research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of ethyl (E)-4-[(4-hy­dr­oxy-3-meth­­oxy-5-nitro­benzyl­­idene)amino]­benzoate

CROSSMARK_Color_square_no_text.svg

aPG & Research Department of Chemistry, Government Arts College (Autonomous), Arignar Anna Government Arts College, Musiri 621 211, Tamil Nadu, India, bDepartment of Chemistry, Government Arts College (Autonomous), Thanthonimalai, Karur 639 005, Tamil Nadu, India, and cDepartment of Chemistry, Periyar EVR College (Autonomous), Thiruchirapalli 620 023, Tamil Nadu, India
*Correspondence e-mail: kthanikasalam@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 7 June 2018; accepted 2 July 2018; online 10 July 2018)

The title Schiff base compound, C17H16N2O6, has an E configuration with respect to the C=N bond, with a dihedral angle between the two benzene rings of 31.90 (12)°. There is an intra­molecular O—H⋯Onitro hydrogen bond present forming an S(6) ring motif. In the crystal, mol­ecules are linked by pairs of O—H⋯O hydrogen bonds, forming inversion dimers enclosing an R22(4) ring motif. The dimers are linked about an inversion centre by pairs of C—H⋯O hydrogen bonds, which enclose R22(22) loops, forming chains propagating along the [10[\overline{3}]] direction. Hirshfeld surface analysis and fingerprint plots show enrichment ratios for the H⋯H, O⋯H and C⋯H contacts, indicating a high propensity of such inter­actions in the crystal. Both the nitro group and the CH3–CH2–O– group are positionally disordered.

1. Chemical context

Schiff bases are an important class of compounds in the medicinal and pharmaceutical fields. They play a role in the development of coordination chemistry as they readily form stable complexes with most transition metals. These complexes show inter­esting properties, for e.g. their ability to reversibly bind oxygen, catalytic activity in hydrogenation of olefins and transfer of an amino group, photochromic properties, and complexing ability towards toxic metals (Karthikeyan et al., 2006[Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482-7489.]; Khattab, 2005[Khattab, S. N. (2005). Molecules, 10, 1218-1228.]; Küçükgüzel et al., 2006[Küçükgüzel, G., Kocatepe, A., De Clercq, E., Şahin, F. & Güllüce, M. (2006). Eur. J. Med. Chem. 41, 353-359.]). Recently, hydrazone Schiff base compounds (Cao, 2009[Cao, G.-B. (2009). Acta Cryst. E65, o2415.]; Zhou & Yang, 2010[Zhou, C.-S. & Yang, T. (2010). Acta Cryst. E66, o365.]; Zhang et al., 2009[Zhang, M.-J., Yin, L.-Z., Wang, D.-C., Deng, X.-M. & Liu, J.-B. (2009). Acta Cryst. E65, o508.]) derived from the reaction of aldehydes with hydrazines have been shown to possess excellent biological activities, such as anti-bacterial, anti-convulsant, and anti­tubercular (Bernhardt et al., 2005[Bernhardt, P. V., Chin, P., Sharpe, P. C., Wang, J. C. & Richardson, D. R. (2005). J. Biol. Inorg. Chem. 10, 761-777.]; Armstrong et al., 2003[Armstrong, C. M., Bernhardt, P. V., Chin, P. & Richardson, D. R. (2003). Eur. J. Inorg. Chem. 2003, 1145-1156.]). Herein, we report on the synthesis and crystal structure of the title Schiff base title compound, (E)-4-[(4-hy­droxy-3-meth­oxy-5-nitro­benzyl­idene)amino]­benzoate. The Hirshfeld surface analysis was performed in order to visualize, explore and qu­antify the inter­molecular inter­actions in the crystal lattice of the title compound.

2. Structural commentary

The mol­ecular structure of the title Schiff base compound is illustrated in Fig. 1[link]. The mol­ecule has a trans or E configuration with respect to the C10=N1 double bond. The dihedral angle between the two benzene rings is 31.90 (12)°. The C10=N1 bond length of 1.267 (3) Å confirms the azomethine bond formation. There is an intra­molecular O—H⋯O hydrogen bond present involving the adjacent hydroxyl and nitro substituents on the C11–C16 benzene ring, forming an S(6) ring motif (Fig. 1[link] and Table 1[link]).

[Scheme 1]

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O4 0.91 (4) 1.73 (4) 2.54 (2) 146 (3)
O5—H5A⋯O4i 0.91 (4) 2.49 (4) 3.23 (3) 138 (3)
C12—H12⋯O2ii 0.93 2.60 3.471 (3) 156
Symmetry codes: (i) -x+3, -y+1, -z; (ii) -x, -y+1, -z+1.
[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intra­molecular O—H⋯O hydrogen bond (Table 1[link]) is shown as a dashed line. Only the major components of the disordered atoms (O3, O4, C1, C2 and O1) are shown.

3. Supra­molecular features

In the crystal, mol­ecules are linked by pairs of O—H⋯O hydrogen bonds, forming inversion dimers (Table 1[link] and Fig. 2[link]). The dimers are linked by pairs of C—H⋯O hydrogen bonds, so forming chains propagating along [10[\overline{3}]]. Within the chains there are two ring motifs present, viz. R22(4) and R22(22), as illustrated in Fig. 2[link].

[Figure 2]
Figure 2
Crystal packing of the title compound, viewed along the a axis. The O—H⋯O and C—H⋯O hydrogen bonds (see Table 1[link]) are shown as dashed lines. Only the major components of the disordered atoms (O3, O4, C1, C2 and O1) are shown.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.39, update May 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for ethyl-4-(benzyl­idene­amino)­benzoate yielded five hits, while a search for the 2-meth­oxy-4-[(phenyl­imino)­meth­yl]phenol skelton gave 25 hits. The most significant structure among these results is that of ethyl-4-[(4-hy­droxy-3-meth­oxy­benzyl­idene)amino]­benzoate (APAMUB; Ling et al., 2016[Ling, J., Kavuru, P., Wojtas, L. & Chadwick, K. (2016). Acta Cryst. E72, 951-954.]). The only difference between APAMUB and the title compound is the presence of a nitro group in the title compound. The two benzene rings in APAMUB are inclined to each other by 24.58 (8)° compared to 31.90 (12)° in the title compound. The crystal packing of the two compounds is significantly different. In APAMUB, mol­ecules are linked by O—H⋯N hydrogen bonds, forming chains along [010]. The chains are linked by C—H⋯π and offset ππ inter­actions, resulting in the formation of layers parallel to (10[\overline{2}]). In the title compound there are only O—H⋯O and C—H⋯O hydrogen bonds present; no C—H⋯π nor offset ππ inter­actions are present.

5. Hirshfeld surface analysis

Hirshfeld surfaces and their associated two-dimensional (2D) fingerprint plots (Soman et al., 2014[Soman, R., Sujatha, S., De, S., Rojisha, V. C., Parameswaran, P., Varghese, B. & Arunkumar, C. (2014). Eur. J. Inorg. Chem. pp. 2653-2662.]) have been used to quantify the various inter­molecular inter­actions in the title compound. The Hirshfeld surface of a mol­ecule is mapped using the descriptor dnorm, which encompasses two factors: one is de, representing the distance of any surface point nearest to the inter­nal atoms; another one is di, representing the distance of the surface point nearest to the exterior atoms and also with the van der Waals radii of the atoms (Dalal et al., 2015[Dalal, J., Sinha, N., Yadav, H. & Kumar, B. (2015). RSC Adv. 5, 57735-57748.]). The Hirshfeld surfaces mapped over dnorm (range of −0.502–1.427 a.u.) are displayed in Fig. 3[link]. The dominant inter­actions between the oxygen (O) and hydrogen (H) atoms can be observed in the Hirshfeld surface as the red areas in Fig. 4[link]. Other visible spots in the Hirshfeld surfaces correspond to C⋯H and H⋯H contacts.

[Figure 3]
Figure 3
Hirshfeld surfaces mapped over dnorm for the title compound.
[Figure 4]
Figure 4
2D fingerprint plots and relative contributions of the atom pairs to the Hirshfeld surface of the title compound.

The inter­molecular inter­actions of the title compound, strongly evidenced by the 2D fingerprint plots from the Hirshfeld surface, are shown in Fig. 4[link]. The H⋯H inter­actions (36.9%) are relatively high compared to the other bonding inter­actions of the total Hirshfeld surface area. However, it is lower than the H⋯H inter­actions (47.4%) in the crystal of ethyl-4-[(4-hy­droxy-3-meth­oxy­benzyl­idene)amino]­benzoate (APAMUB; Ling et al., 2016[Ling, J., Kavuru, P., Wojtas, L. & Chadwick, K. (2016). Acta Cryst. E72, 951-954.]). The percentage contributions of the other contacts in the title compound to the total Hirshfeld surface are as follows: O⋯H/H⋯O (29.8%), C⋯H/H⋯C (13.7%), N⋯H/H⋯N (2.8%), C⋯N/N⋯C (2.2%), C⋯C (4.6%), C⋯O/O⋯C (5.6%), O⋯N/N⋯O (1.0%). Such a visual analysis for inter­molecular inter­actions is coherent with those indicated by the X-ray diffraction results, with the O⋯H/H⋯O (29.8%) inter­actions being the most significant after the H⋯H inter­actions (36.9%).

6. Synthesis and crystallization

The title compound was synthesized by the reaction of a 1:1 molar ratio of ethyl-4-amino­benzoate (0.151 mg) and 4-hy­droxy-3-meth­oxy-5-nitro­benzaldehyde (0.134 mg) in an acetic acid solution (10 ml). The reaction mixture was refluxed for 6 h. The solid product formed during refluxing was filtered, washed with methanol and dried over anhydrous calcium chloride in a vacuum desiccator (yield 75%, m.p. 505 K). Brown block-like crystals of the title compound were obtained by slow evaporation of a solution in DMSO.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The hydroxyl H atom was located in a difference-Fourier map and freely refined. The C-bound H atoms were positioned geometrically and refined as riding: C—H = 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms. Atoms O3 and O4 of the nitro group are disordered with a refined occupancy ratio of O3/O3′ = O4/O4′ = 0.64 (12):0.36 (12). Atoms O1, C2 and C1 of the ethyl benzoate group are also disordered with a refined occupancy ratio of O1/O1′ = C2/C2′ = C1/C1′ = 0.65 (3): 0.35 (3).

Table 2
Experimental details

Crystal data
Chemical formula C17H16N2O6
Mr 344.32
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 4.7565 (3), 11.3377 (9), 15.7590 (13)
α, β, γ (°) 70.415 (4), 87.230 (4), 85.238 (4)
V3) 797.73 (11)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.15 × 0.10 × 0.10
 
Data collection
Diffractometer Bruker Kappa APEXIII CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). SAINT, APEX3, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.684, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 27199, 3642, 2484
Rint 0.049
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.176, 1.06
No. of reflections 3642
No. of parameters 279
No. of restraints 148
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.30, −0.22
Computer programs: APEX3, SAINT and XPREP (Bruker, 2016[Bruker (2016). SAINT, APEX3, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: APEX3 and SAINT (Bruker, 2016); data reduction: SAINT and XPREP (Bruker, 2016); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b) and PLATON (Spek, 2009).

Ethyl (E)-4-[(4-Hydroxy-3-methoxy-5-nitrobenzylidene)amino]benzoate top
Crystal data top
C17H16N2O6Z = 2
Mr = 344.32F(000) = 360
Triclinic, P1Dx = 1.433 Mg m3
a = 4.7565 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.3377 (9) ÅCell parameters from 9528 reflections
c = 15.7590 (13) Åθ = 3.6–27.4°
α = 70.415 (4)°µ = 0.11 mm1
β = 87.230 (4)°T = 296 K
γ = 85.238 (4)°Block, brown
V = 797.73 (11) Å30.15 × 0.10 × 0.10 mm
Data collection top
Bruker Kappa APEXIII CMOS
diffractometer
3642 independent reflections
Radiation source: fine-focus sealed tube2484 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ω and φ scanθmax = 27.5°, θmin = 3.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 66
Tmin = 0.684, Tmax = 0.746k = 1414
27199 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.061H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.176 w = 1/[σ2(Fo2) + (0.0654P)2 + 0.6845P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.005
3642 reflectionsΔρmax = 0.30 e Å3
279 parametersΔρmin = 0.22 e Å3
148 restraintsExtinction correction: (SHELXL2018; Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.045 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.444 (3)0.8211 (8)0.6197 (8)0.067 (3)0.65 (3)
C10.573 (3)0.8426 (17)0.7583 (10)0.096 (4)0.65 (3)
H1A0.7203380.8415500.8023210.144*0.65 (3)
H1B0.4261100.7794080.7850130.144*0.65 (3)
H1C0.4971790.9235240.7374450.144*0.65 (3)
C20.688 (2)0.8170 (10)0.6822 (7)0.0457 (19)0.65 (3)
H2A0.8357490.8803210.6537980.055*0.65 (3)
H2B0.7641880.7352110.7016950.055*0.65 (3)
O1'0.490 (3)0.8195 (11)0.6094 (9)0.031 (2)0.35 (3)
C1'0.563 (4)0.864 (2)0.7540 (12)0.055 (4)0.35 (3)
H1A'0.6781010.8439190.8080050.083*0.35 (3)
H1B'0.3689390.8402300.7692330.083*0.35 (3)
H1C'0.5850130.9530270.7225060.083*0.35 (3)
C2'0.652 (6)0.796 (3)0.6957 (15)0.064 (5)0.35 (3)
H2A'0.8495020.8195870.6824240.077*0.35 (3)
H2B'0.6338480.7070080.7290600.077*0.35 (3)
C30.3156 (5)0.7161 (2)0.61512 (16)0.0395 (6)
C40.1133 (5)0.7365 (2)0.53762 (15)0.0360 (5)
C50.0617 (6)0.6365 (3)0.53244 (17)0.0510 (7)
H50.0521190.5587020.5772980.061*
C60.2516 (6)0.6501 (3)0.46139 (17)0.0517 (7)
H60.3686570.5813370.4589920.062*
C70.2706 (5)0.7644 (2)0.39378 (15)0.0352 (5)
C80.0976 (6)0.8652 (2)0.39978 (18)0.0502 (7)
H80.1109380.9433800.3557180.060*
C90.0955 (6)0.8518 (2)0.47027 (18)0.0475 (7)
H90.2136500.9203370.4725180.057*
C100.5352 (5)0.6934 (2)0.29175 (15)0.0375 (5)
H100.4435890.6198240.3167870.045*
C110.7498 (4)0.6990 (2)0.22091 (14)0.0338 (5)
C120.8139 (5)0.5934 (2)0.19733 (15)0.0364 (5)
H120.7198600.5210900.2250040.044*
C131.0217 (5)0.5963 (2)0.13136 (15)0.0360 (5)
C141.1643 (5)0.7032 (2)0.08737 (15)0.0355 (5)
C151.0965 (5)0.8105 (2)0.11319 (14)0.0342 (5)
C160.8937 (5)0.8077 (2)0.17850 (15)0.0353 (5)
H160.8506750.8786630.1949930.042*
C171.2144 (6)1.0171 (3)0.09638 (19)0.0529 (7)
H17A1.0230981.0521750.0868090.079*
H17B1.3402801.0783390.0618420.079*
H17C1.2555660.9933400.1591760.079*
N10.4682 (4)0.78390 (19)0.32058 (13)0.0379 (5)
N21.0868 (5)0.4819 (2)0.11024 (15)0.0501 (6)
O20.3425 (5)0.61540 (19)0.67179 (14)0.0630 (6)
O30.931 (7)0.396 (2)0.138 (2)0.065 (4)0.64 (12)
O41.297 (6)0.4818 (19)0.061 (2)0.068 (4)0.64 (12)
O3'0.979 (12)0.387 (3)0.157 (4)0.063 (7)0.36 (12)
O4'1.259 (8)0.475 (3)0.050 (2)0.062 (5)0.36 (12)
O51.3628 (4)0.71443 (18)0.02210 (12)0.0485 (5)
H5A1.380 (7)0.637 (3)0.016 (2)0.066 (10)*
O61.2501 (4)0.90927 (16)0.06865 (12)0.0452 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.079 (5)0.058 (3)0.074 (5)0.024 (3)0.050 (4)0.036 (3)
C10.125 (8)0.095 (7)0.088 (7)0.070 (6)0.036 (6)0.048 (5)
C20.049 (3)0.037 (3)0.049 (3)0.007 (2)0.021 (3)0.014 (2)
O1'0.031 (4)0.026 (4)0.030 (4)0.000 (3)0.007 (3)0.005 (3)
C1'0.064 (7)0.066 (8)0.044 (7)0.001 (7)0.024 (6)0.034 (5)
C2'0.072 (8)0.061 (7)0.061 (7)0.009 (6)0.037 (6)0.027 (6)
C30.0415 (13)0.0415 (13)0.0378 (13)0.0099 (10)0.0089 (10)0.0160 (11)
C40.0380 (12)0.0384 (12)0.0344 (12)0.0077 (9)0.0082 (10)0.0158 (10)
C50.0599 (17)0.0441 (14)0.0375 (13)0.0080 (12)0.0107 (12)0.0027 (11)
C60.0563 (16)0.0460 (14)0.0403 (14)0.0194 (12)0.0108 (12)0.0047 (11)
C70.0304 (11)0.0434 (13)0.0326 (11)0.0037 (9)0.0058 (9)0.0143 (10)
C80.0608 (17)0.0346 (12)0.0506 (15)0.0049 (11)0.0260 (13)0.0116 (11)
C90.0523 (15)0.0356 (12)0.0531 (15)0.0022 (11)0.0217 (12)0.0160 (11)
C100.0329 (12)0.0426 (13)0.0349 (12)0.0024 (9)0.0080 (9)0.0114 (10)
C110.0287 (11)0.0413 (12)0.0293 (11)0.0005 (9)0.0045 (9)0.0101 (9)
C120.0362 (12)0.0373 (12)0.0319 (11)0.0038 (9)0.0089 (9)0.0075 (9)
C130.0390 (12)0.0364 (12)0.0322 (11)0.0003 (9)0.0070 (9)0.0123 (9)
C140.0310 (11)0.0443 (13)0.0298 (11)0.0031 (9)0.0070 (9)0.0116 (10)
C150.0328 (11)0.0396 (12)0.0293 (11)0.0060 (9)0.0023 (9)0.0100 (9)
C160.0335 (11)0.0405 (12)0.0330 (11)0.0009 (9)0.0020 (9)0.0146 (10)
C170.0652 (18)0.0472 (15)0.0487 (15)0.0164 (13)0.0091 (13)0.0175 (12)
N10.0330 (10)0.0450 (11)0.0355 (10)0.0024 (8)0.0090 (8)0.0144 (9)
N20.0594 (14)0.0436 (12)0.0463 (13)0.0056 (10)0.0210 (11)0.0163 (10)
O20.0736 (14)0.0533 (12)0.0516 (12)0.0069 (10)0.0272 (10)0.0067 (9)
O30.091 (8)0.052 (4)0.058 (7)0.029 (5)0.032 (6)0.024 (4)
O40.070 (6)0.050 (4)0.090 (8)0.009 (4)0.042 (6)0.038 (4)
O3'0.087 (12)0.043 (5)0.062 (13)0.018 (6)0.034 (10)0.022 (6)
O4'0.076 (9)0.066 (9)0.054 (9)0.022 (6)0.038 (6)0.036 (5)
O50.0520 (11)0.0497 (11)0.0465 (10)0.0119 (8)0.0250 (8)0.0211 (9)
O60.0486 (10)0.0433 (9)0.0445 (10)0.0126 (8)0.0152 (8)0.0156 (8)
Geometric parameters (Å, º) top
O1—C31.314 (8)C8—C91.383 (3)
O1—C21.481 (8)C8—H80.9300
C1—C21.464 (12)C9—H90.9300
C1—H1A0.9600C10—N11.267 (3)
C1—H1B0.9600C10—C111.465 (3)
C1—H1C0.9600C10—H100.9300
C2—H2A0.9700C11—C121.375 (3)
C2—H2B0.9700C11—C161.406 (3)
O1'—C31.359 (10)C12—C131.394 (3)
O1'—C2'1.484 (13)C12—H120.9300
C1'—C2'1.476 (17)C13—C141.392 (3)
C1'—H1A'0.9600C13—N21.450 (3)
C1'—H1B'0.9600C14—O51.343 (3)
C1'—H1C'0.9600C14—C151.415 (3)
C2'—H2A'0.9700C15—O61.357 (3)
C2'—H2B'0.9700C15—C161.370 (3)
C3—O21.203 (3)C16—H160.9300
C3—C41.485 (3)C17—O61.425 (3)
C4—C51.373 (3)C17—H17A0.9600
C4—C91.386 (3)C17—H17B0.9600
C5—C61.380 (3)C17—H17C0.9600
C5—H50.9300N2—O3'1.220 (13)
C6—C71.381 (3)N2—O31.220 (9)
C6—H60.9300N2—O41.239 (9)
C7—C81.378 (3)N2—O4'1.239 (12)
C7—N11.422 (3)O5—H5A0.91 (4)
C3—O1—C2119.9 (8)C7—C8—C9121.1 (2)
C2—C1—H1A109.5C7—C8—H8119.5
C2—C1—H1B109.5C9—C8—H8119.5
H1A—C1—H1B109.5C8—C9—C4120.2 (2)
C2—C1—H1C109.5C8—C9—H9119.9
H1A—C1—H1C109.5C4—C9—H9119.9
H1B—C1—H1C109.5N1—C10—C11123.2 (2)
C1—C2—O1104.4 (10)N1—C10—H10118.4
C1—C2—H2A110.9C11—C10—H10118.4
O1—C2—H2A110.9C12—C11—C16119.85 (19)
C1—C2—H2B110.9C12—C11—C10118.3 (2)
O1—C2—H2B110.9C16—C11—C10121.8 (2)
H2A—C2—H2B108.9C11—C12—C13119.1 (2)
C3—O1'—C2'108.6 (15)C11—C12—H12120.5
C2'—C1'—H1A'109.5C13—C12—H12120.5
C2'—C1'—H1B'109.5C14—C13—C12122.3 (2)
H1A'—C1'—H1B'109.5C14—C13—N2120.63 (19)
C2'—C1'—H1C'109.5C12—C13—N2117.1 (2)
H1A'—C1'—H1C'109.5O5—C14—C13125.9 (2)
H1B'—C1'—H1C'109.5O5—C14—C15116.3 (2)
C1'—C2'—O1'115.1 (16)C13—C14—C15117.70 (19)
C1'—C2'—H2A'108.5O6—C15—C16125.9 (2)
O1'—C2'—H2A'108.5O6—C15—C14113.86 (18)
C1'—C2'—H2B'108.5C16—C15—C14120.2 (2)
O1'—C2'—H2B'108.5C15—C16—C11120.9 (2)
H2A'—C2'—H2B'107.5C15—C16—H16119.5
O2—C3—O1123.4 (5)C11—C16—H16119.5
O2—C3—O1'123.2 (6)O6—C17—H17A109.5
O2—C3—C4123.5 (2)O6—C17—H17B109.5
O1—C3—C4112.8 (5)H17A—C17—H17B109.5
O1'—C3—C4112.8 (6)O6—C17—H17C109.5
C5—C4—C9118.9 (2)H17A—C17—H17C109.5
C5—C4—C3118.4 (2)H17B—C17—H17C109.5
C9—C4—C3122.8 (2)C10—N1—C7118.1 (2)
C4—C5—C6120.7 (2)O3—N2—O4125 (2)
C4—C5—H5119.7O3'—N2—O4'119 (3)
C6—C5—H5119.7O3'—N2—C13118 (2)
C5—C6—C7121.0 (2)O3—N2—C13119.8 (14)
C5—C6—H6119.5O4—N2—C13115.5 (13)
C7—C6—H6119.5O4'—N2—C13122.7 (19)
C8—C7—C6118.3 (2)C14—O5—H5A103 (2)
C8—C7—N1118.7 (2)C15—O6—C17117.55 (18)
C6—C7—N1123.0 (2)
C3—O1—C2—C1102.5 (12)C11—C12—C13—N2178.6 (2)
C3—O1'—C2'—C1'106 (2)C12—C13—C14—O5178.7 (2)
C2—O1—C3—O216.7 (18)N2—C13—C14—O51.8 (4)
C2—O1—C3—C4168.9 (11)C12—C13—C14—C151.4 (4)
C2'—O1'—C3—O216.1 (18)N2—C13—C14—C15178.1 (2)
C2'—O1'—C3—C4171.3 (13)O5—C14—C15—O61.5 (3)
O2—C3—C4—C53.1 (4)C13—C14—C15—O6178.4 (2)
O1—C3—C4—C5171.2 (8)O5—C14—C15—C16179.2 (2)
O1'—C3—C4—C5175.7 (8)C13—C14—C15—C160.9 (3)
O2—C3—C4—C9176.5 (3)O6—C15—C16—C11179.2 (2)
O1—C3—C4—C99.2 (9)C14—C15—C16—C110.0 (3)
O1'—C3—C4—C93.9 (8)C12—C11—C16—C150.5 (3)
C9—C4—C5—C60.2 (4)C10—C11—C16—C15179.1 (2)
C3—C4—C5—C6179.4 (3)C11—C10—N1—C7175.8 (2)
C4—C5—C6—C70.0 (5)C8—C7—N1—C10149.9 (3)
C5—C6—C7—C81.0 (4)C6—C7—N1—C1032.9 (4)
C5—C6—C7—N1178.2 (3)C14—C13—N2—O3'172 (4)
C6—C7—C8—C91.7 (4)C12—C13—N2—O3'7 (4)
N1—C7—C8—C9179.1 (2)C14—C13—N2—O3168 (2)
C7—C8—C9—C41.5 (4)C12—C13—N2—O312 (2)
C5—C4—C9—C80.5 (4)C14—C13—N2—O49 (2)
C3—C4—C9—C8179.9 (3)C12—C13—N2—O4170 (2)
N1—C10—C11—C12177.4 (2)C14—C13—N2—O4'4 (3)
N1—C10—C11—C161.3 (4)C12—C13—N2—O4'177 (3)
C16—C11—C12—C130.0 (3)C16—C15—O6—C175.0 (3)
C10—C11—C12—C13178.7 (2)C14—C15—O6—C17174.3 (2)
C11—C12—C13—C141.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O40.91 (4)1.73 (4)2.54 (2)146 (3)
O5—H5A···O4i0.91 (4)2.49 (4)3.23 (3)138 (3)
C12—H12···O2ii0.932.603.471 (3)156
Symmetry codes: (i) x+3, y+1, z; (ii) x, y+1, z+1.
 

Funding information

KB and PS thank the Department of Science and Technology (DST–SERB), grant No. SB/FT/CS-058/2013, New Delhi, India, for financial support.

References

First citationArmstrong, C. M., Bernhardt, P. V., Chin, P. & Richardson, D. R. (2003). Eur. J. Inorg. Chem. 2003, 1145–1156.  CrossRef Google Scholar
First citationBernhardt, P. V., Chin, P., Sharpe, P. C., Wang, J. C. & Richardson, D. R. (2005). J. Biol. Inorg. Chem. 10, 761–777.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2016). SAINT, APEX3, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCao, G.-B. (2009). Acta Cryst. E65, o2415.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDalal, J., Sinha, N., Yadav, H. & Kumar, B. (2015). RSC Adv. 5, 57735–57748.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKarthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482–7489.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhattab, S. N. (2005). Molecules, 10, 1218–1228.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKüçükgüzel, G., Kocatepe, A., De Clercq, E., Şahin, F. & Güllüce, M. (2006). Eur. J. Med. Chem. 41, 353–359.  Web of Science PubMed Google Scholar
First citationLing, J., Kavuru, P., Wojtas, L. & Chadwick, K. (2016). Acta Cryst. E72, 951–954.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSoman, R., Sujatha, S., De, S., Rojisha, V. C., Parameswaran, P., Varghese, B. & Arunkumar, C. (2014). Eur. J. Inorg. Chem. pp. 2653–2662.  Web of Science CSD CrossRef Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, M.-J., Yin, L.-Z., Wang, D.-C., Deng, X.-M. & Liu, J.-B. (2009). Acta Cryst. E65, o508.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhou, C.-S. & Yang, T. (2010). Acta Cryst. E66, o365.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds