research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of 2-amino­pyridine citric acid salts: C5H7N2+·C6H7O7 and 3C5H7N2+·C6H5O73−

CROSSMARK_Color_square_no_text.svg

aDept. of Chemistry, University College of Science, Tumkur University, Tumkur, 572103, India, bDepartment of Basic Sciences, School of Engineering and Technology, Jain, University, Bangalore 562 112, India, cDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysuru 570 006, India, and dDepartment of Chemistry, Science College, An-Najah National University, PO Box 7, Nablus, Palestinian Territories
*Correspondence e-mail: pasuchetan@gmail.com, khalil.i@najah.edu

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 5 June 2018; accepted 9 July 2018; online 17 July 2018)

2-Amino­pyridine and citric acid mixed in 1:1 and 3:1 ratios in ethanol yielded crystals of two 2-amino­pyridinium citrate salts, viz. C5H7N2+·C6H7O7 (I) (systematic name: 2-amino­pyridin-1-ium 3-carb­oxy-2-carb­oxy­methyl-2-hy­droxy­propano­ate), and 3C5H7N2+·C6H5O73− (II) [systematic name: tris­(2-amino­pyridin-1-ium) 2-hy­droxy­propane-1,2,3-tri­carboxyl­ate]. The supra­molecular synthons present are analysed and their effect upon the crystal packing is presented in the context of crystal engineering. Salt I is formed by the protonation of the pyridine N atom and deprotonation of the central carb­oxy­lic group of citric acid, while in II all three carb­oxy­lic groups of the acid are deprotonated and the charges are compensated for by three 2-amino­pyridinium cations. In both structures, a complex supra­molecular three-dimensional architecture is formed. In I, the supra­molecular aggregation results from Namino—H⋯Oacid, Oacid⋯H—Oacid, Oalcohol—H⋯Oacid, Namino—H⋯Oalcohol, Npy—H⋯Oalcohol and Car—H⋯Oacid inter­actions. The mol­ecular conformation of the citrate ion (CA3−) in II is stabilized by an intra­molecular Oalcohol—H⋯Oacid hydrogen bond that encloses an S(6) ring motif. The complex three-dimensional structure of II features Namino—H⋯Oacid, Npy—H⋯Oacid and several Car—H⋯Oacid hydrogen bonds. In the crystal of I, the common charge-assisted 2-amino­pyridinium–carboxyl­ate heterosynthon exhibited in many 2-amino­pyridinium carboxyl­ates is not observed, instead chains of N—H⋯O hydrogen bonds and hetero O—H⋯O dimers are formed. In the crystal of II, the 2-amino­pyridinium–carboxyl­ate heterosynthon is sustained, while hetero O—H⋯O dimers are not observed. The crystal structures of both salts display a variety of hydrogen bonds as almost all of the hydrogen-bond donors and acceptors present are involved in hydrogen bonding.

1. Chemical context

Systematic structural and statistical analysis focusing on the identification of robust supra­molecular synthons or patterns are essential for crystal engineering and the design of new solid-state structures with desired properties. Organic crystals, especially salts, are now considered as potential materials for optical applications because of their flexibility in mol­ecular design (Jayanalina et al., 2015a[Jayanalina, T., Rajarajan, G. & Boopathi, K. (2015a). Digest J. Nanomat. and Biostruct. 10, 1139-1151.]), thermal stability and delocalized clouds of π electrons (Jayanalina et al., 2015b[Jayanalina, T., Rajarajan, G., Boopathi, K. & Sreevani, K. (2015b). J. Cryst. Growth, 426, 9-14.]). An analysis of the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) by Bis & Zaworotko (2005[Bis, J. A. & Zaworotko, M. J. (2005). Cryst. Growth Des. 5, 1169-1179.]) revealed that 77% of compounds that contain both the 2-amino­pyridine and carb­oxy­lic acid moieties generate 2-amino­pyridine–carb­oxy­lic acid supra­molecular heterosynthons rather than carb­oxy­lic acid or 2-amino­pyridine supra­molecular homosynthons. In the absence of other competing functionalities, the occurrence of heterosynthons increased to 97%. Several salts and co-crystals containing 2-amino­pyridine or 2-acetamino­pyridine and a carb­oxy­lic acid moiety have been reported (Jayanalina et al., 2015a[Jayanalina, T., Rajarajan, G. & Boopathi, K. (2015a). Digest J. Nanomat. and Biostruct. 10, 1139-1151.],b[Jayanalina, T., Rajarajan, G., Boopathi, K. & Sreevani, K. (2015b). J. Cryst. Growth, 426, 9-14.]; Bis & Zaworotko, 2005[Bis, J. A. & Zaworotko, M. J. (2005). Cryst. Growth Des. 5, 1169-1179.]; Aakeröy et al., 2006[Aakeröy, C. B., Hussain, I. & Desper, J. (2006). Cryst. Growth Des. 6, 474-480.]; Jasmine et al., 2015[Jasmine, N. J., Rajam, A., Muthiah, P. T., Stanley, N., Razak, I. A. & Rosli, M. M. (2015). Acta Cryst. E71, o655-o656.]; Jin et al., 2001[Jin, Z. M., Pan, Y. J., Hu, M. L. & Liang, S. (2001). J. Chem. Crystallogr. 31, 191-195.]). In all of these reported structures, the charge-assisted 2-amino­pyridinium-carboxyl­ate or neutral 2-acetamino­pyridine–carb­oxy­lic heterosynthon is observed, as suggested by statistical analysis. Keeping this in mind, the crystal structure analyses of two 2-amino­pyridinium citrate salts, C5H7N2+·C6H7O7 (I) and 3C5H7N2+·C6H5O73− (II), were undertaken in order to study the packing patterns and identify the supra­molecular synthons present in each salt.

[Scheme 1]

2. Structural commentary

The carb­oxy­lic groups in citric acid have pKa values of 3.128 (central –COOH group), 4.762 and 6.396 (terminal –COOH groups). Thus, an equimolar mixing of citric acid and 2-amino­pyridine resulted in the formation of salt I (2-AMP+·CA), whose structure is illustrated in Fig. 1[link]. Here, the pyridine N atom is protonated and the central carb­oxy­lic group of the acid is deprotonated. The two C—O bond lengths of the central carb­oxy­lic group have values of 1.235 (3) Å for C6—O7 and 1.264 (3) Å for C6—O6, indicating partial double-bond character for both bonds. However, the two C—O bonds in each of the terminal carb­oxy­lic groups have different bond lengths [1.207 (3) Å for C3=O2 and 1.327 (3) Å for C3—O3, and 1.209 (3) Å for C5=O5 and 1.319 (3) Å for C5—O4], indicating double-bond character for one C—O bond and single-bond character for the other. These observations clearly confirm the deprotonation of the central carb­oxy­lic group (C6/O6/O7). The two terminal carb­oxy­lic groups in I have different conformations. In one of them (C5/O4/O5) the O—H and C=O bonds are in a syn conformation while in the other (C3/O2/O3), they have an anti conformation (Fig. 1[link]). In the asymmetric unit of I, the 2-amino­pyridinium cation, 2-AMP+, and the citrate anion, CA-, are linked via Namino—H⋯Oacid(t1) hydrogen bonds [acid(t1) = C3/O2/O3], viz. N2—H2D⋯O2 (Table 1[link] and Fig. 1[link]).

Table 1
Hydrogen-bond geometry (Å, °) for I[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O6i 0.82 1.86 2.681 (4) 177
N1—H1A⋯O1ii 0.86 2.09 2.895 (4) 156
N2—H2C⋯O1ii 0.86 2.34 3.076 (5) 144
N2—H2D⋯O2 0.86 2.09 2.935 (5) 168
O3—H3⋯O7i 0.82 1.75 2.547 (4) 164
O4—H4⋯O6iii 0.82 1.82 2.601 (4) 158
C9—H9⋯O3iv 0.93 2.57 3.351 (5) 142
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].
[Figure 1]
Figure 1
A view of the mol­ecular structure of salt I, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines [Table 1[link]; acid(t1) = C3/O2/O3; acid(t2) = C5/O4/O5; acid(c) = C6/O6/O7].

The asymmetric unit of salt II, illustrated in Fig. 2[link], consists of one citrate trianion, CA3− [(C5H5O7)3−], and three 2-AMP+ cations (2-AMP1, 2-AMP2 and 2-AMP3), wherein the pyridine N atom of each 2-AMP unit is protonated and all three carb­oxy­lic groups of the acid are deprotonated. This is supported by the observation that the C—O bonds of all the three carb­oxy­lic groups have similar bond lengths, in the range 1.231 (2)–1.266 (2) Å, which is an indication of the partial double-bond character of all of the C—O bonds resulting from deprotonation. The mol­ecular conformation of the CA3− anion is stabilized by an intra­molecular Oalcohol—H⋯Oacid(t1) hydrogen bond, namely O1—H1O⋯O3, that closes an S(6) ring motif (Table 2[link], Fig. 2[link]).

Table 2
Hydrogen-bond geometry (Å, °) for II[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O3 0.91 (3) 1.84 (3) 2.681 (2) 152 (3)
N3—H3A⋯O3 0.86 2.07 2.905 (3) 164
N4—H4⋯O2 0.86 1.81 2.666 (2) 175
N1—H1B⋯O6 0.86 2.07 2.893 (2) 161
N6—H6B⋯O7 0.86 2.09 2.928 (2) 164
N1—H1A⋯O7i 0.86 2.12 2.948 (2) 162
N2—H2⋯O1i 0.86 2.00 2.760 (2) 144
N2—H2⋯O7i 0.86 2.55 3.304 (2) 144
C9—H9⋯O6ii 0.93 2.60 3.372 (3) 141
C10—H10⋯O2ii 0.93 2.51 3.419 (3) 167
C11—H11⋯O2iii 0.93 2.41 3.294 (3) 160
N3—H3B⋯O4iv 0.86 2.09 2.851 (2) 146
C13—H13⋯O6iv 0.93 2.40 3.301 (3) 163
N5—H5⋯O4i 0.86 1.77 2.591 (2) 160
N6—H6A⋯O5i 0.86 2.07 2.916 (3) 169
C20—H20⋯O7v 0.93 2.60 3.463 (3) 155
C21—H21⋯O3v 0.93 2.43 3.334 (3) 164
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) x+1, y, z; (v) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A view of the mol­ecular structure of salt II, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Intra­molecular and some inter­molecular inter­actions are shown as dashed lines [Table 2[link]; acid(t1) = C3/O2/O3; acid (t2) = C5/O4/O5; acid(c) = C6/O6/O7; symmetry code: (i) −x + [{1\over 2}], y − [{1\over 2}], −z + [{1\over 2}]]. For clarity, C-bound H atoms have been omitted.

In the asymmetric unit of salt II, the three 2-AMP+ cations are in different environments and inter­act with the CA3− anion in different ways [Fig. 2[link] and Table 2[link]; acid(t1) = C3/O2/O3; acid(t2) = C5/O4/O5; acid(c) = C6/O6/O7]. The first cation, 2-AMP1, inter­acts with the anion via a discrete Namino—H⋯Oacid(c) hydrogen bond, namely N1—H1B⋯O6. The second cation, 2-AMP2, inter­acts with the CA3− anion via a charge-assisted 2-amino­pyridinium-carboxyl­ate R22(8) heterosynthon consisting of Namino—H⋯Oacid(t1) (N3—H3A⋯O3) and Npy—H⋯Oacid(t1) (N4—H4⋯O2) hydrogen bonds. The third cation, 2-AMP3, inter­acts with the anion via a discrete Namino—H⋯Oacid(c) hydrogen bond, namely N6—H6B⋯O7.

3. Supra­molecular features

Full details of the hydrogen-bonding inter­actions in the crystal of salt I are given in Table 1[link], and illustrated in Figs. 3[link] and 4[link]. In the crystal of I, the cations and anions of adjacent units are inter­connected by a Car—H⋯Oacid(t1) inter­actions, viz. C9—H9⋯O3, while adjacent anions related by b-glide symmetry form chains running along the b-axis direction, consisting of an R22(8) heterosynthon of Oacid(c)⋯H—Oacid(t1) and Oalcohol—H⋯Oacid(c) hydrogen bonds, namely O3—H3⋯O7i and O1—H1⋯O6i; see Fig. 3[link] and Table 1[link]. The 2-AMP+ and CA ions further aggregate to form sheets parallel to the ac plane (Fig. 4[link]). The sheets consist of chains of Oacid(t2)—H⋯Oacid(c) hydrogen bonds, namely O4—H4⋯O6iii, running along the a-axis direction and linking the twofold-symmetry-related CA anions (Table 1[link], Fig. 4[link]). Adjacent chains are connected by 2-AMP+ ions via Namino—H⋯Oacid(t1)=C hydrogen bonds, namely N2—H2D⋯O2, and an R21(6) heterosynthon of Namino—H⋯Oalcohol and Npy—H⋯Oalcohol hydrogen bonds, N2—H2C⋯O1ii and N1—H1A⋯O1ii, respectively, is formed (Table 1[link], Fig. 4[link]). Overall, a three-dimensional supra­molecular architecture is observed. All of the strong hydrogen-bond acceptors and hydrogen-bond donors in I are involved in hydrogen bonding. However, the most reproducible charge-assisted 2-amino­pyridinium–carboxyl­ate heterosynthon, found in the crystal structures of many 2-amino­pyridinium carboxyl­ates (Bis & Zaworotko, 2005[Bis, J. A. & Zaworotko, M. J. (2005). Cryst. Growth Des. 5, 1169-1179.]), is not present; instead chains of N—H⋯O hydrogen bonds and hetero O—H⋯O dimers are observed.

[Figure 3]
Figure 3
A partial view along the a axis of the crystal packing of salt I, showing the chains of CA anions running along the b-axis direction. Attached to the chains and bridging two anions are the 2-AMP+ cations. The various inter­molecular inter­actions are shown as dashed lines (Table 1[link]).
[Figure 4]
Figure 4
A partial view along the b axis of the crystal packing of salt I, illustrating the layer-like structure. Red and blue dashed lines denote the various inter­molecular inter­actions (Table 1[link]).

In the crystal of II, all of the strong hydrogen-bond donors and acceptors are utilized in a supra­molecular association. Full details of the hydrogen-bonding inter­actions are given in Table 2[link], and illustrated in Figs. 2[link], 5[link] and 6[link]. A number of the Car—H groups are also involved in C—H⋯O hydrogen bonds (Table 2[link]). However, in contrast to I, the alcoholic OH group is not involved in inter­molecular hydrogen bonding as it is locked into an intra­molecular O1—H1O⋯O3acid(t1) hydrogen bond. The CA3− anion and the first 2-AMP+ cation (2-AMP1) form sheets lying parallel to the (101) plane (Fig. 5[link]a and 5b). The sheet consists of alternating CA3− and 2-AMP+ ions, forming chains via C11—H11⋯O2iii inter­actions, with adjacent anti-parallel chains linked by C10—H10⋯O2ii, N1—H1A⋯O7i, N1—H1B⋯O6, N2—H2⋯O7i and N2—H2⋯O1i hydrogen bonds (Table 2[link], Fig. 5[link]). On the other hand, the citrate and the second 2-AMP+ ions (2-AMP2) propagate alternately along the a-axis direction to form ribbons (Fig. 6[link]a) consisting of alternating R22(8) heterosynthons of N3—H3A⋯O3 and N4—H4⋯O2 hydrogen bonds (Table 2[link]) and R22(11) heterosynthons of N3—H3B⋯O4 and C13—H13⋯O6 hydrogen bonds (Table 2[link]). Finally, the third 2-AMP+ ions (2-AMP3) are inter­linked to the adjacent citrate ions, forming ribbons of alternating R22(8) heterosynthons, of N5—H5⋯O4i and N6—H6A⋯O5i hydrogen bonds (Table 2[link]), and R22(10) heterosynthons of C21—H21⋯O3vi and C20—H20⋯O7vi inter­actions (Table 2[link]) along the a-axis direction (Fig. 6[link]b). Adjacent ribbons are further inter­connected by N6—H6B⋯O7 hydrogen bonds to form corrugated sheets parallel to the ab plane (Table 2[link], Fig. 6[link]b). Overall a complex supra­molecular three-dimensional structure is formed.

[Figure 5]
Figure 5
(a) Partial crystal packing of salt II, involving citrate (green) and 2-AMP1 (red) ions, showing the layer-like structure lying in plane (202). (b) An alternative view, along the b axis, of the layer-like structure. The hydrogen bonds and other inter­molecular inter­actions are shown as dashed lines (Table 2[link]).
[Figure 6]
Figure 6
(a) Partial crystal packing of salt II, involving citrate (green) and 2-AMP2 (blue) ions. Red dashed lines denote various inter­molecular inter­actions and solid blue lines denote intra­molecular hydrogen bonds (Table 2[link]). (b) Partial crystal packing of salt II, involving citrate (green) and 2-AMP3 (yellow) ions. Dashed lines denote various inter­molecular inter­actions (Table 2[link]).

4. Database survey

A survey of the Cambridge Structural Database (CSD, Version 5.39, last update May 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed 80 organic structures involving a citric acid moiety in the form of solvates/hydrates, salts/salt hydrates and co-crystals. 25 structures among these are salts/salt hydrates of citric acid (deprotonated to different extents) with various organic cations. It is observed that most of the organic citrates appear as their hydrates, with the exception of a few (including I and II). The most common hydrogen bonds observed in these hydrated salts are Namine—H⋯Ocitric, Namine—H⋯Owater and Owater—H⋯Ocitric, forming different supra­molecular architectures. In the absence of a water mol­ecule, the most common hydrogen bonds are Namine—H⋯Ocitric and Ocitric—H⋯Ocitric. However, the nature of these supra­molecular synthons varies from one structure to another, depending on the nature of the organic cations.

Similarly, the crystal structures of several salts with 2-AMP+ as the cation are reported. Single-crystal structures of ten salts that contain both a 2-amino­pyridine and a carb­oxy­lic acid moiety have been reported (Bis & Zaworotko, 2005[Bis, J. A. & Zaworotko, M. J. (2005). Cryst. Growth Des. 5, 1169-1179.]). They include: 2-amino­pyridinium 4-amino­benzoate, 2-amino­pyridinium isophthalate, bis­(2-amino­pyridinium) terephthal­ate, 2-amino-5-methyl­pyridinium benzoate, bis­(2-amino-5-methyl­pyridinium) 5-tertbutyl­isophthalate, 2-amino-5-meth­yl­pyridinium terephthalate, bis­(2-amino-5-methyl­pyridinium) 2,6-naphthalenedi­carboxyl­ate, bis­(2-amino 5-methyl­pyrid­in­ium) adipate adipic acid, bis­(2-amino-5-methyl­pyridinium) 2,5-thio­phenedi­carboxyl­ate 2,5-thio­phenedi­carb­oxy­lic acid, and indomethacin 2-amino-5-methyl­pyridinium. In all the reported structures, the most reproducible pattern is the charge-assisted 2-amino­pyridinium–carboxyl­ate heterosynthon seen in salt II. Similarly, in the crystal structure of 2-amino-3-methyl­pyridinium ortho-phthalate (Jin et al., 2001[Jin, Z. M., Pan, Y. J., Hu, M. L. & Liang, S. (2001). J. Chem. Crystallogr. 31, 191-195.]), the two 2-amino-3-methyl­pyridinium ions are inter­connected to the ortho-phthalate ion via a charge-assisted 2-amino­pyridinium–carboxyl­ate heterosynthon. This robust pattern is also observed in the crystal structures of 2-amino­pyridinium 6-chloro­nicotinate (Jasmine et al., 2015[Jasmine, N. J., Rajam, A., Muthiah, P. T., Stanley, N., Razak, I. A. & Rosli, M. M. (2015). Acta Cryst. E71, o655-o656.]) and 2-amino-5-chloro­pyridinium pyridine-2-carboxyl­ate monohydrate (Jayanalina et al., 2015a[Jayanalina, T., Rajarajan, G. & Boopathi, K. (2015a). Digest J. Nanomat. and Biostruct. 10, 1139-1151.]). Single-crystal structures of ten co-crystals that contain 2-acetamino­pyridine and a carb­oxy­lic acid moiety: 2-acetamino­pyridine/fumaric acid have been reported by Aakeröy et al. (2006[Aakeröy, C. B., Hussain, I. & Desper, J. (2006). Cryst. Growth Des. 6, 474-480.]). They include: 2-acetamino­pyridine/succinic acid, 2-acetamino­pyridine/glutaric acid, 2-acet­amino­pyridine /adipic acid, 2-acetamino­pyridine/pimelic acid, 2-acetamino­pyridine/suberic acid, 2-acetamino-pyridine/azelaic acid, 2-acetamino­pyridine/sebacic acid, 2-acetamino­pyridine/3,5-di­methyl­benzoic acid, and 2-acetamino­pyridine/5-nitro­isophthalic acid. Although these are neutral compounds wherein there is no transfer of proton from carb­oxy­lic acid to the 2-acetamino­pyridine moiety, the most repetitive pattern observed in these structures is the neutral 2-acetamino­pyridine–carb­oxy­lic acid R22(8) heterosynthon. This is very similar to the charge-assisted 2-amino­pyridinium–carboxyl­ate heterosynthon except for the positioning of the hydrogen atom, on either the O or N atom.

The crystal structure of 2-amino 5-chloro­pyridinium-L-tartarate (Jayanalina et al., 2015b[Jayanalina, T., Rajarajan, G., Boopathi, K. & Sreevani, K. (2015b). J. Cryst. Growth, 426, 9-14.]) shows that despite of the presence of other competing functionalities on the carb­oxy­lic acid (two alcoholic OH groups in tartaric acid), the most frequent 2-amino­pyridinium–carboxyl­ate heterosynthon is still observed. However, the presence of the alcoholic OH group in citric acid has resulted in a deviation from the regular trend as the charge-assisted 2-amino­pyridinium–carboxyl­ate heterosynthon is not observed in I; instead chains of N—H⋯O hydrogen bonds and hetero O—H⋯O dimers are observed. The 2-amino­pyridinium–carboxyl­ate heterosynthon is sustained in the crystal structure of II because of the non-availability of the alcoholic OH group for inter­molecular hydrogen bonding.

Hence, the study of the crystal structure of 2-amino­pyridinium citrate, mixed in a 2:1 ratio, would be highly significant in understanding the packing-pattern trends observed in this family of salts. Unfortunately, despite a number of attempts, we have not been able to obtain good-quality single crystals of this salt.

5. Synthesis and crystallization

A solution of citric acid (3 mmol, 0.576 g) in ethanol (15 ml) was added to an ethano­lic solution (15 ml) of 2-amino­pyridine (3 mmol, 0.282 g). The resulting solution was heated and the hot solution was filtered. Slow evaporation of the solution resulted in the formation of colourless prismatic crystals of salt I (m.p. 493 K). Single crystals of salt II were obtained from a similar procedure; an ethano­lic solution (15 ml) of citric acid (3 mmol, 0.576 g) was mixed with an ethano­lic solution (15 ml) of 2-amino­pyridine (9 mmol, 0.846 g).

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. In salt I, the OH H atom (H1) was positioned geometrically and refined as riding: O—H = 0.82 Å with Uiso(H) = 1.5Ueq(O). In salt II, the OH H atom (H1O) was located in a difference-Fourier map and freely refined. In both salts, the other H atoms were positioned geometrically and refined as riding: N—H = 0.86 Å, C—H = 0.93–0.97 Å with Uiso(H) = 1.2Ueq(N, C).

Table 3
Experimental details

  I II
Crystal data
Chemical formula C5H7N2+·C6H7O7 3C5H7N2+·C6H5O73−
Mr 286.24 474.48
Crystal system, space group Orthorhombic, Pbca Monoclinic, P21/n
Temperature (K) 296 296
a, b, c (Å) 9.000 (11), 10.721 (13), 27.21 (3) 10.0297 (17), 10.6564 (14), 21.986 (4)
α, β, γ (°) 90, 90, 90 90, 101.426 (9), 90
V3) 2625 (5) 2303.3 (7)
Z 8 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.12 0.11
Crystal size (mm) 0.27 × 0.22 × 0.19 0.22 × 0.19 × 0.17
 
Data collection
Diffractometer Bruker APEXII Bruker APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.968, 0.977 0.977, 0.982
No. of measured, independent and observed [I > 2σ(I)] reflections 8086, 2977, 2143 13120, 5242, 3779
Rint 0.099 0.056
(sin θ/λ)max−1) 0.649 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.195, 1.06 0.052, 0.149, 1.05
No. of reflections 2977 5242
No. of parameters 184 311
H-atom treatment H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.29, −0.30 0.27, −0.21
Computer programs: APEX2, SAINT-Plus and XPREP (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2016 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2009); cell refinement: APEX2 and SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus and XPREP (Bruker, 2009); program(s) used to solve structure: SHELXT2016 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015b).

2-Aminopyridin-1-ium 3-carboxy-2-carboxymethyl-2-hydroxypropanoate (I) top
Crystal data top
C5H7N2+·C6H7O7Dx = 1.448 Mg m3
Mr = 286.24Melting point: 493 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 143 reflections
a = 9.000 (11) Åθ = 3.1–27.5°
b = 10.721 (13) ŵ = 0.12 mm1
c = 27.21 (3) ÅT = 296 K
V = 2625 (5) Å3Prism, colourless
Z = 80.27 × 0.22 × 0.19 mm
F(000) = 1200
Data collection top
Bruker APEXII
diffractometer
2977 independent reflections
Radiation source: sealed X-ray tube2143 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.099
phi and φ scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 119
Tmin = 0.968, Tmax = 0.977k = 1313
8086 measured reflectionsl = 1235
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.195H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.1065P)2]
where P = (Fo2 + 2Fc2)/3
2977 reflections(Δ/σ)max < 0.001
184 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.30 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2827 (2)0.40538 (18)0.41150 (7)0.0284 (4)
C20.4265 (2)0.47554 (18)0.39605 (8)0.0314 (5)
H2A0.4198540.5618640.4064950.038*
H2B0.5112920.4381550.4124060.038*
C30.4500 (2)0.47082 (18)0.34102 (8)0.0329 (5)
C40.2668 (3)0.4112 (2)0.46729 (8)0.0348 (5)
H4A0.3544700.3746370.4821870.042*
H4B0.2622450.4979230.4773160.042*
C50.1315 (3)0.3448 (2)0.48646 (8)0.0383 (5)
C60.2956 (2)0.26921 (17)0.39304 (7)0.0280 (4)
C70.4276 (3)0.3173 (2)0.19589 (9)0.0397 (5)
C80.3305 (3)0.2475 (2)0.22619 (9)0.0479 (6)
H80.3337160.2557550.2601950.057*
C90.2320 (3)0.1677 (3)0.20452 (11)0.0546 (7)
H90.1679560.1211200.2240750.066*
C100.2259 (3)0.1548 (3)0.15313 (10)0.0523 (7)
H100.1585880.1002410.1386460.063*
C110.3192 (3)0.2228 (2)0.12526 (10)0.0469 (6)
H110.3166510.2155710.0912160.056*
N10.4170 (2)0.30207 (19)0.14690 (7)0.0411 (5)
H1A0.4752320.3447740.1283310.049*
N20.5275 (2)0.3966 (2)0.21382 (8)0.0521 (5)
H2C0.5844240.4373890.1941830.062*
H2D0.5351850.4069640.2450540.062*
O10.15695 (16)0.45874 (12)0.38791 (6)0.0337 (4)
H10.1476770.5315340.3966420.051*
O20.5321 (2)0.39665 (16)0.32168 (7)0.0520 (5)
O30.3748 (2)0.55002 (14)0.31300 (6)0.0444 (4)
H30.3348240.6027310.3303730.067*
O40.1087 (2)0.3705 (2)0.53325 (7)0.0570 (5)
H40.0319410.3366210.5424590.085*
O50.0527 (2)0.27613 (19)0.46272 (7)0.0620 (6)
O60.37012 (18)0.19472 (13)0.41930 (6)0.0405 (4)
O70.23360 (18)0.24341 (13)0.35387 (5)0.0367 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0314 (10)0.0247 (9)0.0289 (10)0.0017 (8)0.0027 (8)0.0002 (7)
C20.0336 (10)0.0277 (9)0.0330 (11)0.0039 (8)0.0026 (9)0.0010 (8)
C30.0370 (11)0.0259 (9)0.0357 (11)0.0037 (8)0.0063 (9)0.0014 (8)
C40.0407 (11)0.0327 (11)0.0311 (11)0.0065 (9)0.0047 (9)0.0054 (8)
C50.0435 (12)0.0366 (11)0.0349 (11)0.0043 (10)0.0063 (10)0.0000 (9)
C60.0301 (9)0.0228 (9)0.0311 (10)0.0014 (7)0.0007 (8)0.0008 (7)
C70.0381 (11)0.0425 (12)0.0385 (12)0.0097 (10)0.0049 (10)0.0016 (9)
C80.0482 (13)0.0588 (15)0.0366 (13)0.0082 (11)0.0096 (11)0.0059 (11)
C90.0454 (14)0.0573 (16)0.0611 (17)0.0027 (12)0.0126 (13)0.0104 (13)
C100.0455 (14)0.0552 (15)0.0563 (16)0.0027 (12)0.0013 (12)0.0001 (12)
C110.0443 (13)0.0553 (14)0.0412 (13)0.0107 (12)0.0018 (11)0.0019 (11)
N10.0379 (10)0.0478 (11)0.0375 (11)0.0055 (9)0.0070 (8)0.0048 (8)
N20.0530 (12)0.0609 (13)0.0422 (11)0.0033 (11)0.0095 (10)0.0061 (10)
O10.0339 (8)0.0232 (7)0.0441 (9)0.0033 (6)0.0046 (6)0.0015 (6)
O20.0625 (11)0.0472 (10)0.0462 (10)0.0155 (9)0.0142 (9)0.0037 (8)
O30.0641 (11)0.0364 (9)0.0326 (8)0.0135 (8)0.0050 (8)0.0007 (6)
O40.0542 (10)0.0787 (13)0.0381 (10)0.0225 (10)0.0135 (8)0.0070 (9)
O50.0683 (12)0.0697 (12)0.0481 (11)0.0336 (11)0.0144 (10)0.0148 (9)
O60.0507 (9)0.0252 (7)0.0456 (9)0.0038 (7)0.0156 (7)0.0019 (6)
O70.0470 (9)0.0276 (8)0.0355 (8)0.0002 (6)0.0087 (7)0.0036 (6)
Geometric parameters (Å, º) top
C1—O11.421 (3)C7—N11.346 (3)
C1—C41.526 (3)C7—C81.416 (4)
C1—C61.548 (3)C8—C91.365 (4)
C1—C21.555 (3)C8—H80.9300
C2—C31.513 (3)C9—C101.406 (4)
C2—H2A0.9700C9—H90.9300
C2—H2B0.9700C10—C111.346 (4)
C3—O21.207 (3)C10—H100.9300
C3—O31.327 (3)C11—N11.357 (3)
C4—C51.503 (3)C11—H110.9300
C4—H4A0.9700N1—H1A0.8600
C4—H4B0.9700N2—H2C0.8600
C5—O51.209 (3)N2—H2D0.8600
C5—O41.319 (3)O1—H10.8200
C6—O71.235 (3)O3—H30.8200
C6—O61.264 (3)O4—H40.8200
C7—N21.330 (3)
O1—C1—C4110.98 (18)O6—C6—C1116.87 (18)
O1—C1—C6107.03 (16)N2—C7—N1119.3 (2)
C4—C1—C6111.61 (16)N2—C7—C8122.8 (2)
O1—C1—C2110.23 (17)N1—C7—C8117.9 (2)
C4—C1—C2109.12 (17)C9—C8—C7118.7 (3)
C6—C1—C2107.80 (17)C9—C8—H8120.6
C3—C2—C1111.57 (17)C7—C8—H8120.6
C3—C2—H2A109.3C8—C9—C10121.1 (3)
C1—C2—H2A109.3C8—C9—H9119.5
C3—C2—H2B109.3C10—C9—H9119.5
C1—C2—H2B109.3C11—C10—C9118.9 (3)
H2A—C2—H2B108.0C11—C10—H10120.6
O2—C3—O3118.9 (2)C9—C10—H10120.6
O2—C3—C2122.6 (2)C10—C11—N1119.9 (3)
O3—C3—C2118.45 (18)C10—C11—H11120.0
C5—C4—C1113.69 (18)N1—C11—H11120.0
C5—C4—H4A108.8C7—N1—C11123.5 (2)
C1—C4—H4A108.8C7—N1—H1A118.3
C5—C4—H4B108.8C11—N1—H1A118.3
C1—C4—H4B108.8C7—N2—H2C120.0
H4A—C4—H4B107.7C7—N2—H2D120.0
O5—C5—O4123.5 (2)H2C—N2—H2D120.0
O5—C5—C4125.3 (2)C1—O1—H1109.5
O4—C5—C4111.2 (2)C3—O3—H3109.5
O7—C6—O6125.90 (19)C5—O4—H4109.5
O7—C6—C1117.22 (17)
O1—C1—C2—C359.0 (2)C2—C1—C6—O797.6 (2)
C4—C1—C2—C3178.89 (16)O1—C1—C6—O6159.64 (18)
C6—C1—C2—C357.5 (2)C4—C1—C6—O638.0 (3)
C1—C2—C3—O298.1 (3)C2—C1—C6—O681.8 (2)
C1—C2—C3—O380.5 (2)N2—C7—C8—C9179.6 (2)
O1—C1—C4—C558.9 (2)N1—C7—C8—C90.5 (3)
C6—C1—C4—C560.4 (2)C7—C8—C9—C100.2 (4)
C2—C1—C4—C5179.39 (17)C8—C9—C10—C110.0 (4)
C1—C4—C5—O511.1 (3)C9—C10—C11—N10.1 (4)
C1—C4—C5—O4169.0 (2)N2—C7—N1—C11179.6 (2)
O1—C1—C6—O721.0 (2)C8—C7—N1—C110.5 (3)
C4—C1—C6—O7142.6 (2)C10—C11—N1—C70.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O6i0.821.862.681 (4)177
N1—H1A···O1ii0.862.092.895 (4)156
N2—H2C···O1ii0.862.343.076 (5)144
N2—H2D···O20.862.092.935 (5)168
O3—H3···O7i0.821.752.547 (4)164
O4—H4···O6iii0.821.822.601 (4)158
C9—H9···O3iv0.932.573.351 (5)142
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y, z+1/2; (iii) x1/2, y+1/2, z+1; (iv) x+1/2, y1/2, z.
Tris(2-aminopyridin-1-ium) 2-hydroxypropane-1,2,3-tricarboxylate (II) top
Crystal data top
3C5H7N2+·C6H5O73F(000) = 1000
Mr = 474.48Dx = 1.368 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.0297 (17) ÅCell parameters from 132 reflections
b = 10.6564 (14) Åθ = 3.1–27.5°
c = 21.986 (4) ŵ = 0.11 mm1
β = 101.426 (9)°T = 296 K
V = 2303.3 (7) Å3Prism, colourless
Z = 40.22 × 0.19 × 0.17 mm
Data collection top
Bruker APEXII
diffractometer
5242 independent reflections
Radiation source: sealed X-ray tube3779 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
phi and φ scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1312
Tmin = 0.977, Tmax = 0.982k = 1313
13120 measured reflectionsl = 2816
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: mixed
wR(F2) = 0.149H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0673P)2 + 0.409P]
where P = (Fo2 + 2Fc2)/3
5242 reflections(Δ/σ)max < 0.001
311 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.40837 (15)0.54865 (11)0.08093 (6)0.0423 (3)
H1O0.489 (3)0.506 (3)0.0879 (12)0.071 (8)*
O20.52383 (14)0.18918 (12)0.03079 (6)0.0466 (3)
O30.59153 (14)0.36464 (13)0.08316 (7)0.0527 (4)
O40.00785 (17)0.50955 (14)0.11124 (8)0.0651 (5)
O50.13362 (17)0.67594 (14)0.10506 (9)0.0661 (5)
O60.25602 (17)0.28972 (13)0.14580 (6)0.0542 (4)
O70.36839 (14)0.45764 (12)0.18962 (6)0.0449 (3)
C10.31580 (17)0.44500 (15)0.07766 (7)0.0322 (4)
C20.35607 (19)0.34310 (16)0.03557 (8)0.0377 (4)
H2A0.2958960.2719470.0358880.045*
H2B0.3399380.3753550.0065090.045*
C30.50118 (19)0.29614 (16)0.05164 (8)0.0368 (4)
C40.17245 (19)0.49234 (18)0.04858 (8)0.0410 (4)
H4A0.1790560.5446410.0131830.049*
H4B0.1164660.4205050.0331490.049*
C50.10047 (18)0.56668 (17)0.09152 (8)0.0393 (4)
C60.31417 (17)0.39294 (15)0.14353 (8)0.0334 (4)
N10.14007 (18)0.20220 (15)0.24858 (8)0.0510 (4)
H1A0.1374640.1241900.2582930.061*
H1B0.1566340.2233700.2130630.061*
N20.09288 (17)0.25593 (15)0.34395 (7)0.0458 (4)
H20.0930480.1755970.3519910.055*
C70.11865 (18)0.29025 (17)0.28856 (8)0.0381 (4)
C80.1228 (2)0.42056 (17)0.27643 (9)0.0451 (4)
H80.1386490.4485700.2384340.054*
C90.1037 (2)0.50434 (19)0.32022 (11)0.0535 (5)
H90.1084330.5898070.3123680.064*
C100.0768 (2)0.4638 (2)0.37722 (11)0.0603 (6)
H100.0623860.5211660.4071370.072*
C110.0723 (2)0.3385 (2)0.38754 (10)0.0558 (5)
H110.0548620.3093500.4250620.067*
N30.8662 (2)0.27826 (16)0.08313 (9)0.0557 (5)
H3A0.7858140.3101760.0761070.067*
H3B0.9360260.3257560.0943770.067*
N40.77000 (16)0.08491 (14)0.05893 (8)0.0430 (4)
H40.6922510.1219110.0515850.052*
C120.8824 (2)0.15464 (18)0.07656 (8)0.0421 (4)
C131.0095 (2)0.0933 (2)0.08716 (9)0.0504 (5)
H131.0896150.1389750.0985930.060*
C141.0135 (2)0.0336 (2)0.08043 (10)0.0558 (5)
H141.0970620.0743900.0875360.067*
C150.8939 (2)0.1037 (2)0.06300 (11)0.0551 (5)
H150.8971090.1904870.0589880.066*
C160.7740 (2)0.04213 (18)0.05220 (10)0.0485 (5)
H160.6934590.0867240.0400500.058*
N50.62921 (16)0.12553 (15)0.31762 (7)0.0441 (4)
H50.5872970.1024880.3462970.053*
N60.46530 (18)0.27662 (17)0.28874 (8)0.0514 (4)
H6A0.4261370.2517560.3180320.062*
H6B0.4312570.3376660.2651020.062*
C170.57809 (19)0.22085 (17)0.28005 (8)0.0393 (4)
C180.6471 (2)0.2548 (2)0.23248 (10)0.0499 (5)
H180.6133280.3186600.2048820.060*
C190.7631 (3)0.1936 (2)0.22721 (12)0.0640 (6)
H190.8085730.2160200.1958450.077*
C200.8150 (2)0.0974 (2)0.26828 (13)0.0686 (7)
H200.8958610.0569310.2656600.082*
C210.7437 (2)0.0652 (2)0.31185 (11)0.0580 (6)
H210.7747150.0005860.3387190.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0546 (8)0.0294 (6)0.0474 (7)0.0046 (6)0.0211 (6)0.0017 (5)
O20.0522 (8)0.0363 (7)0.0538 (8)0.0038 (6)0.0162 (6)0.0095 (6)
O30.0496 (8)0.0504 (8)0.0574 (8)0.0004 (6)0.0084 (6)0.0184 (7)
O40.0731 (10)0.0523 (8)0.0824 (11)0.0157 (8)0.0453 (9)0.0252 (8)
O50.0646 (10)0.0438 (8)0.0986 (13)0.0062 (7)0.0371 (9)0.0227 (8)
O60.0796 (10)0.0415 (7)0.0443 (8)0.0156 (7)0.0187 (7)0.0038 (6)
O70.0567 (8)0.0452 (7)0.0320 (6)0.0011 (6)0.0070 (6)0.0052 (6)
C10.0407 (9)0.0277 (7)0.0297 (8)0.0003 (7)0.0104 (7)0.0011 (6)
C20.0463 (10)0.0357 (8)0.0328 (8)0.0013 (7)0.0118 (7)0.0069 (7)
C30.0493 (10)0.0334 (8)0.0312 (8)0.0005 (7)0.0162 (7)0.0022 (7)
C40.0486 (10)0.0422 (9)0.0321 (8)0.0086 (8)0.0074 (8)0.0000 (7)
C50.0413 (9)0.0377 (9)0.0371 (9)0.0069 (8)0.0035 (7)0.0036 (7)
C60.0391 (9)0.0303 (8)0.0325 (8)0.0048 (7)0.0111 (7)0.0001 (7)
N10.0642 (11)0.0406 (8)0.0532 (10)0.0002 (8)0.0238 (8)0.0016 (7)
N20.0544 (10)0.0389 (8)0.0478 (9)0.0046 (7)0.0187 (7)0.0134 (7)
C70.0362 (9)0.0380 (9)0.0420 (9)0.0023 (7)0.0123 (7)0.0074 (7)
C80.0523 (11)0.0387 (9)0.0466 (10)0.0012 (8)0.0154 (9)0.0131 (8)
C90.0613 (13)0.0362 (9)0.0639 (13)0.0037 (9)0.0147 (10)0.0054 (9)
C100.0729 (15)0.0564 (13)0.0546 (12)0.0095 (11)0.0200 (11)0.0082 (11)
C110.0659 (13)0.0634 (13)0.0431 (11)0.0075 (11)0.0228 (10)0.0079 (10)
N30.0647 (11)0.0406 (9)0.0642 (11)0.0118 (8)0.0184 (9)0.0069 (8)
N40.0404 (8)0.0371 (8)0.0514 (9)0.0001 (7)0.0089 (7)0.0042 (7)
C120.0513 (11)0.0418 (9)0.0351 (9)0.0075 (8)0.0129 (8)0.0021 (8)
C130.0447 (11)0.0613 (12)0.0446 (11)0.0089 (9)0.0077 (9)0.0067 (9)
C140.0462 (11)0.0624 (13)0.0577 (13)0.0107 (10)0.0076 (9)0.0019 (11)
C150.0558 (12)0.0418 (10)0.0655 (14)0.0063 (9)0.0071 (10)0.0038 (10)
C160.0475 (11)0.0384 (9)0.0585 (12)0.0054 (8)0.0080 (9)0.0078 (9)
N50.0424 (8)0.0461 (9)0.0445 (8)0.0010 (7)0.0099 (7)0.0143 (7)
N60.0518 (10)0.0561 (10)0.0475 (9)0.0107 (8)0.0129 (8)0.0170 (8)
C170.0409 (9)0.0383 (9)0.0374 (9)0.0019 (7)0.0041 (7)0.0047 (7)
C180.0559 (12)0.0475 (10)0.0476 (11)0.0002 (9)0.0130 (9)0.0140 (9)
C190.0646 (14)0.0676 (15)0.0682 (15)0.0001 (12)0.0331 (12)0.0167 (12)
C200.0558 (13)0.0658 (14)0.0919 (18)0.0140 (11)0.0331 (13)0.0234 (14)
C210.0491 (12)0.0547 (12)0.0709 (14)0.0092 (10)0.0136 (10)0.0230 (11)
Geometric parameters (Å, º) top
O1—C11.435 (2)C11—H110.9300
O1—H1O0.92 (3)N3—C121.339 (3)
O2—C31.266 (2)N3—H3A0.8600
O3—C31.259 (2)N3—H3B0.8601
O4—C51.257 (2)N4—C121.342 (2)
O5—C51.231 (2)N4—C161.363 (2)
O6—C61.251 (2)N4—H40.8601
O7—C61.257 (2)C12—C131.410 (3)
C1—C21.532 (2)C13—C141.362 (3)
C1—C41.538 (2)C13—H130.9300
C1—C61.554 (2)C14—C151.400 (3)
C2—C31.513 (3)C14—H140.9300
C2—H2A0.9700C15—C161.349 (3)
C2—H2B0.9700C15—H150.9300
C4—C51.520 (2)C16—H160.9300
C4—H4A0.9700N5—C211.344 (3)
C4—H4B0.9700N5—C171.345 (2)
N1—C71.332 (3)N5—H50.8600
N1—H1A0.8600N6—C171.325 (3)
N1—H1B0.8601N6—H6A0.8599
N2—C71.345 (2)N6—H6B0.8600
N2—C111.347 (3)C17—C181.411 (3)
N2—H20.8740C18—C191.359 (3)
C7—C81.416 (2)C18—H180.9300
C8—C91.354 (3)C19—C201.397 (3)
C8—H80.9300C19—H190.9300
C9—C101.401 (3)C20—C211.348 (3)
C9—H90.9300C20—H200.9300
C10—C111.356 (3)C21—H210.9300
C10—H100.9300
C1—O1—H1O99.9 (17)N2—C11—C10120.6 (2)
O1—C1—C2109.29 (14)N2—C11—H11119.7
O1—C1—C4108.09 (14)C10—C11—H11119.7
C2—C1—C4108.54 (13)C12—N3—H3A120.0
O1—C1—C6110.73 (13)C12—N3—H3B120.0
C2—C1—C6111.26 (13)H3A—N3—H3B120.0
C4—C1—C6108.84 (14)C12—N4—C16122.68 (17)
C3—C2—C1116.74 (14)C12—N4—H4118.6
C3—C2—H2A108.1C16—N4—H4118.7
C1—C2—H2A108.1N3—C12—N4117.58 (19)
C3—C2—H2B108.1N3—C12—C13124.28 (19)
C1—C2—H2B108.1N4—C12—C13118.14 (18)
H2A—C2—H2B107.3C14—C13—C12119.12 (19)
O3—C3—O2124.07 (17)C14—C13—H13120.4
O3—C3—C2119.39 (15)C12—C13—H13120.4
O2—C3—C2116.53 (16)C13—C14—C15121.2 (2)
C5—C4—C1115.63 (14)C13—C14—H14119.4
C5—C4—H4A108.4C15—C14—H14119.4
C1—C4—H4A108.4C16—C15—C14118.25 (19)
C5—C4—H4B108.4C16—C15—H15120.9
C1—C4—H4B108.4C14—C15—H15120.9
H4A—C4—H4B107.4C15—C16—N4120.57 (19)
O5—C5—O4123.87 (18)C15—C16—H16119.7
O5—C5—C4120.28 (18)N4—C16—H16119.7
O4—C5—C4115.85 (16)C21—N5—C17122.15 (18)
O6—C6—O7125.52 (17)C21—N5—H5118.9
O6—C6—C1116.25 (15)C17—N5—H5118.9
O7—C6—C1118.22 (15)C17—N6—H6A120.0
C7—N1—H1A120.0C17—N6—H6B120.0
C7—N1—H1B120.0H6A—N6—H6B120.0
H1A—N1—H1B120.0N6—C17—N5118.87 (17)
C7—N2—C11123.42 (17)N6—C17—C18123.38 (17)
C7—N2—H2117.2N5—C17—C18117.74 (18)
C11—N2—H2119.4C19—C18—C17119.63 (19)
N1—C7—N2119.41 (17)C19—C18—H18120.2
N1—C7—C8123.51 (17)C17—C18—H18120.2
N2—C7—C8117.08 (17)C18—C19—C20120.8 (2)
C9—C8—C7119.94 (18)C18—C19—H19119.6
C9—C8—H8120.0C20—C19—H19119.6
C7—C8—H8120.0C21—C20—C19117.6 (2)
C8—C9—C10120.79 (19)C21—C20—H20121.2
C8—C9—H9119.6C19—C20—H20121.2
C10—C9—H9119.6N5—C21—C20122.0 (2)
C11—C10—C9118.1 (2)N5—C21—H21119.0
C11—C10—H10120.9C20—C21—H21119.0
C9—C10—H10120.9
O1—C1—C2—C354.58 (19)C7—C8—C9—C101.4 (3)
C4—C1—C2—C3172.25 (15)C8—C9—C10—C110.9 (4)
C6—C1—C2—C368.0 (2)C7—N2—C11—C100.0 (3)
C1—C2—C3—O322.8 (2)C9—C10—C11—N20.2 (4)
C1—C2—C3—O2158.57 (16)C16—N4—C12—N3178.41 (19)
O1—C1—C4—C577.58 (19)C16—N4—C12—C131.4 (3)
C2—C1—C4—C5163.99 (15)N3—C12—C13—C14178.4 (2)
C6—C1—C4—C542.8 (2)N4—C12—C13—C141.3 (3)
C1—C4—C5—O575.6 (2)C12—C13—C14—C150.3 (3)
C1—C4—C5—O4104.5 (2)C13—C14—C15—C160.8 (4)
O1—C1—C6—O6167.93 (15)C14—C15—C16—N40.8 (3)
C2—C1—C6—O646.2 (2)C12—N4—C16—C150.3 (3)
C4—C1—C6—O673.39 (19)C21—N5—C17—N6179.5 (2)
O1—C1—C6—O713.2 (2)C21—N5—C17—C181.6 (3)
C2—C1—C6—O7135.00 (16)N6—C17—C18—C19179.3 (2)
C4—C1—C6—O7105.44 (17)N5—C17—C18—C191.8 (3)
C11—N2—C7—N1178.85 (19)C17—C18—C19—C200.0 (4)
C11—N2—C7—C80.5 (3)C18—C19—C20—C212.0 (4)
N1—C7—C8—C9178.14 (19)C17—N5—C21—C200.5 (4)
N2—C7—C8—C91.2 (3)C19—C20—C21—N52.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O30.91 (3)1.84 (3)2.681 (2)152 (3)
N3—H3A···O30.862.072.905 (3)164
N4—H4···O20.861.812.666 (2)175
N1—H1B···O60.862.072.893 (2)161
N6—H6B···O70.862.092.928 (2)164
N1—H1A···O7i0.862.122.948 (2)162
N2—H2···O1i0.862.002.760 (2)144
N2—H2···O7i0.862.553.304 (2)144
C9—H9···O6ii0.932.603.372 (3)141
C10—H10···O2ii0.932.513.419 (3)167
C11—H11···O2iii0.932.413.294 (3)160
N3—H3B···O4iv0.862.092.851 (2)146
C13—H13···O6iv0.932.403.301 (3)163
N5—H5···O4i0.861.772.591 (2)160
N6—H6A···O5i0.862.072.916 (3)169
C20—H20···O7v0.932.603.463 (3)155
C21—H21···O3v0.932.433.334 (3)164
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z+1/2; (iv) x+1, y, z; (v) x+3/2, y1/2, z+1/2.
 

Footnotes

These authors contributed equally.

Acknowledgements

The authors are grateful to the Institution of Excellence, Vijnana Bhavana, University of Mysore, for providing the single-crystal X-ray diffraction data.

References

First citationAakeröy, C. B., Hussain, I. & Desper, J. (2006). Cryst. Growth Des. 6, 474–480.  Google Scholar
First citationBis, J. A. & Zaworotko, M. J. (2005). Cryst. Growth Des. 5, 1169–1179.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2009). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJasmine, N. J., Rajam, A., Muthiah, P. T., Stanley, N., Razak, I. A. & Rosli, M. M. (2015). Acta Cryst. E71, o655–o656.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJayanalina, T., Rajarajan, G. & Boopathi, K. (2015a). Digest J. Nanomat. and Biostruct. 10, 1139–1151.  Google Scholar
First citationJayanalina, T., Rajarajan, G., Boopathi, K. & Sreevani, K. (2015b). J. Cryst. Growth, 426, 9–14.  Web of Science CrossRef Google Scholar
First citationJin, Z. M., Pan, Y. J., Hu, M. L. & Liang, S. (2001). J. Chem. Crystallogr. 31, 191–195.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds