research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of 2-bromo-1,1,1,3,3,3-hexa­methyl-2-(tri­methyl­sil­yl)tris­­ilane and 2-bromo-1,1,1,3,3,3-hexa­iso­propyl-2-(triiso­propyl­sil­yl)tri­silane

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Grand Valley State University, 1 Campus Dr., Allendale, MI 49401, USA, bCenter for Crystallographic Research, Department of Chemistry, Michigan State, University, 578 S. Shaw Lane, East Lansing, MI, USA, cDepartment of Chemistry, Washington University, St. Louis, MO 63130-4899, USA, and dDepartment of Chemistry, University of Missouri St. Louis, St. Louis, MO 63121-4499, USA
*Correspondence e-mail: winchesr@gvsu.edu

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 29 June 2018; accepted 6 July 2018; online 24 July 2018)

The synthesis and crystal structures of two tris­(tri­alkyl­sil­yl)silyl bromide compounds, C9H27BrSi4 (I, HypSiBr) and C27H63BrSi4 (II, TipSiBr), are described. Compound I was prepared in 85% yield by free-radical bromination of 1,1,1,3,3,3-hexa­methyl-2-(tri­methyl­sil­yl)tris­ilane using bromo­butane and 2,2′-azobis(2-methyl­propio­nitrile) as a radical initiator at 333 K. The mol­ecule possesses threefold rotational symmetry, with the central Si atom and the Br atom being located on the threefold rotation axis. The Si—Br bond distance is 2.2990 (12) Å and the Si—Si bond lengths are 2.3477 (8) Å. The Br—Si—Si bond angles are 104.83 (3)° and the Si—Si—Si bond angles are 113.69 (2)°, reflecting the steric hindrance inherent in the three tri­methyl­silyl groups attached to the central Si atom. Compound II was prepared in 55% yield by free-radical bromination of 1,1,1,3,3,3-hexa­isopropyl-2-(triiso­propyl­sil­yl)tris­ilane using N-bromo­succinimide and 2,2′-azobis(2-methyl­propio­nitrile) as a radical initiator at 353 K. Here the Si—Br bond length is 2.3185 (7) Å and the Si—Si bond lengths range from 2.443 (1) to 2.4628 (9) Å. The Br—Si—Si bond angles range from 98.44 (3) to 103.77 (3)°, indicating steric hindrance between the three triiso­propyl­silyl groups.

1. Chemical context

The steric and electronic effects of the tris­(tri­methyl­sil­yl)silane group have been exploited for the synthesis and study of a variety of reactive centers including silylenes (Wendel et al., 2017[Wendel, D., Porzelt, A., Herz, F. A. D., Sarkar, D., Jandl, C., Inoue, S. & Rieger, B. (2017). J. Am. Chem. Soc. 139, 8134-8137.]) and silylanions (Kayser et al., 2002[Kayser, C., Fischer, R., Baumgartner, J. & Marschner, C. (2002). Organometallics, 21, 1023-1030.]; Mechtler et al., 2004[Mechtler, C., Zirngast, M., Baumgartner, J. & Marschner, C. (2004). Eur. J. Inorg. Chem. pp. 3254-3261.]; Zirngast et al., 2008[Zirngast, M., Baumgartner, J. & Marschner, C. (2008). Eur. J. Inorg. Chem. pp. 1078-1087.]; Marschner, 2015[Marschner, C. (2015). Eur. J. Inorg. Chem. pp. 3805-3820.]). This sterically hindered group has been shown to lead to lower coordination by solvent when it is attached to organolithium compounds (Feil & Harder, 2003[Feil, F. & Harder, S. (2003). Eur. J. Inorg. Chem. pp. 3401-3408.]). It has also been used in organic synthesis to produce highly stereoselective aldol reactions leading to unique reactivity (Gati & Yamamoto, 2016[Gati, W. & Yamamoto, H. (2016). Acc. Chem. Res. 49, 1757-1768.]). For this research we prepared tris­(tri­methyl­sil­yl)silyl­bromide (HypSiBr) as a precursor to vinyl­tris­(tri­methyl­sil­yl)silane. The even bulkier tris­(triiso­propyl­sil­yl)silylbromide (TipSiBr) was prepared as a potential precursor to meth­oxy­tris­(triiso­propyl­sil­yl)silane. Herein, we report on the crystal structures of these two sterically hindered silylbromides 2-bromo-1,1,1,3,3,3-hexa­methyl-2-(tri­methyl­sil­yl)tris­ilane (I), and 2-bromo-1,1,1,3,3,3-hexa­isopropyl-2-(triiso­propyl­sil­yl)tris­ilane (II).

[Scheme 1]

2. Structural commentary

The mol­ecular structure of compound I (HypSiBr), is shown in Fig. 1[link], and selected geometrical parameters are given in Table 1[link]. The asymmetric unit is composed of one tri­methyl­silyl group, with the central silicon atom Si1 and the bromine atom Br1 lying on a threefold rotation axis. This supersilylbromide crystallized in the cubic space group Pa[\overline{3}] with a central 4-coordinate silicon atom, Si1, that deviates slightly from an ideal tetra­hedron due to the steric bulk of the attached tri­methyl­silyl (TMS) groups. The τ4 descriptor for fourfold coordination around Si1 is 0.94 (where, for extreme forms, τ4 = 0.00 for square-planar, 1.00 for tetra­hedral and 0.85 for trigonal–pyramidal; Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]). Inter­estingly, the τ4 descriptor for fourfold coordination around the TMS atom Si2 is 0.99, which demonstrates an ideal tetra­hedral geometry around this silicon atom. The Si2—Si1—Si2i,ii bond angle is 113.69 (2)° while the Br1—Si1—Si2 bond angle is 104.83 (3)°, indicating that the tri­methyl­silyl groups are forced away from one another. The Si1—Br1 bond length is 2.2990 (12) Å. As for Si2, the C—Si2—C bond angles range from 107.1 (2) to 110.55 (17)°, while the C—Si2—Si1 bond angles range from 108.61 (10) to 110.16 (11)°.

Table 1
Selected bond lengths (Å), bond angles (°) and the fourfold coordination descriptor, τ4,a for compounds I (HypSiBr), II (TipSiBr), III (HypSiCl) and IV (TipSiH)

Compound I (HypSiBr) II (TipSiBr) III (HypSiCl)b IV (TipSiH)c
Si1—Xd 2.2990 (12) 2.3185 (7) 2.1248 (9) 1.608 (1)
Si1—Sine 2.3477 (8) 2.4430 (10), 2.4448 (10), 2.4628 (9) 2.3406 (6) 2.405 (1)
Si2—Si1—Sinf 113.69 (2) 115.02 (4), 116.55 (3), 116.59 (4) 113.13 (2) 117.9 (1)
Si2—Si1—Xd 104.83 (3) 98.44 (3) to 103.77 (3) 105.51 (2) 98.3 (1)
τ4 of Si1 0.94 0.90 0.95 0.88
Notes: (a) Yang et al. (2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]); (b) Kuzora et al. (2009[Kuzora, R., Schulz, A., Villinger, A. & Wustrack, R. (2009). Dalton Trans. pp. 9304-9311.]); (c) X-ray data (Gaspar et al., 1999[Gaspar, P. P., Beatty, A. M., Chen, T., Haile, T., Lei, D., Winchester, W. R., Braddock-Wilking, J., Rath, N. P., Klooster, W. T., Koetzle, T. F., Mason, S. A. & Albinati, A. (1999). Organometallics, 18, 3921-3932.]); (d) X = Br for I and II, Cl for III, and H for IV; (e) n = 2 for I, III and IV, and 2, 3 and 4 for II; (f) n = 2i and 2ii for I, III and IV [symmetry codes: (i) = z, x, y; (ii) = y, z, x], and 2, 3 and 4 for II.
[Figure 1]
Figure 1
A view of the mol­ecular structure of compound I, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms have been omitted for clarity. Unlabelled atoms are related to the labelled atoms by threefold rotation symmetry [symmetry codes: (i) z, x, y; (ii) y, z, x].

The asymmetric unit of compound II (TipSiBr), is shown in Fig. 2[link], and selected geometrical parameters are given in Table 1[link]. This compound crystallized in the triclinic space group P[\overline{1}] with a central four-coordinate silicon atom, Si1, that deviates from the ideal tetra­hedron as shown from its τ4 descriptor for fourfold coordination of 0.90. The Br1—Si1—Si2/Si3/Si4 bond angles range from 98.44 (3) to 103.77 (3)°, and the Si1—Br1 bond distance is 2.3185 (7) Å, which is longer than that of compound I [2.2990 (12) Å]. The τ4 descriptor values for atoms Si2, Si3 and Si4 (the silicon atoms of the triiso­propyl­silyl groups) are 0.96, 0.97 and 0.95, respectively, indicating that their coordination geometry is closest to an ideal tetra­hedron.

[Figure 2]
Figure 2
A view of the mol­ecular structure of compound II, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level, and all hydrogen atoms have been omitted for clarity.

3. Supra­molecular features

There are no significant inter­molecular contacts, other than weak van der Waals inter­actions, present in the crystals of compounds I or II. Compound II, however, contains four intra­molecular C—H⋯Br hydrogen bonds (Table 2[link], Fig. 3[link]). These hydrogen bonds contain DA distances that range from from 3.584 (3) to 3.726 (3) Å, and D—H⋯A bond angles that range from 131 to 155°.

Table 2
Hydrogen-bond geometry (Å, °) for II[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5B⋯Br1 0.98 2.80 3.711 (3) 155
C16—H16⋯Br1 1.00 2.84 3.584 (3) 131
C23—H23A⋯Br1 0.98 2.87 3.685 (3) 142
C24—H24C⋯Br1 0.98 2.93 3.726 (3) 139
[Figure 3]
Figure 3
Intra­molecular C—H⋯Br hydrogen bonds (blue dashed lines; see Table 2[link]) present in compound II. For clarity, only the hydrogen atoms involved in a hydrogen bonding are shown.

4. Database survey

The Cambridge Structural Database (CSD, version 5.39, February 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) contains 1398 structures containing a Si3Si group. Of these, there are only 42 structures where the central silicon atom is bonded directly to a halogen.

Of particular inter­est to this work is the structure of tris(tri­methyl­sil­yl)chloro­silane (III, HypSiCl) [CSD refcode QULWEA; Kuzora et al., 2009[Kuzora, R., Schulz, A., Villinger, A. & Wustrack, R. (2009). Dalton Trans. pp. 9304-9311.]], the isotypic chloro derivative of compound I, and the structure of (iPr3Si)3SiH (IV, TipSiH), isotypic with compounds I and III. The analysis of IV by both X-ray and neutron diffraction has been described by Gaspar et al. (1999[Gaspar, P. P., Beatty, A. M., Chen, T., Haile, T., Lei, D., Winchester, W. R., Braddock-Wilking, J., Rath, N. P., Klooster, W. T., Koetzle, T. F., Mason, S. A. & Albinati, A. (1999). Organometallics, 18, 3921-3932.]). Table 1[link] contains pertinent bond lengths and bond angles for compounds I, II, III (HypSiCl) and IV (TipSiH).

For compounds I and III the Si—X bond lengths follow the expected trend with the Si1—Cl bond length of QULWEA at 2.1248 (9) Å compared to the Si1—Br1 bond length of 2.2990 (12) Å for compound I. The Si1—Si2 bond length of the bromo derivative I reported here is 2.3477 (8) Å, which is slightly longer than the Si1—Si2 bond length of the chloro derivative at 2.3406 (6) Å. The central silicon atom of the chloro derivative appears less sterically hindered with an Si2—Si1—Cl1 bond angle of 105.508 (18)° and Si2—Si1—Si2i,ii bond angles of 113.126°, versus a smaller Si2—Si1—Br1 bond angle of 104.83 (3)° and a larger Si2—Si1—Si2i,ii bond angle of 113.69 (2)° for compound I [symmetry codes: (i) z, x, y; (ii) y, z, x]. The protio derivative (HypSiH) is a liquid at room temperature, and the structure of the iodo derivative (HypSiI) has not been deposited in the CSD.

The X-ray data for compound IV (TipSiH) was not found in the CSD, but the journal article (Gaspar et al., 1999[Gaspar, P. P., Beatty, A. M., Chen, T., Haile, T., Lei, D., Winchester, W. R., Braddock-Wilking, J., Rath, N. P., Klooster, W. T., Koetzle, T. F., Mason, S. A. & Albinati, A. (1999). Organometallics, 18, 3921-3932.]) contains all pertinent structural data to allow for a comparison with (iPr3Si)3SiBr, viz. compound II (TipSiBr). Like compounds I and III, compound IV crystallizes in the cubic space group Pa[\overline{3}], and the mol­ecule possesses threefold rotation symmetry. The presence of a small hydrogen atom bonded to the central silicon atom Si1 allows the three (iPr3)Si– groups to push further away from one another, resulting in Si2—Si1—Si2i,ii bond angles of 117.9 (1)° and Si2i,ii—Si1—H bond angles of 98.3 (1)° [symmetry codes: (i) z, x, y; (ii) y, z, x]. In II, the corresponding Si—Si—Si bond angles range from 115.02 (4) to 116.59 (4)° and the Si—Si—Br bond angles vary from 98.44 (3) to 103.77 (3)°.

5. Synthesis and crystallization

Compound I: Tris(tri­methyl­sil­yl)silane (2.0 g, 8.0 mmol) was added to an oven-dried nitro­gen-flushed 250 ml Schlenk flask with a stir-bar. Bromo­butane (2.0 g, 14.6 mmol) was filtered through a plug of silica gel in a Pasteur pipette and was transferred into the Schlenk flask. AIBN [2,2-azobis(2-methyl­propio­nitrile); 20 mg] was then added to the flask, and the reaction was heated to 333 K using an oil bath and then heating was stopped. After stirring the reaction overnight at room temperature, GC–MS analysis of a sample indicated incomplete reaction and more AIBN (11 mg) was added to the flask. The reaction was heated once more to 333 K for 1 h. Analysis by GC–MS now indicated that the reaction was complete. The flask was placed in a freezer at 243 K and colourless block-like crystals of I formed overnight. Removal of the solvent in vacuo yielded 2.2 g (85%). 1H NMR (300 MHz, chloro­form-d) δ 0.24 (s, 27H); 13C NMR (75 MHz, chloro­form-d) δ −0.51 ppm; GC–MS: 11.24 min, m/z = 328, base peak: 73.

Compound II: Tris(triiso­propyl­sil­yl)silane (110 mg, 0.22 mmol) was dissolved in freshly distilled benzene (10 ml) along with NBS (45 mg) and AIBN (2 mg, initiator). The mixture was heated using an oil bath at 333 K for 30 min, when GC–MS analysis indicated that no reaction had occurred. At this point the solution was heated with a heat gun until the reaction mixture turned slightly yellow. The yellow colour dissipated in less than 1 min. Analysis of the reaction mixture by 1H NMR indicated that only 60% of the starting material had been consumed. An additional amount of NBS (N-bromo­succinimide; 20 mg) was added to the reaction flask, and the solution was again heated with a heat gun. The product was isolated by removing the solvent in vacuo and extracting the product from the crude reaction mixture with pentane. The pentane solution was filtered through glass wool, concentrated and weighed (135 mg). Analysis of the product with 1H NMR indicated this was 90% pure. The product was further purified by dissolving this solid in 1 ml pentane, cooling to 195 K and isolating the colourless needle-like crystals of II by removing the solvent with a syringe, washing with pentane and drying in vacuo (yield 62 mg, 55%). 1H NMR (300 MHz, C6D6) δ 1.34 (d, J = 7.3 Hz, 54H), 1.66 (heptet, J = 7.4 Hz, 9H); 13C NMR (75 MHz, chloro­form-d) δ 16.4, 21.6; HRMS for C17H63BrSi4 calculated 535.2642 (M − C3H7), found 535.2641.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. For both compounds the hydrogen atoms were placed in calculated positions and refined using a riding model: C—H = 0.98-1.00 Å with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms.

Table 3
Experimental details

  I II
Crystal data
Chemical formula C9H27BrSi4 C27H63BrSi4
Mr 327.57 580.04
Crystal system, space group Cubic, Pa[\overline{3}] Triclinic, P[\overline{1}]
Temperature (K) 173 173
a, b, c (Å) 15.6497 (19), 15.6497 (19), 15.6497 (19) 8.4412 (4), 11.1336 (6), 18.8477 (10)
α, β, γ (°) 90, 90, 90 92.565 (4), 90.527 (4), 108.718 (4)
V3) 3832.8 (14) 1675.44 (15)
Z 8 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 2.37 1.38
Crystal size (mm) 0.45 × 0.24 × 0.14 0.38 × 0.10 × 0.02
 
Data collection
Diffractometer Bruker APEXII CCD Bruker SMART APEX CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.571, 0.745 0.554, 0.674
No. of measured, independent and observed [I > 2σ(I)] reflections 11038, 1174, 953 21505, 6628, 4752
Rint 0.046 0.057
(sin θ/λ)max−1) 0.601 0.622
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.075, 1.05 0.037, 0.075, 1.01
No. of reflections 1174 6628
No. of parameters 46 307
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.31, −0.16 0.36, −0.28
Computer programs: APEX2, SMART and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXT2013 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]; Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]) and CrystalMaker (Palmer, 2007[Palmer, D. (2007). CrystalMaker. CrystalMaker Software Ltd, Yarnton, England.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014) for (I); SMART (Bruker, 2014) for (II). For both structures, cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014). Program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) for (I); SHELXT2013 (Sheldrick, 2015a) for (II). Program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b) for (I); SHELXL2014 (Sheldrick, 2015b) for (II). Molecular graphics: OLEX2 (Dolomanov et al., 2009; Bourhis et al., 2015) for (I); SHELXTL (Sheldrick, 2008) for (II). Software used to prepare material for publication: CrystalMaker (Palmer, 2007) for (I); SHELXTL (Sheldrick, 2008) for (II).

2-Bromo-1,1,1,3,3,3-hexamethyl-2-(trimethylsilyl)trisilane (I) top
Crystal data top
C9H27BrSi4Mo Kα radiation, λ = 0.71073 Å
Mr = 327.57Cell parameters from 3863 reflections
Cubic, Pa3θ = 2.3–25.3°
a = 15.6497 (19) ŵ = 2.37 mm1
V = 3832.8 (14) Å3T = 173 K
Z = 8Block, colourless
F(000) = 13760.45 × 0.24 × 0.14 mm
Dx = 1.135 Mg m3
Data collection top
Bruker APEXII CCD
diffractometer
953 reflections with I > 2σ(I)
φ and ω scansRint = 0.046
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 25.3°, θmin = 2.3°
Tmin = 0.571, Tmax = 0.745h = 1816
11038 measured reflectionsk = 1817
1174 independent reflectionsl = 1518
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0349P)2 + 1.4333P]
where P = (Fo2 + 2Fc2)/3
1174 reflections(Δ/σ)max = 0.002
46 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.16 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.74011 (2)0.74011 (2)0.74011 (2)0.04337 (17)
Si10.65529 (4)0.65529 (4)0.65529 (4)0.0327 (3)
Si20.69238 (5)0.51472 (4)0.69229 (5)0.0473 (2)
C10.6249 (2)0.43945 (18)0.6286 (2)0.0734 (10)
H1A0.63310.45060.56750.110*
H1B0.56460.44780.64340.110*
H1C0.64150.38050.64140.110*
C20.8079 (2)0.49575 (19)0.6707 (3)0.0943 (14)
H2A0.82270.43700.68660.141*
H2B0.84220.53580.70440.141*
H2C0.81940.50440.60980.141*
C30.6752 (3)0.49746 (19)0.8090 (2)0.0953 (13)
H3A0.61420.50320.82220.143*
H3B0.70760.54010.84140.143*
H3C0.69460.44010.82470.143*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.04337 (17)0.04337 (17)0.04337 (17)0.00621 (10)0.00621 (10)0.00621 (10)
Si10.0327 (3)0.0327 (3)0.0327 (3)0.0008 (3)0.0008 (3)0.0008 (3)
Si20.0529 (5)0.0317 (4)0.0573 (5)0.0013 (3)0.0106 (4)0.0008 (3)
C10.087 (2)0.0426 (16)0.091 (2)0.0092 (16)0.0304 (19)0.0051 (16)
C20.056 (2)0.0494 (19)0.178 (4)0.0145 (16)0.007 (2)0.001 (2)
C30.168 (4)0.052 (2)0.066 (2)0.006 (2)0.019 (2)0.0183 (17)
Geometric parameters (Å, º) top
Br1—Si12.2990 (12)Si2—C11.870 (3)
Si1—Si2i2.3478 (8)Si2—C21.862 (3)
Si1—Si22.3477 (8)Si2—C31.866 (3)
Si1—Si2ii2.3478 (8)
Br1—Si1—Si2104.83 (3)C1—Si2—Si1108.61 (10)
Br1—Si1—Si2ii104.83 (3)C2—Si2—Si1110.16 (11)
Br1—Si1—Si2i104.83 (3)C2—Si2—C1110.55 (17)
Si2—Si1—Si2ii113.69 (2)C2—Si2—C3107.12 (19)
Si2—Si1—Si2i113.69 (3)C3—Si2—Si1109.96 (10)
Si2i—Si1—Si2ii113.69 (2)C3—Si2—C1110.45 (16)
Symmetry codes: (i) y, z, x; (ii) z, x, y.
2-Bromo-1,1,1,3,3,3-hexaisopropyl-2-(triisopropylsilyl)trisilane (II) top
Crystal data top
C27H63BrSi4Z = 2
Mr = 580.04F(000) = 632
Triclinic, P1Dx = 1.150 Mg m3
a = 8.4412 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.1336 (6) ÅCell parameters from 8192 reflections
c = 18.8477 (10) Åθ = 2.0–26.0°
α = 92.565 (4)°µ = 1.38 mm1
β = 90.527 (4)°T = 173 K
γ = 108.718 (4)°Needles, colourless
V = 1675.44 (15) Å30.38 × 0.10 × 0.02 mm
Data collection top
Bruker SMART APEX CCD area detector
diffractometer
6628 independent reflections
Radiation source: sealed tube4752 reflections with I > 2σ(I)
Detector resolution: 8 pixels mm-1Rint = 0.057
ω and φ scansθmax = 26.3°, θmin = 1.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 1010
Tmin = 0.554, Tmax = 0.674k = 1313
21505 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0274P)2 + 0.3128P]
where P = (Fo2 + 2Fc2)/3
6628 reflections(Δ/σ)max = 0.001
307 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.28 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All H atoms were positioned geometrically and refined using a riding model with C—H = 0.95–0.99 Å and wAith Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.06221 (3)0.19737 (3)0.24790 (2)0.02768 (9)
Si10.77723 (8)0.16573 (6)0.25116 (3)0.01926 (16)
Si20.72101 (8)0.26469 (7)0.14487 (4)0.02137 (17)
Si30.67829 (9)0.06634 (7)0.24791 (4)0.02310 (17)
Si40.74993 (9)0.27556 (7)0.36447 (4)0.02177 (17)
C10.8269 (3)0.4443 (2)0.15761 (13)0.0249 (6)
H10.75490.47570.19050.030*
C21.0018 (3)0.4866 (3)0.19270 (15)0.0349 (7)
H2A1.07770.45750.16260.052*
H2B0.99620.44980.23930.052*
H2C1.04350.57940.19870.052*
C30.8371 (4)0.5176 (3)0.08928 (14)0.0335 (7)
H3A0.87530.60910.10150.050*
H3B0.72620.49310.06600.050*
H3C0.91620.49720.05700.050*
C40.7935 (3)0.1980 (3)0.06084 (12)0.0266 (6)
H40.74640.10340.06180.032*
C50.9832 (3)0.2301 (3)0.05683 (14)0.0371 (7)
H5A1.01010.18300.01610.056*
H5B1.02680.20650.10060.056*
H5C1.03450.32140.05130.056*
C60.7282 (4)0.2347 (3)0.00855 (13)0.0388 (7)
H6A0.78140.32570.01460.058*
H6B0.60670.21550.00660.058*
H6C0.75490.18620.04870.058*
C70.4836 (3)0.2270 (2)0.13810 (14)0.0287 (6)
H70.44390.21360.18790.034*
C80.4264 (4)0.3368 (3)0.11280 (17)0.0429 (8)
H8A0.45360.35000.06270.064*
H8B0.48410.41460.14140.064*
H8C0.30530.31550.11820.064*
C90.3878 (3)0.1029 (3)0.09537 (15)0.0394 (7)
H9A0.26920.07720.10730.059*
H9B0.43420.03600.10730.059*
H9C0.39910.11690.04440.059*
C100.6700 (3)0.1257 (3)0.15145 (13)0.0304 (6)
H100.61050.07690.12450.036*
C110.8446 (4)0.0949 (3)0.11986 (15)0.0402 (8)
H11A0.90380.14810.14060.060*
H11B0.90780.00520.13050.060*
H11C0.83370.11180.06830.060*
C120.5697 (4)0.2671 (3)0.13666 (15)0.0423 (8)
H12A0.57980.29100.08660.063*
H12B0.45170.28140.14700.063*
H12C0.61380.31890.16690.063*
C130.4641 (3)0.1251 (2)0.28895 (14)0.0278 (6)
H130.47410.07540.33520.033*
C140.3289 (4)0.0951 (3)0.24525 (16)0.0426 (8)
H14A0.31070.14400.19970.064*
H14B0.36510.00410.23670.064*
H14C0.22440.11780.27140.064*
C150.4016 (4)0.2660 (3)0.30713 (16)0.0402 (7)
H15A0.29670.28360.33270.060*
H15B0.48590.28420.33710.060*
H15C0.38270.31960.26320.060*
C160.8392 (3)0.1171 (2)0.29934 (14)0.0292 (6)
H160.95130.06080.28500.035*
C170.8383 (4)0.2537 (3)0.28398 (15)0.0383 (7)
H17A0.92290.27050.31430.057*
H17B0.86370.26490.23400.057*
H17C0.72770.31290.29380.057*
C180.8317 (4)0.0933 (3)0.38032 (15)0.0461 (8)
H18A0.72580.14940.39760.069*
H18B0.83920.00470.39090.069*
H18C0.92520.11090.40390.069*
C190.5967 (3)0.1584 (2)0.42272 (13)0.0290 (6)
H190.62170.07660.41660.035*
C200.4130 (4)0.1287 (3)0.40018 (18)0.0467 (8)
H20A0.34500.05220.42280.070*
H20B0.40120.11450.34840.070*
H20C0.37510.20030.41490.070*
C210.6171 (4)0.1952 (3)0.50277 (14)0.0486 (9)
H21A0.59290.27490.51180.073*
H21B0.73210.20640.51850.073*
H21C0.53920.12800.52900.073*
C220.9557 (3)0.3395 (2)0.41777 (13)0.0286 (6)
H220.92460.37560.46310.034*
C231.0335 (4)0.2414 (3)0.44175 (15)0.0397 (7)
H23A1.07030.20240.40020.059*
H23B0.95040.17570.46690.059*
H23C1.12990.28310.47360.059*
C241.0893 (3)0.4526 (3)0.38677 (14)0.0364 (7)
H24A1.18060.48870.42180.055*
H24B1.03900.51750.37500.055*
H24C1.13340.42360.34370.055*
C250.6831 (3)0.4212 (2)0.34999 (13)0.0258 (6)
H250.76950.47660.31920.031*
C260.6873 (4)0.5007 (3)0.41963 (14)0.0450 (8)
H26A0.65970.57720.40920.067*
H26B0.79940.52510.44170.067*
H26C0.60530.45020.45220.067*
C270.5152 (4)0.3988 (3)0.31189 (15)0.0392 (7)
H27A0.42430.35720.34340.059*
H27B0.50820.34450.26880.059*
H27C0.50500.48030.29900.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02088 (14)0.03279 (18)0.02927 (15)0.00846 (11)0.00155 (11)0.00149 (12)
Si10.0195 (4)0.0190 (4)0.0191 (4)0.0060 (3)0.0012 (3)0.0007 (3)
Si20.0215 (4)0.0220 (4)0.0204 (4)0.0066 (3)0.0003 (3)0.0017 (3)
Si30.0256 (4)0.0192 (4)0.0247 (4)0.0076 (3)0.0019 (3)0.0009 (3)
Si40.0255 (4)0.0205 (4)0.0195 (4)0.0075 (3)0.0028 (3)0.0008 (3)
C10.0272 (14)0.0233 (15)0.0229 (14)0.0060 (12)0.0038 (11)0.0043 (11)
C20.0326 (16)0.0281 (17)0.0391 (17)0.0031 (13)0.0053 (13)0.0016 (13)
C30.0416 (18)0.0255 (16)0.0336 (16)0.0103 (13)0.0054 (13)0.0078 (13)
C40.0325 (15)0.0280 (16)0.0199 (13)0.0110 (12)0.0005 (11)0.0002 (11)
C50.0398 (18)0.049 (2)0.0266 (15)0.0205 (15)0.0080 (13)0.0018 (14)
C60.0447 (18)0.047 (2)0.0228 (15)0.0122 (15)0.0018 (13)0.0007 (14)
C70.0234 (15)0.0325 (17)0.0306 (15)0.0091 (12)0.0023 (12)0.0033 (13)
C80.0280 (16)0.044 (2)0.059 (2)0.0136 (14)0.0057 (15)0.0083 (16)
C90.0287 (16)0.0406 (19)0.0425 (18)0.0022 (14)0.0059 (13)0.0037 (14)
C100.0392 (17)0.0255 (16)0.0284 (15)0.0138 (13)0.0009 (13)0.0026 (12)
C110.053 (2)0.0409 (19)0.0339 (16)0.0245 (15)0.0101 (15)0.0006 (14)
C120.055 (2)0.0358 (19)0.0371 (17)0.0182 (16)0.0091 (15)0.0096 (14)
C130.0281 (15)0.0207 (15)0.0328 (15)0.0053 (12)0.0030 (12)0.0029 (12)
C140.0303 (17)0.044 (2)0.052 (2)0.0098 (14)0.0021 (14)0.0088 (15)
C150.0404 (18)0.0301 (17)0.0447 (18)0.0030 (14)0.0061 (14)0.0067 (14)
C160.0312 (15)0.0220 (16)0.0371 (16)0.0119 (12)0.0010 (12)0.0045 (12)
C170.0431 (18)0.0310 (18)0.0456 (18)0.0180 (14)0.0007 (15)0.0072 (14)
C180.062 (2)0.042 (2)0.0410 (18)0.0268 (17)0.0133 (16)0.0041 (15)
C190.0364 (16)0.0218 (16)0.0287 (15)0.0086 (12)0.0091 (12)0.0038 (12)
C200.0369 (18)0.0338 (19)0.069 (2)0.0089 (14)0.0210 (16)0.0101 (16)
C210.075 (2)0.036 (2)0.0324 (17)0.0132 (17)0.0229 (16)0.0069 (14)
C220.0327 (16)0.0310 (17)0.0212 (14)0.0097 (13)0.0035 (12)0.0036 (12)
C230.0491 (19)0.042 (2)0.0312 (16)0.0197 (15)0.0109 (14)0.0033 (14)
C240.0348 (17)0.0362 (18)0.0322 (16)0.0041 (14)0.0043 (13)0.0040 (13)
C250.0347 (16)0.0231 (15)0.0211 (13)0.0117 (12)0.0018 (12)0.0006 (11)
C260.077 (2)0.0380 (19)0.0302 (16)0.0336 (17)0.0023 (16)0.0064 (14)
C270.0388 (18)0.0384 (19)0.0464 (18)0.0213 (14)0.0010 (14)0.0007 (15)
Geometric parameters (Å, º) top
Br1—Si12.3185 (7)C12—H12B0.9800
Si1—Si22.4430 (10)C12—H12C0.9800
Si1—Si32.4448 (10)C13—C141.531 (4)
Si1—Si42.4628 (9)C13—C151.541 (4)
Si2—C41.908 (2)C13—H131.0000
Si2—C71.913 (3)C14—H14A0.9800
Si2—C11.914 (3)C14—H14B0.9800
Si3—C101.899 (3)C14—H14C0.9800
Si3—C131.899 (3)C15—H15A0.9800
Si3—C161.903 (3)C15—H15B0.9800
Si4—C221.909 (3)C15—H15C0.9800
Si4—C251.910 (3)C16—C171.533 (4)
Si4—C191.911 (3)C16—C181.543 (4)
C1—C21.532 (3)C16—H161.0000
C1—C31.543 (4)C17—H17A0.9800
C1—H11.0000C17—H17B0.9800
C2—H2A0.9800C17—H17C0.9800
C2—H2B0.9800C18—H18A0.9800
C2—H2C0.9800C18—H18B0.9800
C3—H3A0.9800C18—H18C0.9800
C3—H3B0.9800C19—C201.530 (4)
C3—H3C0.9800C19—C211.539 (4)
C4—C51.528 (4)C19—H191.0000
C4—C61.536 (4)C20—H20A0.9800
C4—H41.0000C20—H20B0.9800
C5—H5A0.9800C20—H20C0.9800
C5—H5B0.9800C21—H21A0.9800
C5—H5C0.9800C21—H21B0.9800
C6—H6A0.9800C21—H21C0.9800
C6—H6B0.9800C22—C231.525 (4)
C6—H6C0.9800C22—C241.538 (4)
C7—C91.543 (4)C22—H221.0000
C7—C81.544 (4)C23—H23A0.9800
C7—H71.0000C23—H23B0.9800
C8—H8A0.9800C23—H23C0.9800
C8—H8B0.9800C24—H24A0.9800
C8—H8C0.9800C24—H24B0.9800
C9—H9A0.9800C24—H24C0.9800
C9—H9B0.9800C25—C271.525 (4)
C9—H9C0.9800C25—C261.543 (3)
C10—C111.534 (4)C25—H251.0000
C10—C121.541 (4)C26—H26A0.9800
C10—H101.0000C26—H26B0.9800
C11—H11A0.9800C26—H26C0.9800
C11—H11B0.9800C27—H27A0.9800
C11—H11C0.9800C27—H27B0.9800
C12—H12A0.9800C27—H27C0.9800
Br1—Si1—Si2103.77 (3)C10—C12—H12C109.5
Br1—Si1—Si398.44 (3)H12A—C12—H12C109.5
Si2—Si1—Si3116.55 (3)H12B—C12—H12C109.5
Br1—Si1—Si4102.65 (3)C14—C13—C15109.5 (2)
Si2—Si1—Si4115.02 (4)C14—C13—Si3112.65 (19)
Si3—Si1—Si4116.59 (4)C15—C13—Si3116.31 (18)
C4—Si2—C7108.70 (11)C14—C13—H13105.9
C4—Si2—C1111.49 (12)C15—C13—H13105.9
C7—Si2—C1109.69 (11)Si3—C13—H13105.9
C4—Si2—Si1112.06 (9)C13—C14—H14A109.5
C7—Si2—Si1106.40 (9)C13—C14—H14B109.5
C1—Si2—Si1108.35 (8)H14A—C14—H14B109.5
C10—Si3—C13111.22 (12)C13—C14—H14C109.5
C10—Si3—C16109.44 (12)H14A—C14—H14C109.5
C13—Si3—C16111.50 (12)H14B—C14—H14C109.5
C10—Si3—Si1107.75 (9)C13—C15—H15A109.5
C13—Si3—Si1109.78 (8)C13—C15—H15B109.5
C16—Si3—Si1106.98 (9)H15A—C15—H15B109.5
C22—Si4—C25104.78 (12)C13—C15—H15C109.5
C22—Si4—C19106.42 (12)H15A—C15—H15C109.5
C25—Si4—C19111.59 (12)H15B—C15—H15C109.5
C22—Si4—Si1112.92 (8)C17—C16—C18108.9 (2)
C25—Si4—Si1111.74 (8)C17—C16—Si3116.29 (19)
C19—Si4—Si1109.24 (8)C18—C16—Si3112.56 (18)
C2—C1—C3107.7 (2)C17—C16—H16106.1
C2—C1—Si2115.52 (18)C18—C16—H16106.1
C3—C1—Si2114.54 (18)Si3—C16—H16106.1
C2—C1—H1106.1C16—C17—H17A109.5
C3—C1—H1106.1C16—C17—H17B109.5
Si2—C1—H1106.1H17A—C17—H17B109.5
C1—C2—H2A109.5C16—C17—H17C109.5
C1—C2—H2B109.5H17A—C17—H17C109.5
H2A—C2—H2B109.5H17B—C17—H17C109.5
C1—C2—H2C109.5C16—C18—H18A109.5
H2A—C2—H2C109.5C16—C18—H18B109.5
H2B—C2—H2C109.5H18A—C18—H18B109.5
C1—C3—H3A109.5C16—C18—H18C109.5
C1—C3—H3B109.5H18A—C18—H18C109.5
H3A—C3—H3B109.5H18B—C18—H18C109.5
C1—C3—H3C109.5C20—C19—C21109.0 (2)
H3A—C3—H3C109.5C20—C19—Si4113.92 (19)
H3B—C3—H3C109.5C21—C19—Si4114.62 (19)
C5—C4—C6108.5 (2)C20—C19—H19106.2
C5—C4—Si2114.13 (17)C21—C19—H19106.2
C6—C4—Si2114.24 (19)Si4—C19—H19106.2
C5—C4—H4106.5C19—C20—H20A109.5
C6—C4—H4106.5C19—C20—H20B109.5
Si2—C4—H4106.5H20A—C20—H20B109.5
C4—C5—H5A109.5C19—C20—H20C109.5
C4—C5—H5B109.5H20A—C20—H20C109.5
H5A—C5—H5B109.5H20B—C20—H20C109.5
C4—C5—H5C109.5C19—C21—H21A109.5
H5A—C5—H5C109.5C19—C21—H21B109.5
H5B—C5—H5C109.5H21A—C21—H21B109.5
C4—C6—H6A109.5C19—C21—H21C109.5
C4—C6—H6B109.5H21A—C21—H21C109.5
H6A—C6—H6B109.5H21B—C21—H21C109.5
C4—C6—H6C109.5C23—C22—C24110.6 (2)
H6A—C6—H6C109.5C23—C22—Si4116.47 (19)
H6B—C6—H6C109.5C24—C22—Si4115.61 (18)
C9—C7—C8109.7 (2)C23—C22—H22104.1
C9—C7—Si2115.43 (18)C24—C22—H22104.1
C8—C7—Si2114.49 (19)Si4—C22—H22104.1
C9—C7—H7105.4C22—C23—H23A109.5
C8—C7—H7105.4C22—C23—H23B109.5
Si2—C7—H7105.4H23A—C23—H23B109.5
C7—C8—H8A109.5C22—C23—H23C109.5
C7—C8—H8B109.5H23A—C23—H23C109.5
H8A—C8—H8B109.5H23B—C23—H23C109.5
C7—C8—H8C109.5C22—C24—H24A109.5
H8A—C8—H8C109.5C22—C24—H24B109.5
H8B—C8—H8C109.5H24A—C24—H24B109.5
C7—C9—H9A109.5C22—C24—H24C109.5
C7—C9—H9B109.5H24A—C24—H24C109.5
H9A—C9—H9B109.5H24B—C24—H24C109.5
C7—C9—H9C109.5C27—C25—C26108.5 (2)
H9A—C9—H9C109.5C27—C25—Si4117.05 (18)
H9B—C9—H9C109.5C26—C25—Si4112.35 (18)
C11—C10—C12110.3 (2)C27—C25—H25106.0
C11—C10—Si3112.34 (19)C26—C25—H25106.0
C12—C10—Si3115.08 (19)Si4—C25—H25106.0
C11—C10—H10106.1C25—C26—H26A109.5
C12—C10—H10106.1C25—C26—H26B109.5
Si3—C10—H10106.1H26A—C26—H26B109.5
C10—C11—H11A109.5C25—C26—H26C109.5
C10—C11—H11B109.5H26A—C26—H26C109.5
H11A—C11—H11B109.5H26B—C26—H26C109.5
C10—C11—H11C109.5C25—C27—H27A109.5
H11A—C11—H11C109.5C25—C27—H27B109.5
H11B—C11—H11C109.5H27A—C27—H27B109.5
C10—C12—H12A109.5C25—C27—H27C109.5
C10—C12—H12B109.5H27A—C27—H27C109.5
H12A—C12—H12B109.5H27B—C27—H27C109.5
C13—Si3—C10—C11172.26 (19)C10—Si3—C13—C1452.9 (2)
C16—Si3—C10—C1148.6 (2)C16—Si3—C13—C14175.32 (19)
Si1—Si3—C10—C1167.4 (2)Si1—Si3—C13—C1466.3 (2)
C13—Si3—C10—C1244.9 (2)C10—Si3—C13—C1574.7 (2)
C16—Si3—C10—C1278.8 (2)C16—Si3—C13—C1547.8 (2)
Si1—Si3—C10—C12165.25 (18)Si1—Si3—C13—C15166.17 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5B···Br10.982.803.711 (3)155
C16—H16···Br11.002.843.584 (3)131
C23—H23A···Br10.982.873.685 (3)142
C24—H24C···Br10.982.933.726 (3)139
Selected bond lengths (Å), bond angles (°) and the fourfold coordination descriptor, τ4,a for compounds I (HypSiBr), II (TipSiBr), III (HypSiCl) and IV (TipSiH) top
CompoundI (HypSiBr)II (TipSiBr)III (HypSiCl)bIV (TipSiH)c
Si1—Xd2.2990 (12)2.3185 (7)2.1248 (9)1.608 (1)
Si1—Sine2.3477 (8)2.4430 (10), 2.4448 (10), 2.4628 (9)2.3406 (6)2.405 (1)
Si2—Si1—Sinf113.69 (2)115.02 (4), 116.55 (3), 116.59 (4)113.13 (2)117.9 (1)
Si2—Si1—Xd104.83 (3)98.44 (3) to 103.77 (3)105.51 (2)98.3 (1)
τ4 of Si10.940.900.950.88
Notes: (a) Yang et al. (2007); (b) Kuzora et al. (2009); (c) X-ray data (Gaspar et al., 1999); (d) X = Br for I and II, Cl for III, and H for IV; (e) n = 2 for I, III and IV, and 2, 3 and 4 for II; (f) n = 2i and 2ii for I, III and IV [symmetry codes: (i) = z, x, y; (ii) = y, z, x], and 2, 3 and 4 for II.
 

Acknowledgements

The authors thank GVSU for financial support (Weldon Fund, CSCE) and Pfizer, Inc. for the donation of a Varian Inova 400 F T NMR. We also thank Jim Krikke for help with instrumentation at GVSU. The CCD-based X-ray diffractometers at Michigan State University were upgraded and/or replaced by departmental funds.

Funding information

Funding for this research was provided by: National Science Foundation, Division of Chemistry (grant Nos. CHE-9108130, CHE-9632897, CCLI CHE-0087655, MRI CHE-1725699); Department of Energy (grant No. DE-AC02-98CH10886).

References

First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFeil, F. & Harder, S. (2003). Eur. J. Inorg. Chem. pp. 3401–3408.  CrossRef Google Scholar
First citationGaspar, P. P., Beatty, A. M., Chen, T., Haile, T., Lei, D., Winchester, W. R., Braddock-Wilking, J., Rath, N. P., Klooster, W. T., Koetzle, T. F., Mason, S. A. & Albinati, A. (1999). Organometallics, 18, 3921–3932.  Web of Science CSD CrossRef CAS Google Scholar
First citationGati, W. & Yamamoto, H. (2016). Acc. Chem. Res. 49, 1757–1768.  CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKayser, C., Fischer, R., Baumgartner, J. & Marschner, C. (2002). Organometallics, 21, 1023–1030.  CrossRef Google Scholar
First citationKuzora, R., Schulz, A., Villinger, A. & Wustrack, R. (2009). Dalton Trans. pp. 9304–9311.  CrossRef Google Scholar
First citationMarschner, C. (2015). Eur. J. Inorg. Chem. pp. 3805–3820.  CrossRef Google Scholar
First citationMechtler, C., Zirngast, M., Baumgartner, J. & Marschner, C. (2004). Eur. J. Inorg. Chem. pp. 3254–3261.  CrossRef Google Scholar
First citationPalmer, D. (2007). CrystalMaker. CrystalMaker Software Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWendel, D., Porzelt, A., Herz, F. A. D., Sarkar, D., Jandl, C., Inoue, S. & Rieger, B. (2017). J. Am. Chem. Soc. 139, 8134–8137.  CrossRef Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZirngast, M., Baumgartner, J. & Marschner, C. (2008). Eur. J. Inorg. Chem. pp. 1078–1087.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds