3.9 (7)
O2iii—Cs1B—O3v75.7 (4)Cs1Bii—O3—Cs1A4.1 (7)
O3ii—Cs1B—O3v93.7 (10)As1—O3—Cs1Bi103.8 (5)
Cs1Bi—Cs1B—O2ii15.07 (4)Cs1B—O3—Cs1Bi5.7 (10)
Cs1Bii—Cs1B—O2ii52.57 (10)Cs1Bii—O3—Cs1Bi6.2 (10)
O2iv—Cs1B—O2ii162.2 (7)Cs1A—O3—Cs1Bi3.1 (5)
O2i—Cs1B—O2ii113.8 (2)As1iii—O4—Ga1xx126.05 (8)
O3iii—Cs1B—O2ii108.3 (6)As1iii—O4—Cs1Bxxi120.63 (19)
O3—Cs1B—O2ii110.2 (6)Ga1xx—O4—Cs1Bxxi100.03 (7)
O3iv—Cs1B—O2ii121.6 (10)As1iii—O4—Cs1Axix121.31 (6)
O3i—Cs1B—O2ii75.2 (4)Ga1xx—O4—Cs1Axix100.29 (5)
O2—Cs1B—O2ii109.7 (9)Cs1Bxxi—O4—Cs1Axix1.5 (3)
O2iii—Cs1B—O2ii75.1 (5)As1iii—O4—Cs1Bxix124.5 (6)
O3ii—Cs1B—O2ii42.6 (4)Ga1xx—O4—Cs1Bxix98.2 (4)
O3v—Cs1B—O2ii59.6 (6)Cs1Bxxi—O4—Cs1Bxix4.5 (8)
Cs1Bi—Cs1B—O2v52.6 (3)Cs1Axix—O4—Cs1Bxix3.3 (5)
Cs1Bii—Cs1B—O2v15.07 (11)As1iii—O4—Cs1Bxxii118.8 (4)
O2iv—Cs1B—O2v113.8 (2)Ga1xx—O4—Cs1Bxxii102.6 (4)
O2i—Cs1B—O2v162.2 (7)Cs1Bxxi—O4—Cs1Bxxii2.6 (4)
O3iii—Cs1B—O2v110.2 (6)Cs1Axix—O4—Cs1Bxxii2.6 (4)
O3—Cs1B—O2v108.3 (6)Cs1Bxix—O4—Cs1Bxxii5.7 (10)
O3iv—Cs1B—O2v75.2 (4)As1iii—O4—Cs1B52.6 (4)
O3i—Cs1B—O2v121.6 (10)Ga1xx—O4—Cs1B73.8 (4)
O2—Cs1B—O2v75.1 (5)Cs1Bxxi—O4—Cs1B134.69 (14)
O2iii—Cs1B—O2v109.7 (9)Cs1Axix—O4—Cs1B136.21 (14)
O3ii—Cs1B—O2v59.6 (6)Cs1Bxix—O4—Cs1B138.2 (4)
O3v—Cs1B—O2v42.6 (4)Cs1Bxxii—O4—Cs1B135.56 (6)
O2ii—Cs1B—O2v49.4 (6)As1iii—O4—Cs1Bi48.6 (3)
Cs1Bi—Cs1B—O4vi153.66 (8)Ga1xx—O4—Cs1Bi78.2 (4)
Cs1Bii—Cs1B—O4vi131.4 (4)Cs1Bxxi—O4—Cs1Bi132.1 (6)
O2iv—Cs1B—O4vi43.4 (5)Cs1Axix—O4—Cs1Bi133.6 (4)
O2i—Cs1B—O4vi52.0 (6)Cs1Bxix—O4—Cs1Bi135.86 (5)
O3iii—Cs1B—O4vi94.6 (9)Cs1Bxxii—O4—Cs1Bi132.7 (5)
O3—Cs1B—O4vi42.8 (4)Cs1B—O4—Cs1Bi5.1 (9)
O3iv—Cs1B—O4vi90.2 (7)As1iii—O4—Cs1A50.49 (4)
O3i—Cs1B—O4vi74.4 (6)Ga1xx—O4—Cs1A76.01 (4)
O2—Cs1B—O4vi69.3 (5)Cs1Bxxi—O4—Cs1A133.9 (3)
O2iii—Cs1B—O4vi105.9 (9)Cs1Axix—O4—Cs1A135.46 (4)
O3ii—Cs1B—O4vi108.8 (2)Cs1Bxix—O4—Cs1A137.6 (3)
O3v—Cs1B—O4vi155.2 (6)Cs1Bxxii—O4—Cs1A134.68 (14)
O2ii—Cs1B—O4vi145.19 (3)Cs1B—O4—Cs1A2.3 (4)
O2v—Cs1B—O4vi144.37 (3)Cs1Bi—O4—Cs1A2.8 (5)
Cs1Bi—Cs1B—O4vii131.4 (2)
Symmetry codes: (i) y, xy, z; (ii) x+y, x, z; (iii) x, x+y, z+3/2; (iv) y, x, z+3/2; (v) xy, y, z+3/2; (vi) y, x1, z+3/2; (vii) y, xy1, z; (viii) y, xy+1, z; (ix) x+1, y+1, z; (x) x, y+1, z; (xi) x+y+1, x+1, z; (xii) xy1/3, x+1/3, z+4/3; (xiii) y+2/3, x+y+4/3, z+4/3; (xiv) x+2/3, y+1/3, z+4/3; (xv) x1, y, z; (xvi) y1, xy1, z; (xvii) x1, y1, z; (xviii) x+y1, x1, z; (xix) x+1, y, z; (xx) x, y1, z; (xxi) x+y+1, x, z; (xxii) y+1, xy, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H···O4vi0.86 (2)1.93 (2)2.727 (2)154 (3)
Symmetry code: (vi) y, x1, z+3/2.
Thallium digallium arsenic(V) hexakis[hydrogen arsenate(V)] (TlGa2AsHAsO46) top
Crystal data top
TlGa2As(HAsO4)6Dx = 3.965 Mg m3
Mr = 1258.30Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3c:HCell parameters from 2570 reflections
a = 8.484 (1) Åθ = 2.4–32.6°
c = 50.724 (11) ŵ = 21.18 mm1
V = 3161.9 (10) Å3T = 293 K
Z = 6Large pseudo-octahedra, colourless
F(000) = 34320.08 × 0.07 × 0.05 mm
Data collection top
Nonius KappaCCD single-crystal four-circle
diffractometer
1129 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
φ and ω scansθmax = 32.6°, θmin = 2.4°
Absorption correction: multi-scan
HKL SCALEPACK (Otwinowski et al., 2003)
h = 1212
Tmin = 0.200, Tmax = 0.347k = 1010
4682 measured reflectionsl = 7676
1285 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018All H-atom parameters refined
wR(F2) = 0.041 w = 1/[σ2(Fo2) + (0.0174P)2 + 10.0458P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.005
1285 reflectionsΔρmax = 0.74 e Å3
71 parametersΔρmin = 0.73 e Å3
2 restraintsExtinction correction: SHELXL-2016/6 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.000237 (18)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Tl1A0.0000000.0000000.7500000.074 (4)0.329 (3)
Tl1B0.0000000.0480 (7)0.7500000.0496 (15)0.1294 (11)
Tl1C0.0000000.0903 (10)0.7500000.0387 (10)0.0941 (11)
Ga10.3333330.6666670.75604 (2)0.00849 (8)
As20.3333330.6666670.6666670.00754 (9)
As10.44448 (3)0.40820 (3)0.71139 (2)0.00861 (6)
O10.40173 (19)0.46663 (18)0.68629 (3)0.0112 (3)
O20.45247 (19)0.27070 (18)0.73408 (3)0.0116 (3)
O30.2297 (2)0.2872 (2)0.69852 (4)0.0209 (3)
O40.48864 (18)0.12491 (19)0.77863 (3)0.0117 (3)
H0.176 (5)0.351 (5)0.7005 (8)0.069 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tl1A0.056 (4)0.056 (4)0.109 (4)0.028 (2)0.0000.000
Tl1B0.061 (2)0.029 (3)0.069 (2)0.0305 (10)0.0008 (16)0.0004 (8)
Tl1C0.0285 (14)0.030 (3)0.0566 (17)0.0142 (7)0.0073 (11)0.0037 (5)
Ga10.00891 (11)0.00891 (11)0.00765 (16)0.00446 (5)0.0000.000
As20.00849 (13)0.00849 (13)0.00563 (19)0.00425 (6)0.0000.000
As10.00960 (10)0.00911 (10)0.00843 (9)0.00564 (7)0.00016 (6)0.00061 (6)
O10.0147 (6)0.0116 (6)0.0096 (6)0.0082 (5)0.0029 (5)0.0001 (5)
O20.0112 (6)0.0109 (6)0.0125 (6)0.0055 (5)0.0005 (5)0.0023 (5)
O30.0137 (7)0.0206 (8)0.0291 (9)0.0092 (6)0.0089 (6)0.0085 (7)
O40.0133 (6)0.0105 (6)0.0136 (6)0.0077 (5)0.0024 (5)0.0032 (5)
Geometric parameters (Å, º) top
Tl1A—Tl1Bi0.408 (7)Tl1B—O4vii3.810 (6)
Tl1A—Tl1Bii0.408 (6)Tl1B—As1iv3.936 (3)
Tl1A—Tl1C0.766 (9)Tl1B—As1i3.936 (3)
Tl1A—Tl1Ci0.766 (9)Tl1C—Tl1Ci1.327 (15)
Tl1A—Tl1Cii0.766 (9)Tl1C—Tl1Cii1.327 (15)
Tl1A—O33.4357 (19)Tl1C—O2iv2.883 (6)
Tl1A—O3iii3.4358 (19)Tl1C—O2i2.883 (6)
Tl1A—O3i3.4358 (19)Tl1C—O33.186 (3)
Tl1A—O3iv3.4358 (19)Tl1C—O3v3.186 (3)
Tl1A—O3v3.4358 (19)Tl1C—O3iv3.3574 (19)
Tl1A—O3ii3.4358 (19)Tl1C—O3i3.3574 (19)
Tl1A—O2v3.4419 (15)Tl1C—O2v3.4432 (18)
Tl1A—O2iv3.4419 (15)Tl1C—O23.4432 (18)
Tl1A—O2ii3.4419 (15)Tl1C—O4vi3.494 (8)
Tl1A—O2iii3.4419 (14)Tl1C—O4vii3.494 (8)
Tl1A—O2i3.4419 (14)Tl1C—As1iv3.802 (3)
Tl1A—O23.4419 (15)Tl1C—As1i3.802 (3)
Tl1A—As1v4.1219 (5)Tl1C—As1v3.8935 (19)
Tl1A—As1iii4.1219 (5)Tl1C—As13.8936 (19)
Tl1A—As1iv4.1219 (5)Tl1C—O3iii3.969 (7)
Tl1B—Tl1Bi0.706 (11)Ga1—O4viii1.9609 (14)
Tl1B—Tl1Bii0.706 (11)Ga1—O4ix1.9609 (15)
Tl1B—Tl1Ci1.032 (12)Ga1—O4i1.9609 (14)
Tl1B—Tl1Cii1.032 (11)Ga1—O2x1.9648 (14)
Tl1B—O2iv3.134 (5)Ga1—O2ii1.9648 (15)
Tl1B—O2i3.134 (5)Ga1—O2xi1.9648 (14)
Tl1B—O33.283 (3)As2—O1xii1.8062 (14)
Tl1B—O3v3.283 (3)As2—O1xiii1.8062 (14)
Tl1B—O3i3.373 (2)As2—O1ix1.8062 (14)
Tl1B—O3iv3.373 (2)As2—O1xiv1.8062 (14)
Tl1B—O2v3.4213 (15)As2—O1i1.8063 (14)
Tl1B—O23.4213 (15)As2—O1viii1.8063 (14)
Tl1B—O3iii3.709 (5)As1—O21.6641 (14)
Tl1B—O3ii3.709 (5)As1—O4v1.6672 (14)
Tl1B—O2ii3.810 (6)As1—O1xv1.7094 (14)
Tl1B—O2iii3.810 (6)As1—O31.7115 (16)
Tl1B—O4vi3.810 (6)
Tl1Bi—Tl1A—Tl1Bii120.00 (2)O2i—Tl1C—O3i49.88 (5)
Tl1Bi—Tl1A—Tl1C120.000 (17)O3—Tl1C—O3i72.40 (6)
Tl1Bii—Tl1A—Tl1C120.00 (7)O3v—Tl1C—O3i107.87 (7)
Tl1Bi—Tl1A—Tl1Ci0 (2)O3iv—Tl1C—O3i178.8 (3)
Tl1Bii—Tl1A—Tl1Ci120.00 (2)Tl1A—Tl1C—O2v83.51 (14)
Tl1C—Tl1A—Tl1Ci120.000 (19)Tl1Bi—Tl1C—O2v64.1 (2)
Tl1Bi—Tl1A—Tl1Cii120.000 (17)Tl1Bii—Tl1C—O2v102.9 (3)
Tl1Bii—Tl1A—Tl1Cii0.000 (19)Tl1Ci—Tl1C—O2v54.51 (14)
Tl1C—Tl1A—Tl1Cii120.00 (5)Tl1Cii—Tl1C—O2v112.64 (13)
Tl1Ci—Tl1A—Tl1Cii120.000 (17)O2iv—Tl1C—O2v132.5 (2)
Tl1Bi—Tl1A—O3129.66 (3)O2i—Tl1C—O2v58.33 (6)
Tl1Bii—Tl1A—O377.72 (3)O3—Tl1C—O2v136.75 (5)
Tl1C—Tl1A—O364.82 (3)O3v—Tl1C—O2v47.23 (4)
Tl1Ci—Tl1A—O3129.66 (3)O3iv—Tl1C—O2v115.03 (5)
Tl1Cii—Tl1A—O377.72 (3)O3i—Tl1C—O2v64.82 (4)
Tl1Bi—Tl1A—O3iii64.82 (3)Tl1A—Tl1C—O283.51 (14)
Tl1Bii—Tl1A—O3iii77.72 (3)Tl1Bi—Tl1C—O2102.9 (3)
Tl1C—Tl1A—O3iii129.65 (3)Tl1Bii—Tl1C—O264.1 (2)
Tl1Ci—Tl1A—O3iii64.82 (3)Tl1Ci—Tl1C—O2112.64 (14)
Tl1Cii—Tl1A—O3iii77.72 (3)Tl1Cii—Tl1C—O254.51 (15)
O3—Tl1A—O3iii155.44 (5)O2iv—Tl1C—O258.33 (6)
Tl1Bi—Tl1A—O3i64.82 (3)O2i—Tl1C—O2132.5 (2)
Tl1Bii—Tl1A—O3i129.65 (3)O3—Tl1C—O247.23 (4)
Tl1C—Tl1A—O3i77.72 (3)O3v—Tl1C—O2136.75 (5)
Tl1Ci—Tl1A—O3i64.82 (3)O3iv—Tl1C—O264.82 (4)
Tl1Cii—Tl1A—O3i129.65 (3)O3i—Tl1C—O2115.03 (5)
O3—Tl1A—O3i68.50 (4)O2v—Tl1C—O2167.0 (3)
O3iii—Tl1A—O3i129.64 (6)Tl1A—Tl1C—O4vi150.55 (7)
Tl1Bi—Tl1A—O3iv129.65 (3)Tl1Bi—Tl1C—O4vi136.76 (15)
Tl1Bii—Tl1A—O3iv64.82 (3)Tl1Bii—Tl1C—O4vi155.25 (6)
Tl1C—Tl1A—O3iv77.72 (3)Tl1Ci—Tl1C—O4vi128.52 (6)
Tl1Ci—Tl1A—O3iv129.65 (3)Tl1Cii—Tl1C—O4vi152.31 (4)
Tl1Cii—Tl1A—O3iv64.82 (3)O2iv—Tl1C—O4vi58.91 (14)
O3—Tl1A—O3iv100.69 (6)O2i—Tl1C—O4vi49.76 (12)
O3iii—Tl1A—O3iv68.50 (4)O3—Tl1C—O4vi106.8 (2)
O3i—Tl1A—O3iv155.44 (5)O3v—Tl1C—O4vi47.94 (9)
Tl1Bi—Tl1A—O3v77.72 (3)O3iv—Tl1C—O4vi81.43 (12)
Tl1Bii—Tl1A—O3v129.65 (3)O3i—Tl1C—O4vi99.64 (15)
Tl1C—Tl1A—O3v64.82 (3)O2v—Tl1C—O4vi75.36 (9)
Tl1Ci—Tl1A—O3v77.72 (3)O2—Tl1C—O4vi116.71 (18)
Tl1Cii—Tl1A—O3v129.65 (3)Tl1A—Tl1C—O4vii150.55 (7)
O3—Tl1A—O3v129.64 (6)Tl1Bi—Tl1C—O4vii155.24 (6)
O3iii—Tl1A—O3v68.50 (4)Tl1Bii—Tl1C—O4vii136.76 (16)
O3i—Tl1A—O3v100.69 (5)Tl1Ci—Tl1C—O4vii152.31 (4)
O3iv—Tl1A—O3v68.50 (4)Tl1Cii—Tl1C—O4vii128.52 (7)
Tl1Bi—Tl1A—O3ii77.72 (3)O2iv—Tl1C—O4vii49.76 (12)
Tl1Bii—Tl1A—O3ii64.82 (3)O2i—Tl1C—O4vii58.91 (15)
Tl1C—Tl1A—O3ii129.65 (3)O3—Tl1C—O4vii47.94 (9)
Tl1Ci—Tl1A—O3ii77.72 (3)O3v—Tl1C—O4vii106.8 (2)
Tl1Cii—Tl1A—O3ii64.82 (3)O3iv—Tl1C—O4vii99.64 (15)
O3—Tl1A—O3ii68.50 (4)O3i—Tl1C—O4vii81.43 (12)
O3iii—Tl1A—O3ii100.69 (5)O2v—Tl1C—O4vii116.71 (18)
O3i—Tl1A—O3ii68.50 (4)O2—Tl1C—O4vii75.36 (9)
O3iv—Tl1A—O3ii129.64 (6)O4vi—Tl1C—O4vii58.90 (15)
O3v—Tl1A—O3ii155.44 (6)Tl1A—Tl1C—As1iv109.57 (12)
Tl1Bi—Tl1A—O2v38.59 (2)Tl1Bi—Tl1C—As1iv125.8 (2)
Tl1Bii—Tl1A—O2v153.03 (3)Tl1Bii—Tl1C—As1iv92.58 (19)
Tl1C—Tl1A—O2v83.71 (3)Tl1Ci—Tl1C—As1iv133.20 (11)
Tl1Ci—Tl1A—O2v38.59 (2)Tl1Cii—Tl1C—As1iv84.00 (13)
Tl1Cii—Tl1A—O2v153.03 (3)O2iv—Tl1C—As1iv24.19 (3)
O3—Tl1A—O2v127.32 (4)O2i—Tl1C—As1iv117.7 (2)
O3iii—Tl1A—O2v76.88 (4)O3—Tl1C—As1iv86.06 (8)
O3i—Tl1A—O2v64.02 (4)O3v—Tl1C—As1iv85.56 (8)
O3iv—Tl1A—O2v113.04 (4)O3iv—Tl1C—As1iv26.75 (4)
O3v—Tl1A—O2v45.62 (4)O3i—Tl1C—As1iv154.2 (2)
O3ii—Tl1A—O2v111.53 (4)O2v—Tl1C—As1iv132.74 (7)
Tl1Bi—Tl1A—O2iv153.03 (2)O2—Tl1C—As1iv52.91 (3)
Tl1Bii—Tl1A—O2iv83.71 (4)O4vi—Tl1C—As1iv72.63 (12)
Tl1C—Tl1A—O2iv38.59 (3)O4vii—Tl1C—As1iv73.46 (12)
Tl1Ci—Tl1A—O2iv153.03 (2)Tl1A—Tl1C—As1i109.57 (12)
Tl1Cii—Tl1A—O2iv83.71 (3)Tl1Bi—Tl1C—As1i92.58 (18)
O3—Tl1A—O2iv64.02 (4)Tl1Bii—Tl1C—As1i125.8 (2)
O3iii—Tl1A—O2iv113.04 (4)Tl1Ci—Tl1C—As1i84.00 (12)
O3i—Tl1A—O2iv111.53 (4)Tl1Cii—Tl1C—As1i133.20 (11)
O3iv—Tl1A—O2iv45.62 (3)O2iv—Tl1C—As1i117.7 (2)
O3v—Tl1A—O2iv76.88 (4)O2i—Tl1C—As1i24.19 (3)
O3ii—Tl1A—O2iv127.32 (4)O3—Tl1C—As1i85.56 (8)
O2v—Tl1A—O2iv114.671 (18)O3v—Tl1C—As1i86.06 (8)
Tl1Bi—Tl1A—O2ii38.59 (2)O3iv—Tl1C—As1i154.2 (2)
Tl1Bii—Tl1A—O2ii83.71 (3)O3i—Tl1C—As1i26.75 (4)
Tl1C—Tl1A—O2ii153.03 (3)O2v—Tl1C—As1i52.91 (3)
Tl1Ci—Tl1A—O2ii38.59 (2)O2—Tl1C—As1i132.74 (7)
Tl1Cii—Tl1A—O2ii83.71 (3)O4vi—Tl1C—As1i73.46 (12)
O3—Tl1A—O2ii113.05 (4)O4vii—Tl1C—As1i72.63 (12)
O3iii—Tl1A—O2ii64.02 (4)As1iv—Tl1C—As1i140.9 (2)
O3i—Tl1A—O2ii76.88 (4)Tl1A—Tl1C—As1v102.03 (12)
O3iv—Tl1A—O2ii127.32 (4)Tl1Bi—Tl1C—As1v84.78 (18)
O3v—Tl1A—O2ii111.53 (4)Tl1Bii—Tl1C—As1v118.9 (2)
O3ii—Tl1A—O2ii45.62 (4)Tl1Ci—Tl1C—As1v76.18 (12)
O2v—Tl1A—O2ii77.17 (4)Tl1Cii—Tl1C—As1v126.86 (11)
O2iv—Tl1A—O2ii167.42 (5)O2iv—Tl1C—As1v107.38 (17)
Tl1Bi—Tl1A—O2iii83.71 (2)O2i—Tl1C—As1v54.77 (6)
Tl1Bii—Tl1A—O2iii38.59 (4)O3—Tl1C—As1v144.21 (19)
Tl1C—Tl1A—O2iii153.03 (3)O3v—Tl1C—As1v25.57 (3)
Tl1Ci—Tl1A—O2iii83.71 (2)O3iv—Tl1C—As1v97.93 (5)
Tl1Cii—Tl1A—O2iii38.59 (3)O3i—Tl1C—As1v82.32 (4)
O3—Tl1A—O2iii111.53 (4)O2v—Tl1C—As1v25.27 (3)
O3iii—Tl1A—O2iii45.62 (3)O2—Tl1C—As1v162.06 (9)
O3i—Tl1A—O2iii127.31 (4)O4vi—Tl1C—As1v52.35 (7)
O3iv—Tl1A—O2iii76.88 (4)O4vii—Tl1C—As1v104.36 (18)
O3v—Tl1A—O2iii113.04 (4)As1iv—Tl1C—As1v109.44 (10)
O3ii—Tl1A—O2iii64.02 (4)As1i—Tl1C—As1v61.81 (4)
O2v—Tl1A—O2iii114.671 (18)Tl1A—Tl1C—As1102.03 (12)
O2iv—Tl1A—O2iii114.671 (18)Tl1Bi—Tl1C—As1118.9 (2)
O2ii—Tl1A—O2iii53.93 (5)Tl1Bii—Tl1C—As184.78 (19)
Tl1Bi—Tl1A—O2i83.71 (2)Tl1Ci—Tl1C—As1126.86 (12)
Tl1Bii—Tl1A—O2i153.03 (4)Tl1Cii—Tl1C—As176.18 (13)
Tl1C—Tl1A—O2i38.59 (3)O2iv—Tl1C—As154.77 (6)
Tl1Ci—Tl1A—O2i83.71 (2)O2i—Tl1C—As1107.38 (17)
Tl1Cii—Tl1A—O2i153.03 (3)O3—Tl1C—As125.56 (3)
O3—Tl1A—O2i76.88 (4)O3v—Tl1C—As1144.21 (19)
O3iii—Tl1A—O2i127.31 (4)O3iv—Tl1C—As182.32 (4)
O3i—Tl1A—O2i45.62 (3)O3i—Tl1C—As197.93 (5)
O3iv—Tl1A—O2i111.52 (4)O2v—Tl1C—As1162.06 (9)
O3v—Tl1A—O2i64.02 (4)O2—Tl1C—As125.27 (3)
O3ii—Tl1A—O2i113.04 (4)O4vi—Tl1C—As1104.36 (18)
O2v—Tl1A—O2i53.93 (5)O4vii—Tl1C—As152.35 (7)
O2iv—Tl1A—O2i77.17 (4)As1iv—Tl1C—As161.81 (4)
O2ii—Tl1A—O2i114.671 (18)As1i—Tl1C—As1109.44 (10)
O2iii—Tl1A—O2i167.42 (5)As1v—Tl1C—As1155.9 (2)
Tl1Bi—Tl1A—O2153.03 (2)Tl1A—Tl1C—O3iii41.80 (9)
Tl1Bii—Tl1A—O238.59 (3)Tl1Bi—Tl1C—O3iii42.53 (9)
Tl1C—Tl1A—O283.71 (3)Tl1Bii—Tl1C—O3iii48.38 (13)
Tl1Ci—Tl1A—O2153.03 (2)Tl1Ci—Tl1C—O3iii45.67 (7)
Tl1Cii—Tl1A—O238.59 (3)Tl1Cii—Tl1C—O3iii53.67 (6)
O3—Tl1A—O245.61 (3)O2iv—Tl1C—O3iii112.74 (5)
O3iii—Tl1A—O2111.53 (4)O2i—Tl1C—O3iii127.49 (5)
O3i—Tl1A—O2113.04 (4)O3—Tl1C—O3iii139.3 (2)
O3iv—Tl1A—O264.02 (4)O3v—Tl1C—O3iii64.35 (8)
O3v—Tl1A—O2127.32 (4)O3iv—Tl1C—O3iii63.07 (9)
O3ii—Tl1A—O276.88 (4)O3i—Tl1C—O3iii115.92 (18)
O2v—Tl1A—O2167.42 (5)O2v—Tl1C—O3iii70.05 (10)
O2iv—Tl1A—O253.93 (5)O2—Tl1C—O3iii99.95 (14)
O2ii—Tl1A—O2114.671 (18)O4vi—Tl1C—O3iii110.35 (4)
O2iii—Tl1A—O277.17 (5)O4vii—Tl1C—O3iii161.91 (11)
O2i—Tl1A—O2114.671 (18)As1iv—Tl1C—O3iii89.69 (6)
Tl1Bi—Tl1A—As1v60.345 (3)As1i—Tl1C—O3iii120.32 (10)
Tl1Bii—Tl1A—As1v151.344 (7)As1v—Tl1C—O3iii74.64 (6)
Tl1C—Tl1A—As1v67.496 (15)As1—Tl1C—O3iii125.14 (13)
Tl1Ci—Tl1A—As1v60.345 (3)O4viii—Ga1—O4ix89.32 (6)
Tl1Cii—Tl1A—As1v151.344 (7)O4viii—Ga1—O4i89.32 (6)
O3—Tl1A—As1v125.98 (3)O4ix—Ga1—O4i89.32 (6)
O3iii—Tl1A—As1v77.63 (3)O4viii—Ga1—O2x177.75 (6)
O3i—Tl1A—As1v78.07 (3)O4ix—Ga1—O2x91.19 (6)
O3iv—Tl1A—As1v92.52 (3)O4i—Ga1—O2x88.50 (6)
O3v—Tl1A—As1v24.05 (3)O4viii—Ga1—O2ii88.50 (6)
O3ii—Tl1A—As1v134.64 (3)O4ix—Ga1—O2ii177.75 (6)
O2v—Tl1A—As1v23.26 (2)O4i—Ga1—O2ii91.19 (6)
O2iv—Tl1A—As1v92.70 (2)O2x—Ga1—O2ii91.01 (6)
O2ii—Tl1A—As1v98.35 (2)O4viii—Ga1—O2xi91.19 (6)
O2iii—Tl1A—As1v122.48 (2)O4ix—Ga1—O2xi88.50 (6)
O2i—Tl1A—As1v49.80 (3)O4i—Ga1—O2xi177.75 (6)
O2—Tl1A—As1v146.60 (2)O2x—Ga1—O2xi91.01 (6)
Tl1Bi—Tl1A—As1iii67.496 (3)O2ii—Ga1—O2xi91.01 (6)
Tl1Bii—Tl1A—As1iii60.35 (2)O4viii—Ga1—Tl1Cix142.93 (5)
Tl1C—Tl1A—As1iii151.344 (7)O4ix—Ga1—Tl1Cix85.12 (7)
Tl1Ci—Tl1A—As1iii67.496 (3)O4i—Ga1—Tl1Cix54.06 (6)
Tl1Cii—Tl1A—As1iii60.345 (15)O2x—Ga1—Tl1Cix35.00 (5)
O3—Tl1A—As1iii134.64 (3)O2ii—Ga1—Tl1Cix96.95 (7)
O3iii—Tl1A—As1iii24.05 (3)O2xi—Ga1—Tl1Cix125.17 (6)
O3i—Tl1A—As1iii125.98 (3)O4viii—Ga1—Tl1Cviii85.12 (8)
O3iv—Tl1A—As1iii77.63 (3)O4ix—Ga1—Tl1Cviii54.06 (6)
O3v—Tl1A—As1iii92.52 (3)O4i—Ga1—Tl1Cviii142.93 (6)
O3ii—Tl1A—As1iii78.07 (3)O2x—Ga1—Tl1Cviii96.95 (8)
O2v—Tl1A—As1iii92.70 (2)O2ii—Ga1—Tl1Cviii125.17 (6)
O2iv—Tl1A—As1iii122.48 (2)O2xi—Ga1—Tl1Cviii35.00 (5)
O2ii—Tl1A—As1iii49.80 (2)Tl1Cix—Ga1—Tl1Cviii119.488 (4)
O2iii—Tl1A—As1iii23.26 (2)O4viii—Ga1—Tl1Ci54.06 (6)
O2i—Tl1A—As1iii146.60 (2)O4ix—Ga1—Tl1Ci142.93 (5)
O2—Tl1A—As1iii98.35 (2)O4i—Ga1—Tl1Ci85.13 (7)
As1v—Tl1A—As1iii99.284 (8)O2x—Ga1—Tl1Ci125.17 (6)
Tl1Bi—Tl1A—As1iv151.344 (7)O2ii—Ga1—Tl1Ci35.00 (5)
Tl1Bii—Tl1A—As1iv67.50 (2)O2xi—Ga1—Tl1Ci96.95 (7)
Tl1C—Tl1A—As1iv60.345 (15)Tl1Cix—Ga1—Tl1Ci119.488 (6)
Tl1Ci—Tl1A—As1iv151.344 (7)Tl1Cviii—Ga1—Tl1Ci119.488 (1)
Tl1Cii—Tl1A—As1iv67.496 (15)O4viii—Ga1—Tl1Bix143.88 (5)
O3—Tl1A—As1iv78.07 (3)O4ix—Ga1—Tl1Bix82.88 (5)
O3iii—Tl1A—As1iv92.52 (3)O4i—Ga1—Tl1Bix55.53 (5)
O3i—Tl1A—As1iv134.64 (3)O2x—Ga1—Tl1Bix34.12 (4)
O3iv—Tl1A—As1iv24.05 (3)O2ii—Ga1—Tl1Bix99.21 (6)
O3v—Tl1A—As1iv77.63 (3)O2xi—Ga1—Tl1Bix123.61 (5)
O3ii—Tl1A—As1iv125.98 (3)Tl1Cix—Ga1—Tl1Bix2.61 (6)
O2v—Tl1A—As1iv122.48 (2)Tl1Cviii—Ga1—Tl1Bix116.94 (6)
O2iv—Tl1A—As1iv23.26 (2)Tl1Ci—Ga1—Tl1Bix122.10 (5)
O2ii—Tl1A—As1iv146.60 (2)O4viii—Ga1—Tl1Bi55.53 (5)
O2iii—Tl1A—As1iv92.70 (2)O4ix—Ga1—Tl1Bi143.88 (5)
O2i—Tl1A—As1iv98.35 (2)O4i—Ga1—Tl1Bi82.88 (5)
O2—Tl1A—As1iv49.80 (2)O2x—Ga1—Tl1Bi123.61 (5)
As1v—Tl1A—As1iv99.284 (8)O2ii—Ga1—Tl1Bi34.12 (4)
As1iii—Tl1A—As1iv99.284 (8)O2xi—Ga1—Tl1Bi99.21 (5)
Tl1Bi—Tl1B—Tl1Bii60.001 (6)Tl1Cix—Ga1—Tl1Bi116.94 (6)
Tl1Bi—Tl1B—Tl1Ci10.01 (19)Tl1Cviii—Ga1—Tl1Bi122.10 (6)
Tl1Bii—Tl1B—Tl1Ci70.01 (18)Tl1Ci—Ga1—Tl1Bi2.61 (6)
Tl1Bi—Tl1B—Tl1Cii70.01 (19)Tl1Bix—Ga1—Tl1Bi119.553 (4)
Tl1Bii—Tl1B—Tl1Cii10.0 (2)O4viii—Ga1—Tl1Bviii82.88 (6)
Tl1Ci—Tl1B—Tl1Cii80.0 (4)O4ix—Ga1—Tl1Bviii55.53 (5)
Tl1Bi—Tl1B—O2iv161.49 (7)O4i—Ga1—Tl1Bviii143.88 (5)
Tl1Bii—Tl1B—O2iv108.27 (9)O2x—Ga1—Tl1Bviii99.21 (6)
Tl1Ci—Tl1B—O2iv165.03 (5)O2ii—Ga1—Tl1Bviii123.61 (5)
Tl1Cii—Tl1B—O2iv98.63 (15)O2xi—Ga1—Tl1Bviii34.12 (5)
Tl1Bi—Tl1B—O2i108.27 (8)Tl1Cix—Ga1—Tl1Bviii122.10 (6)
Tl1Bii—Tl1B—O2i161.49 (6)Tl1Cviii—Ga1—Tl1Bviii2.61 (6)
Tl1Ci—Tl1B—O2i98.63 (14)Tl1Ci—Ga1—Tl1Bviii116.94 (6)
Tl1Cii—Tl1B—O2i165.03 (5)Tl1Bix—Ga1—Tl1Bviii119.553 (2)
O2iv—Tl1B—O2i86.48 (16)Tl1Bi—Ga1—Tl1Bviii119.553 (1)
Tl1Bi—Tl1B—O3122.35 (9)O1xii—As2—O1xiii92.56 (6)
Tl1Bii—Tl1B—O391.20 (11)O1xii—As2—O1ix87.44 (6)
Tl1Ci—Tl1B—O3125.20 (11)O1xiii—As2—O1ix87.44 (6)
Tl1Cii—Tl1B—O385.15 (9)O1xii—As2—O1xiv92.56 (6)
O2iv—Tl1B—O369.19 (9)O1xiii—As2—O1xiv92.56 (6)
O2i—Tl1B—O383.53 (11)O1ix—As2—O1xiv179.99 (7)
Tl1Bi—Tl1B—O3v91.20 (10)O1xii—As2—O1i87.44 (6)
Tl1Bii—Tl1B—O3v122.35 (9)O1xiii—As2—O1i180.0
Tl1Ci—Tl1B—O3v85.15 (9)O1ix—As2—O1i92.56 (6)
Tl1Cii—Tl1B—O3v125.20 (11)O1xiv—As2—O1i87.44 (6)
O2iv—Tl1B—O3v83.53 (11)O1xii—As2—O1viii180.0
O2i—Tl1B—O3v69.19 (9)O1xiii—As2—O1viii87.44 (6)
O3—Tl1B—O3v142.5 (2)O1ix—As2—O1viii92.56 (6)
Tl1Bi—Tl1B—O3i76.72 (10)O1xiv—As2—O1viii87.44 (6)
Tl1Bii—Tl1B—O3i113.31 (9)O1i—As2—O1viii92.56 (6)
Tl1Ci—Tl1B—O3i70.81 (8)O2—As1—O4v117.11 (7)
Tl1Cii—Tl1B—O3i118.40 (16)O2—As1—O1xv115.20 (7)
O2iv—Tl1B—O3i121.79 (16)O4v—As1—O1xv100.55 (7)
O2i—Tl1B—O3i48.21 (5)O2—As1—O3104.32 (8)
O3—Tl1B—O3i71.03 (6)O4v—As1—O3111.00 (7)
O3v—Tl1B—O3i105.28 (8)O1xv—As1—O3108.62 (8)
Tl1Bi—Tl1B—O3iv113.32 (10)O2—As1—Tl1Cii45.23 (13)
Tl1Bii—Tl1B—O3iv76.72 (11)O4v—As1—Tl1Cii117.24 (9)
Tl1Ci—Tl1B—O3iv118.40 (16)O1xv—As1—Tl1Cii142.08 (9)
Tl1Cii—Tl1B—O3iv70.81 (9)O3—As1—Tl1Cii62.00 (11)
O2iv—Tl1B—O3iv48.21 (5)O2—As1—Tl1C62.05 (11)
O2i—Tl1B—O3iv121.79 (16)O4v—As1—Tl1C101.81 (13)
O3—Tl1B—O3iv105.28 (8)O1xv—As1—Tl1C155.50 (11)
O3v—Tl1B—O3iv71.03 (6)O3—As1—Tl1C53.44 (7)
O3i—Tl1B—O3iv169.0 (2)Tl1Cii—As1—Tl1C19.8 (2)
Tl1Bi—Tl1B—O2v60.43 (10)O2—As1—Tl1Bii49.87 (9)
Tl1Bii—Tl1B—O2v118.57 (9)O4v—As1—Tl1Bii114.51 (7)
Tl1Ci—Tl1B—O2v50.84 (13)O1xv—As1—Tl1Bii144.91 (7)
Tl1Cii—Tl1B—O2v128.2 (3)O3—As1—Tl1Bii58.46 (9)
O2iv—Tl1B—O2v124.22 (15)Tl1Cii—As1—Tl1Bii4.93 (10)
O2i—Tl1B—O2v56.67 (6)Tl1C—As1—Tl1Bii15.14 (18)
O3—Tl1B—O2v133.64 (8)O2—As1—Tl1B58.46 (8)
O3v—Tl1B—O2v46.81 (4)O4v—As1—Tl1B106.50 (9)
O3i—Tl1B—O2v64.90 (4)O1xv—As1—Tl1B151.78 (9)
O3iv—Tl1B—O2v115.21 (4)O3—As1—Tl1B53.97 (7)
Tl1Bi—Tl1B—O2118.57 (11)Tl1Cii—As1—Tl1B15.00 (18)
Tl1Bii—Tl1B—O260.43 (12)Tl1C—As1—Tl1B5.05 (10)
Tl1Ci—Tl1B—O2128.2 (3)Tl1Bii—As1—Tl1B10.20 (16)
Tl1Cii—Tl1B—O250.84 (14)O2—As1—Tl1A54.77 (5)
O2iv—Tl1B—O256.67 (6)O4v—As1—Tl1A111.51 (5)
O2i—Tl1B—O2124.22 (15)O1xv—As1—Tl1A147.41 (5)
O3—Tl1B—O246.81 (4)O3—As1—Tl1A54.89 (6)
O3v—Tl1B—O2133.64 (9)Tl1Cii—As1—Tl1A10.09 (12)
O3i—Tl1B—O2115.21 (4)Tl1C—As1—Tl1A10.48 (13)
O3iv—Tl1B—O264.90 (4)Tl1Bii—As1—Tl1A5.16 (8)
O2v—Tl1B—O2179.0 (2)Tl1B—As1—Tl1A5.42 (9)
Tl1Bi—Tl1B—O3iii48.40 (6)O2—As1—Tl1Bi55.93 (5)
Tl1Bii—Tl1B—O3iii56.62 (5)O4v—As1—Tl1Bi113.25 (6)
Tl1Ci—Tl1B—O3iii52.40 (12)O1xv—As1—Tl1Bi145.33 (6)
Tl1Cii—Tl1B—O3iii62.37 (15)O3—As1—Tl1Bi52.81 (7)
O2iv—Tl1B—O3iii113.67 (4)Tl1Cii—As1—Tl1Bi10.77 (13)
O2i—Tl1B—O3iii128.31 (4)Tl1C—As1—Tl1Bi11.63 (13)
O3—Tl1B—O3iii147.52 (14)Tl1Bii—As1—Tl1Bi6.08 (9)
O3v—Tl1B—O3iii66.83 (6)Tl1B—As1—Tl1Bi6.76 (10)
O3i—Tl1B—O3iii122.76 (13)Tl1A—As1—Tl1Bi2.50 (3)
O3iv—Tl1B—O3iii66.00 (6)O2—As1—Tl1Cxvi92.14 (6)
O2v—Tl1B—O3iii73.56 (7)O4v—As1—Tl1Cxvi41.91 (5)
O2—Tl1B—O3iii105.70 (10)O1xv—As1—Tl1Cxvi82.53 (7)
Tl1Bi—Tl1B—O3ii56.62 (6)O3—As1—Tl1Cxvi152.91 (6)
Tl1Bii—Tl1B—O3ii48.40 (5)Tl1Cii—As1—Tl1Cxvi123.42 (8)
Tl1Ci—Tl1B—O3ii62.37 (15)Tl1C—As1—Tl1Cxvi121.18 (11)
Tl1Cii—Tl1B—O3ii52.40 (12)Tl1Bii—As1—Tl1Cxvi124.63 (6)
O2iv—Tl1B—O3ii128.31 (4)Tl1B—As1—Tl1Cxvi123.45 (8)
O2i—Tl1B—O3ii113.67 (4)Tl1A—As1—Tl1Cxvi125.61 (5)
O3—Tl1B—O3ii66.84 (6)Tl1Bi—As1—Tl1Cxvi128.10 (4)
O3v—Tl1B—O3ii147.52 (14)O2—As1—Tl1Ci56.83 (5)
O3i—Tl1B—O3ii66.00 (6)O4v—As1—Tl1Ci114.55 (6)
O3iv—Tl1B—O3ii122.76 (13)O1xv—As1—Tl1Ci143.72 (6)
O2v—Tl1B—O3ii105.70 (10)O3—As1—Tl1Ci51.27 (7)
O2—Tl1B—O3ii73.56 (7)Tl1Cii—As1—Tl1Ci11.61 (14)
O3iii—Tl1B—O3ii90.99 (15)Tl1C—As1—Tl1Ci12.76 (15)
Tl1Bi—Tl1B—O2ii15.14 (2)Tl1Bii—As1—Tl1Ci7.28 (9)
Tl1Bii—Tl1B—O2ii52.07 (3)Tl1B—As1—Tl1Ci8.14 (10)
Tl1Ci—Tl1B—O2ii22.47 (14)Tl1A—As1—Tl1Ci4.38 (4)
Tl1Cii—Tl1B—O2ii61.7 (2)Tl1Bi—As1—Tl1Ci1.88 (4)
O2iv—Tl1B—O2ii160.34 (12)Tl1Cxvi—As1—Tl1Ci129.990 (14)
O2i—Tl1B—O2ii112.79 (4)As1xvii—O1—As2xviii131.79 (8)
O3—Tl1B—O2ii107.73 (10)As1xvii—O1—Tl1Cvi76.09 (10)
O3v—Tl1B—O2ii106.34 (9)As2xviii—O1—Tl1Cvi131.19 (7)
O3i—Tl1B—O2ii72.78 (8)As1xvii—O1—Tl1Bvi79.08 (7)
O3iv—Tl1B—O2ii118.09 (14)As2xviii—O1—Tl1Bvi129.47 (6)
O2v—Tl1B—O2ii72.62 (8)Tl1Cvi—O1—Tl1Bvi3.04 (7)
O2—Tl1B—O2ii106.41 (13)As1—O2—Ga1xix123.98 (8)
O3iii—Tl1B—O2ii57.99 (9)As1—O2—Tl1Cii110.58 (14)
O3ii—Tl1B—O2ii41.51 (7)Ga1xix—O2—Tl1Cii121.99 (11)
Tl1Bi—Tl1B—O2iii52.07 (4)As1—O2—Tl1Bii106.18 (10)
Tl1Bii—Tl1B—O2iii15.14 (3)Ga1xix—O2—Tl1Bii125.29 (8)
Tl1Ci—Tl1B—O2iii61.7 (2)Tl1Cii—O2—Tl1Bii4.89 (11)
Tl1Cii—Tl1B—O2iii22.47 (15)As1—O2—Tl1B97.04 (10)
O2iv—Tl1B—O2iii112.79 (4)Ga1xix—O2—Tl1B130.25 (7)
O2i—Tl1B—O2iii160.34 (12)Tl1Cii—O2—Tl1B16.1 (2)
O3—Tl1B—O2iii106.34 (9)Tl1Bii—O2—Tl1B11.30 (18)
O3v—Tl1B—O2iii107.73 (10)As1—O2—Tl1A101.96 (6)
O3i—Tl1B—O2iii118.09 (14)Ga1xix—O2—Tl1A128.28 (6)
O3iv—Tl1B—O2iii72.78 (8)Tl1Cii—O2—Tl1A9.54 (13)
O2v—Tl1B—O2iii106.41 (13)Tl1Bii—O2—Tl1A4.65 (8)
O2—Tl1B—O2iii72.62 (8)Tl1B—O2—Tl1A6.80 (10)
O3iii—Tl1B—O2iii41.51 (7)As1—O2—Tl1C92.68 (12)
O3ii—Tl1B—O2iii57.99 (9)Ga1xix—O2—Tl1C131.46 (7)
O2ii—Tl1B—O2iii48.37 (9)Tl1Cii—O2—Tl1C22.0 (3)
Tl1Bi—Tl1B—O4vi130.74 (4)Tl1Bii—O2—Tl1C17.2 (2)
Tl1Bii—Tl1B—O4vi153.31 (3)Tl1B—O2—Tl1C5.98 (12)
Tl1Ci—Tl1B—O4vi121.93 (15)Tl1A—O2—Tl1C12.78 (14)
Tl1Cii—Tl1B—O4vi146.99 (14)As1—O2—Tl1Bi102.86 (6)
O2iv—Tl1B—O4vi53.44 (9)Ga1xix—O2—Tl1Bi128.59 (6)
O2i—Tl1B—O4vi45.18 (8)Tl1Cii—O2—Tl1Bi7.87 (11)
O3—Tl1B—O4vi98.07 (15)Tl1Bii—O2—Tl1Bi3.37 (6)
O3v—Tl1B—O4vi44.48 (7)Tl1B—O2—Tl1Bi9.37 (14)
O3i—Tl1B—O4vi93.37 (11)Tl1A—O2—Tl1Bi2.78 (4)
O3iv—Tl1B—O4vi76.71 (9)Tl1C—O2—Tl1Bi15.31 (17)
O2v—Tl1B—O4vi71.57 (8)As1—O2—Tl1Ci103.50 (6)
O2—Tl1B—O4vi109.39 (13)Ga1xix—O2—Tl1Ci128.74 (6)
O3iii—Tl1B—O4vi109.27 (4)Tl1Cii—O2—Tl1Ci7.09 (10)
O3ii—Tl1B—O4vi157.13 (10)Tl1Bii—O2—Tl1Ci3.69 (4)
O2ii—Tl1B—O4vi144.16 (3)Tl1B—O2—Tl1Ci11.31 (13)
O2iii—Tl1B—O4vi144.88 (3)Tl1A—O2—Tl1Ci4.82 (5)
Tl1Bi—Tl1B—O4vii153.31 (3)Tl1C—O2—Tl1Ci17.21 (19)
Tl1Bii—Tl1B—O4vii130.74 (5)Tl1Bi—O2—Tl1Ci2.03 (4)
Tl1Ci—Tl1B—O4vii146.99 (13)As1—O2—Tl1Cxvi68.04 (4)
Tl1Cii—Tl1B—O4vii121.93 (15)Ga1xix—O2—Tl1Cxvi59.62 (4)
O2iv—Tl1B—O4vii45.18 (8)Tl1Cii—O2—Tl1Cxvi140.65 (6)
O2i—Tl1B—O4vii53.44 (9)Tl1Bii—O2—Tl1Cxvi137.61 (6)
O3—Tl1B—O4vii44.48 (7)Tl1B—O2—Tl1Cxvi128.34 (12)
O3v—Tl1B—O4vii98.07 (15)Tl1A—O2—Tl1Cxvi134.48 (5)
O3i—Tl1B—O4vii76.70 (9)Tl1C—O2—Tl1Cxvi122.85 (17)
O3iv—Tl1B—O4vii93.37 (11)Tl1Bi—O2—Tl1Cxvi137.26 (5)
O2v—Tl1B—O4vii109.39 (13)Tl1Ci—O2—Tl1Cxvi139.30 (4)
O2—Tl1B—O4vii71.57 (8)As1—O3—Tl1C100.99 (8)
O3iii—Tl1B—O4vii157.14 (10)As1—O3—Tl1B101.09 (7)
O3ii—Tl1B—O4vii109.27 (4)Tl1C—O3—Tl1B6.12 (13)
O2ii—Tl1B—O4vii144.87 (3)As1—O3—Tl1Cii91.25 (13)
O2iii—Tl1B—O4vii144.16 (3)Tl1C—O3—Tl1Cii23.2 (3)
O4vi—Tl1B—O4vii53.60 (10)Tl1B—O3—Tl1Cii17.8 (2)
Tl1Bi—Tl1B—As1iv137.73 (8)As1—O3—Tl1Bii95.92 (11)
Tl1Bii—Tl1B—As1iv88.74 (9)Tl1C—O3—Tl1Bii17.8 (2)
Tl1Ci—Tl1B—As1iv143.84 (15)Tl1B—O3—Tl1Bii12.08 (19)
Tl1Cii—Tl1B—As1iv80.08 (13)Tl1Cii—O3—Tl1Bii6.11 (13)
O2iv—Tl1B—As1iv23.96 (3)As1—O3—Tl1A101.07 (7)
O2i—Tl1B—As1iv108.05 (16)Tl1C—O3—Tl1A12.57 (15)
O3—Tl1B—As1iv82.58 (7)Tl1B—O3—Tl1A6.45 (10)
O3v—Tl1B—As1iv82.12 (7)Tl1Cii—O3—Tl1A12.89 (15)
O3i—Tl1B—As1iv145.30 (16)Tl1Bii—O3—Tl1A6.78 (11)
O3iv—Tl1B—As1iv25.63 (4)As1—O3—Tl1Bi105.62 (10)
O2v—Tl1B—As1iv128.80 (9)Tl1C—O3—Tl1Bi14.88 (17)
O2—Tl1B—As1iv51.74 (4)Tl1B—O3—Tl1Bi9.25 (14)
O3iii—Tl1B—As1iv91.55 (4)Tl1Cii—O3—Tl1Bi15.81 (18)
O3ii—Tl1B—As1iv123.66 (5)Tl1Bii—O3—Tl1Bi10.07 (15)
O2ii—Tl1B—As1iv138.66 (12)Tl1A—O3—Tl1Bi4.85 (7)
O2iii—Tl1B—As1iv90.32 (5)As1—O3—Tl1Ci109.08 (11)
O4vi—Tl1B—As1iv67.91 (8)Tl1C—O3—Tl1Ci17.3 (2)
O4vii—Tl1B—As1iv68.66 (8)Tl1B—O3—Tl1Ci12.27 (13)
Tl1Bi—Tl1B—As1i88.74 (8)Tl1Cii—O3—Tl1Ci18.6 (2)
Tl1Bii—Tl1B—As1i137.73 (6)Tl1Bii—O3—Tl1Ci13.23 (14)
Tl1Ci—Tl1B—As1i80.08 (12)Tl1A—O3—Tl1Ci8.55 (8)
Tl1Cii—Tl1B—As1i143.84 (15)Tl1Bi—O3—Tl1Ci3.70 (7)
O2iv—Tl1B—As1i108.05 (16)As1v—O4—Ga1xviii126.29 (8)
O2i—Tl1B—As1i23.96 (3)As1v—O4—Tl1Cxx119.50 (8)
O3—Tl1B—As1i82.12 (7)Ga1xviii—O4—Tl1Cxx98.90 (5)
O3v—Tl1B—As1i82.59 (7)As1v—O4—Tl1Bxx120.75 (7)
O3i—Tl1B—As1i25.63 (3)Ga1xviii—O4—Tl1Bxx99.36 (5)
O3iv—Tl1B—As1i145.30 (16)Tl1Cxx—O4—Tl1Bxx2.65 (6)
O2v—Tl1B—As1i51.74 (4)As1v—O4—Tl1Axvii121.89 (6)
O2—Tl1B—As1i128.80 (9)Ga1xviii—O4—Tl1Axvii99.79 (5)
O3iii—Tl1B—As1i123.66 (5)Tl1Cxx—O4—Tl1Axvii5.17 (7)
O3ii—Tl1B—As1i91.55 (4)Tl1Bxx—O4—Tl1Axvii2.52 (4)
O2ii—Tl1B—As1i90.32 (5)As1v—O4—Tl1Bxvii126.95 (10)
O2iii—Tl1B—As1i138.66 (12)Ga1xviii—O4—Tl1Bxvii96.40 (7)
O4vi—Tl1B—As1i68.66 (8)Tl1Cxx—O4—Tl1Bxvii9.46 (12)
O4vii—Tl1B—As1i67.90 (8)Tl1Bxx—O4—Tl1Bxvii7.14 (11)
As1iv—Tl1B—As1i131.02 (16)Tl1Axvii—O4—Tl1Bxvii5.24 (8)
Tl1A—Tl1C—Tl1Bi19.99 (19)As1v—O4—Tl1Cxvii131.11 (13)
Tl1A—Tl1C—Tl1Bii19.99 (19)Ga1xviii—O4—Tl1Cxvii93.57 (8)
Tl1Bi—Tl1C—Tl1Bii40.0 (4)Tl1Cxx—O4—Tl1Cxvii13.52 (16)
Tl1A—Tl1C—Tl1Ci30.0Tl1Bxx—O4—Tl1Cxvii11.37 (12)
Tl1Bi—Tl1C—Tl1Ci10.01 (19)Tl1Axvii—O4—Tl1Cxvii9.57 (10)
Tl1Bii—Tl1C—Tl1Ci50.00 (19)Tl1Bxvii—O4—Tl1Cxvii4.33 (9)
Tl1A—Tl1C—Tl1Cii30.001 (5)As1v—O4—Tl1Bxxi117.93 (8)
Tl1Bi—Tl1C—Tl1Cii50.00 (19)Ga1xviii—O4—Tl1Bxxi103.39 (7)
Tl1Bii—Tl1C—Tl1Cii10.01 (19)Tl1Cxx—O4—Tl1Bxxi5.57 (7)
Tl1Ci—Tl1C—Tl1Cii60.001 (5)Tl1Bxx—O4—Tl1Bxxi4.08 (6)
Tl1A—Tl1C—O2iv131.87 (13)Tl1Axvii—O4—Tl1Bxxi4.01 (6)
Tl1Bi—Tl1C—O2iv149.7 (2)Tl1Bxvii—O4—Tl1Bxxi9.04 (13)
Tl1Bii—Tl1C—O2iv113.0 (2)Tl1Cxvii—O4—Tl1Bxxi13.33 (14)
Tl1Ci—Tl1C—O2iv157.37 (11)As1v—O4—Tl1C57.11 (10)
Tl1Cii—Tl1C—O2iv103.48 (14)Ga1xviii—O4—Tl1C69.38 (10)
Tl1A—Tl1C—O2i131.87 (13)Tl1Cxx—O4—Tl1C132.52 (6)
Tl1Bi—Tl1C—O2i113.0 (2)Tl1Bxx—O4—Tl1C135.13 (5)
Tl1Bii—Tl1C—O2i149.7 (2)Tl1Axvii—O4—Tl1C137.61 (4)
Tl1Ci—Tl1C—O2i103.48 (13)Tl1Bxvii—O4—Tl1C140.03 (5)
Tl1Cii—Tl1C—O2i157.37 (11)Tl1Cxvii—O4—Tl1C141.67 (5)
O2iv—Tl1C—O2i96.3 (3)Tl1Bxxi—O4—Tl1C137.05 (4)
Tl1A—Tl1C—O3102.61 (15)As1v—O4—Tl1Cxxi114.85 (9)
Tl1Bi—Tl1C—O3112.72 (18)Ga1xviii—O4—Tl1Cxxi106.19 (8)
Tl1Bii—Tl1C—O391.37 (17)Tl1Cxx—O4—Tl1Cxxi7.53 (9)
Tl1Ci—Tl1C—O3116.99 (14)Tl1Bxx—O4—Tl1Cxxi6.86 (7)
Tl1Cii—Tl1C—O385.65 (15)Tl1Axvii—O4—Tl1Cxxi7.13 (7)
O2iv—Tl1C—O373.65 (11)Tl1Bxvii—O4—Tl1Cxxi12.10 (13)
O2i—Tl1C—O389.44 (14)Tl1Cxvii—O4—Tl1Cxxi16.34 (17)
Tl1A—Tl1C—O3v102.61 (15)Tl1Bxxi—O4—Tl1Cxxi3.13 (6)
Tl1Bi—Tl1C—O3v91.37 (16)Tl1C—O4—Tl1Cxxi136.41 (4)
Tl1Bii—Tl1C—O3v112.72 (18)As1v—O4—Tl1B53.77 (7)
Tl1Ci—Tl1C—O3v85.65 (14)Ga1xviii—O4—Tl1B72.86 (7)
Tl1Cii—Tl1C—O3v116.99 (13)Tl1Cxx—O4—Tl1B131.57 (7)
O2iv—Tl1C—O3v89.44 (14)Tl1Bxx—O4—Tl1B134.21 (4)
O2i—Tl1C—O3v73.65 (11)Tl1Axvii—O4—Tl1B136.72 (4)
O3—Tl1C—O3v154.8 (3)Tl1Bxvii—O4—Tl1B139.57 (6)
Tl1A—Tl1C—O3iv89.40 (15)Tl1Cxvii—O4—Tl1B141.61 (6)
Tl1Bi—Tl1C—O3iv101.8 (2)Tl1Bxxi—O4—Tl1B135.80 (4)
Tl1Bii—Tl1C—O3iv77.01 (17)Tl1C—O4—Tl1B3.71 (8)
Tl1Ci—Tl1C—O3iv107.76 (14)Tl1Cxxi—O4—Tl1B134.90 (4)
Tl1Cii—Tl1C—O3iv71.13 (14)As1v—O4—Tl1Ci44.77 (8)
O2iv—Tl1C—O3iv49.88 (5)Ga1xviii—O4—Tl1Ci83.27 (9)
O2i—Tl1C—O3iv131.2 (2)Tl1Cxx—O4—Tl1Ci124.50 (15)
O3—Tl1C—O3iv107.87 (7)Tl1Bxx—O4—Tl1Ci127.13 (11)
O3v—Tl1C—O3iv72.40 (6)Tl1Axvii—O4—Tl1Ci129.62 (9)
Tl1A—Tl1C—O3i89.39 (15)Tl1Bxvii—O4—Tl1Ci133.50 (7)
Tl1Bi—Tl1C—O3i77.01 (16)Tl1Cxvii—O4—Tl1Ci136.55 (3)
Tl1Bii—Tl1C—O3i101.8 (2)Tl1Bxxi—O4—Tl1Ci127.83 (11)
Tl1Ci—Tl1C—O3i71.13 (14)Tl1C—O4—Tl1Ci16.03 (19)
Tl1Cii—Tl1C—O3i107.76 (13)Tl1Cxxi—O4—Tl1Ci126.30 (13)
O2iv—Tl1C—O3i131.2 (2)Tl1B—O4—Tl1Ci12.41 (14)
Symmetry codes: (i) y, xy, z; (ii) x+y, x, z; (iii) xy, y, z+3/2; (iv) y, x, z+3/2; (v) x, x+y, z+3/2; (vi) y, xy1, z; (vii) y, x1, z+3/2; (viii) x+y+1, x+1, z; (ix) x, y+1, z; (x) y, xy+1, z; (xi) x+1, y+1, z; (xii) xy1/3, x+1/3, z+4/3; (xiii) y+2/3, x+y+4/3, z+4/3; (xiv) x+2/3, y+1/3, z+4/3; (xv) x1, y, z; (xvi) y1, xy1, z; (xvii) x+1, y, z; (xviii) x, y1, z; (xix) x1, y1, z; (xx) x+y+1, x, z; (xxi) y+1, xy, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H···O4vii0.87 (2)1.94 (3)2.728 (2)150 (4)
Symmetry code: (vii) y, x1, z+3/2.
Comparison of unit-cell parameters (Å, Å3) for the six known isotypic compounds top
CompoundacV
TlGa2As(HAsO4)68.484 (1)50.724 (11)3161.9 (10)
RbGa2As(HAsO4)68.491 (1)50.697 (11)3165.4 (10)
CsGa2As(HAsO4)68.520 (1)50.608 (11)3181.4 (10)
RbAl2As(HAsO4)68.410 (1)50.287 (11)3080.2 (10)
CsAl2As(HAsO4)68.439 (1)50.169 (11)3094.2 (10)
CsFe2As(HAsO4)68.582 (1)50.942 (11)3249.3 (10)
Hydrogen-bond geometry (Å, °) for CsAl2As(HAsO4)6, CsGa2As(HAsO4)6 and TlGa2As(HAsO4)6 top
D—H···AD—HH···AD···AD—H···A
CsAl2As(HAsO4)6O3—H···O4xiv0.875 (19)1.94 (2)2.7321 (18)150 (3)
CsGa2As(HAsO4)6O3—H···O4xiv0.861 (18)1.93 (2)2.727 (2)154 (3)
TlGa2As(HAsO4)6O3—H···O4xiv0.871 (19)1.94 (3)2.728 (2)150 (4)
Symmetry code: (xiv) y, x - 1, -z + 3/2.
Comparison of selected bond lengths (Å) and BVSsa for CsAl2As(HAsO4)6, CsGa2As(HAsO4)6 and TlGa2As(HAsO4)6 top
CsAl2As(HAsO4)6CsGa2As(HAsO4)6TlGa2As(HAsO4)6
M+1A—O2 (6×)3.4707 (12)3.4719 (15)3.4419 (15)
M+1A—O3 (6×)3.4066 (16)3.4829 (19)3.4358 (19)
<M+1A—O>/BVS3.439/0.753.477/0.683.439/0.46
M3+—O2 (3×)1.8933 (13)1.9612 (15)1.9648 (14)
M3+—O4 (3×)1.8963 (12)1.9679 (15)1.9609 (14)
<M3+—O>/BVS1.895/3.071.965/3.091.963/3.11
[6]As—O (6×)1.8104 (11)1.8109 (14)1.8062 (14)
<[6]As—O>/BVS1.810/5.271.811/5.271.806/5.34
[4]As—O11.7094 (12)1.7089 (14)1.7094 (14)
[4]As—O21.6641 (11)1.6646 (14)1.6641 (14)
[4]As—O41.6639 (12)1.6670 (15)1.6672 (14)
[4]As—O3(H)1.7108 (13)1.7125 (17)1.7115 (16)
<[4]As—O>/BVS1.687/5.001.688/4.981.688/4.99
Note: (a) Gagné & Hawthorne (2015).
 

Funding information

Funding for this research was provided by: Doc fForte Fellowship of the Austrian Academy of Sciences to K. Schwendtner. The authors acknowledge the TU Wien University Library for financial support through its Open Access Funding Program.

References

First citationBoughzala, H. & Jouini, T. (1992). C. R. Acad. Sci. II, 314, 1419–1422.  CAS Google Scholar
First citationBrandenburg, K. (2005). DIAMOND. Bonn, Germany.  Google Scholar
First citationChouchene, S., Jaouadi, K., Mhiri, T. & Zouari, N. (2017). Solid State Ionics, 301, 78–85.  Web of Science CrossRef CAS Google Scholar
First citationFIZ (2018). Inorganic Crystal Structure Database. Version build, 20180504–0745, 2018.1. Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany.  Google Scholar
First citationGagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562–578.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGagné, O. C. & Hawthorne, F. C. (2016). Acta Cryst. B72, 602–625.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGagné, O. C. & Hawthorne, F. C. (2018). Acta Cryst. B74, 63–78.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLesage, J., Adam, L., Guesdon, A. & Raveau, B. (2007). J. Solid State Chem. 180, 1799–1808.  Web of Science CrossRef CAS Google Scholar
First citationLii, K.-H. & Wu, L.-S. (1994). J. Chem. Soc. A, 10, 1577–1580.  Google Scholar
First citationLin, K.-J. & Lii, K.-H. (1996). Chem. Commun. pp. 1137–1138.  CrossRef Google Scholar
First citationMasquelier, C., Padhi, A. K., Nanjundaswamy, K. S., Okada, S. & Goodenough, J. B. (1996). Proceedings of the 37th Power Sources Conference, June 17–20, 1996, pp. 188–191. Cherry Hill, New Jersey. Fort Monmouth, NJ: US Army Research Laboratory.  Google Scholar
First citationNonius, B. V. (2003). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228–234.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOuerfelli, N., Guesmi, A., Molinié, P., Mazza, D., Zid, M. F. & Driss, A. (2007). J. Solid State Chem. 180, 2942–2949.  Web of Science CrossRef CAS Google Scholar
First citationRen, J., Ma, Z., He, C., Sa, R., Li, Q. & Wu, K. (2015). Comput. Mater. Sci. 106, 1–4.  Web of Science CrossRef CAS Google Scholar
First citationSchwendtner, K. (2006). J. Alloys Compd. 421, 57–63.  Web of Science CrossRef CAS Google Scholar
First citationSchwendtner, K. (2008). PhD thesis, Universität Wien, Austria.  Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2004). Acta Cryst. C60, i79–i83.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2005). Acta Cryst. C61, i90–i93.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2007a). Acta Cryst. B63, 205–215.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2007b). Acta Cryst. C63, i17–i20.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2007c). Eur. J. Mineral. 19, 399–409.  Web of Science CrossRef CAS Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2017a). Acta Cryst. C73, 600–608.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2017b). Acta Cryst. E73, 1580–1586.  CrossRef IUCr Journals Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2018a). Acta Cryst. C74, 721–727.  CrossRef IUCr Journals Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2018b). Acta Cryst. E74, 766–771.  CrossRef IUCr Journals Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2018c). Acta Cryst. E74. Submitted (Co-editor code ff2155).  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSun, Y., Yang, Z., Hou, D. & Pan, S. (2017). RSC Adv. 7, 2804–2809.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYakubovich, O. V. (1993). Kristallografiya, 38, 43–48.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds