research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 3,14-di­methyl-2,6,13,17-tetra­azoniatri­cyclo­[16.4.0.07,12]do­cosane tetra­chloride tetra­hydrate from synchrotron X-ray data

CROSSMARK_Color_square_no_text.svg

aPohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea, and bDepartment of Chemistry, Andong National University, Andong 36729, Republic of Korea
*Correspondence e-mail: jhchoi@anu.ac.kr

Edited by J. Simpson, University of Otago, New Zealand (Received 27 June 2018; accepted 28 June 2018; online 6 July 2018)

The crystal structure of the title salt, C20H44N44+·4Cl·4H2O, has been determined using synchrotron radiation at 220 K. The structure determination reveals that protonation has occurred at all four amine N atoms. The asymmetric unit contains one half-cation (completed by crystallographic inversion symmetry), two chloride anions and two water mol­ecules. There are two mol­ecules in the unit cell. The Cl anions and hydrate mol­ecules are involved in hydrogen bonding. The crystal structure is stabilized by inter­molecular hydrogen bonds involving the macrocycle N—H groups and water O—H groups as donors and the O atoms of the water mol­ecules and the Cl anions as acceptors, giving rise to a three-dimensional network.

1. Chemical context

The macrocycle 3,14-dimethyl-2,6,13,17-tetra­aza­tri­cyclo­(16.4.0.07,12)docosane (C20H40N4, L) is a strongly basic amine capable of forming the [C20H42N4]2+ dication or the [C20H44N4]4+ tetra­cation in which all of the N—H bonds are generally available for hydrogen-bond formation. These di- or tetra­ammonium cations may be suitable for the removal of toxic heavy metal ions from water. The macrocycle L contains a cyclam backbone with two cyclo­hexa­ne subunits. Methyl groups are attached to the 3 and 14 carbon atoms of the propyl chains that bridge opposite pairs of N atoms in the structure. Previously, we have reported the crystal structures of [Cu(L)](NO3)2·3H2O, [Cu(L)](NO3)2, [Cu(L)](ClO4)2 and [Cu(L)(H2O)2](BF4)2·2H2O together with [Zn(L)(OCOCH3)2]. In these structures, the copper(II) or zinc(II) cations have tetra­gonally distorted octa­hedral environments with the four N atoms of the macrocyclic ligand in equatorial positions and O atoms of counter-anions, water mol­ecules or acetato ligands in axial positions (Choi et al., 2006[Choi, J.-H., Suzuki, T. & Kaizaki, S. (2006). Acta Cryst. E62, m2383-m2385.], 2007[Choi, J.-H., Ryoo, K. S. & Park, K.-M. (2007). Acta Cryst. E63, m2674-m2675.], 2012a[Choi, J.-H., Joshi, T. & Spiccia, L. (2012a). Z. Anorg. Allg. Chem. 638, 146-151.],b[Choi, J.-H., Subhan, M. A. & Ng, S. W. (2012b). Acta Cryst. E68, m190.]; Ross et al., 2012[Ross, A., Choi, J.-H., Hunter, T. M., Pannecouque, C., Moggach, S. A., Parsons, S., De Clercq, E. & Sadler, P. J. (2012). Dalton Trans. 41, 6408-6418.]). In these CuII and ZnII complexes, the macrocyclic ligands adopt their most stable trans-III configurations. The crystal structures of the di-cations C20H40N4·2C11H10O (Choi et al., 2012c[Choi, J.-H., Subhan, M. A., Ryoo, K. S. & Ng, S. W. (2012c). Acta Cryst. E68, o102.]) and [C20H42N4](SO4)·2MeOH (White et al., 2015[White, F., Sadler, P. J. & Melchart, M. (2015). CSD Communication (CCDC 1408165). CCDC, Cambridge, England.]) have also been reported. As part of our research program in this area, we report here the preparation of the new tetra-cationic compound, [C20H44N4]Cl4·4H2O, (I)[link], as the hydrated chloride salt and its structural characterization by synchrotron single-crystal X-ray diffraction.

2. Structural commentary

The title compound contains a positively charged macrocyclic cation, 4Cl anions and four solvent water mol­ecules and was characterized during studies of the macrocyclic ligand and its copper(II) complexes. An ellipsoid plot of the mol­ecular components in (I)[link] with the atom-numbering scheme is shown in Fig. 1[link]. The asymmetric unit consists of one half of the macrocycle, which lies about a center of inversion, two chloride anions and two solvent water mol­ecules. The four N atoms are coplanar, and the two methyl substituents are anti with respect to the macrocyclic plane as a result of the mol­ecular inversion symmetry. The six-membered cyclo­hexane ring is in a stable chair conformation. Within the centrosymmetric tetra-protonated amine unit [C20H44N4]4+, the C—C and N—C bond lengths vary from 1.522 (2) to 1.542 (2) Å and from 1.506 (2) to 1.522 (2) Å, respectively. The ranges of N—C—C and C—N—C angles are 106.85 (10) to 114.32 (11)° and 116.70 (10) to 118.89 (10)°, respectively. The bond lengths and angles within the [C20H44N4]4+ tetra-cation are comparable to those found in the free ligand or the di-cation in C20H40N4·2C11H10O (Choi et al., 2012c[Choi, J.-H., Subhan, M. A., Ryoo, K. S. & Ng, S. W. (2012c). Acta Cryst. E68, o102.]), [C20H42N4](SO4)·2MeOH (White et al., 2015[White, F., Sadler, P. J. & Melchart, M. (2015). CSD Communication (CCDC 1408165). CCDC, Cambridge, England.]) and [C20H42N4][Fe{HB(pz)3}(CN)3]2·2H2O·2MeOH (Kim et al., 2004[Kim, J., Han, S., Cho, I.-K., Choi, K. Y., Heu, M., Yoon, S. & Suh, B. J. (2004). Polyhedron, 23, 1333-1339.]).

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link], drawn with displacement ellipsoids at the 50% probability level. Dashed lines represent hydrogen-bonding inter­actions and primed atoms are related by the symmetry code (1 − x, 1 − y, 1 − z).

3. Supra­molecular features

Extensive O—H⋯Cl, N—H⋯Cl and N—H⋯O hydrogen-bonding inter­actions occur in the crystal structure (Table 1[link]). All of the Cl anions and the O atoms of the water mol­ecules serve as hydrogen-bond acceptors. O—H⋯Cl hydrogen bonds link the water mol­ecules to the neighboring Cl anions, while N—H⋯Cl and N—H⋯O hydrogen bonds inter­connect the [C20H44N4]4+ cations with both anions and water mol­ecules (Figs. 1[link] and 2[link]). The hydrogen atoms on N1 and N2 both form bifurcated hydrogen bonds with O and Cl atoms. The extensive array of these contacts generates a three-dimensional network structure (Fig. 2[link]), and these hydrogen-bonding inter­actions help to stabilize the crystal structure.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯Cl1 0.84 (1) 2.26 (1) 3.0837 (13) 167 (2)
O1—H2O1⋯Cl2 0.84 (1) 2.30 (1) 3.1329 (13) 173 (2)
O2—H1O2⋯Cl2i 0.83 (1) 2.32 (1) 3.1403 (14) 172 (2)
O2—H2O2⋯Cl2ii 0.83 (1) 2.35 (1) 3.1839 (16) 174 (2)
N1—H1AN⋯Cl1iii 0.90 2.20 3.0939 (12) 171
N1—H1B⋯O1 0.90 1.90 2.7484 (17) 156
N2—H2AN⋯Cl2iv 0.90 2.41 3.2819 (13) 164
N2—H2B⋯O2 0.90 1.85 2.7245 (16) 163
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) x+1, y, z+1; (iii) -x+1, -y+1, -z; (iv) x, y, z+1.
[Figure 2]
Figure 2
The crystal packing in compound (I)[link], viewed perpendicular to the bc plane. Dashed lines represent N—H⋯O (blue), N—H⋯Cl (pink) and O—H⋯Cl (cyan) hydrogen-bonding inter­actions, respectively. C-bound H atoms have been omitted.

4. Database survey

A search of the Cambridge Structural Database (Version 5.38, May 2017 with three updates; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave just three hits for compounds containing the macrocycles [C20H44N4]4+, [C20H42N4]2+ or (C20H40N4). The crystal structures of C20H40N4·2C11H10O (Choi et al., 2012c[Choi, J.-H., Subhan, M. A., Ryoo, K. S. & Ng, S. W. (2012c). Acta Cryst. E68, o102.]), [C20H42N4](SO4)·2MeOH (White et al., 2015[White, F., Sadler, P. J. & Melchart, M. (2015). CSD Communication (CCDC 1408165). CCDC, Cambridge, England.]) and [C20H42N4][Fe{HB(pz)3}(CN)3]2·2H2O·2MeOH (Kim et al., 2004[Kim, J., Han, S., Cho, I.-K., Choi, K. Y., Heu, M., Yoon, S. & Suh, B. J. (2004). Polyhedron, 23, 1333-1339.]) were reported previously. However, to our knowledge no crystal structure of any compound with [C20H44N4]4+ has been reported.

5. Synthesis and crystallization

Commercially available trans-1,2-cyclo­hexa­nedi­amine and methyl vinyl ketone (Sigma–Aldrich) were used as provided. All chemicals were reagent grade and used without further purification. As a starting material, the macrocycle 3,14-dimethyl-2,6,13,17-tetra­aza­tri­cyclo­(16.4.0.07,12)docosane was prepared according to a published procedure (Kang et al., 1991[Kang, S. G., Kweon, J. K. & Jung, S. K. (1991). Bull. Korean Chem. Soc. 12, 483-487.]). A solution of the macrocyclic ligand (0.084 g, 0.25 mmol) in water (10 mL) was added dropwise to a stirred solution of CuCl2·2H2O (0.085 g, 0.5 mmol) in water (15 mL). The solution was heated for 1 h at 338 K. After cooling to 298 K, the pH was adjusted to 3.0 with 1.0 M HCl. The solution was filtered and left at room temperature. Colourless crystals suitable for X-ray analysis were obtained unexpectedly from the solution over a period of a few days.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All C and N-bound H atoms in the complex were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.97–0.99 Å, an N—H distance of 0.9 Å and with Uiso(H) values of 1.2Ueq(C, N) and 1.5Ueq(C-meth­yl). O-bound H atoms of the water mol­ecules were located in a difference-Fourier map, and the O—H distances and the H—O—H angles were restrained using DFIX and DANG constraints (0.84 and 1.36 Å).

Table 2
Experimental details

Crystal data
Chemical formula C20H44N44+·4Cl·4H2O
Mr 554.45
Crystal system, space group Monoclinic, P21/n
Temperature (K) 220
a, b, c (Å) 7.5450 (15), 23.190 (5), 8.3370 (17)
β (°) 103.32 (3)
V3) 1419.5 (5)
Z 2
Radiation type Synchrotron, λ = 0.630 Å
μ (mm−1) 0.32
Crystal size (mm) 0.08 × 0.06 × 0.06
 
Data collection
Diffractometer Rayonix MX225HS CCD area detector
Absorption correction Empirical (using intensity measurements) (HKL3000sm SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp 307-326. New York: Academic Press.])
Tmin, Tmax 0.919, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 13816, 3797, 3504
Rint 0.061
(sin θ/λ)max−1) 0.683
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.141, 1.14
No. of reflections 3797
No. of parameters 158
No. of restraints 6
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.80, −0.33
Computer programs: PAL BL2D-SMDC (Shin et al., 2016[Shin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369-373.]), HKL3000sm (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp 307-326. New York: Academic Press.]), SHELXT2015 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2015 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Putz & Brandenburg, 2014[Putz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: PAL BL2D-SMDC (Shin et al., 2016); cell refinement: HKL3000sm (Otwinowski & Minor, 1997); data reduction: HKL3000sm (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXT2015 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2015 (Sheldrick, 2015b); molecular graphics: DIAMOND (Putz & Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).

3,14-Dimethyl-2,6,13,17-tetraazoniatricyclo[16.4.0.07,12]docosane tetrachloride tetrahydrate top
Crystal data top
C20H44N44+·4Cl·4H2OF(000) = 600
Mr = 554.45Dx = 1.297 Mg m3
Monoclinic, P21/nSynchrotron radiation, λ = 0.630 Å
a = 7.5450 (15) ÅCell parameters from 44298 reflections
b = 23.190 (5) Åθ = 0.4–33.6°
c = 8.3370 (17) ŵ = 0.32 mm1
β = 103.32 (3)°T = 220 K
V = 1419.5 (5) Å3Block, colourless
Z = 20.08 × 0.06 × 0.06 mm
Data collection top
Rayonix MX225HS CCD area detector
diffractometer
3504 reflections with I > 2σ(I)
Radiation source: PLSII 2D bending magnetRint = 0.061
ω scansθmax = 25.5°, θmin = 1.6°
Absorption correction: empirical (using intensity measurements)
(HKL3000sm SCALEPACK; Otwinowski & Minor, 1997)
h = 1010
Tmin = 0.919, Tmax = 1.000k = 3131
13816 measured reflectionsl = 1111
3797 independent reflections
Refinement top
Refinement on F26 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.141 w = 1/[σ2(Fo2) + (0.0863P)2 + 0.2986P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max = 0.001
3797 reflectionsΔρmax = 0.80 e Å3
158 parametersΔρmin = 0.33 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.28649 (4)0.48361 (2)0.23231 (4)0.02152 (13)
Cl20.23041 (5)0.70611 (2)0.24081 (5)0.02724 (13)
O10.17644 (18)0.59115 (5)0.06048 (14)0.0292 (3)
H1O10.211 (3)0.5659 (7)0.118 (2)0.044*
H2O10.190 (3)0.6234 (5)0.101 (3)0.044*
O20.81871 (15)0.70598 (5)0.55335 (16)0.0285 (3)
H1O20.807 (3)0.7293 (8)0.476 (2)0.043*
H2O20.9243 (18)0.7082 (9)0.612 (2)0.043*
N10.31217 (15)0.54018 (5)0.24038 (13)0.0135 (2)
H1AN0.4248870.5290300.2349090.016*
H1B0.2739080.5660980.1594680.016*
N20.52610 (14)0.64198 (5)0.58563 (14)0.0145 (2)
H2AN0.4319360.6603400.6125590.017*
H2B0.6129820.6685660.5855650.017*
C10.24830 (16)0.43768 (5)0.32273 (16)0.0151 (2)
H1A0.1424560.4131290.3222160.018*
H1AB0.2921680.4525680.4348900.018*
C20.18858 (17)0.48834 (5)0.20562 (17)0.0151 (3)
H2A0.1823240.4753650.0925790.018*
H2AB0.0656410.5000240.2122260.018*
C30.32531 (16)0.57005 (5)0.40305 (15)0.0139 (2)
H30.3747350.5425240.4930080.017*
C40.13998 (17)0.59125 (6)0.42271 (17)0.0190 (3)
H4A0.0553770.5586110.4097630.023*
H4AB0.1526010.6068150.5340630.023*
C50.06125 (19)0.63767 (7)0.29694 (19)0.0240 (3)
H5A0.0556740.6508840.3157370.029*
H5AB0.0392830.6213850.1856290.029*
C60.1913 (2)0.68874 (7)0.31020 (19)0.0257 (3)
H6A0.1994620.7081910.4160100.031*
H6AB0.1423410.7163890.2222440.031*
C70.38260 (19)0.67021 (6)0.29703 (18)0.0205 (3)
H7A0.3781060.6589610.1828570.025*
H7AB0.4647300.7033700.3231380.025*
C80.46174 (16)0.62004 (5)0.41108 (15)0.0141 (2)
H80.5690770.6050310.3749690.017*
C90.60141 (16)0.59907 (5)0.72246 (16)0.0144 (2)
H90.5016740.5734690.7379220.017*
C100.6708 (2)0.63373 (6)0.87937 (17)0.0233 (3)
H10A0.7066380.6076390.9721250.035*
H10B0.5749440.6590330.8976280.035*
H10C0.7749320.6566150.8683720.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01190 (19)0.0294 (2)0.0260 (2)0.00148 (11)0.01001 (14)0.00336 (13)
Cl20.0223 (2)0.0314 (2)0.0275 (2)0.00606 (13)0.00466 (16)0.00617 (14)
O10.0377 (6)0.0317 (6)0.0187 (5)0.0038 (5)0.0078 (5)0.0001 (4)
O20.0175 (5)0.0358 (6)0.0316 (6)0.0066 (4)0.0043 (5)0.0089 (5)
N10.0089 (4)0.0188 (5)0.0133 (5)0.0003 (4)0.0036 (4)0.0002 (4)
N20.0105 (5)0.0176 (5)0.0151 (5)0.0007 (4)0.0024 (4)0.0005 (4)
C10.0102 (5)0.0195 (5)0.0163 (6)0.0012 (4)0.0045 (4)0.0007 (5)
C20.0093 (5)0.0183 (5)0.0162 (6)0.0006 (4)0.0001 (4)0.0021 (5)
C30.0106 (5)0.0192 (5)0.0124 (5)0.0028 (4)0.0036 (4)0.0016 (4)
C40.0121 (6)0.0275 (6)0.0198 (6)0.0038 (5)0.0083 (5)0.0062 (5)
C50.0130 (6)0.0349 (7)0.0236 (7)0.0061 (5)0.0035 (5)0.0039 (6)
C60.0254 (7)0.0249 (6)0.0250 (7)0.0071 (6)0.0024 (6)0.0034 (6)
C70.0188 (6)0.0223 (6)0.0189 (6)0.0018 (5)0.0012 (5)0.0054 (5)
C80.0104 (5)0.0192 (5)0.0127 (5)0.0026 (4)0.0024 (4)0.0004 (5)
C90.0106 (5)0.0190 (5)0.0137 (6)0.0008 (4)0.0028 (4)0.0009 (4)
C100.0242 (7)0.0278 (7)0.0159 (6)0.0051 (6)0.0004 (5)0.0054 (5)
Geometric parameters (Å, º) top
O1—H1O10.837 (9)C3—H30.9900
O1—H2O10.837 (9)C4—C51.524 (2)
O2—H1O20.833 (9)C4—H4A0.9800
O2—H2O20.834 (9)C4—H4AB0.9800
N1—C31.5056 (16)C5—C61.526 (2)
N1—C21.5080 (16)C5—H5A0.9800
N1—H1AN0.9000C5—H5AB0.9800
N1—H1B0.9000C6—C71.534 (2)
N2—C81.5122 (17)C6—H6A0.9800
N2—C91.5217 (16)C6—H6AB0.9800
N2—H2AN0.9000C7—C81.5338 (18)
N2—H2B0.9000C7—H7A0.9800
C1—C21.5277 (18)C7—H7AB0.9800
C1—C9i1.5333 (17)C8—H80.9900
C1—H1A0.9800C9—C101.5217 (19)
C1—H1AB0.9800C9—H90.9900
C2—H2A0.9800C10—H10A0.9700
C2—H2AB0.9800C10—H10B0.9700
C3—C41.5263 (17)C10—H10C0.9700
C3—C81.5416 (17)
H1O1—O1—H2O1108.0 (17)H4A—C4—H4AB107.9
H1O2—O2—H2O2108.9 (18)C4—C5—C6110.86 (12)
C3—N1—C2116.70 (10)C4—C5—H5A109.5
C3—N1—H1AN108.1C6—C5—H5A109.5
C2—N1—H1AN108.1C4—C5—H5AB109.5
C3—N1—H1B108.1C6—C5—H5AB109.5
C2—N1—H1B108.1H5A—C5—H5AB108.1
H1AN—N1—H1B107.3C5—C6—C7112.18 (12)
C8—N2—C9118.89 (10)C5—C6—H6A109.2
C8—N2—H2AN107.6C7—C6—H6A109.2
C9—N2—H2AN107.6C5—C6—H6AB109.2
C8—N2—H2B107.6C7—C6—H6AB109.2
C9—N2—H2B107.6H6A—C6—H6AB107.9
H2AN—N2—H2B107.0C8—C7—C6113.98 (11)
C2—C1—C9i113.35 (10)C8—C7—H7A108.8
C2—C1—H1A108.9C6—C7—H7A108.8
C9i—C1—H1A108.9C8—C7—H7AB108.8
C2—C1—H1AB108.9C6—C7—H7AB108.8
C9i—C1—H1AB108.9H7A—C7—H7AB107.7
H1A—C1—H1AB107.7N2—C8—C7109.53 (10)
N1—C2—C1114.32 (11)N2—C8—C3110.97 (10)
N1—C2—H2A108.7C7—C8—C3112.51 (11)
C1—C2—H2A108.7N2—C8—H8107.9
N1—C2—H2AB108.7C7—C8—H8107.9
C1—C2—H2AB108.7C3—C8—H8107.9
H2A—C2—H2AB107.6C10—C9—N2107.10 (11)
N1—C3—C4111.91 (10)C10—C9—C1i112.18 (11)
N1—C3—C8106.85 (10)N2—C9—C1i110.41 (10)
C4—C3—C8111.85 (11)C10—C9—H9109.0
N1—C3—H3108.7N2—C9—H9109.0
C4—C3—H3108.7C1i—C9—H9109.0
C8—C3—H3108.7C9—C10—H10A109.5
C5—C4—C3112.03 (11)C9—C10—H10B109.5
C5—C4—H4A109.2H10A—C10—H10B109.5
C3—C4—H4A109.2C9—C10—H10C109.5
C5—C4—H4AB109.2H10A—C10—H10C109.5
C3—C4—H4AB109.2H10B—C10—H10C109.5
C3—N1—C2—C164.11 (14)C9—N2—C8—C352.13 (14)
C9i—C1—C2—N180.89 (14)C6—C7—C8—N276.56 (14)
C2—N1—C3—C458.63 (14)C6—C7—C8—C347.36 (16)
C2—N1—C3—C8178.63 (10)N1—C3—C8—N2163.70 (10)
N1—C3—C4—C564.60 (14)C4—C3—C8—N273.52 (13)
C8—C3—C4—C555.26 (15)N1—C3—C8—C773.18 (13)
C3—C4—C5—C657.49 (15)C4—C3—C8—C749.60 (15)
C4—C5—C6—C754.14 (16)C8—N2—C9—C10174.85 (11)
C5—C6—C7—C849.87 (17)C8—N2—C9—C1i52.43 (14)
C9—N2—C8—C7176.95 (10)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···Cl10.84 (1)2.26 (1)3.0837 (13)167 (2)
O1—H2O1···Cl20.84 (1)2.30 (1)3.1329 (13)173 (2)
O2—H1O2···Cl2ii0.83 (1)2.32 (1)3.1403 (14)172 (2)
O2—H2O2···Cl2iii0.83 (1)2.35 (1)3.1839 (16)174 (2)
N1—H1AN···Cl1iv0.902.203.0939 (12)171
N1—H1B···O10.901.902.7484 (17)156
N2—H2AN···Cl2v0.902.413.2819 (13)164
N2—H2B···O20.901.852.7245 (16)163
Symmetry codes: (ii) x+1/2, y+3/2, z+1/2; (iii) x+1, y, z+1; (iv) x+1, y+1, z; (v) x, y, z+1.
 

Funding information

This work was supported by a Research Grant from Andong National University. The X-ray crystallography experiment at the PLS-II BL2D-SMC beamline was supported in part by MSICT and POSTECH.

References

First citationChoi, J.-H., Joshi, T. & Spiccia, L. (2012a). Z. Anorg. Allg. Chem. 638, 146–151.  Web of Science CrossRef Google Scholar
First citationChoi, J.-H., Ryoo, K. S. & Park, K.-M. (2007). Acta Cryst. E63, m2674–m2675.  Web of Science CrossRef IUCr Journals Google Scholar
First citationChoi, J.-H., Subhan, M. A. & Ng, S. W. (2012b). Acta Cryst. E68, m190.  Web of Science CrossRef IUCr Journals Google Scholar
First citationChoi, J.-H., Subhan, M. A., Ryoo, K. S. & Ng, S. W. (2012c). Acta Cryst. E68, o102.  Web of Science CrossRef IUCr Journals Google Scholar
First citationChoi, J.-H., Suzuki, T. & Kaizaki, S. (2006). Acta Cryst. E62, m2383–m2385.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKang, S. G., Kweon, J. K. & Jung, S. K. (1991). Bull. Korean Chem. Soc. 12, 483–487.  CAS Google Scholar
First citationKim, J., Han, S., Cho, I.-K., Choi, K. Y., Heu, M., Yoon, S. & Suh, B. J. (2004). Polyhedron, 23, 1333–1339.  Web of Science CrossRef Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp 307–326. New York: Academic Press.  Google Scholar
First citationPutz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationRoss, A., Choi, J.-H., Hunter, T. M., Pannecouque, C., Moggach, S. A., Parsons, S., De Clercq, E. & Sadler, P. J. (2012). Dalton Trans. 41, 6408–6418.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369–373.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWhite, F., Sadler, P. J. & Melchart, M. (2015). CSD Communication (CCDC 1408165). CCDC, Cambridge, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds