research communications
Structural analysis of 2-iodobenzamide and 2-iodo-N-phenylbenzamide
aDepartment of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440 010, Maharashtra, India, bDepartment of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462 066, Madhya Pradesh, India, and cDepartment of Biotechnology and Food Technology, Durban University of Technology, Durban 4001, South Africa
*Correspondence e-mail: katharigattav@dut.ac.za, nksusa@gmail.com
The title compounds, 2-iodobenzamide, C7H6INO (I), and 2-iodo-N-phenylbenzamide, C13H10INO (II), were both synthesized from 2-iodobenzoic acid. In the of (I), N—H⋯O and hydrogen bonds form two sets of closed rings, generating dimers and tetramers. These combine with C—I⋯π(ring) halogen bonds to form sheets of molecules in the bc plane. For (II), N—H⋯O hydrogen bonds form chains along the a-axis direction, while inversion-related C—I⋯π(ring) contacts supported by C—H⋯π(ring) interactions generate sheets of molecules along the ab diagonal.
Keywords: crystal structure; benzamide; dimer; tetramer; hydrogen bonds; C—I⋯π(ring) interactions.
1. Chemical context
Aromatic et al., 2016). Aromatic and N-aryl display a wide spectrum of pharmacological properties and are used as antibacterial (Ragavan et al., 2010), analgesic (Starmer et al., 1971), antiviral (Hu et al., 2008), anti-inflammatory (Kalgutkar et al., 2000) and anti-cancer (Pradidphol et al., 2012) agents. Furthermore, N-aryl are known to act as anti-tumor agents against a broad spectrum of human tumors (Abdou et al., 2004). In view of their potential importance, the title compounds (I) and (II) were synthesized and we report herein a comparison of their structures.
can be found in a wide range of aromatic molecules and they also serve as intermediates in the production of many pharmaceutical compounds (Suchetan2. Structural commentary
Both compounds (I) and (II) crystallize with one molecule in the (Z′ = 1). The molecular structures of the molecules are shown in Figs. 1 and 2, respectively. In (I) the aromatic ring is inclined to the O1/C1/N1 plane of the amide by 44.37 (1)° whereas in (II) the two aromatic rings are almost orthogonal with an angle of 79.84 (6)° between them. The iodobenzene ring plane is inclined to the O1/C1/N1 amide plane by 52.01 (1)°, somewhat similar to the inclination found for (I), while the phenyl ring of the amide is inclined by 28.45 (5)° to this plane.
3. Supramolecular features
In the , strong classical N1—H1A⋯O1 and N1—H1B⋯O1 hydrogen bonds, Table 1, arrange the molecules in two linked sets of closed rings, forming both dimers with an R22(8) graph-set motif and tetramers that enclose R42(8) rings (Etter et al., 1990). These contacts form chains of molecules along the a-axis direction (Fig. 3). In addition, C3—I1⋯Cg1 halogen bonds, Table 1, combine with the previously mentioned inversion dimers to generate sheets of molecules in the bc plane (Fig. 4).
of compound (I)For compound (II), the absence of a second H atom on the N1 amine nitrogen atom limits the formation of classical hydrogen bonds to N1—H1⋯O1 contacts that generate C(4) molecular chains along the a-axis direction (Fig. 5, Table 2). Additional weak inversion-related C3—I1⋯Cg2 interactions (Table 2), in this instance also supported by C6—H6⋯Cg2 contacts that also lie about an inversion centre, form sheets of molecules along the ab diagonal (Fig. 6, Table 2).
4. Database survey
A search for the crystal structures of 2-iodobenzamide and 2-iodo-N-phenylbenzamide was carried out in the Cambridge Structural Database (Conquest Version 1.17; CSD Version 5.39, last update November 2017; Groom et al., 2016). Compound (I) was found to have been previously reported from film data (IBNZAM; Nakata et al., 1976), but there were no hits for compound (II). Four other related structures were observed: two fluorine-substituted 2-iodobenzamides, FAHSAK and FAHSIS (Nayak et al., 2012) and two nitro substituted 2-iodobenzamides, TAQBIX (Garden et al., 2005) and WAWMAJ (Wardell et al., 2005).
5. Synthesis and crystallization
The synthesis of the title compounds was carried out using a reported procedure (Jursic & Zdravkovski, 1993; Kavala et al., 2012; Mao et al., 2012). Single crystals for both compounds were grown by the slow evaporation method from dichloromethane and hexane (v/v 1:1) at low temperature for (I), whereas those for compound (II) were obtained from acetonitrile solvent at room temperature. The melting points of (I) and (II) are 398.2 and 419.6 K, respectively. Infra-red (IR) spectra confirm the presence of various functional groups as follows: compound (I) (cm−1): N—H = 3362, 3177, C=O = 1644, C=C = 1581–1470, ortho-substituted ring = 734; compound (II) (cm−1): N—H = 3235, Csp2—H = 3037, C=O = 1646, C=C = 1536–1488, ortho-substituted ring = 752, N—H bending = 1597.
6. Refinement
Crystal data, data collection and structure . All H atoms were refined using a riding model with d(N—H) = 0.86 Å, Uiso(H) = 1.2Ueq(N) and d(C—H) = 0.93 Å, Uiso(H) = 1.2Ueq(C) for (I) and d(N—H) = 0.88 Å, Uiso(H) = 1.2Ueq(N) and d(C—H) = 0.95 Å, Uiso(H) = 1.2Ueq(C) for (II).
details are summarized in Table 3
|
Supporting information
https://doi.org/10.1107/S2056989018010162/sj5558sup1.cif
contains datablocks global, I, II. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018010162/sj5558Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989018010162/sj5558IIsup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018010162/sj5558Isup4.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989018010162/sj5558IIsup5.cml
For both structures, data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS14 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008). Software used to prepare material for publication: WinGX (Farrugia, 2012), PLATON (Spek, 2009) and PARST (Nardelli, 1995) for (I); WinGX (Farrugia, 2012) and PLATON (Spek, 2009) for (II).C7H6INO | F(000) = 464 |
Mr = 247.03 | Dx = 2.137 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 5.0531 (2) Å | Cell parameters from 1504 reflections |
b = 11.4478 (5) Å | θ = 2.3–26.0° |
c = 13.2945 (5) Å | µ = 4.10 mm−1 |
β = 93.245 (1)° | T = 296 K |
V = 767.81 (5) Å3 | Plate, colorless |
Z = 4 | 0.23 × 0.22 × 0.21 mm |
Bruker Kappa APEXII DUO diffractometer | 1504 independent reflections |
Radiation source: fine-focus sealed tube | 1461 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.021 |
ω scans | θmax = 26.0°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | h = −6→6 |
Tmin = 0.429, Tmax = 0.456 | k = −14→11 |
5827 measured reflections | l = −15→16 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.014 | w = 1/[σ2(Fo2) + (0.0075P)2 + 0.6908P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.033 | (Δ/σ)max = 0.002 |
S = 1.16 | Δρmax = 0.45 e Å−3 |
1504 reflections | Δρmin = −0.35 e Å−3 |
92 parameters | Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0170 (5) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
I1 | 0.14922 (2) | 0.55570 (2) | 0.18090 (2) | 0.01703 (7) | |
O1 | 0.3073 (3) | 0.43218 (14) | 0.39426 (11) | 0.0177 (3) | |
N1 | 0.7508 (3) | 0.44020 (16) | 0.41536 (14) | 0.0168 (4) | |
H1A | 0.7438 | 0.4650 | 0.4762 | 0.020* | |
H1B | 0.9018 | 0.4297 | 0.3900 | 0.020* | |
C5 | 0.6303 (4) | 0.2793 (2) | 0.06578 (17) | 0.0219 (5) | |
H5 | 0.6514 | 0.2473 | 0.0024 | 0.026* | |
C6 | 0.7846 (4) | 0.23997 (19) | 0.14775 (17) | 0.0202 (5) | |
H6 | 0.9113 | 0.1824 | 0.1396 | 0.024* | |
C7 | 0.7504 (4) | 0.28652 (19) | 0.24225 (17) | 0.0165 (4) | |
H7 | 0.8555 | 0.2598 | 0.2972 | 0.020* | |
C2 | 0.5610 (4) | 0.37276 (18) | 0.25648 (15) | 0.0125 (4) | |
C1 | 0.5297 (4) | 0.41830 (18) | 0.36086 (15) | 0.0125 (4) | |
C4 | 0.4440 (4) | 0.3662 (2) | 0.07746 (16) | 0.0193 (5) | |
H4 | 0.3416 | 0.3931 | 0.0219 | 0.023* | |
C3 | 0.4101 (4) | 0.41317 (18) | 0.17218 (16) | 0.0138 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.01454 (9) | 0.01736 (10) | 0.01910 (10) | 0.00237 (5) | 0.00030 (5) | 0.00353 (5) |
O1 | 0.0082 (7) | 0.0300 (9) | 0.0152 (8) | −0.0007 (6) | 0.0019 (5) | −0.0026 (6) |
N1 | 0.0094 (8) | 0.0280 (11) | 0.0132 (9) | −0.0003 (7) | 0.0021 (6) | −0.0044 (8) |
C5 | 0.0286 (12) | 0.0200 (11) | 0.0177 (12) | −0.0038 (9) | 0.0070 (9) | −0.0071 (9) |
C6 | 0.0210 (11) | 0.0125 (11) | 0.0277 (12) | −0.0010 (9) | 0.0085 (9) | −0.0048 (9) |
C7 | 0.0138 (9) | 0.0140 (10) | 0.0220 (11) | −0.0022 (8) | 0.0024 (8) | 0.0013 (9) |
C2 | 0.0100 (9) | 0.0122 (10) | 0.0154 (10) | −0.0034 (7) | 0.0019 (7) | −0.0003 (8) |
C1 | 0.0118 (9) | 0.0117 (9) | 0.0142 (10) | −0.0002 (8) | 0.0015 (7) | 0.0036 (8) |
C4 | 0.0213 (10) | 0.0226 (12) | 0.0140 (11) | −0.0042 (9) | −0.0002 (8) | −0.0012 (9) |
C3 | 0.0120 (9) | 0.0122 (10) | 0.0173 (11) | −0.0019 (8) | 0.0025 (8) | 0.0005 (8) |
I1—C3 | 2.105 (2) | C6—C7 | 1.385 (3) |
O1—C1 | 1.242 (2) | C6—H6 | 0.9300 |
N1—C1 | 1.321 (3) | C7—C2 | 1.395 (3) |
N1—H1A | 0.8600 | C7—H7 | 0.9300 |
N1—H1B | 0.8600 | C2—C3 | 1.398 (3) |
C5—C6 | 1.379 (3) | C2—C1 | 1.499 (3) |
C5—C4 | 1.384 (3) | C4—C3 | 1.389 (3) |
C5—H5 | 0.9300 | C4—H4 | 0.9300 |
C1—N1—H1A | 120.0 | C7—C2—C3 | 118.20 (19) |
C1—N1—H1B | 120.0 | C7—C2—C1 | 118.73 (18) |
H1A—N1—H1B | 120.0 | C3—C2—C1 | 123.07 (18) |
C6—C5—C4 | 120.2 (2) | O1—C1—N1 | 122.29 (19) |
C6—C5—H5 | 119.9 | O1—C1—C2 | 121.37 (18) |
C4—C5—H5 | 119.9 | N1—C1—C2 | 116.32 (16) |
C5—C6—C7 | 119.8 (2) | C5—C4—C3 | 120.0 (2) |
C5—C6—H6 | 120.1 | C5—C4—H4 | 120.0 |
C7—C6—H6 | 120.1 | C3—C4—H4 | 120.0 |
C6—C7—C2 | 121.1 (2) | C4—C3—C2 | 120.61 (19) |
C6—C7—H7 | 119.4 | C4—C3—I1 | 117.38 (16) |
C2—C7—H7 | 119.4 | C2—C3—I1 | 121.81 (15) |
C4—C5—C6—C7 | 0.9 (3) | C6—C5—C4—C3 | −0.7 (3) |
C5—C6—C7—C2 | 0.2 (3) | C5—C4—C3—C2 | −0.6 (3) |
C6—C7—C2—C3 | −1.5 (3) | C5—C4—C3—I1 | 174.29 (16) |
C6—C7—C2—C1 | 178.91 (18) | C7—C2—C3—C4 | 1.7 (3) |
C7—C2—C1—O1 | −135.1 (2) | C1—C2—C3—C4 | −178.75 (18) |
C3—C2—C1—O1 | 45.3 (3) | C7—C2—C3—I1 | −172.99 (14) |
C7—C2—C1—N1 | 43.5 (3) | C1—C2—C3—I1 | 6.6 (3) |
C3—C2—C1—N1 | −136.1 (2) |
Cg1 is the centroid of the C2–C7 phenyl ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O1i | 0.86 | 2.11 | 2.951 (2) | 164 |
N1—H1B···O1ii | 0.86 | 2.05 | 2.843 (2) | 154 |
C3—I1···Cg1iii | 2.11 (1) | 3.99 (1) | 5.877 (2) | 148 (1) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y, z; (iii) −x+1/2, y+1/2, −z+1/2. |
C13H10INO | Z = 2 |
Mr = 323.12 | F(000) = 312 |
Triclinic, P1 | Dx = 1.829 Mg m−3 |
a = 5.1225 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.4572 (4) Å | Cell parameters from 2309 reflections |
c = 12.2167 (5) Å | θ = 1.9–26.0° |
α = 66.034 (2)° | µ = 2.71 mm−1 |
β = 78.882 (2)° | T = 120 K |
γ = 85.760 (2)° | Plate, colorless |
V = 586.76 (4) Å3 | 0.23 × 0.22 × 0.21 mm |
Bruker Kappa APEXII DUO diffractometer | 2309 independent reflections |
Radiation source: fine-focus sealed tube | 2278 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.018 |
ω scans | θmax = 26.0°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | h = −6→6 |
Tmin = 0.546, Tmax = 0.570 | k = −12→12 |
13292 measured reflections | l = −15→14 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.017 | H-atom parameters constrained |
wR(F2) = 0.042 | w = 1/[σ2(Fo2) + (0.0207P)2 + 0.7193P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
2309 reflections | Δρmax = 0.81 e Å−3 |
145 parameters | Δρmin = −0.48 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
I1 | −0.30400 (3) | 0.03723 (2) | 0.77480 (2) | 0.01972 (6) | |
O1 | −0.1224 (3) | 0.31161 (18) | 0.51921 (14) | 0.0233 (3) | |
N1 | 0.3285 (3) | 0.2852 (2) | 0.49180 (16) | 0.0169 (4) | |
H1 | 0.4668 | 0.2731 | 0.5279 | 0.020* | |
C1 | 0.0875 (4) | 0.2939 (2) | 0.55727 (19) | 0.0161 (4) | |
C2 | 0.0968 (4) | 0.2802 (2) | 0.68392 (19) | 0.0148 (4) | |
C3 | −0.0677 (4) | 0.1861 (2) | 0.7861 (2) | 0.0156 (4) | |
C4 | −0.0629 (4) | 0.1793 (2) | 0.9014 (2) | 0.0194 (4) | |
H4 | −0.1751 | 0.1151 | 0.9704 | 0.023* | |
C5 | 0.1069 (4) | 0.2670 (2) | 0.9157 (2) | 0.0206 (4) | |
H5 | 0.1091 | 0.2632 | 0.9945 | 0.025* | |
C6 | 0.2728 (4) | 0.3597 (2) | 0.8154 (2) | 0.0198 (4) | |
H6 | 0.3893 | 0.4191 | 0.8255 | 0.024* | |
C7 | 0.2685 (4) | 0.3657 (2) | 0.7005 (2) | 0.0169 (4) | |
H7 | 0.3838 | 0.4289 | 0.6321 | 0.020* | |
C8 | 0.3800 (4) | 0.2938 (2) | 0.37055 (19) | 0.0159 (4) | |
C9 | 0.2215 (4) | 0.3717 (2) | 0.2855 (2) | 0.0180 (4) | |
H9 | 0.0683 | 0.4185 | 0.3083 | 0.022* | |
C10 | 0.2897 (4) | 0.3802 (2) | 0.1671 (2) | 0.0191 (4) | |
H10 | 0.1821 | 0.4334 | 0.1089 | 0.023* | |
C11 | 0.5124 (4) | 0.3123 (2) | 0.1323 (2) | 0.0203 (4) | |
H11 | 0.5579 | 0.3190 | 0.0510 | 0.024* | |
C12 | 0.6677 (4) | 0.2343 (2) | 0.2180 (2) | 0.0209 (5) | |
H12 | 0.8204 | 0.1873 | 0.1952 | 0.025* | |
C13 | 0.6024 (4) | 0.2245 (2) | 0.3364 (2) | 0.0192 (4) | |
H13 | 0.7094 | 0.1703 | 0.3945 | 0.023* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.01580 (8) | 0.01876 (9) | 0.02535 (9) | −0.00291 (5) | −0.00378 (6) | −0.00904 (6) |
O1 | 0.0114 (7) | 0.0402 (10) | 0.0194 (8) | −0.0006 (7) | −0.0035 (6) | −0.0126 (7) |
N1 | 0.0106 (8) | 0.0271 (10) | 0.0150 (9) | 0.0003 (7) | −0.0026 (7) | −0.0103 (8) |
C1 | 0.0134 (10) | 0.0183 (10) | 0.0171 (10) | −0.0018 (8) | −0.0013 (8) | −0.0078 (8) |
C2 | 0.0118 (9) | 0.0171 (10) | 0.0169 (10) | 0.0039 (8) | −0.0035 (8) | −0.0084 (8) |
C3 | 0.0109 (9) | 0.0172 (10) | 0.0214 (11) | 0.0004 (8) | −0.0028 (8) | −0.0105 (9) |
C4 | 0.0178 (10) | 0.0221 (11) | 0.0160 (10) | 0.0002 (8) | 0.0004 (8) | −0.0069 (9) |
C5 | 0.0207 (11) | 0.0270 (12) | 0.0174 (10) | 0.0026 (9) | −0.0042 (8) | −0.0124 (9) |
C6 | 0.0186 (10) | 0.0216 (11) | 0.0235 (11) | 0.0002 (8) | −0.0063 (9) | −0.0124 (9) |
C7 | 0.0131 (10) | 0.0180 (10) | 0.0187 (10) | −0.0005 (8) | −0.0013 (8) | −0.0070 (9) |
C8 | 0.0129 (9) | 0.0206 (10) | 0.0161 (10) | −0.0047 (8) | −0.0003 (8) | −0.0095 (9) |
C9 | 0.0139 (10) | 0.0213 (11) | 0.0203 (11) | −0.0010 (8) | −0.0018 (8) | −0.0103 (9) |
C10 | 0.0179 (10) | 0.0220 (11) | 0.0179 (10) | −0.0045 (8) | −0.0046 (8) | −0.0071 (9) |
C11 | 0.0208 (11) | 0.0247 (11) | 0.0182 (10) | −0.0076 (9) | 0.0010 (8) | −0.0121 (9) |
C12 | 0.0152 (10) | 0.0256 (12) | 0.0259 (12) | −0.0031 (9) | 0.0014 (9) | −0.0159 (10) |
C13 | 0.0138 (10) | 0.0244 (11) | 0.0218 (11) | 0.0004 (8) | −0.0046 (8) | −0.0109 (9) |
I1—C3 | 2.104 (2) | C6—H6 | 0.9500 |
O1—C1 | 1.225 (3) | C7—H7 | 0.9500 |
N1—C1 | 1.354 (3) | C8—C13 | 1.392 (3) |
N1—C8 | 1.420 (3) | C8—C9 | 1.394 (3) |
N1—H1 | 0.8800 | C9—C10 | 1.388 (3) |
C1—C2 | 1.505 (3) | C9—H9 | 0.9500 |
C2—C7 | 1.395 (3) | C10—C11 | 1.388 (3) |
C2—C3 | 1.399 (3) | C10—H10 | 0.9500 |
C3—C4 | 1.387 (3) | C11—C12 | 1.388 (3) |
C4—C5 | 1.390 (3) | C11—H11 | 0.9500 |
C4—H4 | 0.9500 | C12—C13 | 1.382 (3) |
C5—C6 | 1.385 (3) | C12—H12 | 0.9500 |
C5—H5 | 0.9500 | C13—H13 | 0.9500 |
C6—C7 | 1.384 (3) | ||
C1—N1—C8 | 126.37 (18) | C6—C7—C2 | 120.8 (2) |
C1—N1—H1 | 116.8 | C6—C7—H7 | 119.6 |
C8—N1—H1 | 116.8 | C2—C7—H7 | 119.6 |
O1—C1—N1 | 124.4 (2) | C13—C8—C9 | 119.80 (19) |
O1—C1—C2 | 121.64 (19) | C13—C8—N1 | 117.79 (19) |
N1—C1—C2 | 113.98 (18) | C9—C8—N1 | 122.38 (19) |
C7—C2—C3 | 118.70 (19) | C10—C9—C8 | 119.4 (2) |
C7—C2—C1 | 119.60 (19) | C10—C9—H9 | 120.3 |
C3—C2—C1 | 121.68 (18) | C8—C9—H9 | 120.3 |
C4—C3—C2 | 120.61 (19) | C11—C10—C9 | 121.1 (2) |
C4—C3—I1 | 117.07 (16) | C11—C10—H10 | 119.5 |
C2—C3—I1 | 122.08 (15) | C9—C10—H10 | 119.5 |
C3—C4—C5 | 119.7 (2) | C10—C11—C12 | 119.0 (2) |
C3—C4—H4 | 120.1 | C10—C11—H11 | 120.5 |
C5—C4—H4 | 120.1 | C12—C11—H11 | 120.5 |
C6—C5—C4 | 120.3 (2) | C13—C12—C11 | 120.7 (2) |
C6—C5—H5 | 119.9 | C13—C12—H12 | 119.7 |
C4—C5—H5 | 119.9 | C11—C12—H12 | 119.7 |
C7—C6—C5 | 119.9 (2) | C12—C13—C8 | 120.1 (2) |
C7—C6—H6 | 120.1 | C12—C13—H13 | 120.0 |
C5—C6—H6 | 120.1 | C8—C13—H13 | 120.0 |
C8—N1—C1—O1 | −0.6 (4) | C5—C6—C7—C2 | 0.6 (3) |
C8—N1—C1—C2 | 179.69 (19) | C3—C2—C7—C6 | −1.2 (3) |
O1—C1—C2—C7 | −127.2 (2) | C1—C2—C7—C6 | 177.16 (19) |
N1—C1—C2—C7 | 52.6 (3) | C1—N1—C8—C13 | −152.1 (2) |
O1—C1—C2—C3 | 51.1 (3) | C1—N1—C8—C9 | 29.9 (3) |
N1—C1—C2—C3 | −129.1 (2) | C13—C8—C9—C10 | −0.7 (3) |
C7—C2—C3—C4 | 0.9 (3) | N1—C8—C9—C10 | 177.34 (19) |
C1—C2—C3—C4 | −177.47 (19) | C8—C9—C10—C11 | 0.1 (3) |
C7—C2—C3—I1 | −173.28 (15) | C9—C10—C11—C12 | 0.3 (3) |
C1—C2—C3—I1 | 8.4 (3) | C10—C11—C12—C13 | −0.1 (3) |
C2—C3—C4—C5 | 0.1 (3) | C11—C12—C13—C8 | −0.4 (3) |
I1—C3—C4—C5 | 174.51 (16) | C9—C8—C13—C12 | 0.8 (3) |
C3—C4—C5—C6 | −0.7 (3) | N1—C8—C13—C12 | −177.3 (2) |
C4—C5—C6—C7 | 0.4 (3) |
Cg2 is the centroid of the C8–C13 benzene ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1i | 0.88 | 2.15 | 2.942 (2) | 150 |
C3—I1···Cg2ii | 2.10 (1) | 3.83 (1) | 5.816 (2) | 156 (1) |
C6—H6···Cg2iii | 0.95 | 2.81 | 3.627 (2) | 144 |
Symmetry codes: (i) x+1, y, z; (ii) −x, −y, −z+1; (iii) −x+1, −y+1, −z+1. |
Acknowledgements
We thank Dr Deepak Chopra, IISER, Bhopal for the single-crystal X-ray data collection.
Funding information
This research work was supported by Visvesvaraya National Institute of Technology (VNIT), Nagpur, India. We also thank the National Research Foundation (91995 and 96807), South Africa, and Durban University of Technology, South Africa, for support.
References
Abdou, I. M., Saleh, A. M. & Zohdi, H. F. (2004). Molecules, 9, 109–116. Web of Science CrossRef PubMed CAS Google Scholar
Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Garden, S. J., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. C61, o450–o451. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hu, D.-Y., Wan, Q.-Q., Yang, S., Song, B.-A., Bhadury, P. S., Jin, L.-H., Yan, K., Liu, F., Chen, Z. & Xue, W. (2008). J. Agric. Food Chem. 56, 998–1001. CrossRef Google Scholar
Jursic, B. S. & Zdravkovski, Z. (1993). Synth. Commun. 23, 2761–2770. CrossRef Google Scholar
Kalgutkar, A. S., Marnett, A. B., Crews, B. C., Remmel, R. P. & Marnett, L. J. (2000). J. Med. Chem. 43, 2860–2870. CrossRef Google Scholar
Kavala, V., Wang, C.-C., Barange, D. K., Kuo, C.-W., Lei, P.-M. & Yao, C.-F. (2012). J. Org. Chem. 77, 5022–5029. CrossRef Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mao, W., Ning, M., Liu, Z., Zhu, Q., Leng, Y. & Zhang, A. (2012). Bioorg. Med. Chem. 20, 2982–2991. CrossRef Google Scholar
Nakata, K., Tateno, T. & Sakurai, K. (1976). Mem. Osaka Kyoiku Univ. Ser. 3, 25, 61. Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Nayak, S. K., Reddy, M. K., Chopra, D. & Guru Row, T. N. (2012). CrystEngComm, 14, 200–210. Web of Science CSD CrossRef CAS Google Scholar
Pradidphol, N., Kongkathip, N., Sittikul, P., Boonyalai, N. & Kongkathip, B. (2012). Eur. J. Med. Chem. 49, 253–270. CrossRef Google Scholar
Ragavan, R. V., Vijayakumar, V. & Kumari, N. S. (2010). Eur. J. Med. Chem. 45, 1173–1180. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Starmer, G., McLean, S. & Thomas, J. (1971). Toxicol. Appl. Pharmacol. 19, 20–28. CrossRef Google Scholar
Suchetan, P. A., Suresha, E., Naveen, S. & Lokanath, N. K. (2016). Acta Cryst. E72, 819–823. CrossRef IUCr Journals Google Scholar
Wardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o634–o638. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.