research communications
Crystal structures of 2-bromo-1,1,1,3,3,3-hexamethyl-2-(trimethylsilyl)trisilane and 2-bromo-1,1,1,3,3,3-hexaisopropyl-2-(triisopropylsilyl)trisilane
aDepartment of Chemistry, Grand Valley State University, 1 Campus Dr., Allendale, MI 49401, USA, bCenter for Crystallographic Research, Department of Chemistry, Michigan State, University, 578 S. Shaw Lane, East Lansing, MI, USA, cDepartment of Chemistry, Washington University, St. Louis, MO 63130-4899, USA, and dDepartment of Chemistry, University of Missouri St. Louis, St. Louis, MO 63121-4499, USA
*Correspondence e-mail: winchesr@gvsu.edu
The synthesis and crystal structures of two tris(trialkylsilyl)silyl bromide compounds, C9H27BrSi4 (I, HypSiBr) and C27H63BrSi4 (II, TipSiBr), are described. Compound I was prepared in 85% yield by free-radical bromination of 1,1,1,3,3,3-hexamethyl-2-(trimethylsilyl)trisilane using bromobutane and 2,2′-azobis(2-methylpropionitrile) as a radical initiator at 333 K. The molecule possesses threefold rotational symmetry, with the central Si atom and the Br atom being located on the threefold rotation axis. The Si—Br bond distance is 2.2990 (12) Å and the Si—Si bond lengths are 2.3477 (8) Å. The Br—Si—Si bond angles are 104.83 (3)° and the Si—Si—Si bond angles are 113.69 (2)°, reflecting the inherent in the three trimethylsilyl groups attached to the central Si atom. Compound II was prepared in 55% yield by free-radical bromination of 1,1,1,3,3,3-hexaisopropyl-2-(triisopropylsilyl)trisilane using N-bromosuccinimide and 2,2′-azobis(2-methylpropionitrile) as a radical initiator at 353 K. Here the Si—Br bond length is 2.3185 (7) Å and the Si—Si bond lengths range from 2.443 (1) to 2.4628 (9) Å. The Br—Si—Si bond angles range from 98.44 (3) to 103.77 (3)°, indicating between the three triisopropylsilyl groups.
1. Chemical context
The steric and electronic effects of the tris(trimethylsilyl)silane group have been exploited for the synthesis and study of a variety of reactive centers including silylenes (Wendel et al., 2017) and silylanions (Kayser et al., 2002; Mechtler et al., 2004; Zirngast et al., 2008; Marschner, 2015). This sterically hindered group has been shown to lead to lower coordination by solvent when it is attached to organolithium compounds (Feil & Harder, 2003). It has also been used in organic synthesis to produce highly stereoselective aldol reactions leading to unique reactivity (Gati & Yamamoto, 2016). For this research we prepared tris(trimethylsilyl)silylbromide (HypSiBr) as a precursor to vinyltris(trimethylsilyl)silane. The even bulkier tris(triisopropylsilyl)silylbromide (TipSiBr) was prepared as a potential precursor to methoxytris(triisopropylsilyl)silane. Herein, we report on the crystal structures of these two sterically hindered silylbromides 2-bromo-1,1,1,3,3,3-hexamethyl-2-(trimethylsilyl)trisilane (I), and 2-bromo-1,1,1,3,3,3-hexaisopropyl-2-(triisopropylsilyl)trisilane (II).
2. Structural commentary
The molecular structure of compound I (HypSiBr), is shown in Fig. 1, and selected geometrical parameters are given in Table 1. The is composed of one trimethylsilyl group, with the central silicon atom Si1 and the bromine atom Br1 lying on a threefold rotation axis. This supersilylbromide crystallized in the cubic Pa with a central 4-coordinate silicon atom, Si1, that deviates slightly from an ideal tetrahedron due to the steric bulk of the attached trimethylsilyl (TMS) groups. The τ4 descriptor for fourfold coordination around Si1 is 0.94 (where, for extreme forms, τ4 = 0.00 for square-planar, 1.00 for tetrahedral and 0.85 for trigonal–pyramidal; Yang et al., 2007). Interestingly, the τ4 descriptor for fourfold coordination around the TMS atom Si2 is 0.99, which demonstrates an ideal tetrahedral geometry around this silicon atom. The Si2—Si1—Si2i,ii bond angle is 113.69 (2)° while the Br1—Si1—Si2 bond angle is 104.83 (3)°, indicating that the trimethylsilyl groups are forced away from one another. The Si1—Br1 bond length is 2.2990 (12) Å. As for Si2, the C—Si2—C bond angles range from 107.1 (2) to 110.55 (17)°, while the C—Si2—Si1 bond angles range from 108.61 (10) to 110.16 (11)°.
The II (TipSiBr), is shown in Fig. 2, and selected geometrical parameters are given in Table 1. This compound crystallized in the triclinic P with a central four-coordinate silicon atom, Si1, that deviates from the ideal tetrahedron as shown from its τ4 descriptor for fourfold coordination of 0.90. The Br1—Si1—Si2/Si3/Si4 bond angles range from 98.44 (3) to 103.77 (3)°, and the Si1—Br1 bond distance is 2.3185 (7) Å, which is longer than that of compound I [2.2990 (12) Å]. The τ4 descriptor values for atoms Si2, Si3 and Si4 (the silicon atoms of the triisopropylsilyl groups) are 0.96, 0.97 and 0.95, respectively, indicating that their coordination geometry is closest to an ideal tetrahedron.
of compound3. Supramolecular features
There are no significant intermolecular contacts, other than weak van der Waals interactions, present in the crystals of compounds I or II. Compound II, however, contains four intramolecular C—H⋯Br hydrogen bonds (Table 2, Fig. 3). These hydrogen bonds contain D⋯A distances that range from from 3.584 (3) to 3.726 (3) Å, and D—H⋯A bond angles that range from 131 to 155°.
|
4. Database survey
The Cambridge Structural Database (CSD, version 5.39, February 2018; Groom et al., 2016) contains 1398 structures containing a Si3Si group. Of these, there are only 42 structures where the central silicon atom is bonded directly to a halogen.
Of particular interest to this work is the structure of tris(trimethylsilyl)chlorosilane (III, HypSiCl) [CSD refcode QULWEA; Kuzora et al., 2009], the isotypic chloro derivative of compound I, and the structure of (iPr3Si)3SiH (IV, TipSiH), isotypic with compounds I and III. The analysis of IV by both X-ray and neutron diffraction has been described by Gaspar et al. (1999). Table 1 contains pertinent bond lengths and bond angles for compounds I, II, III (HypSiCl) and IV (TipSiH).
For compounds I and III the Si—X bond lengths follow the expected trend with the Si1—Cl bond length of QULWEA at 2.1248 (9) Å compared to the Si1—Br1 bond length of 2.2990 (12) Å for compound I. The Si1—Si2 bond length of the bromo derivative I reported here is 2.3477 (8) Å, which is slightly longer than the Si1—Si2 bond length of the chloro derivative at 2.3406 (6) Å. The central silicon atom of the chloro derivative appears less sterically hindered with an Si2—Si1—Cl1 bond angle of 105.508 (18)° and Si2—Si1—Si2i,ii bond angles of 113.126°, versus a smaller Si2—Si1—Br1 bond angle of 104.83 (3)° and a larger Si2—Si1—Si2i,ii bond angle of 113.69 (2)° for compound I [symmetry codes: (i) z, x, y; (ii) y, z, x]. The protio derivative (HypSiH) is a liquid at room temperature, and the structure of the iodo derivative (HypSiI) has not been deposited in the CSD.
The X-ray data for compound IV (TipSiH) was not found in the CSD, but the journal article (Gaspar et al., 1999) contains all pertinent structural data to allow for a comparison with (iPr3Si)3SiBr, viz. compound II (TipSiBr). Like compounds I and III, compound IV crystallizes in the cubic Pa, and the molecule possesses threefold rotation symmetry. The presence of a small hydrogen atom bonded to the central silicon atom Si1 allows the three (iPr3)Si– groups to push further away from one another, resulting in Si2—Si1—Si2i,ii bond angles of 117.9 (1)° and Si2i,ii—Si1—H bond angles of 98.3 (1)° [symmetry codes: (i) z, x, y; (ii) y, z, x]. In II, the corresponding Si—Si—Si bond angles range from 115.02 (4) to 116.59 (4)° and the Si—Si—Br bond angles vary from 98.44 (3) to 103.77 (3)°.
5. Synthesis and crystallization
Compound I: Tris(trimethylsilyl)silane (2.0 g, 8.0 mmol) was added to an oven-dried nitrogen-flushed 250 ml Schlenk flask with a stir-bar. Bromobutane (2.0 g, 14.6 mmol) was filtered through a plug of silica gel in a Pasteur pipette and was transferred into the Schlenk flask. AIBN [2,2-azobis(2-methylpropionitrile); 20 mg] was then added to the flask, and the reaction was heated to 333 K using an oil bath and then heating was stopped. After stirring the reaction overnight at room temperature, GC–MS analysis of a sample indicated incomplete reaction and more AIBN (11 mg) was added to the flask. The reaction was heated once more to 333 K for 1 h. Analysis by GC–MS now indicated that the reaction was complete. The flask was placed in a freezer at 243 K and colourless block-like crystals of I formed overnight. Removal of the solvent in vacuo yielded 2.2 g (85%). 1H NMR (300 MHz, chloroform-d) δ 0.24 (s, 27H); 13C NMR (75 MHz, chloroform-d) δ −0.51 ppm; GC–MS: 11.24 min, m/z = 328, base peak: 73.
Compound II: Tris(triisopropylsilyl)silane (110 mg, 0.22 mmol) was dissolved in freshly distilled benzene (10 ml) along with NBS (45 mg) and AIBN (2 mg, initiator). The mixture was heated using an oil bath at 333 K for 30 min, when GC–MS analysis indicated that no reaction had occurred. At this point the solution was heated with a heat gun until the reaction mixture turned slightly yellow. The yellow colour dissipated in less than 1 min. Analysis of the reaction mixture by 1H NMR indicated that only 60% of the starting material had been consumed. An additional amount of NBS (N-bromosuccinimide; 20 mg) was added to the reaction flask, and the solution was again heated with a heat gun. The product was isolated by removing the solvent in vacuo and extracting the product from the crude reaction mixture with pentane. The pentane solution was filtered through glass wool, concentrated and weighed (135 mg). Analysis of the product with 1H NMR indicated this was 90% pure. The product was further purified by dissolving this solid in 1 ml pentane, cooling to 195 K and isolating the colourless needle-like crystals of II by removing the solvent with a syringe, washing with pentane and drying in vacuo (yield 62 mg, 55%). 1H NMR (300 MHz, C6D6) δ 1.34 (d, J = 7.3 Hz, 54H), 1.66 (heptet, J = 7.4 Hz, 9H); 13C NMR (75 MHz, chloroform-d) δ 16.4, 21.6; HRMS for C17H63BrSi4 calculated 535.2642 (M − C3H7), found 535.2641.
6. Refinement
Crystal data, data collection and structure . For both compounds the hydrogen atoms were placed in calculated positions and refined using a riding model: C—H = 0.98-1.00 Å with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C) for other H atoms.
details are summarized in Table 3
|
Supporting information
https://doi.org/10.1107/S2056989018009696/su5451sup1.cif
contains datablocks I, II, Global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018009696/su5451Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989018009696/su5451IIsup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018009696/su5451Isup4.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989018009696/su5451IIsup5.cml
Data collection: APEX2 (Bruker, 2014) for (I); SMART (Bruker, 2014) for (II). For both structures, cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014). Program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) for (I); SHELXT2013 (Sheldrick, 2015a) for (II). Program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b) for (I); SHELXL2014 (Sheldrick, 2015b) for (II). Molecular graphics: OLEX2 (Dolomanov et al., 2009; Bourhis et al., 2015) for (I); SHELXTL (Sheldrick, 2008) for (II). Software used to prepare material for publication: CrystalMaker (Palmer, 2007) for (I); SHELXTL (Sheldrick, 2008) for (II).C9H27BrSi4 | Mo Kα radiation, λ = 0.71073 Å |
Mr = 327.57 | Cell parameters from 3863 reflections |
Cubic, Pa3 | θ = 2.3–25.3° |
a = 15.6497 (19) Å | µ = 2.37 mm−1 |
V = 3832.8 (14) Å3 | T = 173 K |
Z = 8 | Block, colourless |
F(000) = 1376 | 0.45 × 0.24 × 0.14 mm |
Dx = 1.135 Mg m−3 |
Bruker APEXII CCD diffractometer | 953 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.046 |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | θmax = 25.3°, θmin = 2.3° |
Tmin = 0.571, Tmax = 0.745 | h = −18→16 |
11038 measured reflections | k = −18→17 |
1174 independent reflections | l = −15→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.028 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.075 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0349P)2 + 1.4333P] where P = (Fo2 + 2Fc2)/3 |
1174 reflections | (Δ/σ)max = 0.002 |
46 parameters | Δρmax = 0.31 e Å−3 |
0 restraints | Δρmin = −0.16 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.74011 (2) | 0.74011 (2) | 0.74011 (2) | 0.04337 (17) | |
Si1 | 0.65529 (4) | 0.65529 (4) | 0.65529 (4) | 0.0327 (3) | |
Si2 | 0.69238 (5) | 0.51472 (4) | 0.69229 (5) | 0.0473 (2) | |
C1 | 0.6249 (2) | 0.43945 (18) | 0.6286 (2) | 0.0734 (10) | |
H1A | 0.6331 | 0.4506 | 0.5675 | 0.110* | |
H1B | 0.5646 | 0.4478 | 0.6434 | 0.110* | |
H1C | 0.6415 | 0.3805 | 0.6414 | 0.110* | |
C2 | 0.8079 (2) | 0.49575 (19) | 0.6707 (3) | 0.0943 (14) | |
H2A | 0.8227 | 0.4370 | 0.6866 | 0.141* | |
H2B | 0.8422 | 0.5358 | 0.7044 | 0.141* | |
H2C | 0.8194 | 0.5044 | 0.6098 | 0.141* | |
C3 | 0.6752 (3) | 0.49746 (19) | 0.8090 (2) | 0.0953 (13) | |
H3A | 0.6142 | 0.5032 | 0.8222 | 0.143* | |
H3B | 0.7076 | 0.5401 | 0.8414 | 0.143* | |
H3C | 0.6946 | 0.4401 | 0.8247 | 0.143* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.04337 (17) | 0.04337 (17) | 0.04337 (17) | −0.00621 (10) | −0.00621 (10) | −0.00621 (10) |
Si1 | 0.0327 (3) | 0.0327 (3) | 0.0327 (3) | −0.0008 (3) | −0.0008 (3) | −0.0008 (3) |
Si2 | 0.0529 (5) | 0.0317 (4) | 0.0573 (5) | −0.0013 (3) | −0.0106 (4) | 0.0008 (3) |
C1 | 0.087 (2) | 0.0426 (16) | 0.091 (2) | −0.0092 (16) | −0.0304 (19) | −0.0051 (16) |
C2 | 0.056 (2) | 0.0494 (19) | 0.178 (4) | 0.0145 (16) | −0.007 (2) | 0.001 (2) |
C3 | 0.168 (4) | 0.052 (2) | 0.066 (2) | 0.006 (2) | −0.019 (2) | 0.0183 (17) |
Br1—Si1 | 2.2990 (12) | Si2—C1 | 1.870 (3) |
Si1—Si2i | 2.3478 (8) | Si2—C2 | 1.862 (3) |
Si1—Si2 | 2.3477 (8) | Si2—C3 | 1.866 (3) |
Si1—Si2ii | 2.3478 (8) | ||
Br1—Si1—Si2 | 104.83 (3) | C1—Si2—Si1 | 108.61 (10) |
Br1—Si1—Si2ii | 104.83 (3) | C2—Si2—Si1 | 110.16 (11) |
Br1—Si1—Si2i | 104.83 (3) | C2—Si2—C1 | 110.55 (17) |
Si2—Si1—Si2ii | 113.69 (2) | C2—Si2—C3 | 107.12 (19) |
Si2—Si1—Si2i | 113.69 (3) | C3—Si2—Si1 | 109.96 (10) |
Si2i—Si1—Si2ii | 113.69 (2) | C3—Si2—C1 | 110.45 (16) |
Symmetry codes: (i) y, z, x; (ii) z, x, y. |
C27H63BrSi4 | Z = 2 |
Mr = 580.04 | F(000) = 632 |
Triclinic, P1 | Dx = 1.150 Mg m−3 |
a = 8.4412 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.1336 (6) Å | Cell parameters from 8192 reflections |
c = 18.8477 (10) Å | θ = 2.0–26.0° |
α = 92.565 (4)° | µ = 1.38 mm−1 |
β = 90.527 (4)° | T = 173 K |
γ = 108.718 (4)° | Needles, colourless |
V = 1675.44 (15) Å3 | 0.38 × 0.10 × 0.02 mm |
Bruker SMART APEX CCD area detector diffractometer | 6628 independent reflections |
Radiation source: sealed tube | 4752 reflections with I > 2σ(I) |
Detector resolution: 8 pixels mm-1 | Rint = 0.057 |
ω and φ scans | θmax = 26.3°, θmin = 1.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | h = −10→10 |
Tmin = 0.554, Tmax = 0.674 | k = −13→13 |
21505 measured reflections | l = −23→23 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.075 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0274P)2 + 0.3128P] where P = (Fo2 + 2Fc2)/3 |
6628 reflections | (Δ/σ)max = 0.001 |
307 parameters | Δρmax = 0.36 e Å−3 |
0 restraints | Δρmin = −0.28 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. All H atoms were positioned geometrically and refined using a riding model with C—H = 0.95–0.99 Å and wAith Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C). |
x | y | z | Uiso*/Ueq | ||
Br1 | 1.06221 (3) | 0.19737 (3) | 0.24790 (2) | 0.02768 (9) | |
Si1 | 0.77723 (8) | 0.16573 (6) | 0.25116 (3) | 0.01926 (16) | |
Si2 | 0.72101 (8) | 0.26469 (7) | 0.14487 (4) | 0.02137 (17) | |
Si3 | 0.67829 (9) | −0.06634 (7) | 0.24791 (4) | 0.02310 (17) | |
Si4 | 0.74993 (9) | 0.27556 (7) | 0.36447 (4) | 0.02177 (17) | |
C1 | 0.8269 (3) | 0.4443 (2) | 0.15761 (13) | 0.0249 (6) | |
H1 | 0.7549 | 0.4757 | 0.1905 | 0.030* | |
C2 | 1.0018 (3) | 0.4866 (3) | 0.19270 (15) | 0.0349 (7) | |
H2A | 1.0777 | 0.4575 | 0.1626 | 0.052* | |
H2B | 0.9962 | 0.4498 | 0.2393 | 0.052* | |
H2C | 1.0435 | 0.5794 | 0.1987 | 0.052* | |
C3 | 0.8371 (4) | 0.5176 (3) | 0.08928 (14) | 0.0335 (7) | |
H3A | 0.8753 | 0.6091 | 0.1015 | 0.050* | |
H3B | 0.7262 | 0.4931 | 0.0660 | 0.050* | |
H3C | 0.9162 | 0.4972 | 0.0570 | 0.050* | |
C4 | 0.7935 (3) | 0.1980 (3) | 0.06084 (12) | 0.0266 (6) | |
H4 | 0.7464 | 0.1034 | 0.0618 | 0.032* | |
C5 | 0.9832 (3) | 0.2301 (3) | 0.05683 (14) | 0.0371 (7) | |
H5A | 1.0101 | 0.1830 | 0.0161 | 0.056* | |
H5B | 1.0268 | 0.2065 | 0.1006 | 0.056* | |
H5C | 1.0345 | 0.3214 | 0.0513 | 0.056* | |
C6 | 0.7282 (4) | 0.2347 (3) | −0.00855 (13) | 0.0388 (7) | |
H6A | 0.7814 | 0.3257 | −0.0146 | 0.058* | |
H6B | 0.6067 | 0.2155 | −0.0066 | 0.058* | |
H6C | 0.7549 | 0.1862 | −0.0487 | 0.058* | |
C7 | 0.4836 (3) | 0.2270 (2) | 0.13810 (14) | 0.0287 (6) | |
H7 | 0.4439 | 0.2136 | 0.1879 | 0.034* | |
C8 | 0.4264 (4) | 0.3368 (3) | 0.11280 (17) | 0.0429 (8) | |
H8A | 0.4536 | 0.3500 | 0.0627 | 0.064* | |
H8B | 0.4841 | 0.4146 | 0.1414 | 0.064* | |
H8C | 0.3053 | 0.3155 | 0.1182 | 0.064* | |
C9 | 0.3878 (3) | 0.1029 (3) | 0.09537 (15) | 0.0394 (7) | |
H9A | 0.2692 | 0.0772 | 0.1073 | 0.059* | |
H9B | 0.4342 | 0.0360 | 0.1073 | 0.059* | |
H9C | 0.3991 | 0.1169 | 0.0444 | 0.059* | |
C10 | 0.6700 (3) | −0.1257 (3) | 0.15145 (13) | 0.0304 (6) | |
H10 | 0.6105 | −0.0769 | 0.1245 | 0.036* | |
C11 | 0.8446 (4) | −0.0949 (3) | 0.11986 (15) | 0.0402 (8) | |
H11A | 0.9038 | −0.1481 | 0.1406 | 0.060* | |
H11B | 0.9078 | −0.0052 | 0.1305 | 0.060* | |
H11C | 0.8337 | −0.1118 | 0.0683 | 0.060* | |
C12 | 0.5697 (4) | −0.2671 (3) | 0.13666 (15) | 0.0423 (8) | |
H12A | 0.5798 | −0.2910 | 0.0866 | 0.063* | |
H12B | 0.4517 | −0.2814 | 0.1470 | 0.063* | |
H12C | 0.6138 | −0.3189 | 0.1669 | 0.063* | |
C13 | 0.4641 (3) | −0.1251 (2) | 0.28895 (14) | 0.0278 (6) | |
H13 | 0.4741 | −0.0754 | 0.3352 | 0.033* | |
C14 | 0.3289 (4) | −0.0951 (3) | 0.24525 (16) | 0.0426 (8) | |
H14A | 0.3107 | −0.1440 | 0.1997 | 0.064* | |
H14B | 0.3651 | −0.0041 | 0.2367 | 0.064* | |
H14C | 0.2244 | −0.1178 | 0.2714 | 0.064* | |
C15 | 0.4016 (4) | −0.2660 (3) | 0.30713 (16) | 0.0402 (7) | |
H15A | 0.2967 | −0.2836 | 0.3327 | 0.060* | |
H15B | 0.4859 | −0.2842 | 0.3371 | 0.060* | |
H15C | 0.3827 | −0.3196 | 0.2632 | 0.060* | |
C16 | 0.8392 (3) | −0.1171 (2) | 0.29934 (14) | 0.0292 (6) | |
H16 | 0.9513 | −0.0608 | 0.2850 | 0.035* | |
C17 | 0.8383 (4) | −0.2537 (3) | 0.28398 (15) | 0.0383 (7) | |
H17A | 0.9229 | −0.2705 | 0.3143 | 0.057* | |
H17B | 0.8637 | −0.2649 | 0.2340 | 0.057* | |
H17C | 0.7277 | −0.3129 | 0.2938 | 0.057* | |
C18 | 0.8317 (4) | −0.0933 (3) | 0.38032 (15) | 0.0461 (8) | |
H18A | 0.7258 | −0.1494 | 0.3976 | 0.069* | |
H18B | 0.8392 | −0.0047 | 0.3909 | 0.069* | |
H18C | 0.9252 | −0.1109 | 0.4039 | 0.069* | |
C19 | 0.5967 (3) | 0.1584 (2) | 0.42272 (13) | 0.0290 (6) | |
H19 | 0.6217 | 0.0766 | 0.4166 | 0.035* | |
C20 | 0.4130 (4) | 0.1287 (3) | 0.40018 (18) | 0.0467 (8) | |
H20A | 0.3450 | 0.0522 | 0.4228 | 0.070* | |
H20B | 0.4012 | 0.1145 | 0.3484 | 0.070* | |
H20C | 0.3751 | 0.2003 | 0.4149 | 0.070* | |
C21 | 0.6171 (4) | 0.1952 (3) | 0.50277 (14) | 0.0486 (9) | |
H21A | 0.5929 | 0.2749 | 0.5118 | 0.073* | |
H21B | 0.7321 | 0.2064 | 0.5185 | 0.073* | |
H21C | 0.5392 | 0.1280 | 0.5290 | 0.073* | |
C22 | 0.9557 (3) | 0.3395 (2) | 0.41777 (13) | 0.0286 (6) | |
H22 | 0.9246 | 0.3756 | 0.4631 | 0.034* | |
C23 | 1.0335 (4) | 0.2414 (3) | 0.44175 (15) | 0.0397 (7) | |
H23A | 1.0703 | 0.2024 | 0.4002 | 0.059* | |
H23B | 0.9504 | 0.1757 | 0.4669 | 0.059* | |
H23C | 1.1299 | 0.2831 | 0.4736 | 0.059* | |
C24 | 1.0893 (3) | 0.4526 (3) | 0.38677 (14) | 0.0364 (7) | |
H24A | 1.1806 | 0.4887 | 0.4218 | 0.055* | |
H24B | 1.0390 | 0.5175 | 0.3750 | 0.055* | |
H24C | 1.1334 | 0.4236 | 0.3437 | 0.055* | |
C25 | 0.6831 (3) | 0.4212 (2) | 0.34999 (13) | 0.0258 (6) | |
H25 | 0.7695 | 0.4766 | 0.3192 | 0.031* | |
C26 | 0.6873 (4) | 0.5007 (3) | 0.41963 (14) | 0.0450 (8) | |
H26A | 0.6597 | 0.5772 | 0.4092 | 0.067* | |
H26B | 0.7994 | 0.5251 | 0.4417 | 0.067* | |
H26C | 0.6053 | 0.4502 | 0.4522 | 0.067* | |
C27 | 0.5152 (4) | 0.3988 (3) | 0.31189 (15) | 0.0392 (7) | |
H27A | 0.4243 | 0.3572 | 0.3434 | 0.059* | |
H27B | 0.5082 | 0.3445 | 0.2688 | 0.059* | |
H27C | 0.5050 | 0.4803 | 0.2990 | 0.059* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.02088 (14) | 0.03279 (18) | 0.02927 (15) | 0.00846 (11) | 0.00155 (11) | 0.00149 (12) |
Si1 | 0.0195 (4) | 0.0190 (4) | 0.0191 (4) | 0.0060 (3) | 0.0012 (3) | 0.0007 (3) |
Si2 | 0.0215 (4) | 0.0220 (4) | 0.0204 (4) | 0.0066 (3) | 0.0003 (3) | 0.0017 (3) |
Si3 | 0.0256 (4) | 0.0192 (4) | 0.0247 (4) | 0.0076 (3) | 0.0019 (3) | 0.0009 (3) |
Si4 | 0.0255 (4) | 0.0205 (4) | 0.0195 (4) | 0.0075 (3) | 0.0028 (3) | 0.0008 (3) |
C1 | 0.0272 (14) | 0.0233 (15) | 0.0229 (14) | 0.0060 (12) | 0.0038 (11) | 0.0043 (11) |
C2 | 0.0326 (16) | 0.0281 (17) | 0.0391 (17) | 0.0031 (13) | −0.0053 (13) | 0.0016 (13) |
C3 | 0.0416 (18) | 0.0255 (16) | 0.0336 (16) | 0.0103 (13) | 0.0054 (13) | 0.0078 (13) |
C4 | 0.0325 (15) | 0.0280 (16) | 0.0199 (13) | 0.0110 (12) | −0.0005 (11) | −0.0002 (11) |
C5 | 0.0398 (18) | 0.049 (2) | 0.0266 (15) | 0.0205 (15) | 0.0080 (13) | 0.0018 (14) |
C6 | 0.0447 (18) | 0.047 (2) | 0.0228 (15) | 0.0122 (15) | −0.0018 (13) | −0.0007 (14) |
C7 | 0.0234 (15) | 0.0325 (17) | 0.0306 (15) | 0.0091 (12) | −0.0023 (12) | 0.0033 (13) |
C8 | 0.0280 (16) | 0.044 (2) | 0.059 (2) | 0.0136 (14) | −0.0057 (15) | 0.0083 (16) |
C9 | 0.0287 (16) | 0.0406 (19) | 0.0425 (18) | 0.0022 (14) | −0.0059 (13) | 0.0037 (14) |
C10 | 0.0392 (17) | 0.0255 (16) | 0.0284 (15) | 0.0138 (13) | 0.0009 (13) | −0.0026 (12) |
C11 | 0.053 (2) | 0.0409 (19) | 0.0339 (16) | 0.0245 (15) | 0.0101 (15) | 0.0006 (14) |
C12 | 0.055 (2) | 0.0358 (19) | 0.0371 (17) | 0.0182 (16) | −0.0091 (15) | −0.0096 (14) |
C13 | 0.0281 (15) | 0.0207 (15) | 0.0328 (15) | 0.0053 (12) | 0.0030 (12) | 0.0029 (12) |
C14 | 0.0303 (17) | 0.044 (2) | 0.052 (2) | 0.0098 (14) | 0.0021 (14) | 0.0088 (15) |
C15 | 0.0404 (18) | 0.0301 (17) | 0.0447 (18) | 0.0030 (14) | 0.0061 (14) | 0.0067 (14) |
C16 | 0.0312 (15) | 0.0220 (16) | 0.0371 (16) | 0.0119 (12) | −0.0010 (12) | 0.0045 (12) |
C17 | 0.0431 (18) | 0.0310 (18) | 0.0456 (18) | 0.0180 (14) | 0.0007 (15) | 0.0072 (14) |
C18 | 0.062 (2) | 0.042 (2) | 0.0410 (18) | 0.0268 (17) | −0.0133 (16) | −0.0041 (15) |
C19 | 0.0364 (16) | 0.0218 (16) | 0.0287 (15) | 0.0086 (12) | 0.0091 (12) | 0.0038 (12) |
C20 | 0.0369 (18) | 0.0338 (19) | 0.069 (2) | 0.0089 (14) | 0.0210 (16) | 0.0101 (16) |
C21 | 0.075 (2) | 0.036 (2) | 0.0324 (17) | 0.0132 (17) | 0.0229 (16) | 0.0069 (14) |
C22 | 0.0327 (16) | 0.0310 (17) | 0.0212 (14) | 0.0097 (13) | −0.0035 (12) | −0.0036 (12) |
C23 | 0.0491 (19) | 0.042 (2) | 0.0312 (16) | 0.0197 (15) | −0.0109 (14) | −0.0033 (14) |
C24 | 0.0348 (17) | 0.0362 (18) | 0.0322 (16) | 0.0041 (14) | −0.0043 (13) | −0.0040 (13) |
C25 | 0.0347 (16) | 0.0231 (15) | 0.0211 (13) | 0.0117 (12) | 0.0018 (12) | −0.0006 (11) |
C26 | 0.077 (2) | 0.0380 (19) | 0.0302 (16) | 0.0336 (17) | −0.0023 (16) | −0.0064 (14) |
C27 | 0.0388 (18) | 0.0384 (19) | 0.0464 (18) | 0.0213 (14) | −0.0010 (14) | 0.0007 (15) |
Br1—Si1 | 2.3185 (7) | C12—H12B | 0.9800 |
Si1—Si2 | 2.4430 (10) | C12—H12C | 0.9800 |
Si1—Si3 | 2.4448 (10) | C13—C14 | 1.531 (4) |
Si1—Si4 | 2.4628 (9) | C13—C15 | 1.541 (4) |
Si2—C4 | 1.908 (2) | C13—H13 | 1.0000 |
Si2—C7 | 1.913 (3) | C14—H14A | 0.9800 |
Si2—C1 | 1.914 (3) | C14—H14B | 0.9800 |
Si3—C10 | 1.899 (3) | C14—H14C | 0.9800 |
Si3—C13 | 1.899 (3) | C15—H15A | 0.9800 |
Si3—C16 | 1.903 (3) | C15—H15B | 0.9800 |
Si4—C22 | 1.909 (3) | C15—H15C | 0.9800 |
Si4—C25 | 1.910 (3) | C16—C17 | 1.533 (4) |
Si4—C19 | 1.911 (3) | C16—C18 | 1.543 (4) |
C1—C2 | 1.532 (3) | C16—H16 | 1.0000 |
C1—C3 | 1.543 (4) | C17—H17A | 0.9800 |
C1—H1 | 1.0000 | C17—H17B | 0.9800 |
C2—H2A | 0.9800 | C17—H17C | 0.9800 |
C2—H2B | 0.9800 | C18—H18A | 0.9800 |
C2—H2C | 0.9800 | C18—H18B | 0.9800 |
C3—H3A | 0.9800 | C18—H18C | 0.9800 |
C3—H3B | 0.9800 | C19—C20 | 1.530 (4) |
C3—H3C | 0.9800 | C19—C21 | 1.539 (4) |
C4—C5 | 1.528 (4) | C19—H19 | 1.0000 |
C4—C6 | 1.536 (4) | C20—H20A | 0.9800 |
C4—H4 | 1.0000 | C20—H20B | 0.9800 |
C5—H5A | 0.9800 | C20—H20C | 0.9800 |
C5—H5B | 0.9800 | C21—H21A | 0.9800 |
C5—H5C | 0.9800 | C21—H21B | 0.9800 |
C6—H6A | 0.9800 | C21—H21C | 0.9800 |
C6—H6B | 0.9800 | C22—C23 | 1.525 (4) |
C6—H6C | 0.9800 | C22—C24 | 1.538 (4) |
C7—C9 | 1.543 (4) | C22—H22 | 1.0000 |
C7—C8 | 1.544 (4) | C23—H23A | 0.9800 |
C7—H7 | 1.0000 | C23—H23B | 0.9800 |
C8—H8A | 0.9800 | C23—H23C | 0.9800 |
C8—H8B | 0.9800 | C24—H24A | 0.9800 |
C8—H8C | 0.9800 | C24—H24B | 0.9800 |
C9—H9A | 0.9800 | C24—H24C | 0.9800 |
C9—H9B | 0.9800 | C25—C27 | 1.525 (4) |
C9—H9C | 0.9800 | C25—C26 | 1.543 (3) |
C10—C11 | 1.534 (4) | C25—H25 | 1.0000 |
C10—C12 | 1.541 (4) | C26—H26A | 0.9800 |
C10—H10 | 1.0000 | C26—H26B | 0.9800 |
C11—H11A | 0.9800 | C26—H26C | 0.9800 |
C11—H11B | 0.9800 | C27—H27A | 0.9800 |
C11—H11C | 0.9800 | C27—H27B | 0.9800 |
C12—H12A | 0.9800 | C27—H27C | 0.9800 |
Br1—Si1—Si2 | 103.77 (3) | C10—C12—H12C | 109.5 |
Br1—Si1—Si3 | 98.44 (3) | H12A—C12—H12C | 109.5 |
Si2—Si1—Si3 | 116.55 (3) | H12B—C12—H12C | 109.5 |
Br1—Si1—Si4 | 102.65 (3) | C14—C13—C15 | 109.5 (2) |
Si2—Si1—Si4 | 115.02 (4) | C14—C13—Si3 | 112.65 (19) |
Si3—Si1—Si4 | 116.59 (4) | C15—C13—Si3 | 116.31 (18) |
C4—Si2—C7 | 108.70 (11) | C14—C13—H13 | 105.9 |
C4—Si2—C1 | 111.49 (12) | C15—C13—H13 | 105.9 |
C7—Si2—C1 | 109.69 (11) | Si3—C13—H13 | 105.9 |
C4—Si2—Si1 | 112.06 (9) | C13—C14—H14A | 109.5 |
C7—Si2—Si1 | 106.40 (9) | C13—C14—H14B | 109.5 |
C1—Si2—Si1 | 108.35 (8) | H14A—C14—H14B | 109.5 |
C10—Si3—C13 | 111.22 (12) | C13—C14—H14C | 109.5 |
C10—Si3—C16 | 109.44 (12) | H14A—C14—H14C | 109.5 |
C13—Si3—C16 | 111.50 (12) | H14B—C14—H14C | 109.5 |
C10—Si3—Si1 | 107.75 (9) | C13—C15—H15A | 109.5 |
C13—Si3—Si1 | 109.78 (8) | C13—C15—H15B | 109.5 |
C16—Si3—Si1 | 106.98 (9) | H15A—C15—H15B | 109.5 |
C22—Si4—C25 | 104.78 (12) | C13—C15—H15C | 109.5 |
C22—Si4—C19 | 106.42 (12) | H15A—C15—H15C | 109.5 |
C25—Si4—C19 | 111.59 (12) | H15B—C15—H15C | 109.5 |
C22—Si4—Si1 | 112.92 (8) | C17—C16—C18 | 108.9 (2) |
C25—Si4—Si1 | 111.74 (8) | C17—C16—Si3 | 116.29 (19) |
C19—Si4—Si1 | 109.24 (8) | C18—C16—Si3 | 112.56 (18) |
C2—C1—C3 | 107.7 (2) | C17—C16—H16 | 106.1 |
C2—C1—Si2 | 115.52 (18) | C18—C16—H16 | 106.1 |
C3—C1—Si2 | 114.54 (18) | Si3—C16—H16 | 106.1 |
C2—C1—H1 | 106.1 | C16—C17—H17A | 109.5 |
C3—C1—H1 | 106.1 | C16—C17—H17B | 109.5 |
Si2—C1—H1 | 106.1 | H17A—C17—H17B | 109.5 |
C1—C2—H2A | 109.5 | C16—C17—H17C | 109.5 |
C1—C2—H2B | 109.5 | H17A—C17—H17C | 109.5 |
H2A—C2—H2B | 109.5 | H17B—C17—H17C | 109.5 |
C1—C2—H2C | 109.5 | C16—C18—H18A | 109.5 |
H2A—C2—H2C | 109.5 | C16—C18—H18B | 109.5 |
H2B—C2—H2C | 109.5 | H18A—C18—H18B | 109.5 |
C1—C3—H3A | 109.5 | C16—C18—H18C | 109.5 |
C1—C3—H3B | 109.5 | H18A—C18—H18C | 109.5 |
H3A—C3—H3B | 109.5 | H18B—C18—H18C | 109.5 |
C1—C3—H3C | 109.5 | C20—C19—C21 | 109.0 (2) |
H3A—C3—H3C | 109.5 | C20—C19—Si4 | 113.92 (19) |
H3B—C3—H3C | 109.5 | C21—C19—Si4 | 114.62 (19) |
C5—C4—C6 | 108.5 (2) | C20—C19—H19 | 106.2 |
C5—C4—Si2 | 114.13 (17) | C21—C19—H19 | 106.2 |
C6—C4—Si2 | 114.24 (19) | Si4—C19—H19 | 106.2 |
C5—C4—H4 | 106.5 | C19—C20—H20A | 109.5 |
C6—C4—H4 | 106.5 | C19—C20—H20B | 109.5 |
Si2—C4—H4 | 106.5 | H20A—C20—H20B | 109.5 |
C4—C5—H5A | 109.5 | C19—C20—H20C | 109.5 |
C4—C5—H5B | 109.5 | H20A—C20—H20C | 109.5 |
H5A—C5—H5B | 109.5 | H20B—C20—H20C | 109.5 |
C4—C5—H5C | 109.5 | C19—C21—H21A | 109.5 |
H5A—C5—H5C | 109.5 | C19—C21—H21B | 109.5 |
H5B—C5—H5C | 109.5 | H21A—C21—H21B | 109.5 |
C4—C6—H6A | 109.5 | C19—C21—H21C | 109.5 |
C4—C6—H6B | 109.5 | H21A—C21—H21C | 109.5 |
H6A—C6—H6B | 109.5 | H21B—C21—H21C | 109.5 |
C4—C6—H6C | 109.5 | C23—C22—C24 | 110.6 (2) |
H6A—C6—H6C | 109.5 | C23—C22—Si4 | 116.47 (19) |
H6B—C6—H6C | 109.5 | C24—C22—Si4 | 115.61 (18) |
C9—C7—C8 | 109.7 (2) | C23—C22—H22 | 104.1 |
C9—C7—Si2 | 115.43 (18) | C24—C22—H22 | 104.1 |
C8—C7—Si2 | 114.49 (19) | Si4—C22—H22 | 104.1 |
C9—C7—H7 | 105.4 | C22—C23—H23A | 109.5 |
C8—C7—H7 | 105.4 | C22—C23—H23B | 109.5 |
Si2—C7—H7 | 105.4 | H23A—C23—H23B | 109.5 |
C7—C8—H8A | 109.5 | C22—C23—H23C | 109.5 |
C7—C8—H8B | 109.5 | H23A—C23—H23C | 109.5 |
H8A—C8—H8B | 109.5 | H23B—C23—H23C | 109.5 |
C7—C8—H8C | 109.5 | C22—C24—H24A | 109.5 |
H8A—C8—H8C | 109.5 | C22—C24—H24B | 109.5 |
H8B—C8—H8C | 109.5 | H24A—C24—H24B | 109.5 |
C7—C9—H9A | 109.5 | C22—C24—H24C | 109.5 |
C7—C9—H9B | 109.5 | H24A—C24—H24C | 109.5 |
H9A—C9—H9B | 109.5 | H24B—C24—H24C | 109.5 |
C7—C9—H9C | 109.5 | C27—C25—C26 | 108.5 (2) |
H9A—C9—H9C | 109.5 | C27—C25—Si4 | 117.05 (18) |
H9B—C9—H9C | 109.5 | C26—C25—Si4 | 112.35 (18) |
C11—C10—C12 | 110.3 (2) | C27—C25—H25 | 106.0 |
C11—C10—Si3 | 112.34 (19) | C26—C25—H25 | 106.0 |
C12—C10—Si3 | 115.08 (19) | Si4—C25—H25 | 106.0 |
C11—C10—H10 | 106.1 | C25—C26—H26A | 109.5 |
C12—C10—H10 | 106.1 | C25—C26—H26B | 109.5 |
Si3—C10—H10 | 106.1 | H26A—C26—H26B | 109.5 |
C10—C11—H11A | 109.5 | C25—C26—H26C | 109.5 |
C10—C11—H11B | 109.5 | H26A—C26—H26C | 109.5 |
H11A—C11—H11B | 109.5 | H26B—C26—H26C | 109.5 |
C10—C11—H11C | 109.5 | C25—C27—H27A | 109.5 |
H11A—C11—H11C | 109.5 | C25—C27—H27B | 109.5 |
H11B—C11—H11C | 109.5 | H27A—C27—H27B | 109.5 |
C10—C12—H12A | 109.5 | C25—C27—H27C | 109.5 |
C10—C12—H12B | 109.5 | H27A—C27—H27C | 109.5 |
H12A—C12—H12B | 109.5 | H27B—C27—H27C | 109.5 |
C13—Si3—C10—C11 | −172.26 (19) | C10—Si3—C13—C14 | −52.9 (2) |
C16—Si3—C10—C11 | −48.6 (2) | C16—Si3—C13—C14 | −175.32 (19) |
Si1—Si3—C10—C11 | 67.4 (2) | Si1—Si3—C13—C14 | 66.3 (2) |
C13—Si3—C10—C12 | −44.9 (2) | C10—Si3—C13—C15 | 74.7 (2) |
C16—Si3—C10—C12 | 78.8 (2) | C16—Si3—C13—C15 | −47.8 (2) |
Si1—Si3—C10—C12 | −165.25 (18) | Si1—Si3—C13—C15 | −166.17 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5B···Br1 | 0.98 | 2.80 | 3.711 (3) | 155 |
C16—H16···Br1 | 1.00 | 2.84 | 3.584 (3) | 131 |
C23—H23A···Br1 | 0.98 | 2.87 | 3.685 (3) | 142 |
C24—H24C···Br1 | 0.98 | 2.93 | 3.726 (3) | 139 |
Compound | I (HypSiBr) | II (TipSiBr) | III (HypSiCl)b | IV (TipSiH)c |
Si1—Xd | 2.2990 (12) | 2.3185 (7) | 2.1248 (9) | 1.608 (1) |
Si1—Sine | 2.3477 (8) | 2.4430 (10), 2.4448 (10), 2.4628 (9) | 2.3406 (6) | 2.405 (1) |
Si2—Si1—Sinf | 113.69 (2) | 115.02 (4), 116.55 (3), 116.59 (4) | 113.13 (2) | 117.9 (1) |
Si2—Si1—Xd | 104.83 (3) | 98.44 (3) to 103.77 (3) | 105.51 (2) | 98.3 (1) |
τ4 of Si1 | 0.94 | 0.90 | 0.95 | 0.88 |
Notes: (a) Yang et al. (2007); (b) Kuzora et al. (2009); (c) X-ray data (Gaspar et al., 1999); (d) X = Br for I and II, Cl for III, and H for IV; (e) n = 2 for I, III and IV, and 2, 3 and 4 for II; (f) n = 2i and 2ii for I, III and IV [symmetry codes: (i) = z, x, y; (ii) = y, z, x], and 2, 3 and 4 for II. |
Acknowledgements
The authors thank GVSU for financial support (Weldon Fund, CSCE) and Pfizer, Inc. for the donation of a Varian Inova 400 F T NMR. We also thank Jim Krikke for help with instrumentation at GVSU. The CCD-based X-ray diffractometers at Michigan State University were upgraded and/or replaced by departmental funds.
Funding information
Funding for this research was provided by: National Science Foundation, Division of Chemistry (grant Nos. CHE-9108130, CHE-9632897, CCLI CHE-0087655, MRI CHE-1725699); Department of Energy (grant No. DE-AC02-98CH10886).
References
Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. Web of Science CrossRef IUCr Journals Google Scholar
Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Feil, F. & Harder, S. (2003). Eur. J. Inorg. Chem. pp. 3401–3408. CrossRef Google Scholar
Gaspar, P. P., Beatty, A. M., Chen, T., Haile, T., Lei, D., Winchester, W. R., Braddock-Wilking, J., Rath, N. P., Klooster, W. T., Koetzle, T. F., Mason, S. A. & Albinati, A. (1999). Organometallics, 18, 3921–3932. Web of Science CSD CrossRef CAS Google Scholar
Gati, W. & Yamamoto, H. (2016). Acc. Chem. Res. 49, 1757–1768. CrossRef Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kayser, C., Fischer, R., Baumgartner, J. & Marschner, C. (2002). Organometallics, 21, 1023–1030. CrossRef Google Scholar
Kuzora, R., Schulz, A., Villinger, A. & Wustrack, R. (2009). Dalton Trans. pp. 9304–9311. CrossRef Google Scholar
Marschner, C. (2015). Eur. J. Inorg. Chem. pp. 3805–3820. CrossRef Google Scholar
Mechtler, C., Zirngast, M., Baumgartner, J. & Marschner, C. (2004). Eur. J. Inorg. Chem. pp. 3254–3261. CrossRef Google Scholar
Palmer, D. (2007). CrystalMaker. CrystalMaker Software Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Wendel, D., Porzelt, A., Herz, F. A. D., Sarkar, D., Jandl, C., Inoue, S. & Rieger, B. (2017). J. Am. Chem. Soc. 139, 8134–8137. CrossRef Google Scholar
Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zirngast, M., Baumgartner, J. & Marschner, C. (2008). Eur. J. Inorg. Chem. pp. 1078–1087. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.