research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Structural analysis of 2-iodo­benzamide and 2-iodo-N-phenyl­benzamide

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440 010, Maharashtra, India, bDepartment of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462 066, Madhya Pradesh, India, and cDepartment of Biotechnology and Food Technology, Durban University of Technology, Durban 4001, South Africa
*Correspondence e-mail: katharigattav@dut.ac.za, nksusa@gmail.com

Edited by J. Simpson, University of Otago, New Zealand (Received 11 June 2018; accepted 13 July 2018; online 20 July 2018)

The title compounds, 2-iodo­benzamide, C7H6INO (I), and 2-iodo-N-phenyl­benzamide, C13H10INO (II), were both synthesized from 2-iodo­benzoic acid. In the crystal structure of (I), N—H⋯O and hydrogen bonds form two sets of closed rings, generating dimers and tetra­mers. These combine with C—I⋯π(ring) halogen bonds to form sheets of mol­ecules in the bc plane. For (II), N—H⋯O hydrogen bonds form chains along the a-axis direction, while inversion-related C—I⋯π(ring) contacts supported by C—H⋯π(ring) interactions generate sheets of mol­ecules along the ab diagonal.

1. Chemical context

Aromatic amides can be found in a wide range of aromatic molecules and they also serve as inter­mediates in the production of many pharmaceutical compounds (Suchetan et al., 2016[Suchetan, P. A., Suresha, E., Naveen, S. & Lokanath, N. K. (2016). Acta Cryst. E72, 819-823.]). Aromatic amides and N-aryl amides display a wide spectrum of pharmacological properties and are used as anti­bacterial (Ragavan et al., 2010[Ragavan, R. V., Vijayakumar, V. & Kumari, N. S. (2010). Eur. J. Med. Chem. 45, 1173-1180.]), analgesic (Starmer et al., 1971[Starmer, G., McLean, S. & Thomas, J. (1971). Toxicol. Appl. Pharmacol. 19, 20-28.]), anti­viral (Hu et al., 2008[Hu, D.-Y., Wan, Q.-Q., Yang, S., Song, B.-A., Bhadury, P. S., Jin, L.-H., Yan, K., Liu, F., Chen, Z. & Xue, W. (2008). J. Agric. Food Chem. 56, 998-1001.]), anti-inflammatory (Kalgutkar et al., 2000[Kalgutkar, A. S., Marnett, A. B., Crews, B. C., Remmel, R. P. & Marnett, L. J. (2000). J. Med. Chem. 43, 2860-2870.]) and anti-cancer (Pradidphol et al., 2012[Pradidphol, N., Kongkathip, N., Sittikul, P., Boonyalai, N. & Kongkathip, B. (2012). Eur. J. Med. Chem. 49, 253-270.]) agents. Furthermore, N-aryl amides are known to act as anti-tumor agents against a broad spectrum of human tumors (Abdou et al., 2004[Abdou, I. M., Saleh, A. M. & Zohdi, H. F. (2004). Molecules, 9, 109-116.]). In view of their potential importance, the title compounds (I)[link] and (II)[link] were synthesized and we report herein a comparison of their structures.

[Scheme 1]

2. Structural commentary

Both compounds (I)[link] and (II)[link] crystallize with one mol­ecule in the asymmetric unit (Z′ = 1). The mol­ecular structures of the mol­ecules are shown in Figs. 1[link] and 2[link], respectively. In (I)[link] the aromatic ring is inclined to the O1/C1/N1 plane of the amide by 44.37 (1)° whereas in (II)[link] the two aromatic rings are almost orthogonal with an angle of 79.84 (6)° between them. The iodo­benzene ring plane is inclined to the O1/C1/N1 amide plane by 52.01 (1)°, somewhat similar to the inclination found for (I)[link], while the phenyl ring of the amide is inclined by 28.45 (5)° to this plane.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link] showing the atom numbering with ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of (II)[link] showing the atom numbering with ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In the crystal structure of compound (I)[link], strong classical N1—H1A⋯O1 and N1—H1B⋯O1 hydrogen bonds, Table 1[link], arrange the mol­ecules in two linked sets of closed rings, forming both dimers with an R22(8) graph-set motif and tetra­mers that enclose R42(8) rings (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]). These contacts form chains of mol­ecules along the a-axis direction (Fig. 3[link]). In addition, C3—I1⋯Cg1 halogen bonds, Table 1[link], combine with the previously mentioned inversion dimers to generate sheets of mol­ecules in the bc plane (Fig. 4[link]).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg1 is the centroid of the C2–C7 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 2.11 2.951 (2) 164
N1—H1B⋯O1ii 0.86 2.05 2.843 (2) 154
C3—I1⋯Cg1iii 2.11 (1) 3.99 (1) 5.877 (2) 148 (1)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y, z; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 3]
Figure 3
Chains of mol­ecules of (I)[link] along the a-axis direction, showing the dimers and tetra­mers formed by N—H⋯O hydrogen bonds.
[Figure 4]
Figure 4
N—H⋯O and C—I⋯π(ring) contacts forming sheets of mol­ecules of (I)[link] in the bc plane.

For compound (II)[link], the absence of a second H atom on the N1 amine nitro­gen atom limits the formation of classical hydrogen bonds to N1—H1⋯O1 contacts that generate C(4) mol­ecular chains along the a-axis direction (Fig. 5[link], Table 2[link]). Additional weak inversion-related C3—I1⋯Cg2 inter­actions (Table 2[link]), in this instance also supported by C6—H6⋯Cg2 contacts that also lie about an inversion centre, form sheets of mol­ecules along the ab diagonal (Fig. 6[link], Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg2 is the centroid of the C8–C13 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.88 2.15 2.942 (2) 150
C3—I1⋯Cg2ii 2.10 (1) 3.83 (1) 5.816 (2) 156 (1)
C6—H6⋯Cg2iii 0.95 2.81 3.627 (2) 144
Symmetry codes: (i) x+1, y, z; (ii) -x, -y, -z+1; (iii) -x+1, -y+1, -z+1.
[Figure 5]
Figure 5
N—H⋯O hydrogen bonds forming chains of mol­ecules of (II)[link] along the a-axis direction.
[Figure 6]
Figure 6
C—I⋯π(ring) and C—H⋯π(ring) contacts generating sheets of mol­ecules of (II)[link] along the ab diagonal

4. Database survey

A search for the crystal structures of 2-iodo­benzamide and 2-iodo-N-phenyl­benzamide was carried out in the Cambridge Structural Database (Conquest Version 1.17; CSD Version 5.39, last update November 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). Compound (I)[link] was found to have been previously reported from film data (IBNZAM; Nakata et al., 1976[Nakata, K., Tateno, T. & Sakurai, K. (1976). Mem. Osaka Kyoiku Univ. Ser. 3, 25, 61.]), but there were no hits for compound (II)[link]. Four other related structures were observed: two fluorine-substituted 2-iodo­benzamides, FAHSAK and FAHSIS (Nayak et al., 2012[Nayak, S. K., Reddy, M. K., Chopra, D. & Guru Row, T. N. (2012). CrystEngComm, 14, 200-210.]) and two nitro substituted 2-iodo­benzamides, TAQBIX (Garden et al., 2005[Garden, S. J., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. C61, o450-o451.]) and WAWMAJ (Wardell et al., 2005[Wardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o634-o638.]).

5. Synthesis and crystallization

The synthesis of the title compounds was carried out using a reported procedure (Jursic & Zdravkovski, 1993[Jursic, B. S. & Zdravkovski, Z. (1993). Synth. Commun. 23, 2761-2770.]; Kavala et al., 2012[Kavala, V., Wang, C.-C., Barange, D. K., Kuo, C.-W., Lei, P.-M. & Yao, C.-F. (2012). J. Org. Chem. 77, 5022-5029.]; Mao et al., 2012[Mao, W., Ning, M., Liu, Z., Zhu, Q., Leng, Y. & Zhang, A. (2012). Bioorg. Med. Chem. 20, 2982-2991.]). Single crystals for both compounds were grown by the slow evaporation method from di­chloro­methane and hexane (v/v 1:1) at low temperature for (I)[link], whereas those for compound (II)[link] were obtained from aceto­nitrile solvent at room temperature. The melting points of (I)[link] and (II)[link] are 398.2 and 419.6 K, respectively. Infra-red (IR) spectra confirm the presence of various functional groups as follows: compound (I)[link] (cm−1): N—H = 3362, 3177, C=O = 1644, C=C = 1581–1470, ortho-substituted ring = 734; compound (II)[link] (cm−1): N—H = 3235, Csp2—H = 3037, C=O = 1646, C=C = 1536–1488, ortho-substituted ring = 752, N—H bending = 1597.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were refined using a riding model with d(N—H) = 0.86 Å, Uiso(H) = 1.2Ueq(N) and d(C—H) = 0.93 Å, Uiso(H) = 1.2Ueq(C) for (I)[link] and d(N—H) = 0.88 Å, Uiso(H) = 1.2Ueq(N) and d(C—H) = 0.95 Å, Uiso(H) = 1.2Ueq(C) for (II)[link].

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C7H6INO C13H10INO
Mr 247.03 323.12
Crystal system, space group Monoclinic, P21/n Triclinic, P[\overline{1}]
Temperature (K) 296 120
a, b, c (Å) 5.0531 (2), 11.4478 (5), 13.2945 (5) 5.1225 (2), 10.4572 (4), 12.2167 (5)
α, β, γ (°) 90, 93.245 (1), 90 66.034 (2), 78.882 (2), 85.760 (2)
V3) 767.81 (5) 586.76 (4)
Z 4 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 4.10 2.71
Crystal size (mm) 0.23 × 0.22 × 0.21 0.23 × 0.22 × 0.21
 
Data collection
Diffractometer Bruker Kappa APEXII DUO Bruker Kappa APEXII DUO
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.429, 0.456 0.546, 0.570
No. of measured, independent and observed [I > 2σ(I)] reflections 5827, 1504, 1461 13292, 2309, 2278
Rint 0.021 0.018
(sin θ/λ)max−1) 0.617 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.014, 0.033, 1.16 0.017, 0.042, 1.08
No. of reflections 1504 2309
No. of parameters 92 145
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.45, −0.35 0.81, −0.48
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS14 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS14 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008). Software used to prepare material for publication: WinGX (Farrugia, 2012), PLATON (Spek, 2009) and PARST (Nardelli, 1995) for (I); WinGX (Farrugia, 2012) and PLATON (Spek, 2009) for (II).

2-Iodobenzamide (I) top
Crystal data top
C7H6INOF(000) = 464
Mr = 247.03Dx = 2.137 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 5.0531 (2) ÅCell parameters from 1504 reflections
b = 11.4478 (5) Åθ = 2.3–26.0°
c = 13.2945 (5) ŵ = 4.10 mm1
β = 93.245 (1)°T = 296 K
V = 767.81 (5) Å3Plate, colorless
Z = 40.23 × 0.22 × 0.21 mm
Data collection top
Bruker Kappa APEXII DUO
diffractometer
1504 independent reflections
Radiation source: fine-focus sealed tube1461 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 66
Tmin = 0.429, Tmax = 0.456k = 1411
5827 measured reflectionsl = 1516
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.014 w = 1/[σ2(Fo2) + (0.0075P)2 + 0.6908P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.033(Δ/σ)max = 0.002
S = 1.16Δρmax = 0.45 e Å3
1504 reflectionsΔρmin = 0.35 e Å3
92 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0170 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.14922 (2)0.55570 (2)0.18090 (2)0.01703 (7)
O10.3073 (3)0.43218 (14)0.39426 (11)0.0177 (3)
N10.7508 (3)0.44020 (16)0.41536 (14)0.0168 (4)
H1A0.74380.46500.47620.020*
H1B0.90180.42970.39000.020*
C50.6303 (4)0.2793 (2)0.06578 (17)0.0219 (5)
H50.65140.24730.00240.026*
C60.7846 (4)0.23997 (19)0.14775 (17)0.0202 (5)
H60.91130.18240.13960.024*
C70.7504 (4)0.28652 (19)0.24225 (17)0.0165 (4)
H70.85550.25980.29720.020*
C20.5610 (4)0.37276 (18)0.25648 (15)0.0125 (4)
C10.5297 (4)0.41830 (18)0.36086 (15)0.0125 (4)
C40.4440 (4)0.3662 (2)0.07746 (16)0.0193 (5)
H40.34160.39310.02190.023*
C30.4101 (4)0.41317 (18)0.17218 (16)0.0138 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01454 (9)0.01736 (10)0.01910 (10)0.00237 (5)0.00030 (5)0.00353 (5)
O10.0082 (7)0.0300 (9)0.0152 (8)0.0007 (6)0.0019 (5)0.0026 (6)
N10.0094 (8)0.0280 (11)0.0132 (9)0.0003 (7)0.0021 (6)0.0044 (8)
C50.0286 (12)0.0200 (11)0.0177 (12)0.0038 (9)0.0070 (9)0.0071 (9)
C60.0210 (11)0.0125 (11)0.0277 (12)0.0010 (9)0.0085 (9)0.0048 (9)
C70.0138 (9)0.0140 (10)0.0220 (11)0.0022 (8)0.0024 (8)0.0013 (9)
C20.0100 (9)0.0122 (10)0.0154 (10)0.0034 (7)0.0019 (7)0.0003 (8)
C10.0118 (9)0.0117 (9)0.0142 (10)0.0002 (8)0.0015 (7)0.0036 (8)
C40.0213 (10)0.0226 (12)0.0140 (11)0.0042 (9)0.0002 (8)0.0012 (9)
C30.0120 (9)0.0122 (10)0.0173 (11)0.0019 (8)0.0025 (8)0.0005 (8)
Geometric parameters (Å, º) top
I1—C32.105 (2)C6—C71.385 (3)
O1—C11.242 (2)C6—H60.9300
N1—C11.321 (3)C7—C21.395 (3)
N1—H1A0.8600C7—H70.9300
N1—H1B0.8600C2—C31.398 (3)
C5—C61.379 (3)C2—C11.499 (3)
C5—C41.384 (3)C4—C31.389 (3)
C5—H50.9300C4—H40.9300
C1—N1—H1A120.0C7—C2—C3118.20 (19)
C1—N1—H1B120.0C7—C2—C1118.73 (18)
H1A—N1—H1B120.0C3—C2—C1123.07 (18)
C6—C5—C4120.2 (2)O1—C1—N1122.29 (19)
C6—C5—H5119.9O1—C1—C2121.37 (18)
C4—C5—H5119.9N1—C1—C2116.32 (16)
C5—C6—C7119.8 (2)C5—C4—C3120.0 (2)
C5—C6—H6120.1C5—C4—H4120.0
C7—C6—H6120.1C3—C4—H4120.0
C6—C7—C2121.1 (2)C4—C3—C2120.61 (19)
C6—C7—H7119.4C4—C3—I1117.38 (16)
C2—C7—H7119.4C2—C3—I1121.81 (15)
C4—C5—C6—C70.9 (3)C6—C5—C4—C30.7 (3)
C5—C6—C7—C20.2 (3)C5—C4—C3—C20.6 (3)
C6—C7—C2—C31.5 (3)C5—C4—C3—I1174.29 (16)
C6—C7—C2—C1178.91 (18)C7—C2—C3—C41.7 (3)
C7—C2—C1—O1135.1 (2)C1—C2—C3—C4178.75 (18)
C3—C2—C1—O145.3 (3)C7—C2—C3—I1172.99 (14)
C7—C2—C1—N143.5 (3)C1—C2—C3—I16.6 (3)
C3—C2—C1—N1136.1 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 phenyl ring.
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.112.951 (2)164
N1—H1B···O1ii0.862.052.843 (2)154
C3—I1···Cg1iii2.11 (1)3.99 (1)5.877 (2)148 (1)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x+1/2, y+1/2, z+1/2.
2-Iodo-N-phenylbenzamide (II) top
Crystal data top
C13H10INOZ = 2
Mr = 323.12F(000) = 312
Triclinic, P1Dx = 1.829 Mg m3
a = 5.1225 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.4572 (4) ÅCell parameters from 2309 reflections
c = 12.2167 (5) Åθ = 1.9–26.0°
α = 66.034 (2)°µ = 2.71 mm1
β = 78.882 (2)°T = 120 K
γ = 85.760 (2)°Plate, colorless
V = 586.76 (4) Å30.23 × 0.22 × 0.21 mm
Data collection top
Bruker Kappa APEXII DUO
diffractometer
2309 independent reflections
Radiation source: fine-focus sealed tube2278 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 66
Tmin = 0.546, Tmax = 0.570k = 1212
13292 measured reflectionsl = 1514
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.017H-atom parameters constrained
wR(F2) = 0.042 w = 1/[σ2(Fo2) + (0.0207P)2 + 0.7193P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2309 reflectionsΔρmax = 0.81 e Å3
145 parametersΔρmin = 0.48 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.30400 (3)0.03723 (2)0.77480 (2)0.01972 (6)
O10.1224 (3)0.31161 (18)0.51921 (14)0.0233 (3)
N10.3285 (3)0.2852 (2)0.49180 (16)0.0169 (4)
H10.46680.27310.52790.020*
C10.0875 (4)0.2939 (2)0.55727 (19)0.0161 (4)
C20.0968 (4)0.2802 (2)0.68392 (19)0.0148 (4)
C30.0677 (4)0.1861 (2)0.7861 (2)0.0156 (4)
C40.0629 (4)0.1793 (2)0.9014 (2)0.0194 (4)
H40.17510.11510.97040.023*
C50.1069 (4)0.2670 (2)0.9157 (2)0.0206 (4)
H50.10910.26320.99450.025*
C60.2728 (4)0.3597 (2)0.8154 (2)0.0198 (4)
H60.38930.41910.82550.024*
C70.2685 (4)0.3657 (2)0.7005 (2)0.0169 (4)
H70.38380.42890.63210.020*
C80.3800 (4)0.2938 (2)0.37055 (19)0.0159 (4)
C90.2215 (4)0.3717 (2)0.2855 (2)0.0180 (4)
H90.06830.41850.30830.022*
C100.2897 (4)0.3802 (2)0.1671 (2)0.0191 (4)
H100.18210.43340.10890.023*
C110.5124 (4)0.3123 (2)0.1323 (2)0.0203 (4)
H110.55790.31900.05100.024*
C120.6677 (4)0.2343 (2)0.2180 (2)0.0209 (5)
H120.82040.18730.19520.025*
C130.6024 (4)0.2245 (2)0.3364 (2)0.0192 (4)
H130.70940.17030.39450.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01580 (8)0.01876 (9)0.02535 (9)0.00291 (5)0.00378 (6)0.00904 (6)
O10.0114 (7)0.0402 (10)0.0194 (8)0.0006 (7)0.0035 (6)0.0126 (7)
N10.0106 (8)0.0271 (10)0.0150 (9)0.0003 (7)0.0026 (7)0.0103 (8)
C10.0134 (10)0.0183 (10)0.0171 (10)0.0018 (8)0.0013 (8)0.0078 (8)
C20.0118 (9)0.0171 (10)0.0169 (10)0.0039 (8)0.0035 (8)0.0084 (8)
C30.0109 (9)0.0172 (10)0.0214 (11)0.0004 (8)0.0028 (8)0.0105 (9)
C40.0178 (10)0.0221 (11)0.0160 (10)0.0002 (8)0.0004 (8)0.0069 (9)
C50.0207 (11)0.0270 (12)0.0174 (10)0.0026 (9)0.0042 (8)0.0124 (9)
C60.0186 (10)0.0216 (11)0.0235 (11)0.0002 (8)0.0063 (9)0.0124 (9)
C70.0131 (10)0.0180 (10)0.0187 (10)0.0005 (8)0.0013 (8)0.0070 (9)
C80.0129 (9)0.0206 (10)0.0161 (10)0.0047 (8)0.0003 (8)0.0095 (9)
C90.0139 (10)0.0213 (11)0.0203 (11)0.0010 (8)0.0018 (8)0.0103 (9)
C100.0179 (10)0.0220 (11)0.0179 (10)0.0045 (8)0.0046 (8)0.0071 (9)
C110.0208 (11)0.0247 (11)0.0182 (10)0.0076 (9)0.0010 (8)0.0121 (9)
C120.0152 (10)0.0256 (12)0.0259 (12)0.0031 (9)0.0014 (9)0.0159 (10)
C130.0138 (10)0.0244 (11)0.0218 (11)0.0004 (8)0.0046 (8)0.0109 (9)
Geometric parameters (Å, º) top
I1—C32.104 (2)C6—H60.9500
O1—C11.225 (3)C7—H70.9500
N1—C11.354 (3)C8—C131.392 (3)
N1—C81.420 (3)C8—C91.394 (3)
N1—H10.8800C9—C101.388 (3)
C1—C21.505 (3)C9—H90.9500
C2—C71.395 (3)C10—C111.388 (3)
C2—C31.399 (3)C10—H100.9500
C3—C41.387 (3)C11—C121.388 (3)
C4—C51.390 (3)C11—H110.9500
C4—H40.9500C12—C131.382 (3)
C5—C61.385 (3)C12—H120.9500
C5—H50.9500C13—H130.9500
C6—C71.384 (3)
C1—N1—C8126.37 (18)C6—C7—C2120.8 (2)
C1—N1—H1116.8C6—C7—H7119.6
C8—N1—H1116.8C2—C7—H7119.6
O1—C1—N1124.4 (2)C13—C8—C9119.80 (19)
O1—C1—C2121.64 (19)C13—C8—N1117.79 (19)
N1—C1—C2113.98 (18)C9—C8—N1122.38 (19)
C7—C2—C3118.70 (19)C10—C9—C8119.4 (2)
C7—C2—C1119.60 (19)C10—C9—H9120.3
C3—C2—C1121.68 (18)C8—C9—H9120.3
C4—C3—C2120.61 (19)C11—C10—C9121.1 (2)
C4—C3—I1117.07 (16)C11—C10—H10119.5
C2—C3—I1122.08 (15)C9—C10—H10119.5
C3—C4—C5119.7 (2)C10—C11—C12119.0 (2)
C3—C4—H4120.1C10—C11—H11120.5
C5—C4—H4120.1C12—C11—H11120.5
C6—C5—C4120.3 (2)C13—C12—C11120.7 (2)
C6—C5—H5119.9C13—C12—H12119.7
C4—C5—H5119.9C11—C12—H12119.7
C7—C6—C5119.9 (2)C12—C13—C8120.1 (2)
C7—C6—H6120.1C12—C13—H13120.0
C5—C6—H6120.1C8—C13—H13120.0
C8—N1—C1—O10.6 (4)C5—C6—C7—C20.6 (3)
C8—N1—C1—C2179.69 (19)C3—C2—C7—C61.2 (3)
O1—C1—C2—C7127.2 (2)C1—C2—C7—C6177.16 (19)
N1—C1—C2—C752.6 (3)C1—N1—C8—C13152.1 (2)
O1—C1—C2—C351.1 (3)C1—N1—C8—C929.9 (3)
N1—C1—C2—C3129.1 (2)C13—C8—C9—C100.7 (3)
C7—C2—C3—C40.9 (3)N1—C8—C9—C10177.34 (19)
C1—C2—C3—C4177.47 (19)C8—C9—C10—C110.1 (3)
C7—C2—C3—I1173.28 (15)C9—C10—C11—C120.3 (3)
C1—C2—C3—I18.4 (3)C10—C11—C12—C130.1 (3)
C2—C3—C4—C50.1 (3)C11—C12—C13—C80.4 (3)
I1—C3—C4—C5174.51 (16)C9—C8—C13—C120.8 (3)
C3—C4—C5—C60.7 (3)N1—C8—C13—C12177.3 (2)
C4—C5—C6—C70.4 (3)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C8–C13 benzene ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.882.152.942 (2)150
C3—I1···Cg2ii2.10 (1)3.83 (1)5.816 (2)156 (1)
C6—H6···Cg2iii0.952.813.627 (2)144
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1; (iii) x+1, y+1, z+1.
 

Acknowledgements

We thank Dr Deepak Chopra, IISER, Bhopal for the single-crystal X-ray data collection.

Funding information

This research work was supported by Visvesvaraya National Institute of Technology (VNIT), Nagpur, India. We also thank the National Research Foundation (91995 and 96807), South Africa, and Durban University of Technology, South Africa, for support.

References

First citationAbdou, I. M., Saleh, A. M. & Zohdi, H. F. (2004). Molecules, 9, 109–116.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGarden, S. J., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. C61, o450–o451.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHu, D.-Y., Wan, Q.-Q., Yang, S., Song, B.-A., Bhadury, P. S., Jin, L.-H., Yan, K., Liu, F., Chen, Z. & Xue, W. (2008). J. Agric. Food Chem. 56, 998–1001.  CrossRef Google Scholar
First citationJursic, B. S. & Zdravkovski, Z. (1993). Synth. Commun. 23, 2761–2770.  CrossRef Google Scholar
First citationKalgutkar, A. S., Marnett, A. B., Crews, B. C., Remmel, R. P. & Marnett, L. J. (2000). J. Med. Chem. 43, 2860–2870.  CrossRef Google Scholar
First citationKavala, V., Wang, C.-C., Barange, D. K., Kuo, C.-W., Lei, P.-M. & Yao, C.-F. (2012). J. Org. Chem. 77, 5022–5029.  CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMao, W., Ning, M., Liu, Z., Zhu, Q., Leng, Y. & Zhang, A. (2012). Bioorg. Med. Chem. 20, 2982–2991.  CrossRef Google Scholar
First citationNakata, K., Tateno, T. & Sakurai, K. (1976). Mem. Osaka Kyoiku Univ. Ser. 3, 25, 61.  Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationNayak, S. K., Reddy, M. K., Chopra, D. & Guru Row, T. N. (2012). CrystEngComm, 14, 200–210.  Web of Science CSD CrossRef CAS Google Scholar
First citationPradidphol, N., Kongkathip, N., Sittikul, P., Boonyalai, N. & Kongkathip, B. (2012). Eur. J. Med. Chem. 49, 253–270.  CrossRef Google Scholar
First citationRagavan, R. V., Vijayakumar, V. & Kumari, N. S. (2010). Eur. J. Med. Chem. 45, 1173–1180.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStarmer, G., McLean, S. & Thomas, J. (1971). Toxicol. Appl. Pharmacol. 19, 20–28.  CrossRef Google Scholar
First citationSuchetan, P. A., Suresha, E., Naveen, S. & Lokanath, N. K. (2016). Acta Cryst. E72, 819–823.  CrossRef IUCr Journals Google Scholar
First citationWardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o634–o638.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds