research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (E)-3-[(2,3-di­chloro­benzyl­­idene)amino]-5-phenyl­thia­zolidin-2-iminium bromide

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bOrganic Chemistry Department, Baku State University, Z. Xalilov str. 23, Az, 1148 Baku, Azerbaijan, and cDepartment of Chemistry, Faculty of Sciences, University of Douala, PO Box 24157, Douala, Republic of Cameroon
*Correspondence e-mail: toflavien@yahoo.fr

Edited by J. Simpson, University of Otago, New Zealand (Received 13 July 2018; accepted 21 July 2018; online 27 July 2018)

In the cation of the title salt, C16H14Cl2N3S+·Br, the central thia­zolidine ring adopts an envelope conformation. The phenyl ring is disordered over two sites with a refined occupancy ratio of 0.541 (9):0.459 (9). In the crystal, C—H⋯Br and N—H⋯Br hydrogen bonds link the components into a three-dimensional network with the cations and anions stacked along the b-axis direction. Weak C—H⋯π inter­actions, which only involve the minor disorder component of the ring, also contribute to the mol­ecular packing. In addition, there are also inversion-related Cl⋯Cl halogen bonds and C—Cl⋯π (ring) contacts. A Hirshfeld surface analysis was conducted to verify the contributions of the different inter­molecular inter­actions.

1. Chemical context

Schiff bases of heterocyclic amines and their complexes have attracted attention over the past decades not only due to the relatively easy synthesis, but also in view of their potential biological, pharmacological and analytical applications (Akbari et al., 2017[Akbari, A. F., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888-14896.]; Gurbanov et al., 2018a[Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018a). Aust. J. Chem. 71, 190-194.],b[Gurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018b). Inorg. Chim. Acta, 471, 130-136.]; Hazra et al., 2018[Hazra, S., Martins, N. M. R., Mahmudov, K. T., Zubkov, F. I., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2018). J. Organomet. Chem. 867, 197-200.]; Kvyatkovskaya et al., 2017[Kvyatkovskaya, E. A., Zaytsev, V. P., Zubkov, F. I., Dorovatovskii, P. V., Zubavichus, Y. V. & Khrustalev, V. N. (2017). Acta Cryst. E73, 515-519.]; Mahmoudi et al., 2016[Mahmoudi, G., Bauzá, A., Gurbanov, A. V., Zubkov, F. I., Maniukiewicz, W., Rodríguez-Diéguez, A., López-Torres, E. & Frontera, A. (2016). CrystEngComm, 18, 9056-9066.], 2017a[Mahmoudi, G., Gurbanov, A. V., Rodríguez-Hermida, S., Carballo, R., Amini, M., Bacchi, A., Mitoraj, M. P., Sagan, F., Kukułka, M. & Safin, D. A. (2017a). Inorg. Chem. 56, 9698-9709.],b[Mahmoudi, G., Zangrando, E., Bauzá, A., Maniukiewicz, W., Carballo, R., Gurbanov, A. V. & Frontera, A. (2017b). CrystEngComm, 19, 3322-3330.], 2018a[Mahmoudi, G., Seth, S. K., Bauzá, A., Zubkov, F. I., Gurbanov, A. V., White, J., Stilinović, V., Doert, Th. & Frontera, A. (2018a). CrystEngComm, 20, 2812-2821.],b[Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2018b). Eur. J. Inorg. Chem. 4763-4772.]; Mitoraj et al., 2018[Mahmoudi, G., Afkhami, F. A., Castiñeiras, A., García-Santos, I., Gurbanov, A., Zubkov, F. I., Mitoraj, M. P., Kukułka, M., Sagan, F., Szczepanik, D. W., Konyaeva, I. A. & Safin, D. A. (2018). Inorg. Chem. 57, 4395-4408.]; Shetnev et al., 2017[Shetnev, A. A. & Zubkov, F. I. (2017). Chem. Heterocycl. C. 53, 495-497.]). Non-covalent inter­actions play an important role in the stabilization of coordination or supra­molecular compounds derived from Schiff bases (Mahmudov et al., 2016[Mahmudov, K. T. & Pombeiro, A. J. L. (2016). Chem. Eur. J. 22, 16356-16398.], 2017a[Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017a). Coord. Chem. Rev. 345, 54-72.],b[Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017b). Dalton Trans. 46, 10121-10138.]; Zubkov et al., 2018[Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949-952.]). Herein we report strong charge-assisted hydrogen bonds and halogen bonding in the structure of (E)-3-[(2,3-di­chloro­benzyl­idene)amino]-5-phenyl­thia­zolidin-2-iminium bromide.

[Scheme 1]

2. Structural commentary

In the cation of the title salt (Fig. 1[link]), the central thia­zolidine ring (S1/N2/C1–C3) adopts an envelope conformation with puckering parameters Q(2) = 0.205 (4) Å and φ(2) = 222.1 (12)°. The dihedral angle between the mean plane of the central thia­zolidine ring and the 2,3-di­chloro­benzene ring (C5–C10) is 16.0 (2)° while this plane subtends angles of 79.1 (3) and 86.7 (4)° with the major and minor components (C11–C16 and C11/C12′–C16′), respectively, of the disordered phenyl ring. The dihedral angle between the two disorder components of the ring is 7.6 (4)° and these components are oriented to the 2,3-di­chloro­benzene ring by 64.8 (3) and 72.4 (4)°, respectively. The N2—N1—C4—C5 bridge that links the thia­zolidine and 2,3-di­chloro­benzene rings has a torsion angle of 175.1 (4)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title salt. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius. The minor disorder component is omitted for clarity.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, each cation forms C—H⋯Br and N—H⋯Br hydrogen bonds along with inversion-related Cl1⋯Cl1 halogen bonds and C7—Cl2⋯Cg3iv and C7—Cl2⋯Cg4iv contacts (Table 1[link]; Fig. 2[link]). Chains of cations form along the a-axis direction (Fig. 3[link]). The crystal structure is further stabilized by C13′—H13BCg3ii and C13′—H13BCg4ii inter­actions involving the minor disorder component (Table 1[link]). Overall, cations and anions are stacked along the b-axis direction (Fig. 4[link])

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 and Cg4 are the centroids of the major and minor disorder components of the C11/C12–C16 and C11/C12′–C16′ phenyl ring, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯Br1i 0.90 2.51 3.303 (4) 147
N3—H3B⋯Br1 0.90 2.36 3.258 (4) 175
C13′—H13BCg3ii 0.93 2.91 3.596 (12) 132
C13′—H13BCg4ii 0.93 2.99 3.746 (12) 139
C2—H2A⋯Br1iii 0.98 2.87 3.778 (5) 154
C10—H10A⋯Br1i 0.93 2.90 3.796 (5) 161
C7—Cl2⋯Cg3iv 1.73 (1) 3.80 (1) 5.525 (6) 175 (1)
C7—Cl2⋯Cg4iv 1.73 (1) 3.57 (1) 5.299 (6) 175 (1)
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x, y-1, z; (iv) -x+2, -y, -z+1.
[Figure 2]
Figure 2
View of the full complement of contacts to an individual cation in the title salt. Only the major disorder component is shown. The symmetry-equivalent position for the cation with the label Cg3 is −x + 1, y − [1\over2], −z + 3/2.
[Figure 3]
Figure 3
C—H⋯Br and N—H⋯Br hydrogen bonds and inversion-related Cl⋯Cl halogen bonds and C—Cl⋯π contacts of the title salt viewed along the b axis. Only the major disorder component is shown.
[Figure 4]
Figure 4
Overall packing of the title salt viewed along the b axis. Only the major disorder component is shown.

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) of the title salt was generated by CrystalExplorer3.1 (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia.]), and comprised dnorm surface plots and two dimensional fingerprint plots (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]). A dnorm surface plot of the title salt is shown in Fig. 5[link]. This plot was generated to qu­antify and visualize the inter­molecular inter­actions and to explain the observed crystal packing. The dark-red spots on the dnorm surface arise as a result of short inter­atomic contacts, while the other weaker inter­molecular inter­actions appear as light-red spots.

[Figure 5]
Figure 5
Hirshfeld surface of the title salt mapped with dnorm, showing the C—H⋯Br and N—H⋯Br hydrogen bonds.

The dnorm surface of the title salt shows a dark-red spot at the N—H hydrogen atom and on the bromide atom, which is the result of the strong N3—H3A⋯Br1i and N3—H3B⋯Br1 hydrogen bonds present in the structure (Fig. 5[link]). Beside these two short inter­molecular contacts, the C—H⋯Br inter­action is shown as light-red spots on the dnorm surface. The short inter­atomic contacts in the title salt are given in Table 2[link].

Table 2
Summary of short inter­atomic contacts (Å) in the title salt

Atoms marked with an asterisk (*) are from the minor component (C11/C12′–C16′) of the disordered phenyl ring of the cation.

Contact Distance Symmetry operation
(C6)Cl1⋯Cl1(C6) 3.323 (2) 2 − x, −y, 1 − z
(C16′)*H16B⋯H8A(C8) 2.56 2 − x, 1 − y, 1 − z
(C2)S1⋯*H14B(C14′) 3.05 1 − x, [{1\over 2}] + y, [{3\over 2}] − z
(N3)H3B⋯Br1 2.36 x, y, z
(N3)H3A⋯Br1 2.51 1 − x, 2 − y, 1 − z
(S1)C3⋯C3(S1) 3.561 (6) 1 − x, 1 − y, 1 − z
(C1)H1B⋯Br1 3.06 1 − x, 1 − y, 1 − z
(C5)C10⋯*H14B(C14′) 2.89 x, [{1\over 2}] − y, −[{1\over 2}] + z
(C14′)*H14B⋯S1(C2) 3.05 1 − x, −[{1\over 2}] + y, [{3\over 2}] − z
(C14′)*H14B⋯C10(C5) 2.89 x, [{1\over 2}] − y, [{1\over 2}] + z
(C2)H2A⋯Br1 2.87 x, −1 + y, z

A qu­anti­tative analysis of the inter­molecular inter­actions can be made by studying the fingerprint plots that are shown with characteristic pseudo-symmetry wings in the de and di diagonal axes [de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively]. These represent both the overall two-dimensional fingerprint plots and those that represent H⋯H, Cl⋯H/H⋯Cl, C⋯H/H⋯C and Br⋯H/H⋯Br contacts, respectively (Fig. 6[link]b-e). The most significant inter­molecular inter­actions are the H⋯H inter­action (25.4%), which appear in the central region of the fingerprint plot with de = di ≃ 1.2 Å (Fig. 6[link]b). The reciprocal Cl⋯H/H⋯Cl inter­actions appear as two symmetrical broad wings with de + di ≃ 2.8 Å and contribute 19.1% to the Hirshfeld surface (Fig. 6[link]c). The reciprocal C⋯H/H⋯C and Br⋯H/H⋯Br inter­actions with 18.2% and 16.2% contributions are present as sharp symmetrical spikes at diagonal axes de + di ≃ 2.7 and 2.4 Å, respectively (Fig. 6[link]de). The percentage contributions of other inter­molecular contacts are less than 6% in the Hirshfeld surface mapping (Table 3[link]).

Table 3
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for the title salt

Contact Percentage contribution
H⋯H 25.4
Cl⋯H/H⋯Cl 19.1
C⋯H/H⋯C 18.2
Br⋯H/H⋯Br 16.2
S⋯H/H⋯S 5.9
Cl.·C/C⋯Cl 4.4
N⋯H/H⋯N 2.7
C⋯C 1.9
Cl.·N/N⋯Cl 1.4
C.·N/N⋯C 1.3
Br.·C/C⋯Br 1.0
Cl⋯Cl 0.8
S⋯N/N⋯S 0.7
S⋯C/C⋯S 0.4
Br⋯N/N⋯Br 0.3
Br.·Cl/Cl⋯Br 0.3
[Figure 6]
Figure 6
The two-dimensional fingerprint plots of the title salt, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) Cl⋯H/H⋯Cl, (d) C⋯H/H⋯C, (e) Br⋯H/H⋯Br and (f) S⋯H/H⋯S inter­actions.

4. Database survey

A search of the Cambridge Structural Database (CSD Version 5.39, Nov 2017 plus three updates; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) yielded six hits for 2-thia­zolidiniminium compounds with four of them reporting essentially the same cation: [WILBIC (Marthi et al., 1994[Marthi, K., Larsen, S., Ács, M., Bálint, J. & Fogassy, E. (1994). Acta Cryst. B50, 762-771.]), WILBOI (Marthi et al., 1994[Marthi, K., Larsen, S., Ács, M., Bálint, J. & Fogassy, E. (1994). Acta Cryst. B50, 762-771.]), WILBOI01 (Marthi et al., 1994[Marthi, K., Larsen, S., Ács, M., Bálint, J. & Fogassy, E. (1994). Acta Cryst. B50, 762-771.]), YITCEJ (Martem'yanova et al., 1993a[Martem'yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993a). Khim. Geterotsikl. Soedin. pp. 415-419.]), YITCAF (Martem'yanova et al., 1993b[Martem'yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993b). Khim. Geterotsikl. Soedin. pp. 420-425.]) and YOPLUK (Marthi et al., 1995[Marthi, K., Larsen, M., Ács, M., Bálint, J. & Fogassy, E. (1995). Acta Chem. Scand. 49, 20-27.])]. In all cases, the 3-N atom carries a C substituent, not N as found in the title compound. The first three crystal structures were determined for racemic (WILBIC; Marthi et al., 1994[Marthi, K., Larsen, S., Ács, M., Bálint, J. & Fogassy, E. (1994). Acta Cryst. B50, 762-771.]) and two optically active samples (WILBOI and WILBOI01; Marthi et al., 1994[Marthi, K., Larsen, S., Ács, M., Bálint, J. & Fogassy, E. (1994). Acta Cryst. B50, 762-771.]) of 3-(2′-chloro-2′-phenyl­eth­yl) −2-thia­zolidiniminium p-toluene­sulfonate. In all three structures, the most disordered fragment of these mol­ecules is the asymmetric C atom and the Cl atom attached to it. The disorder of the cation in the racemate corresponds to the presence of both enanti­omers at each site in the ratio 0.821 (3): 0.179 (3). The system of hydrogen bonds connecting two cations and two anions into 12-membered rings is identical in the racemic and in the optically active crystals. YITCEJ (Martem'yanova et al., 1993a[Martem'yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993a). Khim. Geterotsikl. Soedin. pp. 415-419.]), is a product of the inter­action of 2-amino-5-methyl­thia­zoline with methyl iodide, with alkyl­ation at the endocylic nitro­gen atom, while YITCAF (Martem'yanova et al., 1993b[Martem'yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993b). Khim. Geterotsikl. Soedin. pp. 420-425.]) is a product of the reaction of 3-nitro-5-meth­oxy-, 3-nitro-5-chloro-, and 3-bromo-5-nitro­salicyl­aldehyde with the heterocyclic base to form the salt-like complexes.

5. Synthesis and crystallization

To a solution of 1 mmol of 3-amino-5-phenyl­thia­zolidin-2-iminium bromide in 20 mL ethanol 1 mmol of 2,3-di­chloro­benzaldehyde was added and the solution refluxed for 2 h. The reaction mixture was cooled down to precipitate the product as colourless single crystals. These were collected by filtration and washed with cold acetone. The title compound was recrystallized from methanol by slow evaporation at room temperature over several days.

Yield 89%, m.p. 521 K. Analysis calculated for C16H14BrCl2N3S (Mr = 431.18): C, 44.57; H, 3.27; N, 9.75. Found: C, 44.51; H, 3.23; N, 9.72%. 1H NMR (300 MHz, DMSO-d6) : 4,62 (k, 1H, CH2, 3JH–H = 6.9); 4.96 (t, 1H, CH2, 3JH–H = 8.7); 5.59 (t, 1H, CH—Ar, 3JH–H = 7.5); 7.38–8.50 (m, 7H, 7Ar—H); 8.35 (s, 1H, CH=); 10.56 (s, 1H, NH=). 13C NMR(75 MHz, DMSO-d6): 46.62, 55.68, 127.28, 127.99, 128.48, 128.96, 129.11, 132.27, 132.41, 132.51, 133.04, 137.24, 145.89, 168.92. MS (ESI), m/z: 351.24 [C16H14Cl2N3S]+ and 79.88 Br.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The H atoms were positioned geometrically [N—H = 0.90 Å and C—H = 0.93–0.97 Å] and were refined using a riding model, with Uiso(H) = 1.2Ueq(C,N). The phenyl ring in the cation is disordered over two positions with a site occupancy ratio of 0.541 (9):0.459 (9). Using DFIX, the bond distances in the two disorder components of the phenyl ring were set to 1.40 Å. Corresponding displacement parameters were also held to be the same using EADP.

Table 4
Experimental details

Crystal data
Chemical formula C16H14Cl2N3S+·Br
Mr 431.17
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 11.2586 (8), 6.8886 (5), 23.0145 (16)
β (°) 93.678 (2)
V3) 1781.2 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.73
Crystal size (mm) 0.28 × 0.25 × 0.24
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.483, 0.546
No. of measured, independent and observed [I > 2σ(I)] reflections 20932, 3651, 2325
Rint 0.085
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.123, 1.04
No. of reflections 3651
No. of parameters 182
No. of restraints 12
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.47, −0.61
Computer programs: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2003).

(E)-3-[(2,3-Dichlorobenzylidene)amino]-5-phenylthiazolidin-2-iminium bromide top
Crystal data top
C16H14Cl2N3S+·BrF(000) = 864
Mr = 431.17Dx = 1.608 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.2586 (8) ÅCell parameters from 5051 reflections
b = 6.8886 (5) Åθ = 2.5–24.3°
c = 23.0145 (16) ŵ = 2.73 mm1
β = 93.678 (2)°T = 296 K
V = 1781.2 (2) Å3Block, colourless
Z = 40.28 × 0.25 × 0.24 mm
Data collection top
Bruker APEXII CCD
diffractometer
2325 reflections with I > 2σ(I)
φ and ω scansRint = 0.085
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
θmax = 26.4°, θmin = 2.5°
Tmin = 0.483, Tmax = 0.546h = 1414
20932 measured reflectionsk = 88
3651 independent reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: mixed
wR(F2) = 0.123H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0342P)2 + 3.7192P]
where P = (Fo2 + 2Fc2)/3
3651 reflections(Δ/σ)max = 0.001
182 parametersΔρmax = 0.47 e Å3
12 restraintsΔρmin = 0.61 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.33815 (4)0.95208 (8)0.56902 (2)0.05678 (19)
Cl11.02426 (13)0.1283 (2)0.44079 (7)0.0687 (4)
Cl21.12966 (15)0.2307 (2)0.32291 (7)0.0869 (5)
S10.52713 (12)0.4896 (2)0.61266 (6)0.0624 (4)
N10.7591 (3)0.5219 (5)0.49730 (15)0.0408 (9)
N20.6952 (3)0.4605 (6)0.54294 (15)0.0433 (9)
N30.5794 (4)0.7393 (6)0.53057 (18)0.0579 (12)
H3A0.6242250.7826150.5022880.069*
H3B0.5100050.7930650.5395180.069*
C10.7176 (4)0.2900 (7)0.5795 (2)0.0465 (11)
H1A0.7871410.3107900.6058410.056*
H1B0.7318180.1775120.5555300.056*
C20.6072 (4)0.2576 (7)0.6139 (2)0.0456 (11)
H2A0.5565960.1599300.5936840.055*
C30.6050 (4)0.5758 (7)0.5566 (2)0.0436 (11)
C40.8437 (4)0.4154 (6)0.48214 (18)0.0380 (10)
H4A0.8657280.3045420.5032310.046*
C50.9060 (4)0.4708 (6)0.43080 (18)0.0368 (10)
C60.9857 (4)0.3433 (6)0.40648 (19)0.0414 (10)
C71.0339 (4)0.3904 (8)0.3543 (2)0.0514 (13)
C81.0074 (4)0.5637 (9)0.3272 (2)0.0608 (14)
H8A1.0393500.5936790.2920680.073*
C90.9330 (5)0.6929 (8)0.3525 (2)0.0586 (14)
H9A0.9169210.8123590.3348910.070*
C100.8825 (4)0.6470 (7)0.4033 (2)0.0487 (12)
H10A0.8316860.7352720.4196270.058*
C110.6345 (4)0.1918 (6)0.67564 (14)0.0609 (8)
C120.6080 (6)0.0096 (6)0.6973 (3)0.0609 (8)0.541 (9)
H12A0.5719070.0834220.6727600.073*0.541 (9)
C130.6355 (8)0.0337 (10)0.7556 (3)0.0609 (8)0.541 (9)
H13A0.6177730.1555830.7700840.073*0.541 (9)
C140.6895 (7)0.1053 (15)0.79226 (18)0.0609 (8)0.541 (9)
H14A0.7078720.0763970.8312710.073*0.541 (9)
C150.7160 (6)0.2875 (13)0.7706 (2)0.0609 (8)0.541 (9)
H15A0.7521050.3805400.7951350.073*0.541 (9)
C160.6885 (6)0.3308 (7)0.7123 (2)0.0609 (8)0.541 (9)
H16A0.7062400.4527060.6978110.073*0.541 (9)
C12'0.5874 (10)0.0071 (10)0.6850 (4)0.0609 (8)0.459 (9)
H12B0.5409370.0504450.6548170.073*0.459 (9)
C13'0.6064 (10)0.0955 (17)0.7373 (4)0.0609 (8)0.459 (9)
H13B0.5750830.2190580.7419120.073*0.459 (9)
C14'0.6746 (10)0.0036 (19)0.7822 (5)0.0609 (8)0.459 (9)
H14B0.6909650.0694940.8170740.073*0.459 (9)
C15'0.7188 (10)0.1846 (18)0.7762 (4)0.0609 (8)0.459 (9)
H15B0.7588830.2470560.8074290.073*0.459 (9)
C16'0.7016 (9)0.2771 (16)0.7221 (3)0.0609 (8)0.459 (9)
H16B0.7356750.3984200.7169850.073*0.459 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0494 (3)0.0517 (3)0.0702 (4)0.0042 (3)0.0114 (2)0.0059 (3)
Cl10.0778 (9)0.0476 (8)0.0840 (10)0.0186 (7)0.0307 (8)0.0078 (7)
Cl20.0899 (11)0.0856 (11)0.0910 (12)0.0098 (9)0.0511 (9)0.0178 (9)
S10.0564 (8)0.0674 (9)0.0669 (9)0.0151 (7)0.0308 (7)0.0139 (7)
N10.041 (2)0.044 (2)0.039 (2)0.0015 (17)0.0120 (16)0.0025 (17)
N20.045 (2)0.046 (2)0.041 (2)0.0077 (18)0.0128 (17)0.0048 (18)
N30.052 (2)0.057 (3)0.067 (3)0.019 (2)0.025 (2)0.011 (2)
C10.049 (3)0.049 (3)0.042 (3)0.007 (2)0.009 (2)0.004 (2)
C20.043 (3)0.051 (3)0.044 (3)0.001 (2)0.008 (2)0.003 (2)
C30.042 (2)0.045 (3)0.044 (3)0.002 (2)0.009 (2)0.001 (2)
C40.038 (2)0.039 (3)0.037 (2)0.0026 (19)0.0010 (19)0.0036 (19)
C50.033 (2)0.040 (2)0.037 (2)0.0042 (19)0.0035 (18)0.005 (2)
C60.039 (2)0.039 (3)0.046 (3)0.004 (2)0.002 (2)0.002 (2)
C70.048 (3)0.059 (3)0.049 (3)0.004 (2)0.015 (2)0.012 (3)
C80.051 (3)0.084 (4)0.048 (3)0.004 (3)0.012 (2)0.004 (3)
C90.055 (3)0.061 (3)0.060 (3)0.005 (3)0.007 (3)0.015 (3)
C100.047 (3)0.050 (3)0.049 (3)0.006 (2)0.008 (2)0.000 (2)
C110.0495 (16)0.090 (2)0.0436 (16)0.0106 (16)0.0043 (12)0.0150 (15)
C120.0495 (16)0.090 (2)0.0436 (16)0.0106 (16)0.0043 (12)0.0150 (15)
C130.0495 (16)0.090 (2)0.0436 (16)0.0106 (16)0.0043 (12)0.0150 (15)
C140.0495 (16)0.090 (2)0.0436 (16)0.0106 (16)0.0043 (12)0.0150 (15)
C150.0495 (16)0.090 (2)0.0436 (16)0.0106 (16)0.0043 (12)0.0150 (15)
C160.0495 (16)0.090 (2)0.0436 (16)0.0106 (16)0.0043 (12)0.0150 (15)
C12'0.0495 (16)0.090 (2)0.0436 (16)0.0106 (16)0.0043 (12)0.0150 (15)
C13'0.0495 (16)0.090 (2)0.0436 (16)0.0106 (16)0.0043 (12)0.0150 (15)
C14'0.0495 (16)0.090 (2)0.0436 (16)0.0106 (16)0.0043 (12)0.0150 (15)
C15'0.0495 (16)0.090 (2)0.0436 (16)0.0106 (16)0.0043 (12)0.0150 (15)
C16'0.0495 (16)0.090 (2)0.0436 (16)0.0106 (16)0.0043 (12)0.0150 (15)
Geometric parameters (Å, º) top
Cl1—C61.720 (5)C9—H9A0.9300
Cl2—C71.730 (5)C10—H10A0.9300
S1—C31.712 (5)C11—C121.3900
S1—C21.834 (5)C11—C161.3900
N1—C41.269 (5)C11—C16'1.399 (2)
N1—N21.377 (5)C11—C12'1.400 (2)
N2—C31.342 (5)C12—C131.3900
N2—C11.457 (6)C12—H12A0.9300
N3—C31.299 (6)C13—C141.3900
N3—H3A0.9000C13—H13A0.9300
N3—H3B0.9001C14—C151.3900
C1—C21.533 (6)C14—H14A0.9300
C1—H1A0.9700C15—C161.3900
C1—H1B0.9700C15—H15A0.9300
C2—C111.503 (6)C16—H16A0.9300
C2—H2A0.9800C12'—C13'1.400 (2)
C4—C51.463 (6)C12'—H12B0.9300
C4—H4A0.9300C13'—C14'1.400 (2)
C5—C101.386 (6)C13'—H13B0.9300
C5—C61.398 (6)C14'—C15'1.399 (2)
C6—C71.388 (6)C14'—H14B0.9300
C7—C81.370 (7)C15'—C16'1.400 (2)
C8—C91.376 (7)C15'—H15B0.9300
C8—H8A0.9300C16'—H16B0.9300
C9—C101.371 (7)
C3—S1—C292.3 (2)C8—C9—H9A119.7
C4—N1—N2118.1 (4)C9—C10—C5120.9 (5)
C3—N2—N1115.9 (4)C9—C10—H10A119.5
C3—N2—C1116.6 (4)C5—C10—H10A119.5
N1—N2—C1127.4 (3)C12—C11—C16120.0
C3—N3—H3A120.2C16'—C11—C12'117.1 (6)
C3—N3—H3B114.9C12—C11—C2125.1 (4)
H3A—N3—H3B124.4C16—C11—C2114.9 (4)
N2—C1—C2107.4 (4)C16'—C11—C2131.6 (6)
N2—C1—H1A110.2C12'—C11—C2111.2 (5)
C2—C1—H1A110.2C13—C12—C11120.0
N2—C1—H1B110.2C13—C12—H12A120.0
C2—C1—H1B110.2C11—C12—H12A120.0
H1A—C1—H1B108.5C12—C13—C14120.0
C11—C2—C1114.2 (4)C12—C13—H13A120.0
C11—C2—S1110.4 (3)C14—C13—H13A120.0
C1—C2—S1106.2 (3)C13—C14—C15120.0
C11—C2—H2A108.7C13—C14—H14A120.0
C1—C2—H2A108.7C15—C14—H14A120.0
S1—C2—H2A108.7C16—C15—C14120.0
N3—C3—N2123.6 (4)C16—C15—H15A120.0
N3—C3—S1122.6 (3)C14—C15—H15A120.0
N2—C3—S1113.8 (3)C15—C16—C11120.0
N1—C4—C5118.6 (4)C15—C16—H16A120.0
N1—C4—H4A120.7C11—C16—H16A120.0
C5—C4—H4A120.7C11—C12'—C13'123.5 (9)
C10—C5—C6118.5 (4)C11—C12'—H12B118.3
C10—C5—C4120.6 (4)C13'—C12'—H12B118.3
C6—C5—C4120.8 (4)C14'—C13'—C12'117.0 (10)
C7—C6—C5119.7 (4)C14'—C13'—H13B121.5
C7—C6—Cl1119.8 (4)C12'—C13'—H13B121.5
C5—C6—Cl1120.4 (3)C15'—C14'—C13'121.8 (10)
C8—C7—C6120.7 (4)C15'—C14'—H14B119.1
C8—C7—Cl2119.2 (4)C13'—C14'—H14B119.1
C6—C7—Cl2120.1 (4)C14'—C15'—C16'118.7 (10)
C7—C8—C9119.5 (5)C14'—C15'—H15B120.6
C7—C8—H8A120.2C16'—C15'—H15B120.6
C9—C8—H8A120.2C11—C16'—C15'121.7 (8)
C10—C9—C8120.6 (5)C11—C16'—H16B119.2
C10—C9—H9A119.7C15'—C16'—H16B119.2
C4—N1—N2—C3178.7 (4)C8—C9—C10—C50.7 (8)
C4—N1—N2—C14.3 (6)C6—C5—C10—C92.1 (7)
C3—N2—C1—C216.1 (6)C4—C5—C10—C9174.5 (4)
N1—N2—C1—C2166.9 (4)C1—C2—C11—C12112.2 (5)
N2—C1—C2—C11141.6 (4)S1—C2—C11—C12128.3 (4)
N2—C1—C2—S119.8 (4)C1—C2—C11—C1669.0 (5)
C3—S1—C2—C11140.2 (3)S1—C2—C11—C1650.4 (4)
C3—S1—C2—C115.9 (4)C1—C2—C11—C16'58.9 (10)
N1—N2—C3—N32.2 (7)S1—C2—C11—C16'60.6 (9)
C1—N2—C3—N3175.2 (5)C1—C2—C11—C12'117.4 (7)
N1—N2—C3—S1178.8 (3)S1—C2—C11—C12'123.1 (7)
C1—N2—C3—S13.8 (5)C16—C11—C12—C130.0
C2—S1—C3—N3173.2 (4)C2—C11—C12—C13178.7 (5)
C2—S1—C3—N27.8 (4)C11—C12—C13—C140.0
N2—N1—C4—C5175.1 (4)C12—C13—C14—C150.0
N1—C4—C5—C107.4 (6)C13—C14—C15—C160.0
N1—C4—C5—C6169.2 (4)C14—C15—C16—C110.0
C10—C5—C6—C73.5 (6)C12—C11—C16—C150.0
C4—C5—C6—C7173.1 (4)C2—C11—C16—C15178.9 (4)
C10—C5—C6—Cl1176.6 (3)C16'—C11—C12'—C13'1.5 (15)
C4—C5—C6—Cl16.8 (6)C2—C11—C12'—C13'175.4 (9)
C5—C6—C7—C82.2 (7)C11—C12'—C13'—C14'1.2 (16)
Cl1—C6—C7—C8177.9 (4)C12'—C13'—C14'—C15'2.0 (16)
C5—C6—C7—Cl2178.4 (3)C13'—C14'—C15'—C16'4.9 (16)
Cl1—C6—C7—Cl21.6 (6)C12'—C11—C16'—C15'1.5 (15)
C6—C7—C8—C90.6 (8)C2—C11—C16'—C15'177.6 (7)
Cl2—C7—C8—C9178.8 (4)C14'—C15'—C16'—C114.6 (16)
C7—C8—C9—C102.1 (8)
Hydrogen-bond geometry (Å, º) top
Cg3 and Cg4 are the centroids of the major (C11-C16) and minor (C11/C12'–C16') disorder components, respectively, of the phenyl ring.
D—H···AD—HH···AD···AD—H···A
N3—H3A···Br1i0.902.513.303 (4)147
N3—H3B···Br10.902.363.258 (4)175
C13—H13B···Cg3ii0.932.913.596 (12)132
C13—H13B···Cg4ii0.932.993.746 (12)139
C2—H2A···Br1iii0.982.873.778 (5)154
C10—H10A···Br1i0.932.903.796 (5)161
C7—Cl2···Cg3iv1.73 (1)3.80 (1)5.525 (6)175 (1)
C7—Cl2···Cg4iv1.73 (1)3.57 (1)5.299 (6)175 (1)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y1/2, z+3/2; (iii) x, y1, z; (iv) x+2, y, z+1.
Summary of short interatomic contacts (Å) in the title salt top
Atoms marked with an asterisk (*) are from the minor component (C11/C12'–C16') of the disordered phenyl ring of the cation.
ContactDistanceSymmetry operation
(C6)Cl1···Cl1(C6)3.323 (2)2 - x, -y, 1 - z
(C16')*H16B···H8A(C8)2.562 - x, 1 - y, 1 - z
(C2)S1···*H14B(C14')3.051 - x, 1/2 + y, 3/2 - z
(N3)H3B···Br12.36x, y, z
(N3)H3A···Br12.511 - x, 2 - y, 1 - z
(S1)C3···C3(S1)3.561 (6)1 - x, 1 - y, 1 - z
(C1)H1B···Br13.061 - x, 1 - y, 1 - z
(C5)C10···*H14B(C14')2.89x, 1/2 - y, -1/2 + z
(C14')*H14B···S1(C2)3.051 - x, -1/2 + y, 3/2 - z
(C14')*H14B···C10(C5)2.89x, 1/2 - y, 1/2 + z
(C2)H2A···Br12.87x, -1 + y, z
Percentage contributions of interatomic contacts to the Hirshfeld surface for the title salt top
ContactPercentage contribution
H···H25.4
Cl···H/H···Cl19.1
C···H/H···C18.2
Br···H/H···Br16.2
S···H/H···S5.9
Cl..C/C···Cl4.4
N···H/H···N2.7
C···C1.9
Cl..N/N···Cl1.4
C..N/N···C1.3
Br..C/C···Br1.0
Cl···Cl0.8
S···N/N···S0.7
S···C/C···S0.4
Br···N/N···Br0.3
Br..Cl/Cl···Br0.3
 

Funding information

This work has been partially supported by Baku State University.

References

First citationAkbari, A. F., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888–14896.  Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018a). Aust. J. Chem. 71, 190–194.  CrossRef Google Scholar
First citationGurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018b). Inorg. Chim. Acta, 471, 130–136.  CrossRef Google Scholar
First citationHazra, S., Martins, N. M. R., Mahmudov, K. T., Zubkov, F. I., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2018). J. Organomet. Chem. 867, 197–200.  CrossRef Google Scholar
First citationKvyatkovskaya, E. A., Zaytsev, V. P., Zubkov, F. I., Dorovatovskii, P. V., Zubavichus, Y. V. & Khrustalev, V. N. (2017). Acta Cryst. E73, 515–519.  CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMahmoudi, G., Afkhami, F. A., Castiñeiras, A., García-Santos, I., Gurbanov, A., Zubkov, F. I., Mitoraj, M. P., Kukułka, M., Sagan, F., Szczepanik, D. W., Konyaeva, I. A. & Safin, D. A. (2018). Inorg. Chem. 57, 4395–4408.  CrossRef Google Scholar
First citationMahmoudi, G., Bauzá, A., Gurbanov, A. V., Zubkov, F. I., Maniukiewicz, W., Rodríguez-Diéguez, A., López-Torres, E. & Frontera, A. (2016). CrystEngComm, 18, 9056–9066.  CrossRef Google Scholar
First citationMahmoudi, G., Gurbanov, A. V., Rodríguez-Hermida, S., Carballo, R., Amini, M., Bacchi, A., Mitoraj, M. P., Sagan, F., Kukułka, M. & Safin, D. A. (2017a). Inorg. Chem. 56, 9698–9709.  CrossRef Google Scholar
First citationMahmoudi, G., Seth, S. K., Bauzá, A., Zubkov, F. I., Gurbanov, A. V., White, J., Stilinović, V., Doert, Th. & Frontera, A. (2018a). CrystEngComm, 20, 2812–2821.  CrossRef Google Scholar
First citationMahmoudi, G., Zangrando, E., Bauzá, A., Maniukiewicz, W., Carballo, R., Gurbanov, A. V. & Frontera, A. (2017b). CrystEngComm, 19, 3322–3330.  CrossRef Google Scholar
First citationMahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2018b). Eur. J. Inorg. Chem. 4763–4772.  Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017a). Coord. Chem. Rev. 345, 54–72.  Web of Science CrossRef Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017b). Dalton Trans. 46, 10121–10138.  Web of Science CrossRef Google Scholar
First citationMahmudov, K. T. & Pombeiro, A. J. L. (2016). Chem. Eur. J. 22, 16356–16398.  Web of Science CrossRef Google Scholar
First citationMartem'yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993a). Khim. Geterotsikl. Soedin. pp. 415–419.  Google Scholar
First citationMartem'yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993b). Khim. Geterotsikl. Soedin. pp. 420–425.  Google Scholar
First citationMarthi, K., Larsen, S., Ács, M., Bálint, J. & Fogassy, E. (1994). Acta Cryst. B50, 762–771.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMarthi, K., Larsen, M., Ács, M., Bálint, J. & Fogassy, E. (1995). Acta Chem. Scand. 49, 20–27.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShetnev, A. A. & Zubkov, F. I. (2017). Chem. Heterocycl. C. 53, 495–497.  CrossRef Google Scholar
First citationSpackman, M. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia.  Google Scholar
First citationZubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds