research communications
Crystal structures of 2-aminopyridine citric acid salts: C5H7N2+·C6H7O7− and 3C5H7N2+·C6H5O73−
aDept. of Chemistry, University College of Science, Tumkur University, Tumkur, 572103, India, bDepartment of Basic Sciences, School of Engineering and Technology, Jain, University, Bangalore 562 112, India, cDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysuru 570 006, India, and dDepartment of Chemistry, Science College, An-Najah National University, PO Box 7, Nablus, Palestinian Territories
*Correspondence e-mail: pasuchetan@gmail.com, khalil.i@najah.edu
2-Aminopyridine and citric acid mixed in 1:1 and 3:1 ratios in ethanol yielded crystals of two 2-aminopyridinium citrate salts, viz. C5H7N2+·C6H7O7− (I) (systematic name: 2-aminopyridin-1-ium 3-carboxy-2-carboxymethyl-2-hydroxypropanoate), and 3C5H7N2+·C6H5O73− (II) [systematic name: tris(2-aminopyridin-1-ium) 2-hydroxypropane-1,2,3-tricarboxylate]. The supramolecular synthons present are analysed and their effect upon the crystal packing is presented in the context of crystal engineering. Salt I is formed by the protonation of the pyridine N atom and deprotonation of the central carboxylic group of citric acid, while in II all three carboxylic groups of the acid are deprotonated and the charges are compensated for by three 2-aminopyridinium cations. In both structures, a complex supramolecular three-dimensional architecture is formed. In I, the supramolecular aggregation results from Namino—H⋯Oacid, Oacid⋯H—Oacid, Oalcohol—H⋯Oacid, Namino—H⋯Oalcohol, Npy—H⋯Oalcohol and Car—H⋯Oacid interactions. The molecular conformation of the citrate ion (CA3−) in II is stabilized by an intramolecular Oalcohol—H⋯Oacid hydrogen bond that encloses an S(6) ring motif. The complex three-dimensional structure of II features Namino—H⋯Oacid, Npy—H⋯Oacid and several Car—H⋯Oacid hydrogen bonds. In the crystal of I, the common charge-assisted 2-aminopyridinium–carboxylate heterosynthon exhibited in many 2-aminopyridinium carboxylates is not observed, instead chains of N—H⋯O hydrogen bonds and hetero O—H⋯O dimers are formed. In the crystal of II, the 2-aminopyridinium–carboxylate heterosynthon is sustained, while hetero O—H⋯O dimers are not observed. The crystal structures of both salts display a variety of hydrogen bonds as almost all of the hydrogen-bond donors and acceptors present are involved in hydrogen bonding.
1. Chemical context
Systematic structural and statistical analysis focusing on the identification of robust supramolecular synthons or patterns are essential for crystal engineering and the design of new solid-state structures with desired properties. Organic crystals, especially salts, are now considered as potential materials for optical applications because of their flexibility in molecular design (Jayanalina et al., 2015a), thermal stability and delocalized clouds of π electrons (Jayanalina et al., 2015b). An analysis of the Cambridge Structural Database (Groom et al., 2016) by Bis & Zaworotko (2005) revealed that 77% of compounds that contain both the 2-aminopyridine and carboxylic acid moieties generate 2-aminopyridine–carboxylic acid supramolecular heterosynthons rather than carboxylic acid or 2-aminopyridine supramolecular homosynthons. In the absence of other competing functionalities, the occurrence of heterosynthons increased to 97%. Several salts and co-crystals containing 2-aminopyridine or 2-acetaminopyridine and a carboxylic acid moiety have been reported (Jayanalina et al., 2015a,b; Bis & Zaworotko, 2005; Aakeröy et al., 2006; Jasmine et al., 2015; Jin et al., 2001). In all of these reported structures, the charge-assisted 2-aminopyridinium-carboxylate or neutral 2-acetaminopyridine–carboxylic heterosynthon is observed, as suggested by statistical analysis. Keeping this in mind, the analyses of two 2-aminopyridinium citrate salts, C5H7N2+·C6H7O7− (I) and 3C5H7N2+·C6H5O73− (II), were undertaken in order to study the packing patterns and identify the supramolecular synthons present in each salt.
2. Structural commentary
The carboxylic groups in citric acid have pKa values of 3.128 (central –COOH group), 4.762 and 6.396 (terminal –COOH groups). Thus, an equimolar mixing of citric acid and 2-aminopyridine resulted in the formation of salt I (2-AMP+·CA−), whose structure is illustrated in Fig. 1. Here, the pyridine N atom is protonated and the central carboxylic group of the acid is deprotonated. The two C—O bond lengths of the central carboxylic group have values of 1.235 (3) Å for C6—O7 and 1.264 (3) Å for C6—O6, indicating partial double-bond character for both bonds. However, the two C—O bonds in each of the terminal carboxylic groups have different bond lengths [1.207 (3) Å for C3=O2 and 1.327 (3) Å for C3—O3, and 1.209 (3) Å for C5=O5 and 1.319 (3) Å for C5—O4], indicating double-bond character for one C—O bond and single-bond character for the other. These observations clearly confirm the deprotonation of the central carboxylic group (C6/O6/O7). The two terminal carboxylic groups in I have different conformations. In one of them (C5/O4/O5) the O—H and C=O bonds are in a syn conformation while in the other (C3/O2/O3), they have an anti conformation (Fig. 1). In the of I, the 2-aminopyridinium cation, 2-AMP+, and the citrate anion, CA-, are linked via Namino—H⋯Oacid(t1) hydrogen bonds [acid(t1) = C3/O2/O3], viz. N2—H2D⋯O2 (Table 1 and Fig. 1).
The II, illustrated in Fig. 2, consists of one citrate trianion, CA3− [(C5H5O7)3−], and three 2-AMP+ cations (2-AMP1, 2-AMP2 and 2-AMP3), wherein the pyridine N atom of each 2-AMP unit is protonated and all three carboxylic groups of the acid are deprotonated. This is supported by the observation that the C—O bonds of all the three carboxylic groups have similar bond lengths, in the range 1.231 (2)–1.266 (2) Å, which is an indication of the partial double-bond character of all of the C—O bonds resulting from deprotonation. The molecular conformation of the CA3− anion is stabilized by an intramolecular Oalcohol—H⋯Oacid(t1) hydrogen bond, namely O1—H1O⋯O3, that closes an S(6) ring motif (Table 2, Fig. 2).
of salt
|
In the II, the three 2-AMP+ cations are in different environments and interact with the CA3− anion in different ways [Fig. 2 and Table 2; acid(t1) = C3/O2/O3; acid(t2) = C5/O4/O5; acid(c) = C6/O6/O7]. The first cation, 2-AMP1, interacts with the anion via a discrete Namino—H⋯Oacid(c) hydrogen bond, namely N1—H1B⋯O6. The second cation, 2-AMP2, interacts with the CA3− anion via a charge-assisted 2-aminopyridinium-carboxylate R22(8) heterosynthon consisting of Namino—H⋯Oacid(t1) (N3—H3A⋯O3) and Npy—H⋯Oacid(t1) (N4—H4⋯O2) hydrogen bonds. The third cation, 2-AMP3, interacts with the anion via a discrete Namino—H⋯Oacid(c) hydrogen bond, namely N6—H6B⋯O7.
of salt3. Supramolecular features
Full details of the hydrogen-bonding interactions in the crystal of salt I are given in Table 1, and illustrated in Figs. 3 and 4. In the crystal of I, the cations and anions of adjacent units are interconnected by a Car—H⋯Oacid(t1) interactions, viz. C9—H9⋯O3, while adjacent anions related by b-glide symmetry form chains running along the b-axis direction, consisting of an R22(8) heterosynthon of Oacid(c)⋯H—Oacid(t1) and Oalcohol—H⋯Oacid(c) hydrogen bonds, namely O3—H3⋯O7i and O1—H1⋯O6i; see Fig. 3 and Table 1. The 2-AMP+ and CA− ions further aggregate to form sheets parallel to the ac plane (Fig. 4). The sheets consist of chains of Oacid(t2)—H⋯Oacid(c) hydrogen bonds, namely O4—H4⋯O6iii, running along the a-axis direction and linking the twofold-symmetry-related CA− anions (Table 1, Fig. 4). Adjacent chains are connected by 2-AMP+ ions via Namino—H⋯Oacid(t1)=C hydrogen bonds, namely N2—H2D⋯O2, and an R21(6) heterosynthon of Namino—H⋯Oalcohol and Npy—H⋯Oalcohol hydrogen bonds, N2—H2C⋯O1ii and N1—H1A⋯O1ii, respectively, is formed (Table 1, Fig. 4). Overall, a three-dimensional supramolecular architecture is observed. All of the strong hydrogen-bond acceptors and hydrogen-bond donors in I are involved in hydrogen bonding. However, the most reproducible charge-assisted 2-aminopyridinium–carboxylate heterosynthon, found in the crystal structures of many 2-aminopyridinium carboxylates (Bis & Zaworotko, 2005), is not present; instead chains of N—H⋯O hydrogen bonds and hetero O—H⋯O dimers are observed.
In the crystal of II, all of the strong hydrogen-bond donors and acceptors are utilized in a supramolecular association. Full details of the hydrogen-bonding interactions are given in Table 2, and illustrated in Figs. 2, 5 and 6. A number of the Car—H groups are also involved in C—H⋯O hydrogen bonds (Table 2). However, in contrast to I, the alcoholic OH group is not involved in intermolecular hydrogen bonding as it is locked into an intramolecular O1—H1O⋯O3acid(t1) hydrogen bond. The CA3− anion and the first 2-AMP+ cation (2-AMP1) form sheets lying parallel to the (101) plane (Fig. 5a and 5b). The sheet consists of alternating CA3− and 2-AMP+ ions, forming chains via C11—H11⋯O2iii interactions, with adjacent anti-parallel chains linked by C10—H10⋯O2ii, N1—H1A⋯O7i, N1—H1B⋯O6, N2—H2⋯O7i and N2—H2⋯O1i hydrogen bonds (Table 2, Fig. 5). On the other hand, the citrate and the second 2-AMP+ ions (2-AMP2) propagate alternately along the a-axis direction to form ribbons (Fig. 6a) consisting of alternating R22(8) heterosynthons of N3—H3A⋯O3 and N4—H4⋯O2 hydrogen bonds (Table 2) and R22(11) heterosynthons of N3—H3B⋯O4 and C13—H13⋯O6 hydrogen bonds (Table 2). Finally, the third 2-AMP+ ions (2-AMP3) are interlinked to the adjacent citrate ions, forming ribbons of alternating R22(8) heterosynthons, of N5—H5⋯O4i and N6—H6A⋯O5i hydrogen bonds (Table 2), and R22(10) heterosynthons of C21—H21⋯O3vi and C20—H20⋯O7vi interactions (Table 2) along the a-axis direction (Fig. 6b). Adjacent ribbons are further interconnected by N6—H6B⋯O7 hydrogen bonds to form corrugated sheets parallel to the ab plane (Table 2, Fig. 6b). Overall a complex supramolecular three-dimensional structure is formed.
4. Database survey
A survey of the Cambridge Structural Database (CSD, Version 5.39, last update May 2018; Groom et al., 2016) revealed 80 organic structures involving a citric acid moiety in the form of solvates/hydrates, salts/salt hydrates and co-crystals. 25 structures among these are salts/salt hydrates of citric acid (deprotonated to different extents) with various organic cations. It is observed that most of the organic citrates appear as their hydrates, with the exception of a few (including I and II). The most common hydrogen bonds observed in these hydrated salts are Namine—H⋯Ocitric, Namine—H⋯Owater and Owater—H⋯Ocitric, forming different supramolecular architectures. In the absence of a water molecule, the most common hydrogen bonds are Namine—H⋯Ocitric and Ocitric—H⋯Ocitric. However, the nature of these supramolecular synthons varies from one structure to another, depending on the nature of the organic cations.
Similarly, the crystal structures of several salts with 2-AMP+ as the cation are reported. Single-crystal structures of ten salts that contain both a 2-aminopyridine and a carboxylic acid moiety have been reported (Bis & Zaworotko, 2005). They include: 2-aminopyridinium 4-aminobenzoate, 2-aminopyridinium isophthalate, bis(2-aminopyridinium) terephthalate, 2-amino-5-methylpyridinium benzoate, bis(2-amino-5-methylpyridinium) 5-tertbutylisophthalate, 2-amino-5-methylpyridinium terephthalate, bis(2-amino-5-methylpyridinium) 2,6-naphthalenedicarboxylate, bis(2-amino 5-methylpyridinium) adipate adipic acid, bis(2-amino-5-methylpyridinium) 2,5-thiophenedicarboxylate 2,5-thiophenedicarboxylic acid, and indomethacin 2-amino-5-methylpyridinium. In all the reported structures, the most reproducible pattern is the charge-assisted 2-aminopyridinium–carboxylate heterosynthon seen in salt II. Similarly, in the of 2-amino-3-methylpyridinium ortho-phthalate (Jin et al., 2001), the two 2-amino-3-methylpyridinium ions are interconnected to the ortho-phthalate ion via a charge-assisted 2-aminopyridinium–carboxylate heterosynthon. This robust pattern is also observed in the crystal structures of 2-aminopyridinium 6-chloronicotinate (Jasmine et al., 2015) and 2-amino-5-chloropyridinium pyridine-2-carboxylate monohydrate (Jayanalina et al., 2015a). Single-crystal structures of ten co-crystals that contain 2-acetaminopyridine and a carboxylic acid moiety: 2-acetaminopyridine/fumaric acid have been reported by Aakeröy et al. (2006). They include: 2-acetaminopyridine/succinic acid, 2-acetaminopyridine/glutaric acid, 2-acetaminopyridine /adipic acid, 2-acetaminopyridine/pimelic acid, 2-acetaminopyridine/suberic acid, 2-acetamino-pyridine/azelaic acid, 2-acetaminopyridine/sebacic acid, 2-acetaminopyridine/3,5-dimethylbenzoic acid, and 2-acetaminopyridine/5-nitroisophthalic acid. Although these are neutral compounds wherein there is no transfer of proton from carboxylic acid to the 2-acetaminopyridine moiety, the most repetitive pattern observed in these structures is the neutral 2-acetaminopyridine–carboxylic acid R22(8) heterosynthon. This is very similar to the charge-assisted 2-aminopyridinium–carboxylate heterosynthon except for the positioning of the hydrogen atom, on either the O or N atom.
The L-tartarate (Jayanalina et al., 2015b) shows that despite of the presence of other competing functionalities on the carboxylic acid (two alcoholic OH groups in tartaric acid), the most frequent 2-aminopyridinium–carboxylate heterosynthon is still observed. However, the presence of the alcoholic OH group in citric acid has resulted in a deviation from the regular trend as the charge-assisted 2-aminopyridinium–carboxylate heterosynthon is not observed in I; instead chains of N—H⋯O hydrogen bonds and hetero O—H⋯O dimers are observed. The 2-aminopyridinium–carboxylate heterosynthon is sustained in the of II because of the non-availability of the alcoholic OH group for intermolecular hydrogen bonding.
of 2-amino 5-chloropyridinium-Hence, the study of the
of 2-aminopyridinium citrate, mixed in a 2:1 ratio, would be highly significant in understanding the packing-pattern trends observed in this family of salts. Unfortunately, despite a number of attempts, we have not been able to obtain good-quality single crystals of this salt.5. Synthesis and crystallization
A solution of citric acid (3 mmol, 0.576 g) in ethanol (15 ml) was added to an ethanolic solution (15 ml) of 2-aminopyridine (3 mmol, 0.282 g). The resulting solution was heated and the hot solution was filtered. Slow evaporation of the solution resulted in the formation of colourless prismatic crystals of salt I (m.p. 493 K). Single crystals of salt II were obtained from a similar procedure; an ethanolic solution (15 ml) of citric acid (3 mmol, 0.576 g) was mixed with an ethanolic solution (15 ml) of 2-aminopyridine (9 mmol, 0.846 g).
6. details
Crystal data, data collection and structure . In salt I, the OH H atom (H1) was positioned geometrically and refined as riding: O—H = 0.82 Å with Uiso(H) = 1.5Ueq(O). In salt II, the OH H atom (H1O) was located in a difference-Fourier map and freely refined. In both salts, the other H atoms were positioned geometrically and refined as riding: N—H = 0.86 Å, C—H = 0.93–0.97 Å with Uiso(H) = 1.2Ueq(N, C).
details are summarized in Table 3
|
Supporting information
https://doi.org/10.1107/S2056989018009787/su5449sup1.cif
contains datablocks I, II, Global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018009787/su5449Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989018009787/su5449IIsup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018009787/su5449Isup4.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989018009787/su5449IIsup5.cml
For both structures, data collection: APEX2 (Bruker, 2009); cell
APEX2 and SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus and XPREP (Bruker, 2009); program(s) used to solve structure: SHELXT2016 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015b).C5H7N2+·C6H7O7− | Dx = 1.448 Mg m−3 |
Mr = 286.24 | Melting point: 493 K |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 143 reflections |
a = 9.000 (11) Å | θ = 3.1–27.5° |
b = 10.721 (13) Å | µ = 0.12 mm−1 |
c = 27.21 (3) Å | T = 296 K |
V = 2625 (5) Å3 | Prism, colourless |
Z = 8 | 0.27 × 0.22 × 0.19 mm |
F(000) = 1200 |
Bruker APEXII diffractometer | 2977 independent reflections |
Radiation source: sealed X-ray tube | 2143 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.099 |
phi and φ scans | θmax = 27.5°, θmin = 3.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −11→9 |
Tmin = 0.968, Tmax = 0.977 | k = −13→13 |
8086 measured reflections | l = −12→35 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.066 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.195 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.1065P)2] where P = (Fo2 + 2Fc2)/3 |
2977 reflections | (Δ/σ)max < 0.001 |
184 parameters | Δρmax = 0.29 e Å−3 |
0 restraints | Δρmin = −0.30 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.2827 (2) | 0.40538 (18) | 0.41150 (7) | 0.0284 (4) | |
C2 | 0.4265 (2) | 0.47554 (18) | 0.39605 (8) | 0.0314 (5) | |
H2A | 0.419854 | 0.561864 | 0.406495 | 0.038* | |
H2B | 0.511292 | 0.438155 | 0.412406 | 0.038* | |
C3 | 0.4500 (2) | 0.47082 (18) | 0.34102 (8) | 0.0329 (5) | |
C4 | 0.2668 (3) | 0.4112 (2) | 0.46729 (8) | 0.0348 (5) | |
H4A | 0.354470 | 0.374637 | 0.482187 | 0.042* | |
H4B | 0.262245 | 0.497923 | 0.477316 | 0.042* | |
C5 | 0.1315 (3) | 0.3448 (2) | 0.48646 (8) | 0.0383 (5) | |
C6 | 0.2956 (2) | 0.26921 (17) | 0.39304 (7) | 0.0280 (4) | |
C7 | 0.4276 (3) | 0.3173 (2) | 0.19589 (9) | 0.0397 (5) | |
C8 | 0.3305 (3) | 0.2475 (2) | 0.22619 (9) | 0.0479 (6) | |
H8 | 0.333716 | 0.255755 | 0.260195 | 0.057* | |
C9 | 0.2320 (3) | 0.1677 (3) | 0.20452 (11) | 0.0546 (7) | |
H9 | 0.167956 | 0.121120 | 0.224075 | 0.066* | |
C10 | 0.2259 (3) | 0.1548 (3) | 0.15313 (10) | 0.0523 (7) | |
H10 | 0.158588 | 0.100241 | 0.138646 | 0.063* | |
C11 | 0.3192 (3) | 0.2228 (2) | 0.12526 (10) | 0.0469 (6) | |
H11 | 0.316651 | 0.215571 | 0.091216 | 0.056* | |
N1 | 0.4170 (2) | 0.30207 (19) | 0.14690 (7) | 0.0411 (5) | |
H1A | 0.475232 | 0.344774 | 0.128331 | 0.049* | |
N2 | 0.5275 (2) | 0.3966 (2) | 0.21382 (8) | 0.0521 (5) | |
H2C | 0.584424 | 0.437389 | 0.194183 | 0.062* | |
H2D | 0.535185 | 0.406964 | 0.245054 | 0.062* | |
O1 | 0.15695 (16) | 0.45874 (12) | 0.38791 (6) | 0.0337 (4) | |
H1 | 0.147677 | 0.531534 | 0.396642 | 0.051* | |
O2 | 0.5321 (2) | 0.39665 (16) | 0.32168 (7) | 0.0520 (5) | |
O3 | 0.3748 (2) | 0.55002 (14) | 0.31300 (6) | 0.0444 (4) | |
H3 | 0.334824 | 0.602731 | 0.330373 | 0.067* | |
O4 | 0.1087 (2) | 0.3705 (2) | 0.53325 (7) | 0.0570 (5) | |
H4 | 0.031941 | 0.336621 | 0.542459 | 0.085* | |
O5 | 0.0527 (2) | 0.27613 (19) | 0.46272 (7) | 0.0620 (6) | |
O6 | 0.37012 (18) | 0.19472 (13) | 0.41930 (6) | 0.0405 (4) | |
O7 | 0.23360 (18) | 0.24341 (13) | 0.35387 (5) | 0.0367 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0314 (10) | 0.0247 (9) | 0.0289 (10) | −0.0017 (8) | −0.0027 (8) | −0.0002 (7) |
C2 | 0.0336 (10) | 0.0277 (9) | 0.0330 (11) | −0.0039 (8) | 0.0026 (9) | −0.0010 (8) |
C3 | 0.0370 (11) | 0.0259 (9) | 0.0357 (11) | −0.0037 (8) | 0.0063 (9) | −0.0014 (8) |
C4 | 0.0407 (11) | 0.0327 (11) | 0.0311 (11) | −0.0065 (9) | 0.0047 (9) | −0.0054 (8) |
C5 | 0.0435 (12) | 0.0366 (11) | 0.0349 (11) | −0.0043 (10) | 0.0063 (10) | 0.0000 (9) |
C6 | 0.0301 (9) | 0.0228 (9) | 0.0311 (10) | −0.0014 (7) | −0.0007 (8) | 0.0008 (7) |
C7 | 0.0381 (11) | 0.0425 (12) | 0.0385 (12) | 0.0097 (10) | 0.0049 (10) | −0.0016 (9) |
C8 | 0.0482 (13) | 0.0588 (15) | 0.0366 (13) | 0.0082 (11) | 0.0096 (11) | 0.0059 (11) |
C9 | 0.0454 (14) | 0.0573 (16) | 0.0611 (17) | 0.0027 (12) | 0.0126 (13) | 0.0104 (13) |
C10 | 0.0455 (14) | 0.0552 (15) | 0.0563 (16) | 0.0027 (12) | 0.0013 (12) | 0.0001 (12) |
C11 | 0.0443 (13) | 0.0553 (14) | 0.0412 (13) | 0.0107 (12) | −0.0018 (11) | −0.0019 (11) |
N1 | 0.0379 (10) | 0.0478 (11) | 0.0375 (11) | 0.0055 (9) | 0.0070 (8) | 0.0048 (8) |
N2 | 0.0530 (12) | 0.0609 (13) | 0.0422 (11) | −0.0033 (11) | 0.0095 (10) | −0.0061 (10) |
O1 | 0.0339 (8) | 0.0232 (7) | 0.0441 (9) | 0.0033 (6) | −0.0046 (6) | −0.0015 (6) |
O2 | 0.0625 (11) | 0.0472 (10) | 0.0462 (10) | 0.0155 (9) | 0.0142 (9) | −0.0037 (8) |
O3 | 0.0641 (11) | 0.0364 (9) | 0.0326 (8) | 0.0135 (8) | 0.0050 (8) | 0.0007 (6) |
O4 | 0.0542 (10) | 0.0787 (13) | 0.0381 (10) | −0.0225 (10) | 0.0135 (8) | −0.0070 (9) |
O5 | 0.0683 (12) | 0.0697 (12) | 0.0481 (11) | −0.0336 (11) | 0.0144 (10) | −0.0148 (9) |
O6 | 0.0507 (9) | 0.0252 (7) | 0.0456 (9) | 0.0038 (7) | −0.0156 (7) | 0.0019 (6) |
O7 | 0.0470 (9) | 0.0276 (8) | 0.0355 (8) | 0.0002 (6) | −0.0087 (7) | −0.0036 (6) |
C1—O1 | 1.421 (3) | C7—N1 | 1.346 (3) |
C1—C4 | 1.526 (3) | C7—C8 | 1.416 (4) |
C1—C6 | 1.548 (3) | C8—C9 | 1.365 (4) |
C1—C2 | 1.555 (3) | C8—H8 | 0.9300 |
C2—C3 | 1.513 (3) | C9—C10 | 1.406 (4) |
C2—H2A | 0.9700 | C9—H9 | 0.9300 |
C2—H2B | 0.9700 | C10—C11 | 1.346 (4) |
C3—O2 | 1.207 (3) | C10—H10 | 0.9300 |
C3—O3 | 1.327 (3) | C11—N1 | 1.357 (3) |
C4—C5 | 1.503 (3) | C11—H11 | 0.9300 |
C4—H4A | 0.9700 | N1—H1A | 0.8600 |
C4—H4B | 0.9700 | N2—H2C | 0.8600 |
C5—O5 | 1.209 (3) | N2—H2D | 0.8600 |
C5—O4 | 1.319 (3) | O1—H1 | 0.8200 |
C6—O7 | 1.235 (3) | O3—H3 | 0.8200 |
C6—O6 | 1.264 (3) | O4—H4 | 0.8200 |
C7—N2 | 1.330 (3) | ||
O1—C1—C4 | 110.98 (18) | O6—C6—C1 | 116.87 (18) |
O1—C1—C6 | 107.03 (16) | N2—C7—N1 | 119.3 (2) |
C4—C1—C6 | 111.61 (16) | N2—C7—C8 | 122.8 (2) |
O1—C1—C2 | 110.23 (17) | N1—C7—C8 | 117.9 (2) |
C4—C1—C2 | 109.12 (17) | C9—C8—C7 | 118.7 (3) |
C6—C1—C2 | 107.80 (17) | C9—C8—H8 | 120.6 |
C3—C2—C1 | 111.57 (17) | C7—C8—H8 | 120.6 |
C3—C2—H2A | 109.3 | C8—C9—C10 | 121.1 (3) |
C1—C2—H2A | 109.3 | C8—C9—H9 | 119.5 |
C3—C2—H2B | 109.3 | C10—C9—H9 | 119.5 |
C1—C2—H2B | 109.3 | C11—C10—C9 | 118.9 (3) |
H2A—C2—H2B | 108.0 | C11—C10—H10 | 120.6 |
O2—C3—O3 | 118.9 (2) | C9—C10—H10 | 120.6 |
O2—C3—C2 | 122.6 (2) | C10—C11—N1 | 119.9 (3) |
O3—C3—C2 | 118.45 (18) | C10—C11—H11 | 120.0 |
C5—C4—C1 | 113.69 (18) | N1—C11—H11 | 120.0 |
C5—C4—H4A | 108.8 | C7—N1—C11 | 123.5 (2) |
C1—C4—H4A | 108.8 | C7—N1—H1A | 118.3 |
C5—C4—H4B | 108.8 | C11—N1—H1A | 118.3 |
C1—C4—H4B | 108.8 | C7—N2—H2C | 120.0 |
H4A—C4—H4B | 107.7 | C7—N2—H2D | 120.0 |
O5—C5—O4 | 123.5 (2) | H2C—N2—H2D | 120.0 |
O5—C5—C4 | 125.3 (2) | C1—O1—H1 | 109.5 |
O4—C5—C4 | 111.2 (2) | C3—O3—H3 | 109.5 |
O7—C6—O6 | 125.90 (19) | C5—O4—H4 | 109.5 |
O7—C6—C1 | 117.22 (17) | ||
O1—C1—C2—C3 | −59.0 (2) | C2—C1—C6—O7 | −97.6 (2) |
C4—C1—C2—C3 | 178.89 (16) | O1—C1—C6—O6 | −159.64 (18) |
C6—C1—C2—C3 | 57.5 (2) | C4—C1—C6—O6 | −38.0 (3) |
C1—C2—C3—O2 | −98.1 (3) | C2—C1—C6—O6 | 81.8 (2) |
C1—C2—C3—O3 | 80.5 (2) | N2—C7—C8—C9 | −179.6 (2) |
O1—C1—C4—C5 | 58.9 (2) | N1—C7—C8—C9 | 0.5 (3) |
C6—C1—C4—C5 | −60.4 (2) | C7—C8—C9—C10 | −0.2 (4) |
C2—C1—C4—C5 | −179.39 (17) | C8—C9—C10—C11 | 0.0 (4) |
C1—C4—C5—O5 | 11.1 (3) | C9—C10—C11—N1 | 0.1 (4) |
C1—C4—C5—O4 | −169.0 (2) | N2—C7—N1—C11 | 179.6 (2) |
O1—C1—C6—O7 | 21.0 (2) | C8—C7—N1—C11 | −0.5 (3) |
C4—C1—C6—O7 | 142.6 (2) | C10—C11—N1—C7 | 0.2 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O6i | 0.82 | 1.86 | 2.681 (4) | 177 |
N1—H1A···O1ii | 0.86 | 2.09 | 2.895 (4) | 156 |
N2—H2C···O1ii | 0.86 | 2.34 | 3.076 (5) | 144 |
N2—H2D···O2 | 0.86 | 2.09 | 2.935 (5) | 168 |
O3—H3···O7i | 0.82 | 1.75 | 2.547 (4) | 164 |
O4—H4···O6iii | 0.82 | 1.82 | 2.601 (4) | 158 |
C9—H9···O3iv | 0.93 | 2.57 | 3.351 (5) | 142 |
Symmetry codes: (i) −x+1/2, y+1/2, z; (ii) x+1/2, y, −z+1/2; (iii) x−1/2, −y+1/2, −z+1; (iv) −x+1/2, y−1/2, z. |
3C5H7N2+·C6H5O73− | F(000) = 1000 |
Mr = 474.48 | Dx = 1.368 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 10.0297 (17) Å | Cell parameters from 132 reflections |
b = 10.6564 (14) Å | θ = 3.1–27.5° |
c = 21.986 (4) Å | µ = 0.11 mm−1 |
β = 101.426 (9)° | T = 296 K |
V = 2303.3 (7) Å3 | Prism, colourless |
Z = 4 | 0.22 × 0.19 × 0.17 mm |
Bruker APEXII diffractometer | 5242 independent reflections |
Radiation source: sealed X-ray tube | 3779 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.056 |
phi and φ scans | θmax = 27.5°, θmin = 3.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −13→12 |
Tmin = 0.977, Tmax = 0.982 | k = −13→13 |
13120 measured reflections | l = −28→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.052 | Hydrogen site location: mixed |
wR(F2) = 0.149 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0673P)2 + 0.409P] where P = (Fo2 + 2Fc2)/3 |
5242 reflections | (Δ/σ)max < 0.001 |
311 parameters | Δρmax = 0.27 e Å−3 |
0 restraints | Δρmin = −0.21 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.40837 (15) | 0.54865 (11) | 0.08093 (6) | 0.0423 (3) | |
H1O | 0.489 (3) | 0.506 (3) | 0.0879 (12) | 0.071 (8)* | |
O2 | 0.52383 (14) | 0.18918 (12) | 0.03079 (6) | 0.0466 (3) | |
O3 | 0.59153 (14) | 0.36464 (13) | 0.08316 (7) | 0.0527 (4) | |
O4 | 0.00785 (17) | 0.50955 (14) | 0.11124 (8) | 0.0651 (5) | |
O5 | 0.13362 (17) | 0.67594 (14) | 0.10506 (9) | 0.0661 (5) | |
O6 | 0.25602 (17) | 0.28972 (13) | 0.14580 (6) | 0.0542 (4) | |
O7 | 0.36839 (14) | 0.45764 (12) | 0.18962 (6) | 0.0449 (3) | |
C1 | 0.31580 (17) | 0.44500 (15) | 0.07766 (7) | 0.0322 (4) | |
C2 | 0.35607 (19) | 0.34310 (16) | 0.03557 (8) | 0.0377 (4) | |
H2A | 0.295896 | 0.271947 | 0.035888 | 0.045* | |
H2B | 0.339938 | 0.375355 | −0.006509 | 0.045* | |
C3 | 0.50118 (19) | 0.29614 (16) | 0.05164 (8) | 0.0368 (4) | |
C4 | 0.17245 (19) | 0.49234 (18) | 0.04858 (8) | 0.0410 (4) | |
H4A | 0.179056 | 0.544641 | 0.013183 | 0.049* | |
H4B | 0.116466 | 0.420505 | 0.033149 | 0.049* | |
C5 | 0.10047 (18) | 0.56668 (17) | 0.09152 (8) | 0.0393 (4) | |
C6 | 0.31417 (17) | 0.39294 (15) | 0.14353 (8) | 0.0334 (4) | |
N1 | 0.14007 (18) | 0.20220 (15) | 0.24858 (8) | 0.0510 (4) | |
H1A | 0.137464 | 0.124190 | 0.258293 | 0.061* | |
H1B | 0.156634 | 0.223370 | 0.213063 | 0.061* | |
N2 | 0.09288 (17) | 0.25593 (15) | 0.34395 (7) | 0.0458 (4) | |
H2 | 0.093048 | 0.175597 | 0.351991 | 0.055* | |
C7 | 0.11865 (18) | 0.29025 (17) | 0.28856 (8) | 0.0381 (4) | |
C8 | 0.1228 (2) | 0.42056 (17) | 0.27643 (9) | 0.0451 (4) | |
H8 | 0.138649 | 0.448570 | 0.238434 | 0.054* | |
C9 | 0.1037 (2) | 0.50434 (19) | 0.32022 (11) | 0.0535 (5) | |
H9 | 0.108433 | 0.589807 | 0.312368 | 0.064* | |
C10 | 0.0768 (2) | 0.4638 (2) | 0.37722 (11) | 0.0603 (6) | |
H10 | 0.062386 | 0.521166 | 0.407137 | 0.072* | |
C11 | 0.0723 (2) | 0.3385 (2) | 0.38754 (10) | 0.0558 (5) | |
H11 | 0.054862 | 0.309350 | 0.425062 | 0.067* | |
N3 | 0.8662 (2) | 0.27826 (16) | 0.08313 (9) | 0.0557 (5) | |
H3A | 0.785814 | 0.310176 | 0.076107 | 0.067* | |
H3B | 0.936026 | 0.325756 | 0.094377 | 0.067* | |
N4 | 0.77000 (16) | 0.08491 (14) | 0.05893 (8) | 0.0430 (4) | |
H4 | 0.692251 | 0.121911 | 0.051585 | 0.052* | |
C12 | 0.8824 (2) | 0.15464 (18) | 0.07656 (8) | 0.0421 (4) | |
C13 | 1.0095 (2) | 0.0933 (2) | 0.08716 (9) | 0.0504 (5) | |
H13 | 1.089615 | 0.138975 | 0.098593 | 0.060* | |
C14 | 1.0135 (2) | −0.0336 (2) | 0.08043 (10) | 0.0558 (5) | |
H14 | 1.097062 | −0.074390 | 0.087536 | 0.067* | |
C15 | 0.8939 (2) | −0.1037 (2) | 0.06300 (11) | 0.0551 (5) | |
H15 | 0.897109 | −0.190487 | 0.058988 | 0.066* | |
C16 | 0.7740 (2) | −0.04213 (18) | 0.05220 (10) | 0.0485 (5) | |
H16 | 0.693459 | −0.086724 | 0.040050 | 0.058* | |
N5 | 0.62921 (16) | 0.12553 (15) | 0.31762 (7) | 0.0441 (4) | |
H5 | 0.587297 | 0.102488 | 0.346297 | 0.053* | |
N6 | 0.46530 (18) | 0.27662 (17) | 0.28874 (8) | 0.0514 (4) | |
H6A | 0.426137 | 0.251756 | 0.318032 | 0.062* | |
H6B | 0.431257 | 0.337666 | 0.265102 | 0.062* | |
C17 | 0.57809 (19) | 0.22085 (17) | 0.28005 (8) | 0.0393 (4) | |
C18 | 0.6471 (2) | 0.2548 (2) | 0.23248 (10) | 0.0499 (5) | |
H18 | 0.613328 | 0.318660 | 0.204882 | 0.060* | |
C19 | 0.7631 (3) | 0.1936 (2) | 0.22721 (12) | 0.0640 (6) | |
H19 | 0.808573 | 0.216020 | 0.195845 | 0.077* | |
C20 | 0.8150 (2) | 0.0974 (2) | 0.26828 (13) | 0.0686 (7) | |
H20 | 0.895861 | 0.056931 | 0.265660 | 0.082* | |
C21 | 0.7437 (2) | 0.0652 (2) | 0.31185 (11) | 0.0580 (6) | |
H21 | 0.774715 | −0.000586 | 0.338719 | 0.070* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0546 (8) | 0.0294 (6) | 0.0474 (7) | −0.0046 (6) | 0.0211 (6) | −0.0017 (5) |
O2 | 0.0522 (8) | 0.0363 (7) | 0.0538 (8) | 0.0038 (6) | 0.0162 (6) | −0.0095 (6) |
O3 | 0.0496 (8) | 0.0504 (8) | 0.0574 (8) | 0.0004 (6) | 0.0084 (6) | −0.0184 (7) |
O4 | 0.0731 (10) | 0.0523 (8) | 0.0824 (11) | −0.0157 (8) | 0.0453 (9) | −0.0252 (8) |
O5 | 0.0646 (10) | 0.0438 (8) | 0.0986 (13) | −0.0062 (7) | 0.0371 (9) | −0.0227 (8) |
O6 | 0.0796 (10) | 0.0415 (7) | 0.0443 (8) | −0.0156 (7) | 0.0187 (7) | 0.0038 (6) |
O7 | 0.0567 (8) | 0.0452 (7) | 0.0320 (6) | 0.0011 (6) | 0.0070 (6) | −0.0052 (6) |
C1 | 0.0407 (9) | 0.0277 (7) | 0.0297 (8) | 0.0003 (7) | 0.0104 (7) | −0.0011 (6) |
C2 | 0.0463 (10) | 0.0357 (8) | 0.0328 (8) | 0.0013 (7) | 0.0118 (7) | −0.0069 (7) |
C3 | 0.0493 (10) | 0.0334 (8) | 0.0312 (8) | −0.0005 (7) | 0.0162 (7) | −0.0022 (7) |
C4 | 0.0486 (10) | 0.0422 (9) | 0.0321 (8) | 0.0086 (8) | 0.0074 (8) | 0.0000 (7) |
C5 | 0.0413 (9) | 0.0377 (9) | 0.0371 (9) | 0.0069 (8) | 0.0035 (7) | −0.0036 (7) |
C6 | 0.0391 (9) | 0.0303 (8) | 0.0325 (8) | 0.0048 (7) | 0.0111 (7) | 0.0001 (7) |
N1 | 0.0642 (11) | 0.0406 (8) | 0.0532 (10) | −0.0002 (8) | 0.0238 (8) | 0.0016 (7) |
N2 | 0.0544 (10) | 0.0389 (8) | 0.0478 (9) | 0.0046 (7) | 0.0187 (7) | 0.0134 (7) |
C7 | 0.0362 (9) | 0.0380 (9) | 0.0420 (9) | 0.0023 (7) | 0.0123 (7) | 0.0074 (7) |
C8 | 0.0523 (11) | 0.0387 (9) | 0.0466 (10) | 0.0012 (8) | 0.0154 (9) | 0.0131 (8) |
C9 | 0.0613 (13) | 0.0362 (9) | 0.0639 (13) | 0.0037 (9) | 0.0147 (10) | 0.0054 (9) |
C10 | 0.0729 (15) | 0.0564 (13) | 0.0546 (12) | 0.0095 (11) | 0.0200 (11) | −0.0082 (11) |
C11 | 0.0659 (13) | 0.0634 (13) | 0.0431 (11) | 0.0075 (11) | 0.0228 (10) | 0.0079 (10) |
N3 | 0.0647 (11) | 0.0406 (9) | 0.0642 (11) | −0.0118 (8) | 0.0184 (9) | −0.0069 (8) |
N4 | 0.0404 (8) | 0.0371 (8) | 0.0514 (9) | 0.0001 (7) | 0.0089 (7) | −0.0042 (7) |
C12 | 0.0513 (11) | 0.0418 (9) | 0.0351 (9) | −0.0075 (8) | 0.0129 (8) | −0.0021 (8) |
C13 | 0.0447 (11) | 0.0613 (12) | 0.0446 (11) | −0.0089 (9) | 0.0077 (9) | −0.0067 (9) |
C14 | 0.0462 (11) | 0.0624 (13) | 0.0577 (13) | 0.0107 (10) | 0.0076 (9) | −0.0019 (11) |
C15 | 0.0558 (12) | 0.0418 (10) | 0.0655 (14) | 0.0063 (9) | 0.0071 (10) | −0.0038 (10) |
C16 | 0.0475 (11) | 0.0384 (9) | 0.0585 (12) | −0.0054 (8) | 0.0080 (9) | −0.0078 (9) |
N5 | 0.0424 (8) | 0.0461 (9) | 0.0445 (8) | 0.0010 (7) | 0.0099 (7) | 0.0143 (7) |
N6 | 0.0518 (10) | 0.0561 (10) | 0.0475 (9) | 0.0107 (8) | 0.0129 (8) | 0.0170 (8) |
C17 | 0.0409 (9) | 0.0383 (9) | 0.0374 (9) | −0.0019 (7) | 0.0041 (7) | 0.0047 (7) |
C18 | 0.0559 (12) | 0.0475 (10) | 0.0476 (11) | 0.0002 (9) | 0.0130 (9) | 0.0140 (9) |
C19 | 0.0646 (14) | 0.0676 (15) | 0.0682 (15) | 0.0001 (12) | 0.0331 (12) | 0.0167 (12) |
C20 | 0.0558 (13) | 0.0658 (14) | 0.0919 (18) | 0.0140 (11) | 0.0331 (13) | 0.0234 (14) |
C21 | 0.0491 (12) | 0.0547 (12) | 0.0709 (14) | 0.0092 (10) | 0.0136 (10) | 0.0230 (11) |
O1—C1 | 1.435 (2) | C11—H11 | 0.9300 |
O1—H1O | 0.92 (3) | N3—C12 | 1.339 (3) |
O2—C3 | 1.266 (2) | N3—H3A | 0.8600 |
O3—C3 | 1.259 (2) | N3—H3B | 0.8601 |
O4—C5 | 1.257 (2) | N4—C12 | 1.342 (2) |
O5—C5 | 1.231 (2) | N4—C16 | 1.363 (2) |
O6—C6 | 1.251 (2) | N4—H4 | 0.8601 |
O7—C6 | 1.257 (2) | C12—C13 | 1.410 (3) |
C1—C2 | 1.532 (2) | C13—C14 | 1.362 (3) |
C1—C4 | 1.538 (2) | C13—H13 | 0.9300 |
C1—C6 | 1.554 (2) | C14—C15 | 1.400 (3) |
C2—C3 | 1.513 (3) | C14—H14 | 0.9300 |
C2—H2A | 0.9700 | C15—C16 | 1.349 (3) |
C2—H2B | 0.9700 | C15—H15 | 0.9300 |
C4—C5 | 1.520 (2) | C16—H16 | 0.9300 |
C4—H4A | 0.9700 | N5—C21 | 1.344 (3) |
C4—H4B | 0.9700 | N5—C17 | 1.345 (2) |
N1—C7 | 1.332 (3) | N5—H5 | 0.8600 |
N1—H1A | 0.8600 | N6—C17 | 1.325 (3) |
N1—H1B | 0.8601 | N6—H6A | 0.8599 |
N2—C7 | 1.345 (2) | N6—H6B | 0.8600 |
N2—C11 | 1.347 (3) | C17—C18 | 1.411 (3) |
N2—H2 | 0.8740 | C18—C19 | 1.359 (3) |
C7—C8 | 1.416 (2) | C18—H18 | 0.9300 |
C8—C9 | 1.354 (3) | C19—C20 | 1.397 (3) |
C8—H8 | 0.9300 | C19—H19 | 0.9300 |
C9—C10 | 1.401 (3) | C20—C21 | 1.348 (3) |
C9—H9 | 0.9300 | C20—H20 | 0.9300 |
C10—C11 | 1.356 (3) | C21—H21 | 0.9300 |
C10—H10 | 0.9300 | ||
C1—O1—H1O | 99.9 (17) | N2—C11—C10 | 120.6 (2) |
O1—C1—C2 | 109.29 (14) | N2—C11—H11 | 119.7 |
O1—C1—C4 | 108.09 (14) | C10—C11—H11 | 119.7 |
C2—C1—C4 | 108.54 (13) | C12—N3—H3A | 120.0 |
O1—C1—C6 | 110.73 (13) | C12—N3—H3B | 120.0 |
C2—C1—C6 | 111.26 (13) | H3A—N3—H3B | 120.0 |
C4—C1—C6 | 108.84 (14) | C12—N4—C16 | 122.68 (17) |
C3—C2—C1 | 116.74 (14) | C12—N4—H4 | 118.6 |
C3—C2—H2A | 108.1 | C16—N4—H4 | 118.7 |
C1—C2—H2A | 108.1 | N3—C12—N4 | 117.58 (19) |
C3—C2—H2B | 108.1 | N3—C12—C13 | 124.28 (19) |
C1—C2—H2B | 108.1 | N4—C12—C13 | 118.14 (18) |
H2A—C2—H2B | 107.3 | C14—C13—C12 | 119.12 (19) |
O3—C3—O2 | 124.07 (17) | C14—C13—H13 | 120.4 |
O3—C3—C2 | 119.39 (15) | C12—C13—H13 | 120.4 |
O2—C3—C2 | 116.53 (16) | C13—C14—C15 | 121.2 (2) |
C5—C4—C1 | 115.63 (14) | C13—C14—H14 | 119.4 |
C5—C4—H4A | 108.4 | C15—C14—H14 | 119.4 |
C1—C4—H4A | 108.4 | C16—C15—C14 | 118.25 (19) |
C5—C4—H4B | 108.4 | C16—C15—H15 | 120.9 |
C1—C4—H4B | 108.4 | C14—C15—H15 | 120.9 |
H4A—C4—H4B | 107.4 | C15—C16—N4 | 120.57 (19) |
O5—C5—O4 | 123.87 (18) | C15—C16—H16 | 119.7 |
O5—C5—C4 | 120.28 (18) | N4—C16—H16 | 119.7 |
O4—C5—C4 | 115.85 (16) | C21—N5—C17 | 122.15 (18) |
O6—C6—O7 | 125.52 (17) | C21—N5—H5 | 118.9 |
O6—C6—C1 | 116.25 (15) | C17—N5—H5 | 118.9 |
O7—C6—C1 | 118.22 (15) | C17—N6—H6A | 120.0 |
C7—N1—H1A | 120.0 | C17—N6—H6B | 120.0 |
C7—N1—H1B | 120.0 | H6A—N6—H6B | 120.0 |
H1A—N1—H1B | 120.0 | N6—C17—N5 | 118.87 (17) |
C7—N2—C11 | 123.42 (17) | N6—C17—C18 | 123.38 (17) |
C7—N2—H2 | 117.2 | N5—C17—C18 | 117.74 (18) |
C11—N2—H2 | 119.4 | C19—C18—C17 | 119.63 (19) |
N1—C7—N2 | 119.41 (17) | C19—C18—H18 | 120.2 |
N1—C7—C8 | 123.51 (17) | C17—C18—H18 | 120.2 |
N2—C7—C8 | 117.08 (17) | C18—C19—C20 | 120.8 (2) |
C9—C8—C7 | 119.94 (18) | C18—C19—H19 | 119.6 |
C9—C8—H8 | 120.0 | C20—C19—H19 | 119.6 |
C7—C8—H8 | 120.0 | C21—C20—C19 | 117.6 (2) |
C8—C9—C10 | 120.79 (19) | C21—C20—H20 | 121.2 |
C8—C9—H9 | 119.6 | C19—C20—H20 | 121.2 |
C10—C9—H9 | 119.6 | N5—C21—C20 | 122.0 (2) |
C11—C10—C9 | 118.1 (2) | N5—C21—H21 | 119.0 |
C11—C10—H10 | 120.9 | C20—C21—H21 | 119.0 |
C9—C10—H10 | 120.9 | ||
O1—C1—C2—C3 | 54.58 (19) | C7—C8—C9—C10 | −1.4 (3) |
C4—C1—C2—C3 | 172.25 (15) | C8—C9—C10—C11 | 0.9 (4) |
C6—C1—C2—C3 | −68.0 (2) | C7—N2—C11—C10 | 0.0 (3) |
C1—C2—C3—O3 | −22.8 (2) | C9—C10—C11—N2 | −0.2 (4) |
C1—C2—C3—O2 | 158.57 (16) | C16—N4—C12—N3 | −178.41 (19) |
O1—C1—C4—C5 | −77.58 (19) | C16—N4—C12—C13 | 1.4 (3) |
C2—C1—C4—C5 | 163.99 (15) | N3—C12—C13—C14 | 178.4 (2) |
C6—C1—C4—C5 | 42.8 (2) | N4—C12—C13—C14 | −1.3 (3) |
C1—C4—C5—O5 | 75.6 (2) | C12—C13—C14—C15 | 0.3 (3) |
C1—C4—C5—O4 | −104.5 (2) | C13—C14—C15—C16 | 0.8 (4) |
O1—C1—C6—O6 | −167.93 (15) | C14—C15—C16—N4 | −0.8 (3) |
C2—C1—C6—O6 | −46.2 (2) | C12—N4—C16—C15 | −0.3 (3) |
C4—C1—C6—O6 | 73.39 (19) | C21—N5—C17—N6 | −179.5 (2) |
O1—C1—C6—O7 | 13.2 (2) | C21—N5—C17—C18 | 1.6 (3) |
C2—C1—C6—O7 | 135.00 (16) | N6—C17—C18—C19 | 179.3 (2) |
C4—C1—C6—O7 | −105.44 (17) | N5—C17—C18—C19 | −1.8 (3) |
C11—N2—C7—N1 | 178.85 (19) | C17—C18—C19—C20 | 0.0 (4) |
C11—N2—C7—C8 | −0.5 (3) | C18—C19—C20—C21 | 2.0 (4) |
N1—C7—C8—C9 | −178.14 (19) | C17—N5—C21—C20 | 0.5 (4) |
N2—C7—C8—C9 | 1.2 (3) | C19—C20—C21—N5 | −2.3 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O···O3 | 0.91 (3) | 1.84 (3) | 2.681 (2) | 152 (3) |
N3—H3A···O3 | 0.86 | 2.07 | 2.905 (3) | 164 |
N4—H4···O2 | 0.86 | 1.81 | 2.666 (2) | 175 |
N1—H1B···O6 | 0.86 | 2.07 | 2.893 (2) | 161 |
N6—H6B···O7 | 0.86 | 2.09 | 2.928 (2) | 164 |
N1—H1A···O7i | 0.86 | 2.12 | 2.948 (2) | 162 |
N2—H2···O1i | 0.86 | 2.00 | 2.760 (2) | 144 |
N2—H2···O7i | 0.86 | 2.55 | 3.304 (2) | 144 |
C9—H9···O6ii | 0.93 | 2.60 | 3.372 (3) | 141 |
C10—H10···O2ii | 0.93 | 2.51 | 3.419 (3) | 167 |
C11—H11···O2iii | 0.93 | 2.41 | 3.294 (3) | 160 |
N3—H3B···O4iv | 0.86 | 2.09 | 2.851 (2) | 146 |
C13—H13···O6iv | 0.93 | 2.40 | 3.301 (3) | 163 |
N5—H5···O4i | 0.86 | 1.77 | 2.591 (2) | 160 |
N6—H6A···O5i | 0.86 | 2.07 | 2.916 (3) | 169 |
C20—H20···O7v | 0.93 | 2.60 | 3.463 (3) | 155 |
C21—H21···O3v | 0.93 | 2.43 | 3.334 (3) | 164 |
Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) −x+1/2, y+1/2, −z+1/2; (iii) x−1/2, −y+1/2, z+1/2; (iv) x+1, y, z; (v) −x+3/2, y−1/2, −z+1/2. |
Footnotes
‡These authors contributed equally.
Acknowledgements
The authors are grateful to the Institution of Excellence, Vijnana Bhavana, University of Mysore, for providing the single-crystal X-ray diffraction data.
References
Aakeröy, C. B., Hussain, I. & Desper, J. (2006). Cryst. Growth Des. 6, 474–480. Google Scholar
Bis, J. A. & Zaworotko, M. J. (2005). Cryst. Growth Des. 5, 1169–1179. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2009). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Jasmine, N. J., Rajam, A., Muthiah, P. T., Stanley, N., Razak, I. A. & Rosli, M. M. (2015). Acta Cryst. E71, o655–o656. Web of Science CrossRef IUCr Journals Google Scholar
Jayanalina, T., Rajarajan, G. & Boopathi, K. (2015a). Digest J. Nanomat. and Biostruct. 10, 1139–1151. Google Scholar
Jayanalina, T., Rajarajan, G., Boopathi, K. & Sreevani, K. (2015b). J. Cryst. Growth, 426, 9–14. Web of Science CrossRef Google Scholar
Jin, Z. M., Pan, Y. J., Hu, M. L. & Liang, S. (2001). J. Chem. Crystallogr. 31, 191–195. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.