research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (2E)-3-(3-bromo-4-fluoro­phen­yl)-1-(3,4-di­meth­­oxy­phen­yl)prop-2-en-1-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, GSSS Institute of Engineering & Technology for Women, Mysuru 570 016, Karnataka, India, bİlke Education and Health Foundation, Cappadocia University, Cappadocia Vocational College, The Medical Imaging Techniques Program, 50420 Mustafapaşa, Ürgüp, Nevşehir, Turkey, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, dDepartment of Chemistry, Sri Siddhartha Institute of Technology, Tumkur 572 105, Karnataka, India, eX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, fDepartment of Engineering Chemistry, Vidya Vikas Institute of Engineering & Technology, Visvesvaraya Technological University, Alanahalli, Mysuru 570 028, Karnataka, India, and gDepartment of Chemistry, Cauvery Institute of Technology, Mandya 571 402, Karnataka, India
*Correspondence e-mail: akkurt@erciyes.edu.tr

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 19 June 2018; accepted 29 June 2018; online 6 July 2018)

In the mol­ecule of the title compound, C17H14BrFO3, the aromatic rings are tilted with respect to the enone bridge by 13.63 (14) and 4.27 (15)°, and form a dihedral angle 17.91 (17)°. In the crystal, centrosymmetrically related mol­ecules are linked by pairs of C—H⋯O hydrogen bonds into dimeric units, forming rings of R22(14) graph-set motif. The dimers are further connected by weak C—H⋯O hydrogen inter­actions, forming layers parallel to (10[\overline{1}]). Hirshfeld surface analysis shows that van der Waals inter­actions constitute the major contribution to the inter­molecular inter­actions, with H⋯H contacts accounting for 29.7% of the surface.

1. Chemical context

Natural products are important sources to search for new agents for cancer therapies with minimal side effects. Chalcones, which are considered to be the precursors of flavonoids and isoflavonoids, are abundant in edible plants. They consist of open-chain flavonoids in which the two aromatic rings are joined by a three-carbon α,β-unsaturated carbonyl system. These are coloured compounds because of the presence of the –CO—CH=CH– chromophore, the colour depending on the presence of other auxochromes. Accumulating evidence has shown that chalcones and their derivatives could inhibit tumor initiation and progression. In view of the above and in a continuation of our previous work on 3,4-dimeth­oxy chalcones (Sheshadri et al., 2018[Sheshadri, S. N., Atioğlu, Z., Akkurt, M., Chidan Kumar, C. S., Quah, C. K., Siddaraju, B. P. & Veeraiah, M. K. (2018). Acta Cryst. E74, 935-938.]), herewith we report the crystal and mol­ecular structures of the title compound.

[Scheme 1]

2. Structural commentary

The title compound (Fig. 1[link]) is constructed by two aromatic rings (3-bromo-4-fluoro­phenyl and a 3,4-di­meth­oxy­phen­yl), which are linked by a C=C—C(=O)—C enone bridge. The mol­ecule is twisted substanti­ally about the enone bridge, as indicated by the dihedral angles of 13.63 (14) and 4.27 (15)° formed by the mean plane through C7–C8/O3 [maximum deviation 0.045 (4) Å for atom C7] and the C1–C6 and C10–C15 aromatic rings. The dihedral angle between the mean planes of the 3,4- meth­oxy­phenyl and 3-bromo-4-fluoro­phenyl rings is 17.91 (17)°. The H atoms of the central propenone group are trans configured. The two meth­oxy groups attached to C16 and C17 are almost coplanar with the benzene ring, with the deviations of 0.333 (6) Å for C16 and −0.124 (4) Å for C17. The bond lengths and angles are comparable with those found in the related compounds (2E)-3-(3-chloro­phen­yl)-1-(3,4-di­meth­oxy­phen­yl)-prop-2-en-1-one (Sheshadri et al., 2018[Sheshadri, S. N., Atioğlu, Z., Akkurt, M., Chidan Kumar, C. S., Quah, C. K., Siddaraju, B. P. & Veeraiah, M. K. (2018). Acta Cryst. E74, 935-938.]), (E)-3-(3,4- di­meth­oxy­phen­yl)-1-(1-hy­droxy­naph­th­al­en-2­yl)prop-2-en-1-one (Ezhilarasi et al., 2015[Ezhilarasi, K. S., Reuben Jonathan, D., Vasanthi, R., Revathi, B. K. & Usha, G. (2015). Acta Cryst. E71, o371-o372.]), (E)-1-(3-bromo­phen­yl)-3-(3,4-di­meth­oxy­phen­yl)prop-2-en-1-one (Esc­o­bar et al., 2012[Escobar, C. A., Trujillo, A., Howard, J. A. K. & Fuentealba, M. (2012). Acta Cryst. E68, o887.]) and (E)-3-(2-bromo­phen­yl)-1-(3,4-di­meth­oxy­phen­yl)prop-2-en-1-one (Li et al., 2012[Li, Z., Wang, Y., Peng, K., Chen, L. & Chu, S. (2012). Acta Cryst. E68, o776.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, centrosymmetrically related mol­ecules are linked by pairs of C—H⋯O hydrogen bonds into dimers forming rings with an [R_{2}^{2}] (14) graph-set motif (Table 1[link], Fig. 2[link]). The dimeric units are further connected by weak C—H⋯O hydrogen bonds, forming layers parallel to (10[\overline{1}]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15A⋯O2i 0.93 2.61 3.506 (5) 162
C11—H11A⋯O3ii 0.93 2.46 3.358 (5) 162
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+2, -z.
[Figure 2]
Figure 2
A view along the a axis of the crystal packing of the title compound. H atoms not involved in hydrogen bonding (dashed lines) are omitted for clarity.

In addition, weak C—Br⋯π [C14—Br1 = 1.877 (3) Å, Br1⋯Cg1i = 3.7959 (16) Å, C14⋯Cg1i = 4.010 (4) Å, C14—Br1⋯Cg1i = 82.54 (11)°; symmetry code: (i) −1 + x, y, z; Cg1 is the centroid of the C1–C6 ring] and C—F⋯π [C13—F1 = 1.348 (4) Å, F1⋯Cg2ii = 3.454 (3) Å, C13⋯Cg2ii = 3.659 (4) Å, C13—F1⋯Cg2ii = 87.78 (19)°; symmetry code: (ii) −x, 1 − y, −z; Cg2 is the centroid of the C10–C15 ring] inter­actions help to stabilize the crystal structure.

4. Hirshfeld Surface Analysis

Mol­ecular Hirshfeld surfaces (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) are constructed based on the electron distribution calculated as the sum of spherical atom electron densities (Spackman & Byrom, 1997[Spackman, M. A. & Byrom, P. G. (1997). Chem. Phys. Lett. 267, 215-220.]). Hirshfeld surface analysis is a tool for visualizing the inter­molecular inter­actions; it can include comparisons to the van der Waals envelope, which other mol­ecules or atoms come into contact with when inter­actions are present. The Hirshfeld surface and two-diensional fingerprint plots of the title compound were calculated using CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17. The University of Western Australia.]). In the Hirshfeld surface plotted over dnorm (Fig. 3[link]), the white surfaces indicate contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter or longer than the van der Waals radii, respectively (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625-636.]). The bright-red spots appearing near to O2, F1, Br1 and hydrogen atoms H15A, H16A, H17C indicate their role as donors and acceptors in the dominant C—H⋯O, C—H⋯F and C—H⋯Br contacts. The shape-index of the Hirshfeld surface is a tool to visualize the ππ stacking inter­actions by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no ππ inter­actions. The Hirshfeld surface of the title compound plotted over shape-index (Fig. 4[link]) clearly suggest that this is the case here. The overall two-dimensional fingerprint plot and those delineated into H⋯H, C⋯H/H⋯C, O⋯H/H⋯O, Br⋯H/H⋯Br and F⋯H/H⋯F contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are illustrated in Fig. 5[link]af, respectively. Their relative contributions to the Hirshfeld surface are given in Table 2[link]. The most important inter­action is H⋯H, contributing 29.7% to the overall crystal packing, which is reflected as widely scattered points of high density due to the large hydrogen content of the mol­ecule. In the absence of C—H⋯π inter­actions in the crystal, shown as a pair of characteristic wings the fingerprint plot, H⋯C/C⋯H contacts contribute 19.2% to the Hirshfeld surface (Fig. 5[link]c). The O⋯H/H⋯O, Br⋯C/C⋯Br and F⋯C/C⋯F contacts in the structure with 17.9, 5.6 and 5.0% contributions, respectively, to the Hirshfeld surface have a symmetrical distribution of points (Fig. 5[link]df). The other Br⋯C / C⋯Br, F⋯C / C⋯F, C⋯C, F⋯O / O⋯F and C⋯O / O⋯C contacts, having only small contributions to the Hirshfeld surface, have negligible directional impact on the mol­ecular packing.

Table 2
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for the title compound

Contact Percentage contribution
H⋯H 29.7
C⋯H/H⋯C 19.2
O⋯H/H⋯O 17.9
Br⋯H/H⋯Br 11.2
F⋯H/H⋯F 6.8
Br⋯C/C⋯Br 5.6
F⋯C/C⋯F 5.0
C⋯C 3.1
F⋯O/O⋯F 0.7
C⋯O/O⋯C 0.4
[Figure 3]
Figure 3
The Hirshfeld surface mapped over dnorm showing the C—H⋯O and C—H⋯F contacts.
[Figure 4]
Figure 4
Hirshfeld surface of the title compound plotted over shape-index.
[Figure 5]
Figure 5
The two-dimensional fingerprint plots of the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) O⋯H/H⋯O, (e) Br⋯H/H⋯Br and (f) F⋯H/H⋯F inter­actions [de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].

5. Synthesis and crystallization

The reagents and solvents for the synthesis were obtained from the Aldrich Chemical Co., and were used without additional purification. The title compound was synthesized as per the procedure reported earlier (Kumar et al., 2013a[Kumar, C. S. C., Loh, W. S., Ooi, C. W., Quah, C. K. & Fun, H. K. (2013a). Molecules, 18, 11996-12011.],b[Kumar, C. S. C., Loh, W. S., Ooi, C. W., Quah, C. K. & Fun, H. K. (2013b). Molecules, 18, 12707-12724.]; Chidan Kumar et al., 2014[Chidan Kumar, C. S., Fun, H. K., Parlak, C., Rhyman, L., Ramasami, P., Tursun, M., Chandraju, S. & Quah, C. K. (2014). Spectrochim. Acta A Mol. Biomol. Spectrosc. 132, 174-182.]). 1-(3,4-Di­meth­oxy­phen­yl) ethanone (0.01mol) and 3-bromo-4-fluoro­benzaldehyde (0.01mol) were dissolved in 20 ml methanol. A catalytic amount of NaOH was added to the solution dropwise with vigorous stirring. The reaction mixture was stirred for about 6 h at room temperature. The progress of the reaction was monitored by TLC. The formed crude product was filtered, washed repeatedly with distilled water and recrystallized from ethanol to obtain the title chalcone. Crystals suitable for X-ray diffraction studies were obtained from an acetone solution by the slow evaporation technique at room temperature. The melting point (381–383 K) was determined by a Stuart Scientific (UK) apparatus. The purity of the compound was confirmed by thin layer chromatography using Merck silica gel 60 F254 coated aluminum plates.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. C-bound H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.6 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Table 3
Experimental details

Crystal data
Chemical formula C17H14BrFO3
Mr 365.19
Crystal system, space group Monoclinic, P21/n
Temperature (K) 294
a, b, c (Å) 8.9212 (12), 8.6601 (11), 20.538 (3)
β (°) 96.896 (3)
V3) 1575.2 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.63
Crystal size (mm) 0.31 × 0.30 × 0.11
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.465, 0.755
No. of measured, independent and observed [I > 2σ(I)] reflections 11919, 3240, 2287
Rint 0.031
(sin θ/λ)max−1) 0.627
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.149, 1.05
No. of reflections 3240
No. of parameters 199
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.78, −0.66
Computer programs: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

(2E)-3-(3-Bromo-4-fluorophenyl)-1-(3,4-dimethoxyphenyl)prop-2-en-1-one top
Crystal data top
C17H14BrFO3F(000) = 736
Mr = 365.19Dx = 1.540 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.9212 (12) ÅCell parameters from 3205 reflections
b = 8.6601 (11) Åθ = 2.4–22.9°
c = 20.538 (3) ŵ = 2.63 mm1
β = 96.896 (3)°T = 294 K
V = 1575.2 (4) Å3Block, colourless
Z = 40.31 × 0.30 × 0.11 mm
Data collection top
Bruker APEXII CCD
diffractometer
2287 reflections with I > 2σ(I)
φ and ω scansRint = 0.031
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
θmax = 26.5°, θmin = 2.4°
Tmin = 0.465, Tmax = 0.755h = 1110
11919 measured reflectionsk = 1010
3240 independent reflectionsl = 2525
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.149 w = 1/[σ2(Fo2) + (0.0824P)2 + 0.5509P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3240 reflectionsΔρmax = 0.78 e Å3
199 parametersΔρmin = 0.65 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.03000 (5)0.46149 (5)0.15921 (2)0.0788 (2)
F10.2029 (2)0.5975 (3)0.03979 (14)0.0862 (7)
O11.0604 (3)0.8509 (4)0.34912 (13)0.0743 (8)
O21.1326 (3)0.9899 (4)0.24774 (15)0.0803 (8)
O30.6831 (3)0.9371 (4)0.07316 (15)0.0788 (8)
C10.7272 (4)0.7591 (4)0.23364 (19)0.0575 (9)
H1A0.6364740.7055620.2319620.069*
C20.8261 (4)0.7559 (4)0.29089 (18)0.0589 (9)
H2A0.8023500.6990960.3266930.071*
C30.9606 (4)0.8373 (4)0.29488 (18)0.0550 (8)
C40.9977 (4)0.9146 (4)0.23886 (18)0.0532 (8)
C50.8997 (4)0.9162 (4)0.18250 (18)0.0541 (8)
H5A0.9255610.9685270.1459210.065*
C60.7591 (3)0.8392 (4)0.17906 (17)0.0498 (7)
C70.6521 (4)0.8551 (4)0.11860 (18)0.0570 (8)
C80.5024 (4)0.7777 (4)0.11436 (19)0.0606 (9)
H8A0.4865950.7023430.1450640.073*
C90.3917 (4)0.8126 (4)0.06853 (17)0.0543 (8)
H9A0.4145050.8832780.0370890.065*
C100.2365 (4)0.7534 (4)0.06104 (17)0.0517 (8)
C110.1337 (4)0.8057 (4)0.01072 (18)0.0620 (9)
H11A0.1642240.8772350.0188050.074*
C120.0149 (4)0.7541 (5)0.00294 (19)0.0669 (10)
H12A0.0832560.7905530.0313800.080*
C130.0592 (4)0.6488 (4)0.0466 (2)0.0610 (9)
C140.0408 (4)0.5962 (4)0.09817 (17)0.0542 (8)
C150.1889 (4)0.6462 (4)0.10559 (17)0.0514 (8)
H15A0.2567130.6090800.1399420.062*
C161.0182 (6)0.7928 (8)0.4101 (2)0.1109 (19)
H16A1.0993150.8099740.4444940.166*
H16B0.9294280.8456640.4203780.166*
H16C0.9978480.6841970.4060490.166*
C171.1885 (5)1.0598 (5)0.1947 (2)0.0817 (13)
H17A1.2838891.1074340.2091720.123*
H17B1.2017100.9834320.1620300.123*
H17C1.1184911.1369340.1763710.123*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0718 (3)0.0733 (3)0.0950 (4)0.0108 (2)0.0252 (2)0.0155 (2)
F10.0526 (12)0.0955 (17)0.1080 (19)0.0115 (13)0.0013 (12)0.0013 (15)
O10.0636 (15)0.090 (2)0.0675 (17)0.0085 (15)0.0020 (13)0.0060 (14)
O20.0642 (17)0.099 (2)0.0778 (19)0.0323 (16)0.0096 (14)0.0020 (16)
O30.0607 (16)0.095 (2)0.0808 (19)0.0177 (15)0.0098 (14)0.0268 (16)
C10.0516 (19)0.0472 (18)0.076 (2)0.0054 (15)0.0188 (17)0.0007 (16)
C20.057 (2)0.058 (2)0.065 (2)0.0037 (17)0.0155 (17)0.0059 (16)
C30.0477 (17)0.0525 (19)0.066 (2)0.0040 (15)0.0128 (16)0.0029 (16)
C40.0463 (17)0.0494 (17)0.066 (2)0.0043 (15)0.0138 (16)0.0054 (16)
C50.0530 (19)0.0452 (17)0.068 (2)0.0037 (15)0.0226 (17)0.0006 (15)
C60.0457 (16)0.0420 (16)0.064 (2)0.0016 (14)0.0159 (14)0.0011 (14)
C70.0489 (18)0.0544 (19)0.070 (2)0.0055 (16)0.0150 (16)0.0036 (17)
C80.052 (2)0.059 (2)0.071 (2)0.0067 (17)0.0109 (17)0.0097 (18)
C90.0520 (19)0.054 (2)0.059 (2)0.0062 (16)0.0164 (16)0.0026 (16)
C100.0502 (18)0.0512 (19)0.0548 (19)0.0021 (15)0.0104 (15)0.0036 (14)
C110.069 (2)0.058 (2)0.059 (2)0.0038 (18)0.0096 (17)0.0078 (17)
C120.058 (2)0.075 (2)0.064 (2)0.004 (2)0.0050 (17)0.0049 (19)
C130.0466 (19)0.061 (2)0.075 (2)0.0020 (17)0.0068 (17)0.0090 (18)
C140.0529 (19)0.0468 (17)0.064 (2)0.0014 (16)0.0130 (16)0.0013 (15)
C150.0471 (17)0.0505 (18)0.057 (2)0.0027 (15)0.0079 (14)0.0020 (15)
C160.104 (4)0.155 (5)0.069 (3)0.039 (4)0.006 (3)0.020 (3)
C170.067 (3)0.088 (3)0.094 (3)0.030 (2)0.025 (2)0.000 (2)
Geometric parameters (Å, º) top
Br1—C141.877 (3)C8—H8A0.9300
F1—C131.348 (4)C9—C101.466 (5)
O1—C31.345 (4)C9—H9A0.9300
O1—C161.441 (5)C10—C111.374 (5)
O2—C41.362 (4)C10—C151.405 (5)
O2—C171.390 (5)C11—C121.390 (5)
O3—C71.231 (4)C11—H11A0.9300
C1—C61.377 (5)C12—C131.371 (5)
C1—C21.383 (5)C12—H12A0.9300
C1—H1A0.9300C13—C141.377 (5)
C2—C31.385 (5)C14—C151.381 (5)
C2—H2A0.9300C15—H15A0.9300
C3—C41.405 (5)C16—H16A0.9600
C4—C51.364 (5)C16—H16B0.9600
C5—C61.414 (5)C16—H16C0.9600
C5—H5A0.9300C17—H17A0.9600
C6—C71.479 (5)C17—H17B0.9600
C7—C81.487 (5)C17—H17C0.9600
C8—C91.315 (5)
C3—O1—C16118.2 (3)C11—C10—C9120.0 (3)
C4—O2—C17119.9 (3)C15—C10—C9121.2 (3)
C6—C1—C2122.0 (3)C10—C11—C12121.5 (3)
C6—C1—H1A119.0C10—C11—H11A119.3
C2—C1—H1A119.0C12—C11—H11A119.3
C1—C2—C3120.0 (3)C13—C12—C11119.0 (3)
C1—C2—H2A120.0C13—C12—H12A120.5
C3—C2—H2A120.0C11—C12—H12A120.5
O1—C3—C2125.2 (3)F1—C13—C12119.7 (3)
O1—C3—C4116.0 (3)F1—C13—C14119.4 (3)
C2—C3—C4118.8 (3)C12—C13—C14120.8 (3)
O2—C4—C5125.1 (3)C13—C14—C15120.3 (3)
O2—C4—C3114.2 (3)C13—C14—Br1118.7 (3)
C5—C4—C3120.7 (3)C15—C14—Br1121.0 (3)
C4—C5—C6120.8 (3)C14—C15—C10119.7 (3)
C4—C5—H5A119.6C14—C15—H15A120.1
C6—C5—H5A119.6C10—C15—H15A120.1
C1—C6—C5117.7 (3)O1—C16—H16A109.5
C1—C6—C7123.7 (3)O1—C16—H16B109.5
C5—C6—C7118.5 (3)H16A—C16—H16B109.5
O3—C7—C6120.6 (3)O1—C16—H16C109.5
O3—C7—C8119.8 (3)H16A—C16—H16C109.5
C6—C7—C8119.5 (3)H16B—C16—H16C109.5
C9—C8—C7122.0 (3)O2—C17—H17A109.5
C9—C8—H8A119.0O2—C17—H17B109.5
C7—C8—H8A119.0H17A—C17—H17B109.5
C8—C9—C10127.8 (3)O2—C17—H17C109.5
C8—C9—H9A116.1H17A—C17—H17C109.5
C10—C9—H9A116.1H17B—C17—H17C109.5
C11—C10—C15118.7 (3)
C6—C1—C2—C31.3 (5)C5—C6—C7—C8178.8 (3)
C16—O1—C3—C27.8 (6)O3—C7—C8—C911.1 (6)
C16—O1—C3—C4171.3 (4)C6—C7—C8—C9165.6 (3)
C1—C2—C3—O1175.4 (3)C7—C8—C9—C10175.7 (3)
C1—C2—C3—C43.7 (5)C8—C9—C10—C11178.4 (4)
C17—O2—C4—C58.4 (6)C8—C9—C10—C150.1 (6)
C17—O2—C4—C3174.5 (4)C15—C10—C11—C120.4 (5)
O1—C3—C4—O21.4 (5)C9—C10—C11—C12178.8 (3)
C2—C3—C4—O2179.4 (3)C10—C11—C12—C130.0 (6)
O1—C3—C4—C5175.8 (3)C11—C12—C13—F1180.0 (3)
C2—C3—C4—C53.3 (5)C11—C12—C13—C141.0 (6)
O2—C4—C5—C6177.4 (3)F1—C13—C14—C15179.3 (3)
C3—C4—C5—C60.5 (5)C12—C13—C14—C151.7 (6)
C2—C1—C6—C51.6 (5)F1—C13—C14—Br12.8 (5)
C2—C1—C6—C7175.4 (3)C12—C13—C14—Br1176.2 (3)
C4—C5—C6—C12.0 (5)C13—C14—C15—C101.2 (5)
C4—C5—C6—C7175.1 (3)Br1—C14—C15—C10176.6 (2)
C1—C6—C7—O3174.9 (3)C11—C10—C15—C140.2 (5)
C5—C6—C7—O32.1 (5)C9—C10—C15—C14178.2 (3)
C1—C6—C7—C81.9 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···O2i0.932.613.506 (5)162
C11—H11A···O3ii0.932.463.358 (5)162
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+1, y+2, z.
Percentage contributions of interatomic contacts to the Hirshfeld surface for the title compound top
ContactPercentage contribution
H···H29.7
C···H/H···C19.2
O···H/H···O17.9
Br···H/H···Br11.2
F···H/H···F6.8
Br···C/C···Br5.6
F···C/C···F5.0
C···C3.1
F···O/O···F0.7
C···O/O···C0.4
 

Acknowledgements

The authors extend their appreciation to the Vidya Vikas Research & Development Centre for the facilities and encouragement.

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChidan Kumar, C. S., Fun, H. K., Parlak, C., Rhyman, L., Ramasami, P., Tursun, M., Chandraju, S. & Quah, C. K. (2014). Spectrochim. Acta A Mol. Biomol. Spectrosc. 132, 174–182.  Web of Science CrossRef Google Scholar
First citationEscobar, C. A., Trujillo, A., Howard, J. A. K. & Fuentealba, M. (2012). Acta Cryst. E68, o887.  CrossRef IUCr Journals Google Scholar
First citationEzhilarasi, K. S., Reuben Jonathan, D., Vasanthi, R., Revathi, B. K. & Usha, G. (2015). Acta Cryst. E71, o371–o372.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationKumar, C. S. C., Loh, W. S., Ooi, C. W., Quah, C. K. & Fun, H. K. (2013a). Molecules, 18, 11996–12011.  Web of Science CrossRef Google Scholar
First citationKumar, C. S. C., Loh, W. S., Ooi, C. W., Quah, C. K. & Fun, H. K. (2013b). Molecules, 18, 12707–12724.  Web of Science CrossRef Google Scholar
First citationLi, Z., Wang, Y., Peng, K., Chen, L. & Chu, S. (2012). Acta Cryst. E68, o776.  CrossRef IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheshadri, S. N., Atioğlu, Z., Akkurt, M., Chidan Kumar, C. S., Quah, C. K., Siddaraju, B. P. & Veeraiah, M. K. (2018). Acta Cryst. E74, 935–938.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Byrom, P. G. (1997). Chem. Phys. Lett. 267, 215–220.  CrossRef CAS Web of Science Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17. The University of Western Australia.  Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds