research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of tetra­kis­(1,1,1,5,5,5-hexa­fluoro­acetyl­acetonato)hafnium(IV)

CROSSMARK_Color_square_no_text.svg

aSchool of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA, and bGeorge L. Clark X-Ray Facility and 3M Materials Laboratory, University of Illinois at Urbana-Champaign, 505 South Mathews Avenue, Urbana, IL 61801, USA
*Correspondence e-mail: ggirolam@illinois.edu

Edited by J. Simpson, University of Otago, New Zealand (Received 11 July 2018; accepted 21 July 2018; online 31 July 2018)

The crystal structure of the title compound, [Hf(C5HF6O2)4], has been determined. The asymmetric unit contains two Hf(hfac)4 mol­ecules (hfac = 1,1,1,5,5,5-hexa­fluoro­acetyl­acetonate); both are located on general positions and have identical structures apart from the disorder involving three CF3 groups in one of the two mol­ecules. The mol­ecules of Hf(hfac)4 are arranged in layers that are parallel to the ab plane, and the coordination geometry of each hafnium(IV) center is a distorted square anti­prism. An inter­esting aspect of the structure is that the hfac ligands are arranged so that the Hf(hfac)4 mol­ecules have idealized 2 point symmetry, in which two of the hfac groups bridge between the two squares. Although all other M(β-diketonate)4 compounds of Hf (and Zr) also have square-anti­prismatic geometries; in almost all of them the ligands are arranged so that the mol­ecules have 222 point symmetry (in which none of the hfac ligands bridges between the two squares). The factors that favor one structure over another are not clear.

1. Chemical context

The mol­ecule tetra­kis­(1,1,1,5,5,5-hexa­fluoro­acetyl­acetonato)hafnium(IV), Hf(hfac)4, has a relatively high vapor pressure for a hafnium compound, and in part for this reason it has been identified as a potential chemical vapor deposition (CVD) precursor for thin films of hafnium dioxide (Balog et al., 1977[Balog, M., Schieber, M., Michman, M. & Patai, S. (1977). Thin Solid Films, 47, 109-120.]; Morozova et al., 2008[Morozova, N. B., Zherikova, K. V., Baidina, I. A., Sysoev, S. V., Semyannikov, P. P., Yakovkina, L. V., Smirnova, T. P., Gelfond, N. V., Igumenov, I. K., Carta, G. & Rossetto, G. (2008). J. Phys. Chem. Solids, 69, 673-679.]; Wilk et al., 2001[Wilk, G. D., Wallace, R. M. & Anthony, J. M. (2001). J. Appl. Phys. 89, 5243-5275.]; Zherikova & Morozova, 2012[Zherikova, K. V. & Morozova, N. B. (2012). J. Struct. Chem. 53, 761-767.]; Zherikova et al., 2008[Zherikova, K. V., Morozova, N. B., Zelenina, L. N., Sysoev, S. V., Chusova, T. P. & Igumenov, I. K. (2008). J. Therm. Anal. Calorim. 92, 729-734.]).

[Scheme 1]

Thin films of HfO2 are widely used as the gate oxide in integrated circuits because of its high dielectric constant. Although most CVD precursors for HfO2, such as the di­alkyl­amide Hf(NMe2)4, have mol­ecular weights less than 500, it has recently been discovered that higher mol­ecular weight precursors can enable superconformal growth in high aspect ratio features (i.e., faster growth deeper in the feature), which is an important goal in the microelectronics industry (Wang et al., 2014[Wang, W. B., Chang, N. N., Codding, T. A., Girolami, G. S. & Abelson, J. R. (2014). J. Vac. Sci. Technol. A, 32, 051512.]). The mol­ecular weight of Hf(hfac)4 is quite high (1006.8), but it nevertheless is highly volatile owing to the fluorine substit­uents, which reduce the strength of inter­molecular inter­actions (Jones et al., 2009[Jones, A. C., Aspinall, H. C. & Chalker, P. R. (2009). Chemical Vapor Deposition: Precursors, Processes and Applications, edited by A. C. Jones & M. L. Hitchman, pp. 357-412. Cambridge, UK: The Royal Society of Chemistry.]). Here we report on the crystal structure of Hf(hfac)4.

2. Structural commentary

There are two crystallographically inequivalent Hf(hfac)4 mol­ecules in the asymmetric unit (Fig. 1[link]). The two mol­ecules are structurally identical (r.m.s. deviation = 0.004 Å), except that three of the CF3 substituents in the Hf1 mol­ecule are disordered over two sites (Fig. 2[link]). Each hafnium atom is bound to four bidentate hfac ligands; the eight oxygen atoms define a square anti­prism in which two of the hfac ligands bridge between the squares, giving an idealized point symmetry of 2. The Hf—O bond lengths range from 2.134 (2) to 2.210 (3) Å, whereas the C—O bond lengths range from 1.247 (5) to 1.275 (5) Å. All of the distances are as expected except that the C—F bond distances vary over a larger range than usual owing to the disorder.

[Figure 1]
Figure 1
The asymmetric unit of Hf(hfac)4 with displacement ellipsoids drawn at the 50% probability level. F10A–F12A, F16A–F18A and F22A–F24A are the minor components of the F atoms of the disordered CF3 groups in the Hf1 molecule. Color coding: C – grey, O – red, H – white, F– green, Hf – blue.
[Figure 2]
Figure 2
Overlay of the crystallographically inequivalent Hf(hfac)4 mol­ecules with mol­ecule 1 in orange, mol­ecule 2 in blue, and the disordered CF3 groups in green; r.m.s. deviation = 0.004 Å.

3. Supra­molecular features

The mol­ecules are well separated and the shortest Hf⋯Hf distance is 8.3610 (1) Å. The mol­ecules form layers parallel to the ab plane (Figs. 3[link] and 4[link]). Of the inter­molecular C—H⋯F contacts (ignoring the minor site F atoms; Table 1[link]), only three are comparable to the 2.60 Å sum of the van der Waals radii (1.2 Å for H, and 1.40 Å for F attached to a primary alkyl (Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]): H8⋯F5 (2.50 Å), H13⋯F35 (2.65 Å), and H3⋯F24 (2.68 Å). Only one inter­molecular F⋯F inter­action (again ignoring the minor site F atoms) is shorter than 2.8 Å, the sum of van der Waals radii for two F atoms attached to a primary alkyl, that involving F2⋯F22 (2.76 Å). All these inter­molecular contacts must be weak, given that the compound sublimes in moderate vacuum only slightly above room temperature.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯F23Ai 0.95 2.57 3.374 (10) 143
C3—H3⋯F24i 0.95 2.68 3.375 (8) 130
C8—H8⋯F5ii 0.95 2.50 3.427 (5) 166
C33—H33⋯F11Aiii 0.95 2.49 3.292 (9) 142
C13—H13⋯F35iii 0.95 2.65 3.528 (5) 154
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+2; (iii) -x+1, -y+1, -z+1.
[Figure 3]
Figure 3
A single layer of Hf(hfac)4 mol­ecules as viewed along the c axis.
[Figure 4]
Figure 4
The layered structure of Hf(hfac)4 as viewed along the a axis.

4. Database survey

A search of the Cambridge Structural Database (CSD) returned 21 structures of the form Hf(RCOCHCOR′)4 and 21 of the form Zr(RCOCHCOR′)4 (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). The R and R′ groups, which could either be the same or different, included Me, CF3, iPr, CH2tBu, tBu, thio­furanyl, CMe2(OMe), OSiMe3, OMe, OEt, OtBu, Ph, and CH2COOtBu. In all cases, the eight oxygen atoms describe a square anti­prism about the metal center. This is the geometry expected for M(bidentate)4 mol­ecules in which the bidentate ligand has a large bite angle (Kepert, 1982[Kepert, D. L. (1982). Inorganic Steriochemistry. Berlin: Springer-Verlag.]).

Inter­estingly, of the 42 structures in the CSD, three different arrangements of the ligands have been seen, corres­ponding to the three idealized mol­ecular point symmetries possible for a square-anti­prismatic coordination geometry with four bidentate ligands (Fig. 5[link]) (Marchi et al., 1943[Marchi, L. E., Fernelius, W. C. & McReynolds, J. P. (1943). J. Am. Chem. Soc. 65, 329-333.]; Hoard & Silverton, 1963[Hoard, J. L. & Silverton, J. V. (1963). Inorg. Chem. 2, 235-242.]; Muetterties & Wright, 1967[Muetterties, E. L. & Wright, C. M. (1967). Q. Rev. Chem. Soc. 21, 109-194.]). The majority of them describe mol­ecules with idealized 222 symmetry (in which none of the ligands bridge between the two squares), two describe mol­ecules with idealized point symmetries of 2 (in which two of the ligands bridge between the two squares), and one describes a mol­ecule with idealized 422 symmetry (in which all four ligands bridge between the two squares; in all cases, these point symmetries describe the arrangement of the ligands, and neglect differences between the R and R′ groups, if any).

[Figure 5]
Figure 5
The three different isomers of square anti­prismatic tetra­kis­(bidentate) metal complexes. Point symmetries: (a) 2, (b) 222, (c) 422.

The current mol­ecule Hf(hfac)4 adds to the small number of group 4 M(RCOCHCOR′)4 complexes that adopt the structure with an idealized point symmetry of 2; inter­estingly, one of the others is the zirconium analog Zr(hfac)4 (Calderazzo et al., 1998[Calderazzo, F., Englertb, U., Maichle-Mössmer, C., Marchetti, F., Pampaloni, G., Petroni, D., Pinzino, C., Strähle, J. & Tripepi, G. (1998). Inorg. Chim. Acta, 270, 177-188.]). There is no obvious reason why Hf(hfac)4 and Zr(hfac)4 adopt this geometry rather than one of the other two. Irrespective of the structure adopted, the Hf—O and Zr—O bond distances in all Zr and Hf β-diketonates are all near 2.2 Å.

The NMR data for Hf(hfac)4 show that all four C—H groups and all eight CF3 groups are chemically equivalent on the NMR time scale at room temperature, so that there must be a dynamic process that inter­converts the different hfac environments.

5. Synthesis and crystallization

To a mixture of sodium 1,1,1,5,5,5-hexa­fluoro­acetyl­acetonate (Harada & Girolami, 2007[Harada, Y. & Girolami, G. S. (2007). Polyhedron, 26, 1758-1762.]) (1.46 g, 6.36 mmol) and hafnium tetra­chloride (0.51 g, 1.59 mmol) at 195 K was added diethyl ether (10 mL). The mixture was warmed to room temperature and allowed to stir overnight. The solution was filtered, and the filtrate was taken to dryness under vacuum. The colorless product Hf(hfac)4 was sublimed out of the brown residue at 15 mTorr and 303 K onto a water-cooled cold finger. Yield: 0.44 g (28%). 1H NMR (400 MHz, C6D6): δ 6.12 (s). 19F NMR (400 MHz, C6D6): δ −77.01 (s). The NMR spectra are similar to those previously reported for this compound in CCl4 (1H NMR: δ 6.54; 19F NMR: δ −74.7); note that this previous work used the opposite chemical shift sign convention and a different 19F NMR shift reference (Chattoraj et al., 1968[Chattoraj, S. C., Lynch, C. T. & Mazdiyasni, K. S. (1968). Inorg. Chem. 7, 2501-2505.]).

X-ray quality crystals were grown by allowing Hf(hfac)4 (0.1 g) to sublime inside an evacuated 50 mL Schlenk tube placed on top of a warm oven. After 12 h, crystals had formed on the cooler parts of the tube.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H-atom positions were positioned geometrically and refined as riding: C—H = 0.95 Å with Uiso(H) = 1.2Ueq(C). The F10–F12, F16–F18, and F22–F24 atoms are disordered over two sites; their occupancies refine to 0.644 (18):0.356 (18), 0.507 (6):0.493 (6) and 0.61 (2):0.39 (2), respectively. Within each disordered CF3 group, the C—F distances were restrained to 1.35±0.01 Å, and the F—C—F and C—C—F bond angles were limited to near-tetra­hedral values by restraining the F⋯F and β-C⋯F distances to 2.15 (1) and 2.3 (5) Å, respectively. The displacement parameters for all F atoms were restrained to be approximately isotropic (ISOR 0.005). The ([\overline{1}]11), (021), (011), (110), (113), (122), (111), (220), and ([\overline{1}]21) reflections were obscured by the beam stop and were omitted from the final refinement. The largest electron density peak in the difference map (4.36 e Å−3) is located 0.85 Å from Hf2 and is certainly a Fourier truncation ripple.

Table 2
Experimental details

Crystal data
Chemical formula [Hf(C5HF6O2)4]
Mr 1006.72
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 15.3042 (3), 20.0723 (4), 19.4935 (4)
β (°) 96.158 (1)
V3) 5953.7 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 3.70
Crystal size (mm) 0.23 × 0.22 × 0.19
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.661, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 211180, 14806, 12738
Rint 0.044
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.074, 1.10
No. of reflections 14806
No. of parameters 1039
No. of restraints 369
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 4.36, −1.89
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconson, USA.]), SHELXT2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXL2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2015b); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015a); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Tetrakis(1,1,1,5,5,5-hexafluoroacetylacetonato)hafnium(IV) top
Crystal data top
[Hf(C5HF6O2)4]F(000) = 3808
Mr = 1006.72Dx = 2.246 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 15.3042 (3) ÅCell parameters from 58639 reflections
b = 20.0723 (4) Åθ = 2.3–28.2°
c = 19.4935 (4) ŵ = 3.70 mm1
β = 96.158 (1)°T = 100 K
V = 5953.7 (2) Å3Prism, colourless
Z = 80.23 × 0.22 × 0.19 mm
Data collection top
Bruker APEXII CCD
diffractometer
12738 reflections with I > 2σ(I)
φ and ω scansRint = 0.044
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 28.3°, θmin = 1.3°
Tmin = 0.661, Tmax = 0.746h = 2020
211180 measured reflectionsk = 2626
14806 independent reflectionsl = 2626
Refinement top
Refinement on F2369 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0259P)2 + 18.914P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.003
14806 reflectionsΔρmax = 4.36 e Å3
1039 parametersΔρmin = 1.89 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Hf10.54873 (2)0.38630 (2)0.77866 (2)0.01927 (4)
O10.53844 (16)0.28122 (12)0.80247 (12)0.0205 (5)
O20.62501 (17)0.38168 (13)0.87740 (13)0.0241 (5)
C10.5399 (3)0.1738 (2)0.8474 (2)0.0350 (9)
F10.45392 (19)0.16898 (15)0.8499 (2)0.0679 (10)
F20.57856 (17)0.13531 (12)0.89695 (13)0.0370 (6)
F30.5599 (3)0.14822 (14)0.78807 (15)0.0677 (10)
C20.5686 (2)0.24662 (19)0.85349 (19)0.0236 (7)
C30.6221 (2)0.2677 (2)0.91177 (19)0.0250 (7)
H30.64160.23670.94700.030*
C40.6470 (2)0.33396 (19)0.91818 (18)0.0228 (7)
C50.7101 (3)0.3559 (2)0.9803 (2)0.0282 (8)
F40.72420 (19)0.30906 (16)1.02815 (13)0.0514 (7)
F50.6798 (2)0.40941 (17)1.00909 (15)0.0596 (9)
F60.78750 (16)0.37207 (15)0.96098 (13)0.0419 (6)
O30.44467 (16)0.37390 (13)0.84384 (13)0.0233 (5)
O40.54190 (16)0.48451 (13)0.82534 (13)0.0231 (5)
C60.3275 (3)0.3795 (2)0.9110 (2)0.0315 (9)
F70.34891 (17)0.31919 (13)0.93486 (15)0.0447 (7)
F80.26091 (15)0.37342 (14)0.86177 (14)0.0428 (6)
F90.29883 (17)0.41418 (14)0.96194 (14)0.0441 (6)
C70.4053 (2)0.41242 (19)0.88110 (18)0.0229 (7)
C80.4239 (3)0.4783 (2)0.8948 (2)0.0301 (8)
H80.39000.50270.92420.036*
C90.4925 (2)0.50954 (19)0.86582 (19)0.0244 (7)
C100.5104 (3)0.5827 (2)0.8848 (2)0.0337 (9)
F100.5280 (9)0.5913 (5)0.9485 (4)0.075 (3)0.644 (18)
F110.4377 (3)0.6185 (3)0.8640 (4)0.0410 (16)0.644 (18)
F120.5689 (5)0.6093 (3)0.8483 (6)0.061 (2)0.644 (18)
F10A0.4662 (13)0.6251 (7)0.8458 (7)0.082 (5)0.356 (18)
F11A0.5975 (6)0.5965 (7)0.8883 (10)0.066 (4)0.356 (18)
F12A0.4944 (9)0.5948 (8)0.9513 (5)0.042 (3)0.356 (18)
O50.60640 (16)0.45575 (13)0.71347 (13)0.0240 (5)
O60.67729 (16)0.34269 (13)0.76348 (14)0.0258 (5)
C110.6729 (3)0.5152 (2)0.6296 (2)0.0324 (9)
F130.69778 (19)0.56731 (13)0.66855 (14)0.0458 (7)
F140.59588 (18)0.52931 (14)0.59612 (14)0.0461 (7)
F150.7301 (2)0.50791 (15)0.58351 (16)0.0560 (8)
C120.6679 (2)0.4527 (2)0.67444 (19)0.0270 (8)
C130.7281 (3)0.4021 (2)0.6715 (2)0.0347 (9)
H130.76800.40240.63740.042*
C140.7295 (2)0.3506 (2)0.7193 (2)0.0297 (8)
C150.8009 (3)0.2969 (3)0.7202 (3)0.0502 (13)
F160.8107 (7)0.2602 (5)0.7724 (5)0.076 (4)0.507 (6)
F170.8811 (3)0.3284 (3)0.7178 (3)0.0359 (14)0.507 (6)
F180.7919 (5)0.2634 (5)0.6628 (5)0.075 (3)0.507 (6)
F16A0.8637 (7)0.3108 (6)0.6835 (7)0.134 (5)0.493 (6)
F17A0.7623 (6)0.2390 (4)0.6979 (6)0.096 (4)0.493 (6)
F18A0.8322 (7)0.2835 (5)0.7855 (4)0.082 (4)0.507 (6)
O70.43069 (16)0.43040 (13)0.72452 (12)0.0234 (5)
O80.52769 (17)0.33355 (13)0.68213 (13)0.0244 (5)
C160.3184 (3)0.4779 (2)0.6483 (2)0.0299 (8)
F190.24631 (16)0.44484 (13)0.66136 (16)0.0458 (7)
F200.3066 (2)0.49750 (15)0.58295 (14)0.0522 (8)
F210.32427 (18)0.53092 (12)0.68787 (14)0.0432 (6)
C170.3988 (2)0.43221 (19)0.66260 (19)0.0242 (7)
C180.4258 (2)0.3952 (2)0.6084 (2)0.0263 (8)
H180.40220.40360.56210.032*
C190.4879 (2)0.34600 (19)0.62377 (19)0.0242 (7)
C200.5124 (3)0.3000 (2)0.5672 (2)0.0333 (9)
F220.4891 (8)0.3242 (6)0.5060 (5)0.044 (2)0.61 (2)
F230.4621 (7)0.2422 (3)0.5695 (4)0.050 (2)0.61 (2)
F240.5912 (5)0.2793 (7)0.5737 (4)0.062 (3)0.61 (2)
F22A0.5122 (14)0.2372 (4)0.5819 (6)0.069 (4)0.39 (2)
F23A0.5991 (5)0.3159 (9)0.5588 (6)0.048 (3)0.39 (2)
F24A0.4703 (9)0.3102 (9)0.5044 (7)0.036 (3)0.39 (2)
Hf20.05011 (2)0.34812 (2)0.29307 (2)0.02059 (4)
O90.03888 (16)0.24362 (13)0.31851 (13)0.0254 (5)
O100.13316 (16)0.34335 (13)0.38817 (13)0.0238 (5)
C210.0339 (3)0.1385 (2)0.3698 (2)0.0317 (9)
F250.0415 (2)0.10771 (14)0.31083 (15)0.0584 (8)
F260.05068 (17)0.14064 (13)0.37891 (17)0.0482 (7)
F270.0740 (2)0.10128 (13)0.42026 (15)0.0495 (7)
C220.0703 (2)0.20906 (19)0.36922 (19)0.0237 (7)
C230.1315 (2)0.2302 (2)0.42349 (19)0.0263 (8)
H230.15420.19910.45760.032*
C240.1591 (2)0.2953 (2)0.42804 (18)0.0235 (7)
C250.2278 (2)0.3170 (2)0.48612 (19)0.0297 (8)
F280.19783 (18)0.36545 (15)0.52273 (14)0.0467 (7)
F290.29945 (16)0.33921 (15)0.46019 (13)0.0432 (6)
F300.25335 (17)0.26747 (14)0.52928 (12)0.0413 (6)
O110.05268 (16)0.33560 (13)0.35927 (13)0.0259 (6)
O120.04500 (16)0.44602 (13)0.34183 (13)0.0234 (5)
C260.1791 (2)0.3432 (2)0.4163 (2)0.0296 (8)
F310.16297 (17)0.28179 (14)0.43867 (15)0.0468 (7)
F320.24156 (15)0.33971 (13)0.36372 (14)0.0400 (6)
F330.21122 (18)0.37811 (15)0.46555 (15)0.0502 (7)
C270.0975 (2)0.3758 (2)0.39135 (19)0.0248 (8)
C280.0814 (2)0.4423 (2)0.40295 (19)0.0274 (8)
H280.11940.46770.42820.033*
C290.0091 (2)0.4728 (2)0.37765 (18)0.0237 (7)
C300.0080 (3)0.5464 (2)0.3921 (2)0.0319 (9)
F340.0084 (3)0.58166 (15)0.33567 (16)0.0698 (10)
F350.09035 (17)0.55646 (14)0.41741 (16)0.0496 (7)
F360.04077 (19)0.57065 (14)0.43865 (16)0.0495 (7)
O130.10713 (16)0.41745 (13)0.22774 (13)0.0243 (5)
O140.17452 (16)0.30105 (13)0.27081 (13)0.0247 (5)
C310.1684 (3)0.4764 (2)0.1407 (2)0.0332 (9)
F370.1948 (2)0.52825 (14)0.17918 (16)0.0552 (8)
F380.09032 (19)0.49093 (14)0.10948 (15)0.0511 (7)
F390.2232 (2)0.46960 (16)0.09337 (18)0.0682 (10)
C320.1645 (2)0.41349 (19)0.18522 (19)0.0249 (7)
C330.2210 (3)0.3614 (2)0.1775 (2)0.0278 (8)
H330.25790.36150.14130.033*
C340.2231 (2)0.30842 (19)0.22395 (19)0.0241 (7)
C350.2891 (3)0.2518 (2)0.2196 (2)0.0319 (9)
F400.33034 (18)0.23785 (15)0.28025 (15)0.0519 (7)
F410.3485 (2)0.26543 (16)0.17714 (18)0.0621 (9)
F420.2483 (2)0.19740 (14)0.19608 (19)0.0601 (9)
O150.06754 (16)0.39771 (14)0.24297 (13)0.0246 (5)
O160.01956 (16)0.29709 (14)0.19657 (13)0.0254 (5)
C360.1771 (3)0.4516 (2)0.1697 (2)0.0324 (9)
F430.25120 (16)0.41942 (16)0.17806 (18)0.0560 (8)
F440.18531 (19)0.47703 (14)0.10659 (14)0.0488 (7)
F450.16958 (18)0.50112 (14)0.21439 (14)0.0465 (7)
C370.1003 (2)0.40286 (19)0.18149 (19)0.0247 (8)
C380.0762 (2)0.3666 (2)0.1256 (2)0.0268 (8)
H380.09830.37780.07970.032*
C390.0191 (2)0.31374 (19)0.13900 (19)0.0250 (7)
C400.0013 (3)0.2665 (2)0.0799 (2)0.0324 (9)
F460.0464 (3)0.21060 (15)0.08203 (16)0.0623 (9)
F470.0824 (2)0.2514 (2)0.08321 (15)0.0695 (11)
F480.02508 (17)0.29400 (13)0.01846 (12)0.0396 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hf10.01424 (7)0.02359 (8)0.02007 (7)0.00008 (5)0.00223 (5)0.00098 (5)
O10.0196 (12)0.0175 (12)0.0244 (12)0.0022 (9)0.0017 (9)0.0004 (10)
O20.0238 (13)0.0251 (13)0.0227 (12)0.0015 (11)0.0004 (10)0.0004 (10)
C10.039 (2)0.026 (2)0.039 (2)0.0008 (18)0.0011 (18)0.0032 (17)
F10.0335 (15)0.0406 (16)0.124 (3)0.0167 (13)0.0194 (17)0.0279 (18)
F20.0397 (14)0.0284 (12)0.0429 (14)0.0032 (11)0.0039 (11)0.0071 (10)
F30.134 (3)0.0309 (15)0.0361 (15)0.0035 (17)0.0021 (18)0.0064 (12)
C20.0182 (17)0.0268 (19)0.0267 (18)0.0002 (14)0.0070 (14)0.0022 (15)
C30.0217 (17)0.0296 (19)0.0239 (18)0.0024 (15)0.0035 (14)0.0013 (15)
C40.0158 (16)0.0309 (19)0.0223 (17)0.0007 (14)0.0045 (13)0.0038 (14)
C50.0246 (19)0.035 (2)0.0245 (18)0.0006 (16)0.0007 (14)0.0025 (16)
F40.0577 (18)0.0619 (18)0.0303 (13)0.0183 (15)0.0151 (12)0.0127 (13)
F50.0524 (17)0.076 (2)0.0462 (16)0.0190 (16)0.0125 (13)0.0371 (15)
F60.0255 (12)0.0609 (17)0.0379 (14)0.0113 (12)0.0028 (10)0.0009 (12)
O30.0188 (12)0.0264 (13)0.0255 (13)0.0040 (10)0.0062 (10)0.0030 (10)
O40.0182 (12)0.0254 (13)0.0258 (13)0.0026 (10)0.0024 (10)0.0003 (10)
C60.026 (2)0.032 (2)0.038 (2)0.0018 (17)0.0136 (16)0.0044 (17)
F70.0374 (14)0.0361 (14)0.0643 (18)0.0058 (11)0.0229 (13)0.0221 (13)
F80.0199 (12)0.0537 (16)0.0552 (16)0.0074 (11)0.0060 (11)0.0047 (13)
F90.0392 (14)0.0495 (16)0.0483 (15)0.0039 (12)0.0266 (12)0.0013 (13)
C70.0168 (16)0.0292 (19)0.0229 (17)0.0027 (14)0.0029 (13)0.0045 (14)
C80.0261 (19)0.026 (2)0.040 (2)0.0032 (16)0.0128 (16)0.0035 (17)
C90.0198 (17)0.0252 (18)0.0276 (18)0.0020 (14)0.0000 (14)0.0015 (15)
C100.035 (2)0.025 (2)0.042 (2)0.0024 (17)0.0084 (18)0.0042 (17)
F100.119 (7)0.047 (4)0.049 (4)0.022 (5)0.040 (4)0.001 (3)
F110.035 (2)0.021 (2)0.067 (4)0.0040 (18)0.006 (2)0.005 (2)
F120.051 (4)0.029 (3)0.111 (6)0.014 (2)0.040 (4)0.018 (3)
F10A0.131 (10)0.053 (6)0.058 (7)0.007 (7)0.018 (7)0.020 (5)
F11A0.046 (6)0.048 (6)0.111 (9)0.019 (4)0.036 (6)0.035 (6)
F12A0.053 (6)0.038 (5)0.040 (5)0.017 (5)0.027 (5)0.015 (4)
O50.0195 (12)0.0276 (14)0.0260 (13)0.0024 (10)0.0074 (10)0.0027 (10)
O60.0181 (12)0.0296 (14)0.0301 (14)0.0014 (11)0.0043 (10)0.0012 (11)
C110.033 (2)0.034 (2)0.033 (2)0.0026 (17)0.0123 (17)0.0064 (17)
F130.0559 (17)0.0321 (14)0.0493 (16)0.0095 (12)0.0058 (13)0.0042 (12)
F140.0388 (14)0.0513 (17)0.0469 (15)0.0044 (13)0.0019 (12)0.0151 (13)
F150.0627 (19)0.0538 (18)0.0585 (18)0.0189 (15)0.0395 (15)0.0211 (14)
C120.0247 (18)0.031 (2)0.0259 (18)0.0001 (16)0.0044 (14)0.0017 (15)
C130.025 (2)0.043 (2)0.039 (2)0.0070 (18)0.0166 (17)0.0074 (19)
C140.0182 (17)0.034 (2)0.038 (2)0.0053 (16)0.0047 (15)0.0012 (17)
C150.040 (3)0.047 (3)0.068 (4)0.021 (2)0.024 (2)0.020 (3)
F160.067 (6)0.072 (6)0.095 (6)0.024 (4)0.039 (5)0.045 (5)
F170.014 (2)0.043 (3)0.051 (3)0.009 (2)0.005 (2)0.003 (2)
F180.055 (4)0.066 (5)0.100 (6)0.029 (4)0.015 (4)0.046 (4)
F16A0.118 (8)0.122 (8)0.178 (9)0.055 (6)0.093 (7)0.052 (7)
F17A0.100 (6)0.061 (5)0.122 (7)0.049 (5)0.008 (5)0.029 (5)
F18A0.055 (5)0.075 (7)0.104 (6)0.030 (4)0.038 (4)0.009 (5)
O70.0180 (12)0.0305 (14)0.0217 (12)0.0018 (10)0.0019 (9)0.0019 (10)
O80.0231 (13)0.0285 (14)0.0213 (12)0.0051 (11)0.0009 (10)0.0021 (10)
C160.0260 (19)0.028 (2)0.035 (2)0.0030 (16)0.0015 (16)0.0009 (16)
F190.0212 (12)0.0384 (14)0.077 (2)0.0039 (11)0.0022 (12)0.0007 (13)
F200.0564 (17)0.0603 (18)0.0382 (14)0.0324 (15)0.0023 (12)0.0073 (13)
F210.0462 (15)0.0266 (13)0.0557 (16)0.0102 (11)0.0005 (12)0.0081 (11)
C170.0169 (16)0.0250 (19)0.0309 (19)0.0006 (14)0.0029 (14)0.0003 (15)
C180.0228 (18)0.030 (2)0.0247 (18)0.0027 (15)0.0022 (14)0.0015 (15)
C190.0219 (17)0.0248 (18)0.0259 (18)0.0003 (15)0.0029 (14)0.0005 (15)
C200.034 (2)0.039 (2)0.026 (2)0.0125 (19)0.0004 (16)0.0071 (17)
F220.050 (5)0.054 (5)0.028 (3)0.009 (4)0.001 (3)0.008 (3)
F230.067 (5)0.032 (3)0.053 (3)0.002 (3)0.009 (3)0.015 (2)
F240.039 (3)0.093 (6)0.050 (3)0.040 (4)0.011 (2)0.036 (4)
F22A0.108 (10)0.039 (5)0.062 (6)0.020 (6)0.014 (6)0.001 (4)
F23A0.029 (4)0.072 (7)0.043 (5)0.007 (4)0.004 (3)0.035 (5)
F24A0.026 (5)0.052 (7)0.027 (4)0.005 (4)0.011 (3)0.019 (4)
Hf20.01420 (7)0.02665 (8)0.02060 (7)0.00038 (6)0.00031 (5)0.00107 (6)
O90.0186 (12)0.0308 (14)0.0260 (13)0.0009 (11)0.0007 (10)0.0004 (11)
O100.0186 (12)0.0286 (14)0.0234 (12)0.0018 (10)0.0016 (9)0.0003 (11)
C210.037 (2)0.0241 (19)0.034 (2)0.0031 (17)0.0047 (17)0.0010 (16)
F250.098 (3)0.0342 (15)0.0448 (16)0.0029 (15)0.0155 (16)0.0124 (12)
F260.0317 (14)0.0352 (14)0.078 (2)0.0096 (11)0.0088 (13)0.0022 (13)
F270.0558 (17)0.0322 (14)0.0580 (17)0.0022 (12)0.0043 (14)0.0149 (12)
C220.0181 (16)0.0286 (19)0.0253 (18)0.0033 (14)0.0073 (13)0.0009 (14)
C230.0244 (18)0.034 (2)0.0212 (17)0.0028 (16)0.0037 (14)0.0032 (15)
C240.0149 (16)0.037 (2)0.0192 (16)0.0037 (15)0.0051 (13)0.0022 (15)
C250.0216 (18)0.044 (2)0.0229 (18)0.0022 (17)0.0005 (14)0.0011 (17)
F280.0448 (15)0.0562 (17)0.0366 (14)0.0125 (13)0.0071 (11)0.0217 (12)
F290.0226 (12)0.0686 (19)0.0369 (14)0.0117 (12)0.0035 (10)0.0035 (13)
F300.0379 (14)0.0540 (16)0.0293 (12)0.0035 (12)0.0089 (10)0.0052 (11)
O110.0196 (12)0.0306 (14)0.0277 (13)0.0020 (11)0.0033 (10)0.0004 (11)
O120.0176 (12)0.0299 (14)0.0227 (12)0.0016 (10)0.0020 (9)0.0018 (10)
C260.0196 (18)0.035 (2)0.036 (2)0.0030 (16)0.0073 (15)0.0095 (17)
F310.0313 (13)0.0470 (16)0.0641 (18)0.0078 (12)0.0139 (12)0.0304 (14)
F320.0199 (11)0.0465 (15)0.0528 (16)0.0037 (10)0.0006 (10)0.0140 (12)
F330.0407 (15)0.0632 (19)0.0515 (16)0.0037 (14)0.0281 (13)0.0019 (14)
C270.0170 (16)0.035 (2)0.0225 (17)0.0024 (15)0.0005 (13)0.0054 (15)
C280.0211 (18)0.037 (2)0.0247 (18)0.0028 (16)0.0041 (14)0.0000 (16)
C290.0192 (17)0.033 (2)0.0178 (16)0.0016 (15)0.0015 (13)0.0017 (14)
C300.030 (2)0.036 (2)0.030 (2)0.0020 (17)0.0048 (16)0.0046 (17)
F340.128 (3)0.0372 (16)0.0409 (16)0.0097 (18)0.0050 (18)0.0070 (13)
F350.0303 (13)0.0480 (16)0.0709 (19)0.0102 (12)0.0076 (13)0.0248 (14)
F360.0466 (16)0.0405 (15)0.0652 (18)0.0007 (13)0.0237 (14)0.0183 (13)
O130.0201 (12)0.0271 (14)0.0263 (13)0.0027 (11)0.0049 (10)0.0000 (11)
O140.0171 (12)0.0301 (14)0.0267 (13)0.0022 (10)0.0014 (10)0.0026 (11)
C310.032 (2)0.032 (2)0.037 (2)0.0057 (17)0.0126 (17)0.0044 (17)
F370.073 (2)0.0308 (14)0.0606 (18)0.0165 (14)0.0039 (15)0.0036 (13)
F380.0538 (17)0.0460 (16)0.0515 (17)0.0079 (14)0.0031 (13)0.0202 (13)
F390.088 (2)0.0551 (19)0.072 (2)0.0272 (17)0.0549 (19)0.0304 (16)
C320.0234 (18)0.0268 (19)0.0244 (18)0.0001 (15)0.0019 (14)0.0023 (15)
C330.0253 (19)0.029 (2)0.031 (2)0.0011 (16)0.0083 (15)0.0017 (16)
C340.0163 (16)0.0255 (18)0.0297 (19)0.0008 (14)0.0008 (14)0.0018 (15)
C350.0214 (19)0.029 (2)0.045 (2)0.0055 (16)0.0050 (17)0.0053 (18)
F400.0387 (15)0.0586 (18)0.0557 (17)0.0214 (13)0.0067 (13)0.0100 (14)
F410.0525 (18)0.0535 (18)0.088 (2)0.0253 (15)0.0425 (17)0.0226 (17)
F420.0473 (17)0.0362 (15)0.095 (2)0.0051 (13)0.0006 (16)0.0217 (16)
O150.0162 (12)0.0344 (15)0.0227 (12)0.0007 (10)0.0005 (10)0.0025 (11)
O160.0210 (12)0.0320 (14)0.0223 (13)0.0014 (11)0.0022 (10)0.0019 (11)
C360.026 (2)0.034 (2)0.035 (2)0.0081 (17)0.0081 (16)0.0049 (17)
F430.0200 (12)0.0560 (18)0.091 (2)0.0033 (12)0.0011 (13)0.0019 (16)
F440.0544 (17)0.0492 (16)0.0402 (15)0.0228 (14)0.0073 (12)0.0013 (12)
F450.0479 (16)0.0421 (15)0.0472 (15)0.0167 (13)0.0056 (12)0.0134 (12)
C370.0177 (17)0.0291 (19)0.0261 (18)0.0006 (14)0.0039 (14)0.0001 (15)
C380.0203 (17)0.035 (2)0.0239 (18)0.0001 (15)0.0025 (14)0.0000 (15)
C390.0190 (17)0.0292 (19)0.0268 (18)0.0045 (15)0.0024 (14)0.0021 (15)
C400.029 (2)0.041 (2)0.0262 (19)0.0044 (18)0.0003 (15)0.0060 (17)
F460.104 (3)0.0360 (16)0.0479 (17)0.0099 (17)0.0146 (17)0.0098 (13)
F470.0433 (16)0.121 (3)0.0426 (16)0.0370 (18)0.0044 (13)0.0322 (18)
F480.0481 (15)0.0465 (15)0.0239 (12)0.0037 (12)0.0024 (10)0.0037 (10)
Geometric parameters (Å, º) top
Hf1—O12.169 (2)C20—F241.269 (7)
Hf1—O22.143 (2)C20—F22A1.292 (7)
Hf1—O32.156 (2)C20—F23A1.390 (7)
Hf1—O42.179 (3)C20—F24A1.336 (8)
Hf1—O52.140 (2)Hf2—O92.166 (3)
Hf1—O62.202 (3)Hf2—O102.134 (2)
Hf1—O72.180 (2)Hf2—O112.154 (3)
Hf1—O82.153 (2)Hf2—O122.188 (3)
O1—C21.259 (4)Hf2—O132.135 (3)
O2—C41.267 (5)Hf2—O142.210 (2)
C1—F11.325 (5)Hf2—O152.193 (2)
C1—F21.327 (5)Hf2—O162.149 (3)
C1—F31.331 (5)O9—C221.260 (4)
C1—C21.526 (6)O10—C241.275 (5)
C2—C31.394 (5)C21—F251.321 (5)
C3—H30.9500C21—F261.325 (5)
C3—C41.385 (5)C21—F271.331 (5)
C4—C51.530 (5)C21—C221.523 (6)
C5—F41.326 (5)C22—C231.402 (5)
C5—F51.320 (5)C23—H230.9500
C5—F61.321 (5)C23—C241.373 (6)
O3—C71.258 (4)C24—C251.524 (5)
O4—C91.255 (4)C25—F281.317 (5)
C6—F71.327 (5)C25—F291.332 (5)
C6—F81.327 (5)C25—F301.334 (5)
C6—F91.325 (5)O11—C271.267 (5)
C6—C71.530 (5)O12—C291.259 (4)
C7—C81.374 (6)C26—F311.322 (5)
C8—H80.9500C26—F321.326 (5)
C8—C91.393 (5)C26—F331.325 (5)
C9—C101.531 (5)C26—C271.535 (5)
C10—F101.254 (9)C27—C281.372 (6)
C10—F111.351 (7)C28—H280.9500
C10—F121.314 (7)C28—C291.399 (5)
C10—F10A1.284 (8)C29—C301.522 (6)
C10—F11A1.355 (8)C30—F341.309 (5)
C10—F12A1.367 (8)C30—F351.319 (5)
O5—C121.273 (4)C30—F361.328 (5)
O6—C141.247 (5)O13—C321.273 (4)
C11—F131.323 (5)O14—C341.247 (4)
C11—F141.316 (5)C31—F371.320 (5)
C11—F151.328 (5)C31—F381.315 (5)
C11—C121.535 (6)C31—F391.319 (5)
C12—C131.377 (6)C31—C321.536 (5)
C13—H130.9500C32—C331.375 (5)
C13—C141.391 (6)C33—H330.9500
C14—C151.533 (6)C33—C341.394 (5)
C15—F161.252 (10)C34—C351.528 (5)
C15—F171.386 (8)C35—F401.309 (5)
C15—F181.301 (9)C35—F411.323 (5)
C15—F16A1.288 (7)C35—F421.316 (5)
C15—F17A1.354 (7)O15—C371.253 (4)
C15—F18A1.338 (7)O16—C391.256 (4)
O7—C171.253 (4)C36—F431.330 (5)
O8—C191.256 (4)C36—F441.326 (5)
C16—F191.335 (5)C36—F451.319 (5)
C16—F201.327 (5)C36—C371.527 (5)
C16—F211.312 (5)C37—C381.393 (5)
C16—C171.536 (5)C38—H380.9500
C17—C181.390 (5)C38—C391.381 (5)
C18—H180.9500C39—C401.539 (5)
C18—C191.382 (5)C40—F461.321 (5)
C19—C201.517 (5)C40—F471.312 (5)
C20—F221.301 (9)C40—F481.332 (5)
C20—F231.396 (8)
O1—Hf1—O4141.51 (9)F24—C20—C19115.7 (4)
O1—Hf1—O674.26 (9)F24—C20—F22112.2 (7)
O1—Hf1—O7115.03 (9)F24—C20—F23104.3 (6)
O2—Hf1—O179.10 (9)F22A—C20—C19115.2 (6)
O2—Hf1—O380.29 (10)F22A—C20—F23A106.0 (6)
O2—Hf1—O473.14 (10)F22A—C20—F24A110.0 (7)
O2—Hf1—O672.25 (10)F23A—C20—C19104.9 (5)
O2—Hf1—O7142.70 (9)F24A—C20—C19116.0 (9)
O2—Hf1—O8141.22 (10)F24A—C20—F23A103.3 (7)
O3—Hf1—O171.72 (9)O9—Hf2—O12139.70 (10)
O3—Hf1—O477.68 (9)O9—Hf2—O1473.87 (10)
O3—Hf1—O6139.51 (10)O9—Hf2—O15117.38 (10)
O3—Hf1—O772.90 (10)O10—Hf2—O979.18 (10)
O4—Hf1—O6119.96 (10)O10—Hf2—O1183.08 (10)
O4—Hf1—O776.13 (9)O10—Hf2—O1273.06 (10)
O5—Hf1—O1143.59 (9)O10—Hf2—O13107.70 (10)
O5—Hf1—O2109.99 (10)O10—Hf2—O1472.91 (10)
O5—Hf1—O3143.43 (10)O10—Hf2—O15142.29 (10)
O5—Hf1—O472.53 (9)O10—Hf2—O16142.40 (10)
O5—Hf1—O675.39 (10)O11—Hf2—O970.66 (10)
O5—Hf1—O779.69 (9)O11—Hf2—O1277.41 (10)
O5—Hf1—O880.44 (10)O11—Hf2—O14140.16 (10)
O7—Hf1—O6143.35 (9)O11—Hf2—O1572.67 (10)
O8—Hf1—O172.62 (10)O12—Hf2—O14122.75 (9)
O8—Hf1—O3114.06 (10)O12—Hf2—O1573.74 (9)
O8—Hf1—O4143.20 (10)O13—Hf2—O9144.60 (10)
O8—Hf1—O674.88 (10)O13—Hf2—O11143.61 (10)
O8—Hf1—O774.82 (9)O13—Hf2—O1273.12 (9)
C2—O1—Hf1132.6 (2)O13—Hf2—O1475.27 (9)
C4—O2—Hf1132.7 (2)O13—Hf2—O1578.88 (9)
F1—C1—F2107.3 (4)O13—Hf2—O1681.55 (10)
F1—C1—F3109.1 (4)O15—Hf2—O14142.20 (9)
F1—C1—C2110.2 (3)O16—Hf2—O973.96 (10)
F2—C1—F3106.3 (4)O16—Hf2—O11111.38 (10)
F2—C1—C2113.5 (4)O16—Hf2—O12142.55 (10)
F3—C1—C2110.3 (4)O16—Hf2—O1474.66 (9)
O1—C2—C1112.8 (3)O16—Hf2—O1574.65 (10)
O1—C2—C3127.6 (4)C22—O9—Hf2132.8 (2)
C3—C2—C1119.6 (3)C24—O10—Hf2132.9 (2)
C2—C3—H3120.1F25—C21—F26108.1 (4)
C4—C3—C2119.8 (4)F25—C21—F27107.7 (3)
C4—C3—H3120.1F25—C21—C22111.2 (3)
O2—C4—C3128.1 (3)F26—C21—F27107.4 (3)
O2—C4—C5112.4 (3)F26—C21—C22109.5 (3)
C3—C4—C5119.4 (3)F27—C21—C22112.7 (3)
F4—C5—C4113.2 (3)O9—C22—C21114.1 (3)
F5—C5—C4110.5 (3)O9—C22—C23126.4 (4)
F5—C5—F4108.4 (3)C23—C22—C21119.5 (3)
F5—C5—F6106.7 (4)C22—C23—H23119.6
F6—C5—C4110.8 (3)C24—C23—C22120.9 (4)
F6—C5—F4106.9 (3)C24—C23—H23119.6
C7—O3—Hf1134.4 (2)O10—C24—C23127.3 (3)
C9—O4—Hf1133.2 (2)O10—C24—C25112.4 (3)
F7—C6—F8108.1 (4)C23—C24—C25120.2 (3)
F7—C6—C7110.7 (3)F28—C25—C24111.2 (3)
F8—C6—C7109.5 (3)F28—C25—F29107.9 (4)
F9—C6—F7107.7 (3)F28—C25—F30107.7 (3)
F9—C6—F8107.5 (3)F29—C25—C24110.1 (3)
F9—C6—C7113.1 (3)F29—C25—F30106.9 (3)
O3—C7—C6113.3 (3)F30—C25—C24112.8 (3)
O3—C7—C8127.0 (3)C27—O11—Hf2133.7 (2)
C8—C7—C6119.7 (3)C29—O12—Hf2132.8 (2)
C7—C8—H8119.9F31—C26—F32107.4 (4)
C7—C8—C9120.3 (4)F31—C26—F33108.9 (3)
C9—C8—H8119.9F31—C26—C27111.9 (3)
O4—C9—C8127.3 (4)F32—C26—C27108.7 (3)
O4—C9—C10115.5 (3)F33—C26—F32107.2 (3)
C8—C9—C10117.2 (3)F33—C26—C27112.5 (3)
F10—C10—C9112.7 (6)O11—C27—C26112.8 (3)
F10—C10—F11107.8 (7)O11—C27—C28127.2 (3)
F10—C10—F12113.1 (6)C28—C27—C26120.0 (3)
F11—C10—C9108.5 (4)C27—C28—H28119.9
F12—C10—C9112.0 (4)C27—C28—C29120.1 (4)
F12—C10—F11102.0 (5)C29—C28—H28119.9
F10A—C10—C9115.0 (8)O12—C29—C28127.0 (4)
F10A—C10—F11A110.2 (7)O12—C29—C30113.9 (3)
F10A—C10—F12A107.8 (8)C28—C29—C30119.1 (3)
F11A—C10—C9111.0 (6)F34—C30—C29110.9 (3)
F11A—C10—F12A101.1 (6)F34—C30—F35108.7 (4)
F12A—C10—C9110.8 (7)F34—C30—F36107.8 (4)
C12—O5—Hf1134.6 (3)F35—C30—C29110.9 (3)
C14—O6—Hf1133.7 (3)F35—C30—F36105.8 (3)
F13—C11—F15107.8 (4)F36—C30—C29112.6 (3)
F13—C11—C12110.4 (3)C32—O13—Hf2134.6 (2)
F14—C11—F13107.6 (4)C34—O14—Hf2133.4 (2)
F14—C11—F15107.9 (4)F37—C31—C32110.8 (3)
F14—C11—C12111.2 (3)F38—C31—F37107.1 (4)
F15—C11—C12111.8 (3)F38—C31—F39108.2 (4)
O5—C12—C11112.7 (3)F38—C31—C32110.8 (3)
O5—C12—C13126.9 (4)F39—C31—F37107.5 (4)
C13—C12—C11120.3 (3)F39—C31—C32112.1 (3)
C12—C13—H13120.6O13—C32—C31112.8 (3)
C12—C13—C14118.9 (4)O13—C32—C33127.2 (4)
C14—C13—H13120.6C33—C32—C31120.0 (3)
O6—C14—C13126.3 (4)C32—C33—H33120.6
O6—C14—C15114.3 (4)C32—C33—C34118.7 (3)
C13—C14—C15119.4 (4)C34—C33—H33120.6
F16—C15—C14116.5 (6)O14—C34—C33126.3 (3)
F16—C15—F17105.5 (7)O14—C34—C35113.7 (3)
F16—C15—F18112.7 (8)C33—C34—C35120.1 (3)
F17—C15—C14108.2 (4)F40—C35—C34111.5 (4)
F18—C15—C14110.1 (5)F40—C35—F41108.2 (3)
F18—C15—F17102.7 (6)F40—C35—F42107.6 (4)
F16A—C15—C14114.5 (6)F41—C35—C34112.5 (3)
F16A—C15—F17A109.4 (7)F42—C35—C34110.2 (3)
F16A—C15—F18A111.0 (7)F42—C35—F41106.6 (4)
F17A—C15—C14108.3 (5)C37—O15—Hf2133.5 (2)
F18A—C15—C14109.6 (6)C39—O16—Hf2133.8 (3)
F18A—C15—F17A103.4 (6)F43—C36—C37108.9 (3)
C17—O7—Hf1134.0 (2)F44—C36—F43107.7 (3)
C19—O8—Hf1134.9 (2)F44—C36—C37112.4 (3)
F19—C16—C17109.3 (3)F45—C36—F43107.5 (4)
F20—C16—F19107.5 (3)F45—C36—F44108.3 (4)
F20—C16—C17112.0 (3)F45—C36—C37111.9 (3)
F21—C16—F19107.3 (3)O15—C37—C36114.8 (3)
F21—C16—F20108.5 (3)O15—C37—C38126.4 (3)
F21—C16—C17112.0 (3)C38—C37—C36118.8 (3)
O7—C17—C16114.4 (3)C37—C38—H38121.0
O7—C17—C18126.9 (3)C39—C38—C37118.0 (3)
C18—C17—C16118.6 (3)C39—C38—H38121.0
C17—C18—H18121.0O16—C39—C38126.9 (4)
C19—C18—C17118.1 (3)O16—C39—C40113.7 (3)
C19—C18—H18121.0C38—C39—C40119.3 (3)
O8—C19—C18126.4 (3)F46—C40—C39111.4 (3)
O8—C19—C20113.8 (3)F46—C40—F48106.7 (3)
C18—C19—C20119.7 (3)F47—C40—C39110.8 (3)
F22—C20—C19112.0 (7)F47—C40—F46108.2 (4)
F22—C20—F23104.1 (6)F47—C40—F48108.1 (4)
F23—C20—C19107.6 (4)F48—C40—C39111.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···F23Ai0.952.573.374 (10)143
C8—H8···F5ii0.952.503.427 (5)166
C33—H33···F11Aiii0.952.493.292 (9)142
C13—H13···F35iii0.952.653.528 (5)154
C3—H3···F24i0.952.683.375 (8)130
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1, z+2; (iii) x+1, y+1, z+1.
 

Acknowledgements

We thank Sumeng Liu for helpful suggestions.

Funding information

We thank the National Science Foundation for financial support under grant CHE 1665191.

References

First citationBalog, M., Schieber, M., Michman, M. & Patai, S. (1977). Thin Solid Films, 47, 109–120.  CrossRef Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconson, USA.  Google Scholar
First citationCalderazzo, F., Englertb, U., Maichle-Mössmer, C., Marchetti, F., Pampaloni, G., Petroni, D., Pinzino, C., Strähle, J. & Tripepi, G. (1998). Inorg. Chim. Acta, 270, 177–188.  CrossRef Google Scholar
First citationChattoraj, S. C., Lynch, C. T. & Mazdiyasni, K. S. (1968). Inorg. Chem. 7, 2501–2505.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarada, Y. & Girolami, G. S. (2007). Polyhedron, 26, 1758–1762.  Web of Science CSD CrossRef CAS Google Scholar
First citationHoard, J. L. & Silverton, J. V. (1963). Inorg. Chem. 2, 235–242.  CrossRef Google Scholar
First citationJones, A. C., Aspinall, H. C. & Chalker, P. R. (2009). Chemical Vapor Deposition: Precursors, Processes and Applications, edited by A. C. Jones & M. L. Hitchman, pp. 357–412. Cambridge, UK: The Royal Society of Chemistry.  Google Scholar
First citationKepert, D. L. (1982). Inorganic Steriochemistry. Berlin: Springer-Verlag.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMarchi, L. E., Fernelius, W. C. & McReynolds, J. P. (1943). J. Am. Chem. Soc. 65, 329–333.  CrossRef Google Scholar
First citationMorozova, N. B., Zherikova, K. V., Baidina, I. A., Sysoev, S. V., Semyannikov, P. P., Yakovkina, L. V., Smirnova, T. P., Gelfond, N. V., Igumenov, I. K., Carta, G. & Rossetto, G. (2008). J. Phys. Chem. Solids, 69, 673–679.  CrossRef Google Scholar
First citationMuetterties, E. L. & Wright, C. M. (1967). Q. Rev. Chem. Soc. 21, 109–194.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, W. B., Chang, N. N., Codding, T. A., Girolami, G. S. & Abelson, J. R. (2014). J. Vac. Sci. Technol. A, 32, 051512.  CrossRef Google Scholar
First citationWilk, G. D., Wallace, R. M. & Anthony, J. M. (2001). J. Appl. Phys. 89, 5243–5275.  Web of Science CrossRef CAS Google Scholar
First citationZherikova, K. V. & Morozova, N. B. (2012). J. Struct. Chem. 53, 761–767.  CrossRef Google Scholar
First citationZherikova, K. V., Morozova, N. B., Zelenina, L. N., Sysoev, S. V., Chusova, T. P. & Igumenov, I. K. (2008). J. Therm. Anal. Calorim. 92, 729–734.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds