research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of limonoid TS3, isolated from Trichilia rubescens

CROSSMARK_Color_square_no_text.svg

aChemistry Department, University of Dschang, PO Box 67, Dschang, Cameroon, bDepartment of Organic Chemistry, University of Yaounde I, PO Box 812, Yaounde, Cameroon, and cDepartment of Chemistry, Tshwane University of Technology, Pretoria 0001, South Africa
*Correspondence e-mail: pakenfack@gmail.com,patrice.kenfack@univ-dschang.org

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 28 May 2018; accepted 9 July 2018; online 13 July 2018)

The title limonoid compound, C26H28O5·0.5H2O (TS3) [systematic name: (3aS,3bS,4aS,5aS,6S,7aR,8aR,8bS,11aR)-6-(furan-3-yl)-3a,5a,8b,11a-tetra­methyl-3a,4a,5,5a,6,7,7a,8b,11,11a-deca­hydro­oxireno[2′,3′:4b,5]oxireno[2′′,3′′:2′,3′]cyclo­penta­[1′,2′:7,8]phenanthro[10,1-bc]furan-3(3aH)-one hemihydrate], crystallizes with two independent mol­ecules (1 and 2) in the asymmetric unit and one water mol­ecule. TS3 is composed of three six-membered rings (A, C and D), three five-membered rings (B, E and F) and two epoxide rings. A group of five fused rings (AE) is bonded to a furan ring (F) with a Csp3—Csp2 bond [1.500 (3) Å in mol­ecule 1 and 1.499 (3) Å in mol­ecule 2]. The absolute structures of the mol­ecules in the crystal were determined by resonant scattering; Flack parameter = 0.05 (5). In the crystal, the individual mol­ecules stack in columns along the b-axis direction. The water mol­ecule bridges mol­ecules 1 and 2 via Owater—H⋯O and C—H⋯Owater hydrogen bonds. Together with further C—H⋯O hydrogen bonds, linking mol­ecules 1 and 2, the columns are linked to form slabs parallel to the ab plane. Within each column, mol­ecules are also linked via C—H⋯π inter­actions involving the five-membered furan (F) rings.

1. Chemical context

Limonoids are a prominent class of secondary metabolites found in plants of the Meliaceae and Rutaceae families. They are also well known for their wide range of bioactive compounds that exhibit anti­plasmodial, anti­viral, anti­tumoral, anti­bacterial and cytotoxic properties (Krief et al., 2004[Krief, S., Martin, M. T., Grellier, P., Kasenene, J. & Sévenet, T. (2004). Antimicrob. Agents Chemother. 48, 3196-3199.]; Lange et al., 2016[Lange, N., Tontsa, A. T., Wegscheid, C., Mkounga, P., Nkengfack, A. E., Loscher, C., Sass, G. & Tiegs, G. (2016). PLoS One, 11, e0160843.]). Vilasinin is one of the limonoid classes, to which belongs the title compound (TS3), and all the compounds of the rubescin series have been isolated from Trichilia rubescens (Tontsa et al., 2013[Tontsa, A. T., Mkounga, P., Njayou, F. N., Manautou, J., Kirk, M., Hultin, G. P. & Nkengfack, A. E. (2013). Chem. Pharm. Bull. 61, 1178-1183.]; Tsamo et al., 2016[Tsamo, T. A., Nangmo, K. P., Mkounga, P., Müller, I. B., Marat, K., Sass, G. & Ephrem, N. A. (2016). Med. Chem. 12, 655-661.]). Among the broad spectrum of biological properties exhibited by vilasinin deriv­atives, TS3 has been found to induce apoptosis in human hepatoma cell lines, to inter­fere with NFkB signaling and to enhance cAMP-regulated chloride conductance of cells expressing CFTR (cystic fibrosis transmembrane conductance regulator) (deCa­rvalho et al., 2002[deCarvalho, A. C. V., Ndi, C. P., Tsopmo, A., Tane, P., Ayafor, F. J., Connolly, J. D. & Teem, J. L. (2002). Mol. Med. 8, 75-87.]).

As a result of the structure–activity relationships existing between bioactive compounds from the same series and/or class (Bauer et al., 2001[Bauer, J., Spanton, S., Henry, R., Quick, J., Dziki, W., Porter, W. & Morris, J. (2001). Pharm. Res. 18, 859-866.]; Ariëns, 1986[Ariëns, E. J. (1986). Trends Pharmacol. Sci. 7, 200-205.]), it is important to fully characterize each bioactive mol­ecule. The mol­ecular structure of TS3 was previously elucidated by one- and two-dimensional NMR techniques in combination with high-resolution mass spectrometry (deCa­rvalho et al., 2002[deCarvalho, A. C. V., Ndi, C. P., Tsopmo, A., Tane, P., Ayafor, F. J., Connolly, J. D. & Teem, J. L. (2002). Mol. Med. 8, 75-87.]). However, the absolute configurations of the asymmetric carbons involved in its structure were not reported, and to date, no work on the crystal structure of this mol­ecule is known. Herein, we report the crystal structure of limonoid TS3 and the roles of the water mol­ecules and the C—H⋯π inter­actions involving the furan rings in the crystal packing.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound contains one water mol­ecule and two crystallographically independent mol­ecules (1 and 2) of TS3, as illustrated in Fig. 1[link]. The two mol­ecules are very similar with an r.m.s. fit of 0.068 Å for the 31 non-H atoms (Fig. 2[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the two independent mol­ecules (1 and 2) of the title compound TS3 with the crystallographic labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.
[Figure 2]
Figure 2
A view of the AutoMolFit (PLATON; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) of the two independent mol­ecules of TS3 (colour code: black = mol­ecule 1, red = mol­ecule 2).

As previously reported, using one- and two-dimensional NMR techniques in combination with high-resolution mass spectroscopy studies (deCa­rvalho et al., 2002[deCarvalho, A. C. V., Ndi, C. P., Tsopmo, A., Tane, P., Ayafor, F. J., Connolly, J. D. & Teem, J. L. (2002). Mol. Med. 8, 75-87.]), the TS3 mol­ecule consists of three six-membered rings (A, C and D), three five-membered rings (B, E and F), and two epoxide rings. Rings A to E are fused (first compartment), while ring F is bonded to this first moiety by a Csp3—Csp2 bond, [C15—C19 = 1.500 (3) Å and C15B—C19B = 1.499 (3) Å], as shown in Fig. 1[link].

The six-membered rings A and D have envelope conformations with atoms C11/C11B and C16/C16B, respectively, as the flaps, being displaced from the mean plane of the other five atoms by 0.657 (2)/0.672 (2) Å for atoms C11/C11B and by 0.654 (2)/0.670 (2) Å for atoms C16/C16B. The six-membered ring C has a half-chair conformation in both mol­ecules; the puckering parameters for mol­ecule 1 are amplitude Q = 0.474 (2) Å, θ = 131.7 (2)° and φ = 40.9 (3)°, while for mol­ecule 2 Q = 0.479 (2) Å, θ = 127.5 (2)°, φ = 42.9 (3)°. The five-membered rings B and E have envelope conformations with atoms C4/C4B and C15/C15B, respectively, as the flaps, being displaced from the mean plane of the other four atoms by 0.689 (2)/0.702 (2) Å and 0.526 (2)/0.454 (2) Å, respectively. The furan rings (F), are planar in both mol­ecules.

The chirality of TS3 comes from ten asymmetric carbon atoms (C4, C8, C9, C10, C11, C12, C13, C15, C16 and C18; see Fig. 1[link]), which have the following absolute configurations 4R, 8S, 9S, 10S, 11S, 12R, 13R, 15S, 16S and 18S. This has been confirmed by resonant scattering; Flack parameter = 0.05 (5), refined using Cu Kα radiation.

3. Supra­molecular features

There are a number of hydrogen-bonding acceptor atoms (ketone and epoxide functions) present in the structure of TS3, and details are given in Table 1[link]. The water mol­ecule of the asymmetric unit contributes significantly to the crystal packing via three weak hydrogen bonds (Fig. 3[link] and Table 1[link]). The individual mol­ecules stack in columns along the b-axis direction, and within each column there are C—H⋯πfuran inter­actions present (Table 1[link]), stabilizing the columnar structures. Mol­ecules 1 (black in Fig. 3[link]) are linked about a twofold screw axis, via Owater—H⋯O and C—H⋯Owater hydrogen bonds, forming helices propagating along the b-axis direction. Mol­ecules 1 and 2 (red in Fig. 3[link]) are linked by Owater—H⋯O hydrogen bonds (water is green in Fig. 3[link]; see Table 1[link]) and C—H⋯O hydrogen bonds, so forming slabs lying parallel to the ab plane. There are no other significant inter­molecular inter­actions present in the crystal structure.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the furan rings O5/C19–C22 and O5B/C19B–C22B, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O4B 0.91 (4) 1.95 (4) 2.857 (2) 171 (4)
O1W—H2W⋯O1 0.92 (4) 1.93 (4) 2.838 (2) 166 (3)
C15B—H15B⋯O1W 0.98 2.47 3.408 (3) 160
C3—H3⋯O1Wi 0.93 2.32 3.155 (3) 149
C13—H13⋯O2Bii 0.98 2.47 3.088 (2) 121
C5—H5ACg1iii 0.97 2.93 3.744 (3) 142
C5B—H5CCg2iv 0.97 2.91 3.806 (3) 154
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+1]; (ii) [-x, y-{\script{1\over 2}}, -z+1]; (iii) x, y-1, z; (iv) x, y+1, z.
[Figure 3]
Figure 3
A view along the b axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1[link]; colour code: black = mol­ecule 1, red = mol­ecule 2, green = water mol­ecule). For clarity, only the H atoms involved in hydrogen bonding have been included.

4. Database survey

A search in the Cambridge Structural Database (CSD, Version 5.39, update May 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the skeleton of TS3 gave no hits. The moieties having the rings E and F have been seen in three cytotoxic limonoids, viz. aphanastatine, amoorastatine and hydroxyl-12-ammorastatine (Arnoux & Pascard, 1980[Arnoux, B. & Pascard, C. (1980). Acta Cryst. B36, 2709-2715.]; Polonsky et al., 1978[Polonsky, J., Varon, Z., Arnoux, B., Pascard, C., Pettit, G. R. & Schmidt, J. M. (1978). J. Am. Chem. Soc. 100, 7731-7733.]). This moiety is also involved in the structure of Munronin H (Yan et al. 2015[Yan, Y., Zhang, J.-X., Huang, T., Mao, X.-Y., Gu, W., He, H.-P., Di, Y.-T., Li, S.-L., Chen, D.-Z., Zhang, Y. & Hao, X.-J. (2015). J. Nat. Prod. 78, 811-821.]) and Toosendanin (Xu & Zhang, 2011[Xu, H. & Zhang, J.-L. (2011). Bioorg. Med. Chem. Lett. 21, 1974-1977.]). A number of structures with the second moiety (the fused rings A, B and C), but having different substituents, are known. Most of these compounds are reported as hemisynthesis products, while TS3 was obtained from a natural source.

5. Extraction and crystallization

The title compound was isolated from the root bark of Trichilia rubescens. The extraction and the isolation procedures were carried out according to the experimental protocols previously described by Tsamo et al. (2016[Tsamo, T. A., Nangmo, K. P., Mkounga, P., Müller, I. B., Marat, K., Sass, G. & Ephrem, N. A. (2016). Med. Chem. 12, 655-661.]). A small amount of TS3 powder was dissolved in a mixture of n-hexa­ne–EtOAc (4:1) and needle-like crystals, suitable for single crystal X-ray diffraction analysis, were obtained by slow evaporation of the solvents at room temperature after three days.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All hydrogen atoms could be located in difference-Fourier maps. During refinement, they were included in calculated positions and treated as riding: C—H = 0.93–0.98 Å with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C26H28O5·0.5H2O
Mr 429.49
Crystal system, space group Monoclinic, P21
Temperature (K) 293
a, b, c (Å) 12.4711 (2), 12.0986 (2), 13.7645 (2)
β (°) 91.742 (1)
V3) 2075.87 (6)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.78
Crystal size (mm) 0.24 × 0.17 × 0.11
 
Data collection
Diffractometer Bruker D8 Venture Photon
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.869, 0.900
No. of measured, independent and observed [I > 2σ(I)] reflections 33504, 8304, 8067
Rint 0.037
(sin θ/λ)max−1) 0.631
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.080, 1.02
No. of reflections 8304
No. of parameters 585
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.24, −0.24
Absolute structure Flack x determined using 3527 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.05 (5)
Computer programs: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015), publCIF (Westrip, 2010) and enCIFer (Allen et al., 2004).

(3aS,3bS,4aS,5aS,6S,7aR,8aR,8bS,11aR)-6-(Furan-3-yl)-3a,5a,8b,11a-tetramethyl-3a,4a,5,5a,6,7,7a,8b,11,11a-decahydrooxireno[2',3':4b,5]oxireno[2'',3'':2',3']cyclopenta[1',2':7,8]phenanthro[10,1-bc]furan-3(3aH)-one hemihydrate top
Crystal data top
C26H28O5·0.5H2OF(000) = 916
Mr = 429.49Dx = 1.374 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
a = 12.4711 (2) ÅCell parameters from 30836 reflections
b = 12.0986 (2) Åθ = 3.6–76.5°
c = 13.7645 (2) ŵ = 0.78 mm1
β = 91.742 (1)°T = 293 K
V = 2075.87 (6) Å3Needle, colourless
Z = 40.24 × 0.17 × 0.11 mm
Data collection top
Bruker D8 Venture Photon
diffractometer
8304 independent reflections
Radiation source: fine-focus sealed tube8067 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω scansθmax = 76.5°, θmin = 3.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
h = 1515
Tmin = 0.869, Tmax = 0.900k = 1414
33504 measured reflectionsl = 1717
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0454P)2 + 0.3923P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.080(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.24 e Å3
8304 reflectionsΔρmin = 0.24 e Å3
585 parametersExtinction correction: (SHELXL2018; Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
3 restraintsExtinction coefficient: 0.0012 (2)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack x determined using 3527 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.05 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.41746 (12)0.14419 (15)0.43841 (11)0.0241 (3)
O20.16598 (12)0.06854 (13)0.78568 (10)0.0198 (3)
O30.25032 (11)0.32523 (13)0.45900 (9)0.0153 (3)
O40.07555 (11)0.49060 (13)0.55185 (9)0.0156 (3)
O50.32107 (13)0.73009 (14)0.90101 (10)0.0230 (3)
C10.37466 (15)0.10520 (18)0.50908 (14)0.0165 (4)
C20.42802 (16)0.01223 (19)0.56348 (16)0.0212 (4)
H20.4964920.0072940.5447490.025*
C30.38682 (16)0.04584 (19)0.63669 (15)0.0208 (4)
H30.4259900.1030710.6656320.025*
C40.27696 (16)0.01778 (18)0.67159 (14)0.0177 (4)
C50.25842 (17)0.0069 (2)0.78109 (15)0.0217 (4)
H5A0.2421260.0780470.8095160.026*
H5B0.3209260.0241290.8147440.026*
C60.16864 (15)0.13711 (18)0.70507 (13)0.0150 (4)
C70.10617 (14)0.22341 (18)0.68487 (13)0.0148 (4)
H70.0513070.2419590.7261440.018*
C80.12442 (14)0.29238 (17)0.59372 (13)0.0131 (4)
C90.23314 (14)0.26303 (16)0.54519 (13)0.0125 (3)
C100.26120 (14)0.13921 (17)0.54124 (13)0.0136 (4)
C110.26042 (15)0.10364 (17)0.64710 (12)0.0140 (4)
H110.3222720.1412570.6777640.017*
C120.12781 (14)0.41522 (17)0.62115 (12)0.0131 (4)
C130.03622 (15)0.48258 (18)0.65014 (13)0.0153 (4)
H130.0331750.4477330.6616990.018*
C140.07544 (15)0.57667 (18)0.71357 (14)0.0171 (4)
H14A0.0677890.5595550.7818510.020*
H14B0.0366300.6442580.6982990.020*
C150.19491 (15)0.58711 (17)0.68820 (13)0.0152 (4)
H150.1980800.6296570.6277690.018*
C160.23002 (14)0.46593 (17)0.66484 (13)0.0129 (3)
C170.31596 (14)0.45956 (17)0.58806 (13)0.0139 (4)
H17A0.3001750.5135360.5375190.017*
H17B0.3852120.4778240.6178180.017*
C180.32133 (14)0.34573 (17)0.54313 (13)0.0141 (4)
H180.3936210.3147050.5388940.017*
C190.26341 (15)0.64588 (18)0.76324 (14)0.0161 (4)
C200.23689 (17)0.67767 (19)0.85381 (15)0.0191 (4)
H200.1703040.6655520.8805270.023*
C210.40322 (17)0.73139 (19)0.83680 (16)0.0217 (4)
H210.4704990.7622460.8494590.026*
C220.37255 (16)0.68159 (18)0.75275 (15)0.0188 (4)
H220.4140550.6721270.6983690.023*
C230.19303 (17)0.10012 (19)0.62948 (16)0.0227 (4)
H23A0.2063210.1131300.5621090.034*
H23B0.1224260.0697950.6356150.034*
H23C0.1982070.1685880.6645560.034*
C240.18463 (16)0.07846 (18)0.46869 (14)0.0180 (4)
H24A0.1720180.1238290.4122800.027*
H24B0.1177760.0639560.4990420.027*
H24C0.2165650.0098760.4497250.027*
C250.02811 (15)0.27369 (18)0.52141 (13)0.0166 (4)
H25A0.0445750.3041560.4592150.025*
H25B0.0344320.3094650.5455280.025*
H25C0.0146390.1958870.5147830.025*
C260.26491 (15)0.40480 (18)0.75841 (13)0.0150 (4)
H26A0.2867670.3310230.7426640.023*
H26B0.2059180.4018580.8015440.023*
H26C0.3238610.4433300.7894930.023*
O1B0.53795 (12)0.83149 (15)0.05648 (12)0.0251 (3)
O2B0.10289 (11)0.93782 (14)0.17227 (11)0.0208 (3)
O3B0.46495 (11)0.66520 (13)0.20786 (10)0.0178 (3)
O4B0.29366 (11)0.51414 (13)0.33393 (10)0.0169 (3)
O5B0.00555 (14)0.27653 (17)0.02162 (12)0.0305 (4)
C1B0.45539 (15)0.87934 (18)0.07558 (14)0.0169 (4)
C2B0.41910 (17)0.9757 (2)0.01389 (15)0.0211 (4)
H2B0.4612090.9931060.0385880.025*
C3B0.33216 (17)1.03952 (18)0.02651 (15)0.0203 (4)
H3B0.3169871.0977120.0158610.024*
C4B0.25965 (16)1.01621 (18)0.10950 (14)0.0175 (4)
C5B0.13681 (17)1.00979 (19)0.09317 (15)0.0207 (4)
H5C0.1042911.0823780.0976160.025*
H5D0.1181390.9779290.0302380.025*
C6B0.18681 (14)0.86786 (18)0.19700 (13)0.0151 (4)
C7B0.18892 (15)0.78769 (17)0.26239 (13)0.0152 (4)
H7B0.1304850.7775780.3018400.018*
C8B0.28611 (14)0.71156 (17)0.27387 (13)0.0136 (4)
C9B0.37101 (14)0.73245 (17)0.19380 (13)0.0132 (4)
C10B0.38751 (14)0.85413 (17)0.16550 (13)0.0149 (4)
C11B0.27648 (15)0.89395 (17)0.13331 (13)0.0137 (4)
H11B0.2599890.8547040.0723880.016*
C12B0.24644 (15)0.59214 (17)0.26471 (13)0.0136 (4)
C13B0.17889 (15)0.53418 (18)0.33388 (13)0.0163 (4)
H13B0.1470310.5745080.3875960.020*
C14B0.11593 (16)0.44474 (19)0.28065 (14)0.0182 (4)
H14C0.0442910.4699850.2623920.022*
H14D0.1106540.3786950.3201620.022*
C15B0.18286 (15)0.42311 (17)0.19009 (13)0.0154 (4)
H15B0.2432990.3759080.2105170.018*
C16B0.22978 (14)0.53904 (17)0.16451 (13)0.0133 (4)
C17B0.33879 (15)0.53405 (18)0.11715 (14)0.0166 (4)
H17C0.3828760.4782870.1495120.020*
H17D0.3288890.5126320.0495580.020*
C18B0.39590 (14)0.64461 (17)0.12284 (13)0.0145 (3)
H18B0.4238680.6710860.0612680.017*
C19B0.12333 (16)0.36456 (18)0.10908 (14)0.0177 (4)
C20B0.01969 (18)0.3330 (2)0.10555 (16)0.0247 (4)
H20B0.0286750.3476200.1540170.030*
C21B0.0873 (2)0.2725 (2)0.02906 (16)0.0278 (5)
H21B0.0938730.2388390.0893310.033*
C22B0.16774 (18)0.3238 (2)0.02018 (15)0.0223 (4)
H22B0.2381410.3315120.0008110.027*
C23B0.2820 (2)1.1007 (2)0.19117 (16)0.0248 (4)
H23D0.3580421.1092540.2012330.037*
H23E0.2510931.0749550.2500740.037*
H23F0.2507621.1705470.1731780.037*
C24B0.44431 (16)0.91718 (19)0.24995 (15)0.0199 (4)
H24D0.4754540.9838350.2255970.030*
H24E0.4996880.8715240.2786530.030*
H4F0.3930810.9353690.2981070.030*
C25B0.33729 (16)0.72721 (19)0.37712 (13)0.0189 (4)
H25D0.4035590.6869480.3821470.028*
H25E0.2890420.7000660.4246340.028*
H25F0.3509350.8043020.3884510.028*
C26B0.14867 (15)0.60459 (18)0.10143 (13)0.0159 (4)
H26D0.1784480.6754090.0860580.024*
H26E0.0838980.6147130.1363070.024*
H26F0.1328970.5646700.0424320.024*
O1W0.40948 (13)0.31544 (15)0.29745 (12)0.0260 (3)
H1W0.367 (3)0.374 (3)0.312 (3)0.070 (14)*
H2W0.402 (3)0.265 (3)0.347 (3)0.059 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0247 (7)0.0238 (8)0.0243 (7)0.0063 (6)0.0114 (6)0.0030 (6)
O20.0255 (7)0.0190 (8)0.0152 (6)0.0024 (6)0.0045 (5)0.0066 (5)
O30.0176 (6)0.0175 (7)0.0109 (6)0.0010 (5)0.0030 (5)0.0034 (5)
O40.0159 (6)0.0182 (7)0.0128 (6)0.0043 (5)0.0009 (5)0.0051 (5)
O50.0288 (8)0.0235 (9)0.0166 (7)0.0010 (6)0.0013 (6)0.0019 (6)
C10.0171 (9)0.0144 (10)0.0181 (8)0.0010 (7)0.0025 (7)0.0023 (7)
C20.0178 (9)0.0193 (12)0.0266 (10)0.0044 (8)0.0027 (7)0.0003 (8)
C30.0206 (9)0.0165 (10)0.0251 (10)0.0047 (8)0.0013 (7)0.0017 (8)
C40.0209 (9)0.0147 (10)0.0174 (9)0.0005 (7)0.0004 (7)0.0028 (7)
C50.0262 (10)0.0207 (11)0.0183 (9)0.0040 (8)0.0010 (7)0.0070 (8)
C60.0179 (8)0.0153 (10)0.0119 (8)0.0031 (7)0.0009 (6)0.0020 (7)
C70.0138 (8)0.0182 (10)0.0124 (8)0.0023 (7)0.0028 (6)0.0022 (7)
C80.0121 (7)0.0157 (10)0.0117 (8)0.0001 (6)0.0022 (6)0.0018 (7)
C90.0137 (8)0.0134 (10)0.0105 (7)0.0008 (7)0.0019 (6)0.0019 (6)
C100.0147 (8)0.0144 (10)0.0118 (8)0.0006 (7)0.0020 (6)0.0014 (7)
C110.0162 (8)0.0142 (9)0.0114 (8)0.0003 (7)0.0006 (6)0.0017 (7)
C120.0130 (8)0.0159 (10)0.0103 (7)0.0021 (7)0.0017 (6)0.0030 (7)
C130.0138 (8)0.0184 (10)0.0139 (8)0.0016 (7)0.0032 (6)0.0020 (7)
C140.0161 (9)0.0173 (10)0.0180 (8)0.0027 (7)0.0037 (7)0.0001 (7)
C150.0165 (9)0.0147 (10)0.0146 (8)0.0013 (7)0.0032 (6)0.0022 (7)
C160.0126 (8)0.0143 (10)0.0119 (8)0.0006 (6)0.0020 (6)0.0014 (6)
C170.0115 (7)0.0164 (10)0.0138 (8)0.0001 (6)0.0027 (6)0.0031 (7)
C180.0123 (8)0.0168 (10)0.0135 (8)0.0008 (7)0.0032 (6)0.0032 (7)
C190.0189 (9)0.0129 (10)0.0166 (8)0.0018 (7)0.0025 (7)0.0034 (7)
C200.0211 (9)0.0191 (10)0.0174 (9)0.0006 (7)0.0026 (7)0.0010 (7)
C210.0224 (9)0.0184 (11)0.0244 (10)0.0016 (8)0.0012 (8)0.0004 (8)
C220.0206 (9)0.0159 (10)0.0201 (9)0.0010 (7)0.0030 (7)0.0003 (7)
C230.0257 (10)0.0157 (11)0.0267 (10)0.0021 (8)0.0013 (8)0.0015 (8)
C240.0195 (9)0.0188 (11)0.0155 (8)0.0006 (7)0.0011 (7)0.0023 (7)
C250.0138 (8)0.0201 (10)0.0157 (8)0.0001 (7)0.0006 (6)0.0001 (7)
C260.0168 (8)0.0151 (10)0.0133 (8)0.0007 (7)0.0001 (6)0.0013 (7)
O1B0.0179 (7)0.0265 (9)0.0315 (8)0.0017 (6)0.0100 (6)0.0011 (7)
O2B0.0187 (7)0.0211 (8)0.0230 (7)0.0070 (6)0.0066 (5)0.0068 (6)
O3B0.0137 (6)0.0195 (8)0.0200 (6)0.0040 (5)0.0003 (5)0.0007 (5)
O4B0.0185 (6)0.0177 (8)0.0145 (6)0.0006 (5)0.0009 (5)0.0037 (5)
O5B0.0307 (8)0.0339 (10)0.0265 (8)0.0114 (7)0.0049 (6)0.0029 (7)
C1B0.0164 (8)0.0162 (10)0.0182 (9)0.0041 (7)0.0043 (7)0.0012 (7)
C2B0.0231 (9)0.0209 (11)0.0196 (9)0.0044 (8)0.0063 (7)0.0025 (8)
C3B0.0293 (10)0.0149 (10)0.0169 (9)0.0028 (8)0.0039 (7)0.0024 (7)
C4B0.0226 (9)0.0150 (10)0.0152 (8)0.0016 (7)0.0030 (7)0.0003 (7)
C5B0.0235 (10)0.0183 (11)0.0203 (9)0.0052 (8)0.0033 (7)0.0058 (8)
C6B0.0139 (8)0.0159 (10)0.0157 (8)0.0028 (7)0.0021 (6)0.0030 (7)
C7B0.0160 (8)0.0153 (10)0.0147 (8)0.0016 (7)0.0053 (6)0.0017 (7)
C8B0.0147 (8)0.0150 (10)0.0113 (8)0.0013 (7)0.0023 (6)0.0001 (7)
C9B0.0103 (8)0.0153 (10)0.0141 (8)0.0013 (7)0.0008 (6)0.0002 (7)
C10B0.0146 (8)0.0153 (10)0.0149 (8)0.0020 (7)0.0027 (6)0.0007 (7)
C11B0.0172 (8)0.0127 (10)0.0113 (7)0.0003 (7)0.0024 (6)0.0001 (7)
C12B0.0137 (8)0.0160 (10)0.0112 (7)0.0027 (7)0.0004 (6)0.0022 (7)
C13B0.0192 (9)0.0176 (10)0.0121 (8)0.0004 (7)0.0021 (6)0.0029 (7)
C14B0.0210 (9)0.0200 (10)0.0139 (8)0.0034 (7)0.0033 (7)0.0037 (7)
C15B0.0181 (8)0.0141 (10)0.0139 (8)0.0014 (7)0.0013 (7)0.0019 (7)
C16B0.0152 (8)0.0133 (10)0.0113 (8)0.0002 (7)0.0025 (6)0.0011 (7)
C17B0.0183 (9)0.0147 (10)0.0173 (8)0.0009 (7)0.0065 (7)0.0007 (7)
C18B0.0135 (8)0.0148 (10)0.0153 (8)0.0016 (7)0.0037 (6)0.0004 (7)
C19B0.0236 (9)0.0134 (10)0.0161 (9)0.0011 (7)0.0011 (7)0.0031 (7)
C20B0.0267 (10)0.0255 (12)0.0218 (10)0.0061 (9)0.0000 (8)0.0016 (9)
C21B0.0403 (12)0.0265 (13)0.0165 (9)0.0096 (10)0.0009 (8)0.0019 (8)
C22B0.0306 (10)0.0198 (11)0.0167 (9)0.0042 (8)0.0028 (7)0.0006 (8)
C23B0.0379 (12)0.0149 (11)0.0218 (9)0.0028 (8)0.0011 (8)0.0037 (8)
C24B0.0204 (9)0.0196 (11)0.0196 (9)0.0051 (7)0.0017 (7)0.0026 (8)
C25B0.0241 (9)0.0196 (11)0.0128 (8)0.0010 (8)0.0009 (7)0.0004 (7)
C26B0.0185 (8)0.0162 (10)0.0129 (8)0.0005 (7)0.0003 (6)0.0017 (7)
O1W0.0249 (7)0.0265 (9)0.0269 (8)0.0024 (6)0.0039 (6)0.0011 (7)
Geometric parameters (Å, º) top
O1—C11.219 (3)O2B—C6B1.380 (2)
O2—C61.387 (2)O2B—C5B1.466 (2)
O2—C51.473 (3)O3B—C9B1.435 (2)
O3—C91.427 (2)O3B—C18B1.453 (2)
O3—C181.457 (2)O4B—C13B1.452 (2)
O4—C131.456 (2)O4B—C12B1.453 (2)
O4—C121.459 (2)O5B—C20B1.370 (3)
O5—C201.373 (3)O5B—C21B1.371 (3)
O5—C211.373 (3)C1B—C2B1.504 (3)
C1—C21.496 (3)C1B—C10B1.551 (2)
C1—C101.551 (2)C2B—C3B1.346 (3)
C2—C31.343 (3)C2B—H2B0.9300
C2—H20.9300C3B—C4B1.505 (3)
C3—C41.504 (3)C3B—H3B0.9300
C3—H30.9300C4B—C11B1.528 (3)
C4—C111.520 (3)C4B—C23B1.538 (3)
C4—C51.537 (3)C4B—C5B1.544 (3)
C4—C231.545 (3)C5B—H5C0.9700
C5—H5A0.9700C5B—H5D0.9700
C5—H5B0.9700C6B—C7B1.323 (3)
C6—C71.327 (3)C6B—C11B1.476 (2)
C6—C111.472 (2)C7B—C8B1.527 (3)
C7—C81.530 (2)C7B—H7B0.9300
C7—H70.9300C8B—C12B1.531 (3)
C8—C121.534 (3)C8B—C25B1.552 (2)
C8—C251.553 (2)C8B—C9B1.572 (2)
C8—C91.570 (2)C9B—C18B1.483 (3)
C9—C181.488 (3)C9B—C10B1.538 (3)
C9—C101.540 (3)C10B—C11B1.519 (3)
C10—C111.520 (2)C10B—C24B1.544 (3)
C10—C241.546 (3)C11B—H11B0.9800
C11—H110.9800C12B—C13B1.469 (3)
C12—C131.468 (3)C12B—C16B1.530 (2)
C12—C161.522 (3)C13B—C14B1.513 (3)
C13—C141.507 (3)C13B—H13B0.9800
C13—H130.9800C14B—C15B1.543 (3)
C14—C151.546 (3)C14B—H14C0.9700
C14—H14A0.9700C14B—H14D0.9700
C14—H14B0.9700C15B—C19B1.499 (3)
C15—C191.500 (3)C15B—C16B1.564 (3)
C15—C161.566 (3)C15B—H15B0.9800
C15—H150.9800C16B—C17B1.527 (2)
C16—C171.530 (2)C16B—C26B1.534 (2)
C16—C261.537 (2)C17B—C18B1.516 (3)
C17—C181.512 (3)C17B—H17C0.9700
C17—H17A0.9700C17B—H17D0.9700
C17—H17B0.9700C18B—H18B0.9800
C18—H180.9800C19B—C20B1.347 (3)
C19—C201.355 (3)C19B—C22B1.445 (3)
C19—C221.439 (3)C20B—H20B0.9300
C20—H200.9300C21B—C22B1.345 (3)
C21—C221.349 (3)C21B—H21B0.9300
C21—H210.9300C22B—H22B0.9300
C22—H220.9300C23B—H23D0.9600
C23—H23A0.9600C23B—H23E0.9600
C23—H23B0.9600C23B—H23F0.9600
C23—H23C0.9600C24B—H24D0.9600
C24—H24A0.9600C24B—H24E0.9600
C24—H24B0.9600C24B—H4F0.9600
C24—H24C0.9600C25B—H25D0.9600
C25—H25A0.9600C25B—H25E0.9600
C25—H25B0.9600C25B—H25F0.9600
C25—H25C0.9600C26B—H26D0.9600
C26—H26A0.9600C26B—H26E0.9600
C26—H26B0.9600C26B—H26F0.9600
C26—H26C0.9600O1W—H1W0.91 (3)
O1B—C1B1.217 (3)O1W—H2W0.92 (2)
C6—O2—C5107.37 (15)C9B—O3B—C18B61.78 (12)
C9—O3—C1862.10 (11)C13B—O4B—C12B60.74 (12)
C13—O4—C1260.48 (11)C20B—O5B—C21B105.70 (18)
C20—O5—C21105.99 (16)O1B—C1B—C2B119.27 (18)
O1—C1—C2119.44 (18)O1B—C1B—C10B124.39 (19)
O1—C1—C10123.41 (19)C2B—C1B—C10B116.16 (17)
C2—C1—C10116.90 (17)C3B—C2B—C1B126.96 (19)
C3—C2—C1126.46 (18)C3B—C2B—H2B116.5
C3—C2—H2116.8C1B—C2B—H2B116.5
C1—C2—H2116.8C2B—C3B—C4B119.69 (19)
C2—C3—C4119.62 (19)C2B—C3B—H3B120.2
C2—C3—H3120.2C4B—C3B—H3B120.2
C4—C3—H3120.2C3B—C4B—C11B105.21 (16)
C3—C4—C11105.43 (17)C3B—C4B—C23B109.30 (18)
C3—C4—C5119.87 (17)C11B—C4B—C23B117.75 (17)
C11—C4—C596.37 (16)C3B—C4B—C5B121.03 (17)
C3—C4—C23110.35 (18)C11B—C4B—C5B96.42 (16)
C11—C4—C23117.01 (16)C23B—C4B—C5B107.26 (17)
C5—C4—C23107.63 (17)O2B—C5B—C4B103.25 (15)
O2—C5—C4103.68 (15)O2B—C5B—H5C111.1
O2—C5—H5A111.0C4B—C5B—H5C111.1
C4—C5—H5A111.0O2B—C5B—H5D111.1
O2—C5—H5B111.0C4B—C5B—H5D111.1
C4—C5—H5B111.0H5C—C5B—H5D109.1
H5A—C5—H5B109.0C7B—C6B—O2B128.06 (17)
C7—C6—O2127.60 (18)C7B—C6B—C11B124.13 (18)
C7—C6—C11124.34 (17)O2B—C6B—C11B107.75 (17)
O2—C6—C11107.88 (16)C6B—C7B—C8B120.80 (16)
C6—C7—C8120.00 (17)C6B—C7B—H7B119.6
C6—C7—H7120.0C8B—C7B—H7B119.6
C8—C7—H7120.0C7B—C8B—C12B107.89 (15)
C7—C8—C12109.30 (15)C7B—C8B—C25B108.93 (16)
C7—C8—C25108.35 (15)C12B—C8B—C25B108.27 (16)
C12—C8—C25108.29 (16)C7B—C8B—C9B112.33 (15)
C7—C8—C9112.18 (15)C12B—C8B—C9B108.47 (15)
C12—C8—C9107.83 (15)C25B—C8B—C9B110.83 (15)
C25—C8—C9110.82 (15)O3B—C9B—C18B59.73 (12)
O3—C9—C1859.97 (11)O3B—C9B—C10B117.51 (15)
O3—C9—C10116.35 (15)C18B—C9B—C10B119.14 (15)
C18—C9—C10119.00 (15)O3B—C9B—C8B112.27 (15)
O3—C9—C8112.82 (15)C18B—C9B—C8B120.38 (17)
C18—C9—C8120.29 (16)C10B—C9B—C8B115.44 (15)
C10—C9—C8115.80 (15)C11B—C10B—C9B104.45 (15)
C11—C10—C9103.50 (15)C11B—C10B—C24B117.13 (17)
C11—C10—C24117.57 (16)C9B—C10B—C24B110.12 (16)
C9—C10—C24110.41 (15)C11B—C10B—C1B102.69 (15)
C11—C10—C1103.35 (15)C9B—C10B—C1B118.08 (16)
C9—C10—C1118.59 (16)C24B—C10B—C1B104.75 (15)
C24—C10—C1103.91 (15)C6B—C11B—C10B117.34 (16)
C6—C11—C10118.01 (16)C6B—C11B—C4B103.46 (16)
C6—C11—C4104.37 (16)C10B—C11B—C4B119.18 (16)
C10—C11—C4118.79 (17)C6B—C11B—H11B105.2
C6—C11—H11104.7C10B—C11B—H11B105.2
C10—C11—H11104.7C4B—C11B—H11B105.2
C4—C11—H11104.7O4B—C12B—C13B59.59 (12)
O4—C12—C1359.67 (11)O4B—C12B—C16B111.08 (16)
O4—C12—C16111.01 (16)C13B—C12B—C16B108.61 (16)
C13—C12—C16108.54 (16)O4B—C12B—C8B115.81 (15)
O4—C12—C8115.88 (15)C13B—C12B—C8B125.98 (17)
C13—C12—C8126.08 (17)C16B—C12B—C8B120.35 (15)
C16—C12—C8120.29 (16)O4B—C13B—C12B59.67 (11)
O4—C13—C1259.85 (11)O4B—C13B—C14B112.21 (17)
O4—C13—C14112.04 (16)C12B—C13B—C14B109.08 (15)
C12—C13—C14109.59 (16)O4B—C13B—H13B120.3
O4—C13—H13120.2C12B—C13B—H13B120.3
C12—C13—H13120.2C14B—C13B—H13B120.3
C14—C13—H13120.2C13B—C14B—C15B103.12 (15)
C13—C14—C15103.23 (15)C13B—C14B—H14C111.1
C13—C14—H14A111.1C15B—C14B—H14C111.1
C15—C14—H14A111.1C13B—C14B—H14D111.1
C13—C14—H14B111.1C15B—C14B—H14D111.1
C15—C14—H14B111.1H14C—C14B—H14D109.1
H14A—C14—H14B109.1C19B—C15B—C14B114.41 (16)
C19—C15—C14114.58 (16)C19B—C15B—C16B115.89 (16)
C19—C15—C16115.36 (16)C14B—C15B—C16B104.18 (16)
C14—C15—C16104.32 (16)C19B—C15B—H15B107.3
C19—C15—H15107.4C14B—C15B—H15B107.3
C14—C15—H15107.4C16B—C15B—H15B107.3
C16—C15—H15107.4C17B—C16B—C12B107.65 (15)
C12—C16—C17107.62 (15)C17B—C16B—C26B111.05 (15)
C12—C16—C26110.47 (15)C12B—C16B—C26B111.24 (16)
C17—C16—C26111.61 (15)C17B—C16B—C15B113.88 (16)
C12—C16—C15102.85 (15)C12B—C16B—C15B102.42 (14)
C17—C16—C15113.27 (16)C26B—C16B—C15B110.26 (15)
C26—C16—C15110.63 (15)C18B—C17B—C16B111.47 (16)
C18—C17—C16111.66 (16)C18B—C17B—H17C109.3
C18—C17—H17A109.3C16B—C17B—H17C109.3
C16—C17—H17A109.3C18B—C17B—H17D109.3
C18—C17—H17B109.3C16B—C17B—H17D109.3
C16—C17—H17B109.3H17C—C17B—H17D108.0
H17A—C17—H17B107.9O3B—C18B—C9B58.50 (11)
O3—C18—C957.93 (11)O3B—C18B—C17B117.30 (16)
O3—C18—C17116.53 (15)C9B—C18B—C17B123.98 (16)
C9—C18—C17124.25 (15)O3B—C18B—H18B115.0
O3—C18—H18115.2C9B—C18B—H18B115.0
C9—C18—H18115.2C17B—C18B—H18B115.0
C17—C18—H18115.2C20B—C19B—C22B105.34 (19)
C20—C19—C22105.37 (18)C20B—C19B—C15B127.87 (19)
C20—C19—C15128.20 (18)C22B—C19B—C15B126.69 (18)
C22—C19—C15126.43 (17)C19B—C20B—O5B111.6 (2)
C19—C20—O5111.22 (18)C19B—C20B—H20B124.2
C19—C20—H20124.4O5B—C20B—H20B124.2
O5—C20—H20124.4C22B—C21B—O5B110.8 (2)
C22—C21—O5110.43 (19)C22B—C21B—H21B124.6
C22—C21—H21124.8O5B—C21B—H21B124.6
O5—C21—H21124.8C21B—C22B—C19B106.6 (2)
C21—C22—C19106.99 (18)C21B—C22B—H22B126.7
C21—C22—H22126.5C19B—C22B—H22B126.7
C19—C22—H22126.5C4B—C23B—H23D109.5
C4—C23—H23A109.5C4B—C23B—H23E109.5
C4—C23—H23B109.5H23D—C23B—H23E109.5
H23A—C23—H23B109.5C4B—C23B—H23F109.5
C4—C23—H23C109.5H23D—C23B—H23F109.5
H23A—C23—H23C109.5H23E—C23B—H23F109.5
H23B—C23—H23C109.5C10B—C24B—H24D109.5
C10—C24—H24A109.5C10B—C24B—H24E109.5
C10—C24—H24B109.5H24D—C24B—H24E109.5
H24A—C24—H24B109.5C10B—C24B—H4F109.5
C10—C24—H24C109.5H24D—C24B—H4F109.5
H24A—C24—H24C109.5H24E—C24B—H4F109.5
H24B—C24—H24C109.5C8B—C25B—H25D109.5
C8—C25—H25A109.5C8B—C25B—H25E109.5
C8—C25—H25B109.5H25D—C25B—H25E109.5
H25A—C25—H25B109.5C8B—C25B—H25F109.5
C8—C25—H25C109.5H25D—C25B—H25F109.5
H25A—C25—H25C109.5H25E—C25B—H25F109.5
H25B—C25—H25C109.5C16B—C26B—H26D109.5
C16—C26—H26A109.5C16B—C26B—H26E109.5
C16—C26—H26B109.5H26D—C26B—H26E109.5
H26A—C26—H26B109.5C16B—C26B—H26F109.5
C16—C26—H26C109.5H26D—C26B—H26F109.5
H26A—C26—H26C109.5H26E—C26B—H26F109.5
H26B—C26—H26C109.5H1W—O1W—H2W106 (4)
C6B—O2B—C5B108.27 (15)
O1—C1—C2—C3173.5 (2)O1B—C1B—C2B—C3B177.9 (2)
C10—C1—C2—C31.0 (3)C10B—C1B—C2B—C3B2.6 (3)
C1—C2—C3—C40.8 (3)C1B—C2B—C3B—C4B0.3 (3)
C2—C3—C4—C1126.3 (3)C2B—C3B—C4B—C11B24.5 (3)
C2—C3—C4—C5133.3 (2)C2B—C3B—C4B—C23B102.9 (2)
C2—C3—C4—C23100.9 (2)C2B—C3B—C4B—C5B131.8 (2)
C6—O2—C5—C428.9 (2)C6B—O2B—C5B—C4B27.7 (2)
C3—C4—C5—O2153.99 (19)C3B—C4B—C5B—O2B154.08 (19)
C11—C4—C5—O242.11 (19)C11B—C4B—C5B—O2B42.01 (18)
C23—C4—C5—O278.9 (2)C23B—C4B—C5B—O2B79.7 (2)
C5—O2—C6—C7173.6 (2)C5B—O2B—C6B—C7B177.5 (2)
C5—O2—C6—C111.8 (2)C5B—O2B—C6B—C11B0.2 (2)
O2—C6—C7—C8177.46 (18)O2B—C6B—C7B—C8B174.55 (18)
C11—C6—C7—C82.8 (3)C11B—C6B—C7B—C8B2.4 (3)
C6—C7—C8—C12130.80 (19)C6B—C7B—C8B—C12B125.86 (19)
C6—C7—C8—C25111.4 (2)C6B—C7B—C8B—C25B116.8 (2)
C6—C7—C8—C911.3 (3)C6B—C7B—C8B—C9B6.3 (3)
C18—O3—C9—C10109.79 (18)C18B—O3B—C9B—C10B109.37 (18)
C18—O3—C9—C8112.88 (17)C18B—O3B—C9B—C8B113.19 (18)
C7—C8—C9—O3178.88 (15)C7B—C8B—C9B—O3B176.75 (15)
C12—C8—C9—O360.73 (18)C12B—C8B—C9B—O3B64.09 (19)
C25—C8—C9—O357.6 (2)C25B—C8B—C9B—O3B54.6 (2)
C7—C8—C9—C18113.64 (19)C7B—C8B—C9B—C18B116.30 (19)
C12—C8—C9—C186.7 (2)C12B—C8B—C9B—C18B2.9 (2)
C25—C8—C9—C18125.11 (18)C25B—C8B—C9B—C18B121.60 (19)
C7—C8—C9—C1041.3 (2)C7B—C8B—C9B—C10B38.4 (2)
C12—C8—C9—C10161.69 (14)C12B—C8B—C9B—C10B157.54 (15)
C25—C8—C9—C1080.0 (2)C25B—C8B—C9B—C10B83.7 (2)
O3—C9—C10—C11166.89 (15)O3B—C9B—C10B—C11B167.09 (15)
C18—C9—C10—C1198.23 (18)C18B—C9B—C10B—C11B98.22 (17)
C8—C9—C10—C1157.04 (19)C8B—C9B—C10B—C11B56.79 (18)
O3—C9—C10—C2466.45 (19)O3B—C9B—C10B—C24B66.33 (19)
C18—C9—C10—C24135.10 (16)C18B—C9B—C10B—C24B135.21 (17)
C8—C9—C10—C2469.62 (19)C8B—C9B—C10B—C24B69.79 (19)
O3—C9—C10—C153.2 (2)O3B—C9B—C10B—C1B53.9 (2)
C18—C9—C10—C115.4 (2)C18B—C9B—C10B—C1B15.0 (2)
C8—C9—C10—C1170.71 (15)C8B—C9B—C10B—C1B170.02 (15)
O1—C1—C10—C11160.1 (2)O1B—C1B—C10B—C11B155.6 (2)
C2—C1—C10—C1125.8 (2)C2B—C1B—C10B—C11B29.4 (2)
O1—C1—C10—C946.3 (3)O1B—C1B—C10B—C9B41.4 (3)
C2—C1—C10—C9139.50 (18)C2B—C1B—C10B—C9B143.56 (18)
O1—C1—C10—C2476.7 (2)O1B—C1B—C10B—C24B81.5 (2)
C2—C1—C10—C2497.54 (19)C2B—C1B—C10B—C24B93.5 (2)
C7—C6—C11—C1023.6 (3)C7B—C6B—C11B—C10B20.7 (3)
O2—C6—C11—C10160.80 (17)O2B—C6B—C11B—C10B161.79 (16)
C7—C6—C11—C4158.03 (19)C7B—C6B—C11B—C4B154.20 (19)
O2—C6—C11—C426.4 (2)O2B—C6B—C11B—C4B28.3 (2)
C9—C10—C11—C647.7 (2)C9B—C10B—C11B—C6B47.7 (2)
C24—C10—C11—C674.3 (2)C24B—C10B—C11B—C6B74.4 (2)
C1—C10—C11—C6171.94 (17)C1B—C10B—C11B—C6B171.47 (17)
C9—C10—C11—C4175.50 (16)C9B—C10B—C11B—C4B173.74 (15)
C24—C10—C11—C453.5 (2)C24B—C10B—C11B—C4B51.7 (2)
C1—C10—C11—C460.2 (2)C1B—C10B—C11B—C4B62.5 (2)
C3—C4—C11—C6164.54 (15)C3B—C4B—C11B—C6B166.74 (15)
C5—C4—C11—C641.12 (18)C23B—C4B—C11B—C6B71.2 (2)
C23—C4—C11—C672.4 (2)C5B—C4B—C11B—C6B42.12 (17)
C3—C4—C11—C1061.5 (2)C3B—C4B—C11B—C10B60.8 (2)
C5—C4—C11—C10175.07 (16)C23B—C4B—C11B—C10B61.2 (2)
C23—C4—C11—C1061.5 (2)C5B—C4B—C11B—C10B174.53 (15)
C13—O4—C12—C1699.79 (17)C13B—O4B—C12B—C16B99.80 (17)
C13—O4—C12—C8118.32 (18)C13B—O4B—C12B—C8B118.22 (19)
C7—C8—C12—O4140.84 (15)C7B—C8B—C12B—O4B137.40 (15)
C25—C8—C12—O423.0 (2)C25B—C8B—C12B—O4B19.7 (2)
C9—C8—C12—O496.97 (17)C9B—C8B—C12B—O4B100.68 (17)
C7—C8—C12—C1370.8 (2)C7B—C8B—C12B—C13B67.5 (2)
C25—C8—C12—C1347.1 (2)C25B—C8B—C12B—C13B50.2 (2)
C9—C8—C12—C13167.03 (16)C9B—C8B—C12B—C13B170.56 (17)
C7—C8—C12—C1681.02 (19)C7B—C8B—C12B—C16B84.35 (19)
C25—C8—C12—C16161.14 (15)C25B—C8B—C12B—C16B157.90 (16)
C9—C8—C12—C1641.2 (2)C9B—C8B—C12B—C16B37.6 (2)
C12—O4—C13—C14100.55 (18)C12B—O4B—C13B—C14B99.81 (17)
C16—C12—C13—O4104.00 (16)C16B—C12B—C13B—O4B104.03 (16)
C8—C12—C13—O4101.50 (19)C8B—C12B—C13B—O4B101.40 (19)
O4—C12—C13—C14104.71 (17)O4B—C12B—C13B—C14B105.13 (18)
C16—C12—C13—C140.7 (2)C16B—C12B—C13B—C14B1.1 (2)
C8—C12—C13—C14153.79 (17)C8B—C12B—C13B—C14B153.47 (17)
O4—C13—C14—C1543.4 (2)O4B—C13B—C14B—C15B41.9 (2)
C12—C13—C14—C1521.0 (2)C12B—C13B—C14B—C15B22.3 (2)
C13—C14—C15—C19159.66 (16)C13B—C14B—C15B—C19B161.82 (17)
C13—C14—C15—C1632.58 (18)C13B—C14B—C15B—C16B34.29 (19)
O4—C12—C16—C1775.67 (19)O4B—C12B—C16B—C17B76.79 (19)
C13—C12—C16—C17139.46 (16)C13B—C12B—C16B—C17B140.52 (17)
C8—C12—C16—C1764.3 (2)C8B—C12B—C16B—C17B63.2 (2)
O4—C12—C16—C26162.26 (15)O4B—C12B—C16B—C26B161.32 (15)
C13—C12—C16—C2698.48 (18)C13B—C12B—C16B—C26B97.60 (19)
C8—C12—C16—C2657.8 (2)C8B—C12B—C16B—C26B58.7 (2)
O4—C12—C16—C1544.17 (18)O4B—C12B—C16B—C15B43.55 (18)
C13—C12—C16—C1519.61 (19)C13B—C12B—C16B—C15B20.18 (19)
C8—C12—C16—C15175.85 (14)C8B—C12B—C16B—C15B176.43 (15)
C19—C15—C16—C12158.70 (15)C19B—C15B—C16B—C17B84.0 (2)
C14—C15—C16—C1232.11 (17)C14B—C15B—C16B—C17B149.37 (16)
C19—C15—C16—C1785.44 (19)C19B—C15B—C16B—C12B160.06 (16)
C14—C15—C16—C17147.97 (15)C14B—C15B—C16B—C12B33.45 (18)
C19—C15—C16—C2640.7 (2)C19B—C15B—C16B—C26B41.6 (2)
C14—C15—C16—C2685.86 (17)C14B—C15B—C16B—C26B85.02 (17)
C12—C16—C17—C1847.9 (2)C12B—C16B—C17B—C18B49.3 (2)
C26—C16—C17—C1873.44 (19)C26B—C16B—C17B—C18B72.7 (2)
C15—C16—C17—C18160.92 (15)C15B—C16B—C17B—C18B162.08 (15)
C9—O3—C18—C17115.44 (17)C9B—O3B—C18B—C17B114.92 (18)
C10—C9—C18—O3105.41 (17)C10B—C9B—C18B—O3B106.67 (17)
C8—C9—C18—O3100.44 (17)C8B—C9B—C18B—O3B99.58 (17)
O3—C9—C18—C17102.18 (19)O3B—C9B—C18B—C17B103.6 (2)
C10—C9—C18—C17152.41 (17)C10B—C9B—C18B—C17B149.69 (18)
C8—C9—C18—C171.7 (3)C8B—C9B—C18B—C17B4.1 (3)
C16—C17—C18—O388.00 (18)C16B—C17B—C18B—O3B89.66 (19)
C16—C17—C18—C920.2 (2)C16B—C17B—C18B—C9B20.8 (3)
C14—C15—C19—C209.1 (3)C14B—C15B—C19B—C20B2.4 (3)
C16—C15—C19—C20112.1 (2)C16B—C15B—C19B—C20B118.9 (2)
C14—C15—C19—C22170.2 (2)C14B—C15B—C19B—C22B173.4 (2)
C16—C15—C19—C2268.6 (3)C16B—C15B—C19B—C22B65.3 (3)
C22—C19—C20—O50.3 (2)C22B—C19B—C20B—O5B0.5 (3)
C15—C19—C20—O5179.66 (19)C15B—C19B—C20B—O5B177.0 (2)
C21—O5—C20—C190.3 (2)C21B—O5B—C20B—C19B0.3 (3)
C20—O5—C21—C220.2 (3)C20B—O5B—C21B—C22B0.0 (3)
O5—C21—C22—C190.1 (3)O5B—C21B—C22B—C19B0.3 (3)
C20—C19—C22—C210.1 (2)C20B—C19B—C22B—C21B0.5 (3)
C15—C19—C22—C21179.5 (2)C15B—C19B—C22B—C21B177.0 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the furan rings O5/C19–C22 and O5B/C19B–C22B, respectively.
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O4B0.91 (4)1.95 (4)2.857 (2)171 (4)
O1W—H2W···O10.92 (4)1.93 (4)2.838 (2)166 (3)
C15B—H15B···O1W0.982.473.408 (3)160
C3—H3···O1Wi0.932.323.155 (3)149
C13—H13···O2Bii0.982.473.088 (2)121
C5—H5A···Cg1iii0.972.933.744 (3)142
C5B—H5C···Cg2iv0.972.913.806 (3)154
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x, y1/2, z+1; (iii) x, y1, z; (iv) x, y+1, z.
 

Acknowledgements

The authors thank the Inter­national Union of Crystallography (IUCr) and the Cambridge Crystallographic Data Center (CCDC) for their initiative to promote crystallography and structural studies in Africa and particularly in Cameroon. They also thank Bruker France Company for its support of this initiative and particularly the organization of the Openlab Cameroon at the University of Dschang. The Service Commun de Diffraction X of Institut Jean Barriol, Université de Lorraine, is also thanked for providing access to the measurements of TS3 with copper radiation. Dr Emmanuel Wenger and Professor Claude Lecomte (CRM2, University of Lorraine) are also thanked for their help with these measurements.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAriëns, E. J. (1986). Trends Pharmacol. Sci. 7, 200–205.  Google Scholar
First citationArnoux, B. & Pascard, C. (1980). Acta Cryst. B36, 2709–2715.  CrossRef IUCr Journals Web of Science Google Scholar
First citationBauer, J., Spanton, S., Henry, R., Quick, J., Dziki, W., Porter, W. & Morris, J. (2001). Pharm. Res. 18, 859–866.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationdeCarvalho, A. C. V., Ndi, C. P., Tsopmo, A., Tane, P., Ayafor, F. J., Connolly, J. D. & Teem, J. L. (2002). Mol. Med. 8, 75–87.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrief, S., Martin, M. T., Grellier, P., Kasenene, J. & Sévenet, T. (2004). Antimicrob. Agents Chemother. 48, 3196–3199.  Web of Science CrossRef Google Scholar
First citationLange, N., Tontsa, A. T., Wegscheid, C., Mkounga, P., Nkengfack, A. E., Loscher, C., Sass, G. & Tiegs, G. (2016). PLoS One, 11, e0160843.  Web of Science CrossRef Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPolonsky, J., Varon, Z., Arnoux, B., Pascard, C., Pettit, G. R. & Schmidt, J. M. (1978). J. Am. Chem. Soc. 100, 7731–7733.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTontsa, A. T., Mkounga, P., Njayou, F. N., Manautou, J., Kirk, M., Hultin, G. P. & Nkengfack, A. E. (2013). Chem. Pharm. Bull. 61, 1178–1183.  Google Scholar
First citationTsamo, T. A., Nangmo, K. P., Mkounga, P., Müller, I. B., Marat, K., Sass, G. & Ephrem, N. A. (2016). Med. Chem. 12, 655–661.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, H. & Zhang, J.-L. (2011). Bioorg. Med. Chem. Lett. 21, 1974–1977.  Web of Science CrossRef Google Scholar
First citationYan, Y., Zhang, J.-X., Huang, T., Mao, X.-Y., Gu, W., He, H.-P., Di, Y.-T., Li, S.-L., Chen, D.-Z., Zhang, Y. & Hao, X.-J. (2015). J. Nat. Prod. 78, 811–821.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds