research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a seven-coordinate manganese(II) complex with tris­­(pyridin-2-ylmeth­yl)amine (TMPA)

aDepartment of Chemistry, Skidmore College, 815 North Broadway, Saratoga Springs, NY 12866, USA, and bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: sfrey@skidmore.edu

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 22 June 2018; accepted 4 July 2018; online 10 July 2018)

Structural analysis of (acetato-κ2O,O′)(methanol-κO)[tris­(pyridin-2-ylmeth­yl)amine-κ4N,N′,N′′,N′′′]manganese(II) tetraphenyl­borate, [Mn(C2H3O2)(C18H18N4)(CH3OH)](C24H20B) or [Mn(TMPA)(Ac)(CH3OH)]BPh4 [TMPA = tris­(pyridin-2-ylmeth­yl)amine, Ac = acetate, BPh4 = tetra­phenyl­borate] by single-crystal X-ray diffraction reveals a complex cation with tetra­dentate coordination of the tripodal TMPA ligand, bidentate coordination of the Ac ligand and monodentate coordination of the methanol ligand to a single MnII center, balanced in charge by the presence of a tetra­phenyl­borate anion. The MnII complex has a distorted penta­gonal–bipyramidal geometry, in which the central amine nitro­gen and two pyridyl N atoms of the TMPA ligand, and two oxygen atoms of the acetate ligand occupy positions in the penta­gonal plane, while the third pyridyl nitro­gen of TMPA and the oxygen from the methanol ligand occupy the axial positions. Within the complex, the acetate O atoms participate in weak C—H⋯O hydrogen-bonding inter­actions with neighboring pyridyl moieties. In the crystal, complexes form dimers by pairs of O—H⋯O hydrogen bonds between the coordinated methanol of one complex and an acetate oxygen of the other, and weak π-stacking inter­actions between pyridine rings. Separate dimers then undergo additional π-stacking inter­actions between the pyridine rings of one moiety and either the pyridine or phenyl rings of another moiety that further stabilize the crystal.

1. Chemical context

A variety of manganese(II/III) complexes have been studied as structural and functional mimics of superoxide dismutase (SOD) enzymes (Batinić-Haberle et al., 2010[Batinić-Haberle, I., Rebouças, J. S. & Spasojević, I. (2010). Antioxid. Redox Signal. 13, 877-918.], 2014[Batinić-Haberle, I., Tovmasyan, A., Roberts, E. R. H., Vujasković, Z., Leong, K. W. & Spasojevic, I. (2014). Antioxid. Redox Signal. 20, 2372-2415.]; Iranzo, 2011[Iranzo, O. (2011). Bioorg. Chem. 39, 73-87.]; Bani & Bencini, 2012[Bani, D. & Bencini, A. (2012). Curr. Med. Chem. 19, 4431-4444.]; Miriyala et al., 2012[Miriyala, S., Spasojević, I., Tovmasyan, A., Salvemini, D., Vujasković, Z., St. Clair, D. & Batinić-Haberle, I. (2012). Biochim. Biophys. Acta, 1822, 794-814.]; Policar, 2016[Policar, C. (2016). Redox-Active Therapeutics, edited by I. Batinić-Haberle, J. Robouças & I. Spasojević, pp. 125-164. Switzerland: Springer International Publishing.]). The efficacy of these mimics is reliant on their stability in aqueous solution, retention of open or substitutional coordination sites on the manganese ion, and MnIII/MnII redox potential lying in the narrow range of 0.2–0.4 V versus a normal hydrogen electrode (Iranzo, 2011[Iranzo, O. (2011). Bioorg. Chem. 39, 73-87.]; Policar, 2016[Policar, C. (2016). Redox-Active Therapeutics, edited by I. Batinić-Haberle, J. Robouças & I. Spasojević, pp. 125-164. Switzerland: Springer International Publishing.]). These factors are directly related to the nature of the ligands employed, their coordinating atoms, and the geometry of the coordination sphere (Policar, 2016[Policar, C. (2016). Redox-Active Therapeutics, edited by I. Batinić-Haberle, J. Robouças & I. Spasojević, pp. 125-164. Switzerland: Springer International Publishing.]).

One family of manganese(II) complexes that has been studied incorporates N-centered, tripodal, tetra­dentate ligands (Policar et al., 2001[Policar, C., Durot, S., Lambert, F., Cesario, M., Ramiandrasoa, F. & Morgenstern-Badarau, I. (2001). Eur. J. Inorg. Chem. pp. 1807-1818.]; Durot et al., 2005[Durot, S., Policar, C., Cisnetti, F., Lambert, F., Renault, J.-P., Pelosi, G., Blain, G., Korri-Youssoufi, H. & Mahy, J.-P. (2005). Eur. J. Inorg. Chem. pp. 3513-3523.]; Ribeiro et al., 2015[Ribeiro, T., Fernandes, C., Melo, K. V., Ferreira, S. S., Lessa, J. A., Franco, R. W. A., Schenk, G., Pereira, M. D. & Horn, A. Jr (2015). Free Radical Biol. Med. 80, 67-76.]). These ligands can be readily synthesized to provide a variety of N and O donors that give rise to the structural diversity of their metal complexes (Policar et al., 2001[Policar, C., Durot, S., Lambert, F., Cesario, M., Ramiandrasoa, F. & Morgenstern-Badarau, I. (2001). Eur. J. Inorg. Chem. pp. 1807-1818.]). With that in mind, we have begun to examine manganese(II) complexes with tripodal ligands containing either pyridine or quinoline groups. Herein, we report the synthesis and structural characterization of [Mn(TMPA)(Ac)(CH3OH)]BPh4 [TMPA = tris­(pyridin-2-yl­meth­yl)amine, Ac = acetate, BPh4 = tetra­phenyl­borate]. This compound is prepared by a two-step process (see reaction scheme) in which manganese(II) acetate is reacted with TMPA in a methanol solution, followed by anion exchange with sodium tetra­phenyl­borate. The resulting monomeric complex exhibits notable characteristics including a high coordination number of seven, a distorted penta­gonal–bipyramidyl geometry, asymmetric bidentate coordination of the acetate ligand, and coordination by a methanol ligand.

[Scheme 1]

2. Structural commentary

The title compound (Fig. 1[link]), which consists of the [Mn(TMPA)(Ac)(CH3OH)]+ monocation and tetra­phenyl­borate counter-anion, crystallizes in the triclinic space group P[\overline{1}]. The manganese(II) ion is hepta­coordinate with a geometry that is best described as a distorted penta­gonal bipyramid. While this is a high coordination number for a first row transition metal ion, seven-coordinate manganese(II) complexes with N-donor ligands have been described previously (Deroche et al.., 1996[Deroche, A., Morgenstern-Badarau, I., Cesario, M., Guilhem, J., Keita, B., Nadjo, L. & Houée-Levin, C. (1996). J. Am. Chem. Soc. 118, 4567-4573.]; Policar et al., 2001[Policar, C., Durot, S., Lambert, F., Cesario, M., Ramiandrasoa, F. & Morgenstern-Badarau, I. (2001). Eur. J. Inorg. Chem. pp. 1807-1818.]; Lessa et al., 2007[Lessa, J. A., Horn, A. Jr, Pinheiro, C. B., Farah, L. L., Eberlin, M. N., Benassi, M., Catharino, R. R. & Fernandes, S. (2007). Inorg. Chem. Commun. 10, 863-866.]; Dees et al., 2007[Dees, A., Zahl, A., Puchta, R., van Eikema Hommes, N. J. R., Heinemann, F. W. & Ivanović-Burmazović, I. (2007). Inorg. Chem. 46, 2459-2470.]; Wu et al., 2010[Wu, H., Yuan, J., Qi, B., Kong, J., Kou, F., Jiaa, F., Fan, X. & Wang, Y. (2010). Z. Naturforsch. Teil B, 65, 1097-1100.]; Lieb et al., 2013[Lieb, D., Friedel, F. C., Yawer, M., Zahl, A., Khusniyarov, M. M., Heinemann, F. W. & Ivanovíc-Burmazović, I. (2013). Inorg. Chem. 52, 222-236.]). The TMPA ligand is tetra­dentate, with its central N2 and two pyridyl nitro­gen atoms (N1 and N3) in the penta­gonal plane, and the third pyridyl nitro­gen (N4) occupying an axial position. The remaining two positions in the penta­gonal plane are completed by the bidentate coordination of the acetate ligand (O2 and O3), while the final axial position is occupied by O1 of the methanol ligand. Distortion of the penta­gonal–bipyramidal geometry of the coordination sphere is produced by the bite angles of the TMPA and acetate chelate rings. For example, the N2—Mn1—N4 bond angle [75.20 (4)°] of the five-membered metallacycle spanning an equatorial and axial position, is significantly reduced from 90° (Table 1[link]). This results in a trans O1—Mn1—N4 angle of 166.95 (5)°. Likewise, the O2—Mn1—O3 bond angle [54.74 (4)°] that results from bidentate coordination of the acetate ligand is significantly reduced from the ideal 72° bond angle within the penta­gonal plane. The O2—Mn1—O3 plane is also twisted outside of the the penta­gonal plane by approximately 10° as a result of weak intra­molecular C—H⋯O hydrogen-bonding inter­actions with neighboring pyridyl rings (Table 2[link]). What is perhaps most remarkable about the bidentate coordination of the acetate ligand is how asymmetric it is. The Mn1—O2 and Mn1—O3 bond lengths differ from each other by 0.3005 Å. This does not appear to result from steric hindrance, but may be due to an inter­molecular hydrogen-bonding inter­action between the O2 acetate oxygen of one complex and the hydroxyl hydrogen of the coordinated methanol of another, having the effect of lengthening the Mn1—O2 bond. The bond between the manganese(II) ion and the central TMPA nitro­gen, Mn1—N2 is also considerably long at 2.4092 (13) Å. This elongation has been observed in other manganese(II) complexes with tripodal, tetra­dentate ligands (Deroche et al., 1996[Deroche, A., Morgenstern-Badarau, I., Cesario, M., Guilhem, J., Keita, B., Nadjo, L. & Houée-Levin, C. (1996). J. Am. Chem. Soc. 118, 4567-4573.]; Wu et al., 2010[Wu, H., Yuan, J., Qi, B., Kong, J., Kou, F., Jiaa, F., Fan, X. & Wang, Y. (2010). Z. Naturforsch. Teil B, 65, 1097-1100.]). The other Mn—O and Mn—N bonds fall into the range 2.2–2.3 Å, which is typical of manganese(II) complexes (Deroche et al., 1996[Deroche, A., Morgenstern-Badarau, I., Cesario, M., Guilhem, J., Keita, B., Nadjo, L. & Houée-Levin, C. (1996). J. Am. Chem. Soc. 118, 4567-4573.]; Policar et al., 2001[Policar, C., Durot, S., Lambert, F., Cesario, M., Ramiandrasoa, F. & Morgenstern-Badarau, I. (2001). Eur. J. Inorg. Chem. pp. 1807-1818.]; Lessa et al., 2007[Lessa, J. A., Horn, A. Jr, Pinheiro, C. B., Farah, L. L., Eberlin, M. N., Benassi, M., Catharino, R. R. & Fernandes, S. (2007). Inorg. Chem. Commun. 10, 863-866.]; Dees et al., 2007[Dees, A., Zahl, A., Puchta, R., van Eikema Hommes, N. J. R., Heinemann, F. W. & Ivanović-Burmazović, I. (2007). Inorg. Chem. 46, 2459-2470.]; Wu et al., 2010[Wu, H., Yuan, J., Qi, B., Kong, J., Kou, F., Jiaa, F., Fan, X. & Wang, Y. (2010). Z. Naturforsch. Teil B, 65, 1097-1100.]; Lieb et al., 2012[Lieb, D., Friedel, F. C., Yawer, M., Zahl, A., Khusniyarov, M. M., Heinemann, F. W. & Ivanovíc-Burmazović, I. (2013). Inorg. Chem. 52, 222-236.]).

Table 1
Selected geometric parameters (Å, °)

Mn1—O1 2.1941 (12) Mn1—N2 2.4092 (13)
Mn1—O2 2.5009 (12) Mn1—N3 2.3022 (13)
Mn1—O3 2.2004 (13) Mn1—N4 2.2496 (13)
Mn1—N1 2.2769 (15)    
       
O1—Mn1—O2 81.52 (4) O2—Mn1—O3 54.74 (4)
O1—Mn1—N4 166.95 (5) N2—Mn1—N4 75.20 (4)

Table 2
Hydrogen-bond geometry and ππ stacking interactions (Å, °)

Cg1, Cg2, Cg3, Cg4, Cg6, and Cg7 are the centroids of the N1/C4–C8, N3/C1/C9/C10–C12, N4/C14–C18, C22–C27, C34–C39, and C40–C45 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.86 (1) 1.79 (1) 2.6480 (17) 176 (2)
C8—H8⋯O2 0.95 2.45 3.056 (2) 121
C12—H12⋯O3 0.95 2.35 2.987 (2) 124
C2—H2BCg6ii 0.99 2.70 3.6260 (18) 156
C38—H38⋯Cg4iii 0.95 2.81 3.7135 (19) 158
C42—H42⋯Cg3iv 0.95 2.96 3.659 (2) 131
Cg1⋯Cg7iv     4.2073 (11)  
Cg2⋯Cg3     4.6125 (10)  
Cg3⋯Cg4v     4.2267 (12)  
Cg4⋯Cg6iii     5.0645 (11)  
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x, y, z-1; (iii) -x+2, -y+1, -z+2; (iv) -x+2, -y+1, -z+1; (v) -x+1, -y+1, -z+1.
[Figure 1]
Figure 1
Mol­ecular structure of [Mn(TMPA)(Ac)(CH3OH)]BPh4 [TMPA = tris(pyridin-2-yl­meth­yl)amine, Ac = acetate, BPh4 = tetra­phenyl­borate] with atom labels. Displacement ellipsoids are drawn at the 30% probability level.

3. Supra­molecular features

Within the crystal, dimerization of complexes occurs by the formation of a pair of inter­moleclular O—H⋯O hydrogen bonds (Table 2[link]) between the coordinated methanol of one complex and an acetate oxygen of another (Fig. 2[link]) forming an R22(12) ring-motif inter­action. Within a dimer, weak π-stacking inter­actions between pyridine rings (Cg2⋯Cg3) can be detected. Separate dimers then undergo additional π-stacking between the pyridine rings of one moiety and the phenyl rings of a second (Cg1⋯Cg7 and Cg3⋯Cg4) as well as between the pyridine rings of separate moieties (Cg4⋯Cg6) [where Cg1, Cg2, Cg3, Cg4, Cg6, and Cg7 are the centroids of the N1/C4–C8, N3/C1/C9/C10–C12, N4/C14–C18, C22–C27, C34–C39, and C40–C45 rings, respectively] that further stabilize the crystal packing. In addition, weak slipped parallel C—H⋯π [C2—H2BCg6, X—H, π = 62°; C38—H38⋯Cg4, X—H, π = 61°; C42—H42⋯Cg3, X—H, π = 38°] (Table 2[link]) inter­molecular inter­actions are also present and contibute additionally to the crystal packing.

[Figure 2]
Figure 2
A view along the b axis of the crystal packing of the title compound. The intra­molecular O—H⋯O and inter­molecular C—H⋯O hydrogen bonds (Table 2[link]) are shown as dashed lines.

4. Database survey

A search of the Cambridge Structural Database (Version 5.39; last update May 2018; Groom et al. 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for manganese(II) complexes containing TMPA revealed 17 structures related to the title compound. Twelve of these are dimeric in nature and contain a variety of bridging ligands (Oshio et al., 1993[Oshio, H., Ino, E., Mogi, I. & Ito, T. (1993). Inorg. Chem. 32, 5697-5703.]; Xiang et al., 1998[Xiang, D. F., Duan, C. Y., Tan, X. S., Liu, Y. J. & Tang, W. X. (1998). Polyhedron, 17, 2647-2653.]; Shin et al., 2010[Shin, B. K., Kim, M. & Han, J. (2010). Polyhedron, 29, 2560-2568.]; Barros et al., 2013[Barros, W. P., Inglis, R., Nichol, G. S., Rajeshkumar, T., Rajaraman, G., Piligkos, S., Stumpf, H. O. & Brechin, E. K. (2013). Dalton Trans. 42, 16510-16517.]; Khullar & Mandal, 2013[Khullar, S. & Mandal, S. K. (2013). CrystEngComm, 15, 6652-6662.]), including one with bridging acetate ligands (Oshio et al., 1993[Oshio, H., Ino, E., Mogi, I. & Ito, T. (1993). Inorg. Chem. 32, 5697-5703.]). The remaining five structures are monomeric and include monodentate ligands in addition to TMPA (Oshio et al., 1993[Oshio, H., Ino, E., Mogi, I. & Ito, T. (1993). Inorg. Chem. 32, 5697-5703.]; Hitomi et al., 2005[Hitomi, Y., Ando, A., Matsui, H., Ito, T., Tanaka, T., Ogo, S. & Funabiki, T. (2005). Inorg. Chem. 44, 3473-3478.]; Duboc et al., 2008[Duboc, C., Collomb, M.-N., Pécaut, J., Deronzier, A. & Neese, F. (2008). Chem. Eur. J. 14, 6498-6509.]; Shin et al., 2010[Shin, B. K., Kim, M. & Han, J. (2010). Polyhedron, 29, 2560-2568.]; Ogo et al., 2014[Ogo, S., Wantanabe, Y. & Funabiki, T. (2014). Private Communication (Refcode 117555). CCDC, Cambridge, England.]). Of the 17 structures, 16 are six-coordinate with respect to the manganese(II) centers, while the remaining structure has a five-coordinate manganese(II) center. None of these structures reveal coordination numbers greater than six. However, a separate literature search identified an eight-coordinate complex in which one mangan­ese(II) ion is coordinated to two tetra­dentate TMPA ligands (Gultneh et al., 1993[Gultneh, Y., Farooq, A., Karlin, K. D., Liu, S. & Zubiet, J. (1993). Inorg. Chim. Acta, 211, 171-175.]).

5. Synthesis and crystallization

All chemicals were obtained from commercial sources and used without further preparation. The water used was deionized. The 1H NMR spectrum was recorded with a JEOL ECX-300 NMR spectrometer and referenced against the 1H peak of the chloro­form solvent. IR spectra were recorded with a Perkin Elmer Spectrum 100 FT–IR.

Tris(pyridin-2-yl­meth­yl)amine (TMPA). In a 250 mL round-bottom flask, 10 g (61 mmol) picolyl chloride hydro­chloride was dissolved in 20 mL H2O and cooled to 273 K in an ice bath. A solution of 5.0 g (120 mmol) NaOH in 20 mL H2O was added dropwise under stirring. Following this, a solution of 2-methyl­amino­pyridine (3.3 g, 31 mmol) in CH2Cl2 (40 mL) was added. The reaction mixture was then removed from the ice bath, capped, and allowed to stir vigorously for five days. The CH2Cl2 layer was then separated, washed twice with brine, and dried over anhydrous sodium sulfate. The solution was filtered and concentrated on a rotary evaporator producing 6.5 g of a red–brown oil that solidified upon cooling. The crude product was chromatographed on alumina (chromatographic grade, 80–200 mesh) eluting with 20:1 ethyl acetate/methanol, producing 4.9 g (55%) of a pure, golden oil that solidified upon standing. 1H NMR (CDCl3, 300 MHz) δ 3.88 (s, 6H), 7.15 (t, 3H), 7.57–7.69 (m, 6H), 8.53 (d, 3H).

[Mn(TMPA)(Ac)(CH3OH)]BPh4. In a 100 mL round-bottom flask, 0.41 g (1.4 mmol) TMPA was dissolved in 10 mL of methanol. To this solution, 0.35 g (1.4 mmol) of mangan­ese(II) acetate tetra­hydrate was added, and the solution was brought to reflux for 20 minutes. A solution of 0.48 g (1.4 mmol) of sodium tetra­phenyl­borate in 10 mL of methanol was then added dropwise to the warm reaction mixture. A precipitate formed during this addition. The reaction mixture was cooled to room temperature and filtered to produce tan microcrystals that were washed twice with cold methanol and air dried to give 0.75 g (74%) of product. The filtrate was then capped and placed in the refrigerator to promote further crystallization. After several days, crystals suitable for X-ray diffraction formed, which gave an IR spectrum identical to the original product. IR (ATR, cm−1) 3000–3053 (aromatic C—H, w), 1589 (C—O, s), 1425 (C—O, s), 731 (BPh4, s), 701 (BPh4, s).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The hy­droxy H atom was located in a difference-Fourier map and refined with the distance restraint O1—H1 = 0.85 ± 0.01 and with Uiso(H) = 1.2Ueq(O). C-bound H atoms were positioned geometrically and refined as riding: C—H = 0.95–0.99 Å with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-meth­yl).

Table 3
Experimental details

Crystal data
Chemical formula [Mn(C2H3O2)(C18H18N4)(CH4O)](C24H20B)
Mr 755.60
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 11.3885 (8), 11.7598 (7), 15.6703 (10)
α, β, γ (°) 82.041 (5), 70.671 (6), 85.870 (5)
V3) 1960.5 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.38
Crystal size (mm) 0.44 × 0.38 × 0.26
 
Data collection
Diffractometer Rigaku Oxford Diffraction
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.])
Tmin, Tmax 0.836, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 24707, 12901, 9324
Rint 0.029
(sin θ/λ)max−1) 0.763
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.122, 1.03
No. of reflections 12901
No. of parameters 492
No. of restraints 3
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.36, −0.30
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(Acetato-κ2O,O')(methanol-κO)[tris(pyridin-2-ylmethyl)amine-κ4N,N',N'',N''']manganese(II) tetraphenylborate top
Crystal data top
[Mn(C2H3O2)(C18H18N4)(CH4O)](C24H20B)Z = 2
Mr = 755.60F(000) = 794
Triclinic, P1Dx = 1.280 Mg m3
a = 11.3885 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.7598 (7) ÅCell parameters from 6236 reflections
c = 15.6703 (10) Åθ = 3.5–32.2°
α = 82.041 (5)°µ = 0.38 mm1
β = 70.671 (6)°T = 173 K
γ = 85.870 (5)°Prism, orange
V = 1960.5 (2) Å30.44 × 0.38 × 0.26 mm
Data collection top
Rigaku Oxford Diffraction
diffractometer
12901 independent reflections
Radiation source: Enhance (Mo) X-ray Source9324 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 16.0416 pixels mm-1θmax = 32.8°, θmin = 3.1°
ω scansh = 1616
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 1717
Tmin = 0.836, Tmax = 1.000l = 2323
24707 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.122 w = 1/[σ2(Fo2) + (0.0476P)2 + 0.5222P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.004
12901 reflectionsΔρmax = 0.36 e Å3
492 parametersΔρmin = 0.30 e Å3
3 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.56866 (2)0.16825 (2)0.32745 (2)0.02659 (7)
O10.63017 (13)0.01175 (10)0.34698 (8)0.0391 (3)
H10.613 (2)0.0420 (12)0.4030 (7)0.059*
O20.41990 (12)0.11321 (10)0.48365 (8)0.0385 (3)
O30.36694 (11)0.14978 (11)0.36100 (8)0.0388 (3)
N10.68813 (14)0.21241 (12)0.40889 (10)0.0360 (3)
N20.77041 (12)0.22294 (11)0.22297 (9)0.0287 (3)
N30.57535 (12)0.13981 (10)0.18346 (8)0.0267 (3)
N40.54497 (12)0.35519 (11)0.27955 (8)0.0263 (3)
C10.68402 (14)0.15094 (12)0.11539 (10)0.0270 (3)
C20.79743 (15)0.16420 (15)0.14101 (11)0.0344 (3)
H2A0.83490.08730.15200.041*
H2B0.85930.20840.08940.041*
C30.85963 (16)0.18541 (15)0.27130 (12)0.0367 (4)
H3A0.93970.22340.23870.044*
H3B0.87490.10140.27170.044*
C40.81202 (17)0.21393 (14)0.36774 (12)0.0365 (4)
C50.8922 (2)0.23550 (16)0.41321 (15)0.0491 (5)
H50.97950.23660.38290.059*
C60.8438 (3)0.25523 (18)0.50269 (16)0.0596 (6)
H60.89730.26820.53550.071*
C70.7165 (3)0.25604 (18)0.54439 (15)0.0568 (6)
H70.68110.27110.60590.068*
C80.6414 (2)0.23465 (16)0.49564 (12)0.0444 (4)
H80.55370.23570.52430.053*
C90.69333 (16)0.14408 (13)0.02599 (10)0.0325 (3)
H90.77140.15230.02110.039*
C100.58756 (18)0.12519 (14)0.00635 (11)0.0370 (4)
H100.59170.12030.05460.044*
C110.47552 (17)0.11350 (14)0.07615 (12)0.0356 (4)
H110.40140.09990.06440.043*
C120.47377 (15)0.12198 (13)0.16317 (11)0.0304 (3)
H120.39650.11480.21120.037*
C130.76954 (15)0.34957 (14)0.20102 (12)0.0343 (3)
H13A0.82080.36910.13650.041*
H13B0.80980.38240.23890.041*
C140.64285 (14)0.40629 (13)0.21531 (10)0.0265 (3)
C150.63108 (16)0.51242 (14)0.16752 (11)0.0350 (4)
H150.70080.54580.12070.042*
C160.51625 (18)0.56882 (15)0.18919 (14)0.0424 (4)
H160.50640.64230.15800.051*
C170.41608 (17)0.51760 (15)0.25640 (13)0.0389 (4)
H170.33670.55550.27310.047*
C180.43378 (15)0.41047 (13)0.29869 (11)0.0304 (3)
H180.36420.37390.34350.036*
C190.33901 (15)0.11975 (13)0.44512 (10)0.0298 (3)
C200.20607 (17)0.09291 (19)0.49920 (13)0.0473 (5)
H20A0.16250.16210.52400.071*
H20B0.20370.03220.54930.071*
H20C0.16520.06690.45960.071*
C210.6314 (2)0.10245 (16)0.29597 (14)0.0516 (5)
H21A0.68160.08130.23220.077*
H21B0.54610.11670.29960.077*
H21C0.66750.17210.32080.077*
C220.87749 (14)0.44057 (12)0.82076 (11)0.0275 (3)
C230.88441 (18)0.54783 (14)0.76863 (13)0.0385 (4)
H230.95130.56130.71310.046*
C240.7964 (2)0.63588 (16)0.79538 (17)0.0520 (5)
H240.80440.70790.75840.062*
C250.6982 (2)0.61887 (17)0.87495 (16)0.0518 (5)
H250.63730.67830.89240.062*
C260.68858 (18)0.51532 (17)0.92930 (14)0.0433 (4)
H260.62130.50300.98470.052*
C270.77791 (15)0.42884 (14)0.90271 (11)0.0328 (3)
H270.77120.35860.94190.039*
C280.90673 (13)0.22992 (12)0.76412 (9)0.0239 (3)
C290.77827 (14)0.22214 (13)0.78503 (10)0.0260 (3)
H290.72510.27870.81770.031*
C300.72484 (15)0.13489 (15)0.75994 (11)0.0323 (3)
H300.63690.13280.77600.039*
C310.79897 (16)0.05108 (15)0.71164 (11)0.0343 (4)
H310.76290.00840.69420.041*
C320.92625 (16)0.05606 (14)0.68956 (11)0.0334 (3)
H320.97870.00050.65640.040*
C330.97842 (15)0.14322 (13)0.71539 (11)0.0299 (3)
H331.06640.14420.69940.036*
C341.02371 (13)0.28206 (12)0.87796 (10)0.0238 (3)
C351.05266 (15)0.16588 (13)0.89976 (11)0.0305 (3)
H351.03740.11080.86600.037*
C361.10278 (16)0.12836 (15)0.96888 (12)0.0370 (4)
H361.12170.04900.98090.044*
C371.12527 (15)0.20534 (16)1.02014 (12)0.0361 (4)
H371.16060.17981.06680.043*
C381.09545 (15)0.32066 (15)1.00249 (11)0.0327 (3)
H381.10880.37471.03790.039*
C391.04616 (14)0.35686 (13)0.93316 (11)0.0286 (3)
H391.02650.43630.92230.034*
C401.09510 (15)0.37221 (12)0.70190 (10)0.0277 (3)
C411.21400 (15)0.38527 (13)0.70467 (11)0.0314 (3)
H411.22810.36880.76160.038*
C421.31390 (17)0.42153 (16)0.62752 (13)0.0414 (4)
H421.39340.42990.63290.050*
C431.2972 (2)0.44500 (17)0.54396 (13)0.0484 (5)
H431.36490.46890.49120.058*
C441.1809 (2)0.43339 (18)0.53774 (13)0.0509 (5)
H441.16800.44980.48040.061*
C451.08230 (18)0.39766 (16)0.61519 (12)0.0403 (4)
H451.00300.39020.60910.048*
B10.97542 (15)0.33157 (13)0.79157 (11)0.0245 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.02860 (12)0.02566 (12)0.02341 (11)0.00437 (8)0.00563 (9)0.00115 (8)
O10.0554 (8)0.0279 (6)0.0311 (6)0.0023 (5)0.0115 (6)0.0019 (5)
O20.0386 (7)0.0386 (7)0.0363 (6)0.0014 (5)0.0102 (5)0.0024 (5)
O30.0376 (7)0.0460 (7)0.0263 (6)0.0104 (5)0.0018 (5)0.0002 (5)
N10.0463 (9)0.0316 (7)0.0326 (7)0.0079 (6)0.0160 (6)0.0003 (5)
N20.0265 (6)0.0273 (6)0.0319 (7)0.0024 (5)0.0086 (5)0.0034 (5)
N30.0292 (6)0.0236 (6)0.0241 (6)0.0041 (5)0.0042 (5)0.0019 (5)
N40.0280 (6)0.0262 (6)0.0251 (6)0.0031 (5)0.0085 (5)0.0036 (5)
C10.0289 (7)0.0203 (6)0.0270 (7)0.0010 (5)0.0030 (6)0.0016 (5)
C20.0253 (8)0.0398 (9)0.0348 (8)0.0005 (6)0.0030 (6)0.0107 (7)
C30.0305 (8)0.0372 (9)0.0446 (10)0.0005 (7)0.0156 (7)0.0037 (7)
C40.0451 (10)0.0272 (8)0.0427 (9)0.0071 (7)0.0231 (8)0.0026 (6)
C50.0594 (13)0.0370 (10)0.0644 (13)0.0122 (8)0.0396 (11)0.0031 (9)
C60.0905 (19)0.0443 (11)0.0657 (15)0.0172 (11)0.0548 (14)0.0016 (10)
C70.0952 (19)0.0447 (11)0.0406 (11)0.0183 (11)0.0340 (12)0.0010 (8)
C80.0651 (13)0.0388 (9)0.0310 (9)0.0133 (8)0.0169 (9)0.0000 (7)
C90.0385 (9)0.0268 (7)0.0245 (7)0.0002 (6)0.0002 (6)0.0030 (6)
C100.0500 (11)0.0342 (8)0.0276 (8)0.0006 (7)0.0125 (7)0.0070 (6)
C110.0402 (9)0.0337 (8)0.0373 (9)0.0029 (7)0.0160 (7)0.0092 (7)
C120.0299 (8)0.0296 (7)0.0296 (7)0.0064 (6)0.0054 (6)0.0042 (6)
C130.0279 (8)0.0296 (8)0.0400 (9)0.0061 (6)0.0049 (7)0.0011 (6)
C140.0288 (7)0.0273 (7)0.0247 (7)0.0056 (6)0.0092 (6)0.0034 (5)
C150.0370 (9)0.0350 (8)0.0344 (8)0.0118 (7)0.0154 (7)0.0057 (6)
C160.0436 (10)0.0337 (9)0.0539 (11)0.0046 (7)0.0266 (9)0.0104 (8)
C170.0343 (9)0.0360 (9)0.0493 (10)0.0015 (7)0.0194 (8)0.0017 (7)
C180.0288 (8)0.0315 (8)0.0306 (8)0.0032 (6)0.0086 (6)0.0043 (6)
C190.0329 (8)0.0229 (7)0.0279 (7)0.0030 (6)0.0017 (6)0.0038 (5)
C200.0340 (9)0.0643 (13)0.0331 (9)0.0098 (8)0.0030 (7)0.0010 (8)
C210.0766 (15)0.0312 (9)0.0400 (10)0.0003 (9)0.0088 (10)0.0067 (7)
C220.0298 (8)0.0228 (7)0.0353 (8)0.0003 (5)0.0167 (6)0.0068 (6)
C230.0437 (10)0.0255 (8)0.0508 (10)0.0020 (7)0.0224 (8)0.0015 (7)
C240.0655 (14)0.0262 (9)0.0791 (15)0.0092 (8)0.0450 (13)0.0071 (9)
C250.0553 (13)0.0427 (11)0.0744 (15)0.0252 (9)0.0403 (12)0.0301 (10)
C260.0363 (9)0.0539 (11)0.0498 (11)0.0155 (8)0.0217 (8)0.0294 (9)
C270.0329 (8)0.0333 (8)0.0356 (8)0.0059 (6)0.0139 (7)0.0121 (6)
C280.0258 (7)0.0229 (6)0.0228 (6)0.0036 (5)0.0074 (5)0.0022 (5)
C290.0254 (7)0.0287 (7)0.0241 (7)0.0019 (5)0.0082 (5)0.0032 (5)
C300.0270 (8)0.0430 (9)0.0277 (7)0.0105 (6)0.0078 (6)0.0048 (6)
C310.0387 (9)0.0379 (9)0.0272 (7)0.0170 (7)0.0077 (6)0.0061 (6)
C320.0371 (9)0.0296 (8)0.0327 (8)0.0054 (6)0.0066 (7)0.0112 (6)
C330.0261 (7)0.0310 (8)0.0336 (8)0.0037 (6)0.0081 (6)0.0095 (6)
C340.0187 (6)0.0241 (6)0.0263 (7)0.0019 (5)0.0035 (5)0.0043 (5)
C350.0314 (8)0.0282 (7)0.0323 (8)0.0028 (6)0.0098 (6)0.0084 (6)
C360.0355 (9)0.0330 (8)0.0415 (9)0.0100 (7)0.0134 (7)0.0047 (7)
C370.0270 (8)0.0482 (10)0.0347 (8)0.0034 (7)0.0130 (7)0.0046 (7)
C380.0282 (8)0.0393 (9)0.0331 (8)0.0051 (6)0.0109 (6)0.0080 (7)
C390.0268 (7)0.0258 (7)0.0334 (8)0.0046 (5)0.0087 (6)0.0053 (6)
C400.0312 (8)0.0214 (7)0.0298 (7)0.0058 (5)0.0072 (6)0.0047 (5)
C410.0291 (8)0.0293 (7)0.0326 (8)0.0060 (6)0.0035 (6)0.0072 (6)
C420.0326 (9)0.0410 (9)0.0434 (10)0.0115 (7)0.0009 (7)0.0089 (8)
C430.0513 (12)0.0440 (10)0.0369 (10)0.0175 (8)0.0060 (8)0.0043 (8)
C440.0677 (14)0.0531 (12)0.0283 (9)0.0187 (10)0.0109 (9)0.0040 (8)
C450.0447 (10)0.0445 (10)0.0324 (9)0.0129 (8)0.0128 (7)0.0008 (7)
B10.0241 (8)0.0207 (7)0.0282 (8)0.0029 (6)0.0069 (6)0.0041 (6)
Geometric parameters (Å, º) top
Mn1—O12.1941 (12)C20—H20A0.9800
Mn1—O22.5009 (12)C20—H20B0.9800
Mn1—O32.2004 (13)C20—H20C0.9800
Mn1—N12.2769 (15)C21—H21A0.9800
Mn1—N22.4092 (13)C21—H21B0.9800
Mn1—N32.3022 (13)C21—H21C0.9800
Mn1—N42.2496 (13)C22—C231.397 (2)
O1—H10.863 (9)C22—C271.401 (2)
O1—C211.415 (2)C22—B11.648 (2)
O2—C191.251 (2)C23—H230.9500
O3—C191.2541 (19)C23—C241.395 (3)
N1—C41.343 (2)C24—H240.9500
N1—C81.341 (2)C24—C251.373 (3)
N2—C21.475 (2)C25—H250.9500
N2—C31.467 (2)C25—C261.375 (3)
N2—C131.481 (2)C26—H260.9500
N3—C11.3406 (19)C26—C271.389 (2)
N3—C121.334 (2)C27—H270.9500
N4—C141.3428 (19)C28—C291.396 (2)
N4—C181.342 (2)C28—C331.404 (2)
C1—C21.498 (2)C28—B11.651 (2)
C1—C91.383 (2)C29—H290.9500
C2—H2A0.9900C29—C301.392 (2)
C2—H2B0.9900C30—H300.9500
C3—H3A0.9900C30—C311.386 (2)
C3—H3B0.9900C31—H310.9500
C3—C41.504 (3)C31—C321.378 (2)
C4—C51.386 (3)C32—H320.9500
C5—H50.9500C32—C331.389 (2)
C5—C61.372 (3)C33—H330.9500
C6—H60.9500C34—C351.404 (2)
C6—C71.379 (4)C34—C391.406 (2)
C7—H70.9500C34—B11.644 (2)
C7—C81.377 (3)C35—H350.9500
C8—H80.9500C35—C361.391 (2)
C9—H90.9500C36—H360.9500
C9—C101.378 (3)C36—C371.379 (3)
C10—H100.9500C37—H370.9500
C10—C111.379 (2)C37—C381.387 (2)
C11—H110.9500C38—H380.9500
C11—C121.375 (2)C38—C391.385 (2)
C12—H120.9500C39—H390.9500
C13—H13A0.9900C40—C411.389 (2)
C13—H13B0.9900C40—C451.403 (2)
C13—C141.505 (2)C40—B11.643 (2)
C14—C151.386 (2)C41—H410.9500
C15—H150.9500C41—C421.398 (2)
C15—C161.382 (3)C42—H420.9500
C16—H160.9500C42—C431.372 (3)
C16—C171.379 (3)C43—H430.9500
C17—H170.9500C43—C441.378 (3)
C17—C181.374 (2)C44—H440.9500
C18—H180.9500C44—C451.391 (3)
C19—C201.502 (2)C45—H450.9500
O1—Mn1—O281.52 (4)C18—C17—C16118.46 (16)
O1—Mn1—O3101.03 (5)C18—C17—H17120.8
O1—Mn1—N188.33 (5)N4—C18—C17122.91 (15)
O1—Mn1—N292.28 (5)N4—C18—H18118.5
O1—Mn1—N388.03 (4)C17—C18—H18118.5
O1—Mn1—N4166.95 (5)O2—C19—O3120.79 (15)
O2—Mn1—O354.74 (4)O2—C19—C20120.41 (15)
O3—Mn1—N1132.87 (5)O3—C19—C20118.79 (16)
O3—Mn1—N2152.00 (5)C19—C20—H20A109.5
O3—Mn1—N383.91 (5)C19—C20—H20B109.5
O3—Mn1—N488.91 (5)C19—C20—H20C109.5
N1—Mn1—O281.88 (5)H20A—C20—H20B109.5
N1—Mn1—N271.41 (5)H20A—C20—H20C109.5
N1—Mn1—N3142.97 (5)H20B—C20—H20C109.5
N2—Mn1—O2152.77 (5)O1—C21—H21A109.5
N3—Mn1—O2133.76 (4)O1—C21—H21B109.5
N3—Mn1—N271.94 (5)O1—C21—H21C109.5
N4—Mn1—O2111.30 (4)H21A—C21—H21B109.5
N4—Mn1—N191.07 (5)H21A—C21—H21C109.5
N2—Mn1—N475.20 (4)H21B—C21—H21C109.5
N4—Mn1—N384.61 (4)C23—C22—C27115.29 (15)
Mn1—O1—H1115.2 (11)C23—C22—B1124.68 (15)
C21—O1—Mn1129.43 (12)C27—C22—B1120.02 (13)
C21—O1—H1106.3 (11)C22—C23—H23118.9
C19—O2—Mn185.21 (9)C24—C23—C22122.17 (19)
C19—O3—Mn199.20 (11)C24—C23—H23118.9
C4—N1—Mn1117.72 (11)C23—C24—H24119.9
C8—N1—Mn1123.44 (13)C25—C24—C23120.28 (19)
C8—N1—C4118.83 (16)C25—C24—H24119.9
C2—N2—Mn1109.13 (9)C24—C25—H25120.2
C2—N2—C13112.02 (13)C24—C25—C26119.65 (17)
C3—N2—Mn1106.06 (10)C26—C25—H25120.2
C3—N2—C2110.69 (13)C25—C26—H26120.2
C3—N2—C13110.45 (13)C25—C26—C27119.6 (2)
C13—N2—Mn1108.28 (9)C27—C26—H26120.2
C1—N3—Mn1118.77 (10)C22—C27—H27118.5
C12—N3—Mn1122.76 (10)C26—C27—C22122.97 (17)
C12—N3—C1118.23 (13)C26—C27—H27118.5
C14—N4—Mn1117.29 (10)C29—C28—C33114.96 (13)
C18—N4—Mn1123.01 (10)C29—C28—B1124.89 (13)
C18—N4—C14118.46 (13)C33—C28—B1120.14 (13)
N3—C1—C2116.93 (14)C28—C29—H29118.6
N3—C1—C9122.07 (15)C30—C29—C28122.70 (14)
C9—C1—C2120.91 (14)C30—C29—H29118.6
N2—C2—C1112.94 (13)C29—C30—H30119.7
N2—C2—H2A109.0C31—C30—C29120.52 (15)
N2—C2—H2B109.0C31—C30—H30119.7
C1—C2—H2A109.0C30—C31—H31120.8
C1—C2—H2B109.0C32—C31—C30118.45 (14)
H2A—C2—H2B107.8C32—C31—H31120.8
N2—C3—H3A109.4C31—C32—H32119.8
N2—C3—H3B109.4C31—C32—C33120.48 (15)
N2—C3—C4111.33 (14)C33—C32—H32119.8
H3A—C3—H3B108.0C28—C33—H33118.6
C4—C3—H3A109.4C32—C33—C28122.87 (15)
C4—C3—H3B109.4C32—C33—H33118.6
N1—C4—C3116.60 (15)C35—C34—C39114.69 (14)
N1—C4—C5121.68 (18)C35—C34—B1124.20 (13)
C5—C4—C3121.66 (18)C39—C34—B1121.01 (13)
C4—C5—H5120.4C34—C35—H35118.7
C6—C5—C4119.1 (2)C36—C35—C34122.57 (15)
C6—C5—H5120.4C36—C35—H35118.7
C5—C6—H6120.4C35—C36—H36119.7
C5—C6—C7119.2 (2)C37—C36—C35120.60 (16)
C7—C6—H6120.4C37—C36—H36119.7
C6—C7—H7120.5C36—C37—H37120.6
C8—C7—C6119.1 (2)C36—C37—C38118.89 (15)
C8—C7—H7120.5C38—C37—H37120.6
N1—C8—C7122.1 (2)C37—C38—H38120.1
N1—C8—H8119.0C39—C38—C37119.87 (15)
C7—C8—H8119.0C39—C38—H38120.1
C1—C9—H9120.5C34—C39—H39118.3
C10—C9—C1118.90 (15)C38—C39—C34123.35 (14)
C10—C9—H9120.5C38—C39—H39118.3
C9—C10—H10120.4C41—C40—C45114.91 (15)
C9—C10—C11119.28 (15)C41—C40—B1124.17 (14)
C11—C10—H10120.4C45—C40—B1120.91 (14)
C10—C11—H11120.8C40—C41—H41118.5
C12—C11—C10118.34 (16)C40—C41—C42123.04 (16)
C12—C11—H11120.8C42—C41—H41118.5
N3—C12—C11123.17 (15)C41—C42—H42120.0
N3—C12—H12118.4C43—C42—C41120.06 (18)
C11—C12—H12118.4C43—C42—H42120.0
N2—C13—H13A108.4C42—C43—H43120.5
N2—C13—H13B108.4C42—C43—C44119.05 (17)
N2—C13—C14115.31 (13)C44—C43—H43120.5
H13A—C13—H13B107.5C43—C44—H44119.9
C14—C13—H13A108.4C43—C44—C45120.23 (18)
C14—C13—H13B108.4C45—C44—H44119.9
N4—C14—C13118.13 (13)C40—C45—H45118.6
N4—C14—C15121.82 (15)C44—C45—C40122.71 (18)
C15—C14—C13119.89 (14)C44—C45—H45118.6
C14—C15—H15120.6C22—B1—C28110.31 (12)
C16—C15—C14118.85 (16)C34—B1—C22108.42 (12)
C16—C15—H15120.6C34—B1—C28110.47 (11)
C15—C16—H16120.3C40—B1—C22110.69 (12)
C17—C16—C15119.44 (16)C40—B1—C28107.22 (12)
C17—C16—H16120.3C40—B1—C34109.72 (12)
C16—C17—H17120.8
Mn1—O2—C19—O32.16 (14)C23—C22—B1—C28109.03 (17)
Mn1—O2—C19—C20178.52 (15)C23—C22—B1—C34129.87 (15)
Mn1—O3—C19—O22.48 (16)C23—C22—B1—C409.5 (2)
Mn1—O3—C19—C20178.19 (13)C23—C24—C25—C261.4 (3)
Mn1—N1—C4—C30.32 (19)C24—C25—C26—C270.4 (3)
Mn1—N1—C4—C5177.45 (13)C25—C26—C27—C221.7 (3)
Mn1—N1—C8—C7177.02 (14)C27—C22—C23—C241.6 (2)
Mn1—N2—C2—C135.27 (16)C27—C22—B1—C2870.36 (17)
Mn1—N2—C3—C443.91 (15)C27—C22—B1—C3450.73 (17)
Mn1—N2—C13—C1422.55 (17)C27—C22—B1—C40171.13 (14)
Mn1—N3—C1—C28.77 (17)C28—C29—C30—C310.4 (2)
Mn1—N3—C1—C9174.82 (11)C29—C28—C33—C320.1 (2)
Mn1—N3—C12—C11174.96 (12)C29—C28—B1—C2215.7 (2)
Mn1—N4—C14—C1318.61 (18)C29—C28—B1—C34104.11 (16)
Mn1—N4—C14—C15166.15 (12)C29—C28—B1—C40136.36 (14)
Mn1—N4—C18—C17167.80 (13)C29—C30—C31—C320.3 (2)
N1—C4—C5—C60.3 (3)C30—C31—C32—C330.1 (3)
N2—C3—C4—N132.0 (2)C31—C32—C33—C280.2 (3)
N2—C3—C4—C5150.90 (16)C33—C28—C29—C300.3 (2)
N2—C13—C14—N428.7 (2)C33—C28—B1—C22163.65 (13)
N2—C13—C14—C15155.92 (15)C33—C28—B1—C3476.48 (17)
N3—C1—C2—N230.8 (2)C33—C28—B1—C4043.04 (18)
N3—C1—C9—C100.0 (2)C34—C35—C36—C370.6 (3)
N4—C14—C15—C162.5 (2)C35—C34—C39—C381.4 (2)
C1—N3—C12—C110.6 (2)C35—C34—B1—C22146.46 (14)
C1—C9—C10—C110.1 (2)C35—C34—B1—C2825.47 (19)
C2—N2—C3—C4162.15 (14)C35—C34—B1—C4092.54 (16)
C2—N2—C13—C1497.84 (16)C35—C36—C37—C380.9 (3)
C2—C1—C9—C10176.25 (15)C36—C37—C38—C391.2 (2)
C3—N2—C2—C1151.62 (14)C37—C38—C39—C340.0 (2)
C3—N2—C13—C14138.27 (15)C39—C34—C35—C361.7 (2)
C3—C4—C5—C6176.65 (17)C39—C34—B1—C2237.39 (18)
C4—N1—C8—C71.7 (3)C39—C34—B1—C28158.39 (13)
C4—C5—C6—C71.7 (3)C39—C34—B1—C4083.61 (16)
C5—C6—C7—C81.3 (3)C40—C41—C42—C430.6 (3)
C6—C7—C8—N10.4 (3)C41—C40—C45—C440.1 (3)
C8—N1—C4—C3178.47 (15)C41—C40—B1—C22107.07 (16)
C8—N1—C4—C51.3 (2)C41—C40—B1—C28132.55 (14)
C9—C1—C2—N2152.78 (14)C41—C40—B1—C3412.55 (19)
C9—C10—C11—C120.4 (2)C41—C42—C43—C440.6 (3)
C10—C11—C12—N30.7 (2)C42—C43—C44—C450.4 (3)
C12—N3—C1—C2176.64 (13)C43—C44—C45—C400.1 (3)
C12—N3—C1—C90.2 (2)C45—C40—C41—C420.3 (2)
C13—N2—C2—C184.62 (16)C45—C40—B1—C2272.30 (18)
C13—N2—C3—C473.20 (17)C45—C40—B1—C2848.07 (18)
C13—C14—C15—C16172.67 (16)C45—C40—B1—C34168.08 (14)
C14—N4—C18—C170.9 (2)B1—C22—C23—C24177.84 (16)
C14—C15—C16—C171.1 (3)B1—C22—C27—C26176.78 (15)
C15—C16—C17—C181.1 (3)B1—C28—C29—C30179.69 (14)
C16—C17—C18—N42.2 (3)B1—C28—C33—C32179.38 (14)
C18—N4—C14—C13173.78 (14)B1—C34—C35—C36174.68 (15)
C18—N4—C14—C151.5 (2)B1—C34—C39—C38175.12 (14)
C22—C23—C24—C250.4 (3)B1—C40—C41—C42179.08 (14)
C23—C22—C27—C262.7 (2)B1—C40—C45—C44179.36 (17)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3, Cg4, Cg6, and Cg7 are the centroids of the N1/C4–C8, N3/C1/C9/C10–C12, N4/C14–C18, C22–C27, C34–C39, and C40–C45 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.86 (1)1.79 (1)2.6480 (17)176 (2)
C8—H8···O20.952.453.056 (2)121
C12—H12···O30.952.352.987 (2)124
C2—H2B···Cg6ii0.992.703.6260 (18)156
C38—H38···Cg4iii0.952.813.7135 (19)158
C42—H42···Cg3iv0.952.963.659 (2)131
Cg1···Cg7iv4.2073 (11)
Cg2···Cg34.6125 (10)
Cg3···Cg4v4.2267 (12)
Cg4···Cg6iii5.0645 (11)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z1; (iii) x+2, y+1, z+2; (iv) x+2, y+1, z+1; (v) x+1, y+1, z+1.
Selected bond lengths (Å) and angles (°) of the title compound top
Mn1—O12.1941 (12)Mn1—N42.2496 (13)
Mn1—O22.5009 (12)O1—Mn1—N4166.95 (5)
Mn1—O32.2004 (13)O2—Mn1—O354.74 (4)
Mn1—N12.2769 (15)N2—Mn1—N475.20 (4)
Mn1—N22.4092 (13)O1—Mn1—O281.52 (4)
Mn1—N32.3022 (13)

Funding information

Funding for this research was provided by: NSF–MRI (grant No. CHE-1039027 to Jerry P. Jasinski).

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBani, D. & Bencini, A. (2012). Curr. Med. Chem. 19, 4431–4444.  Web of Science CrossRef Google Scholar
First citationBarros, W. P., Inglis, R., Nichol, G. S., Rajeshkumar, T., Rajaraman, G., Piligkos, S., Stumpf, H. O. & Brechin, E. K. (2013). Dalton Trans. 42, 16510–16517.  Web of Science CrossRef Google Scholar
First citationBatinić-Haberle, I., Rebouças, J. S. & Spasojević, I. (2010). Antioxid. Redox Signal. 13, 877–918.  Google Scholar
First citationBatinić-Haberle, I., Tovmasyan, A., Roberts, E. R. H., Vujasković, Z., Leong, K. W. & Spasojevic, I. (2014). Antioxid. Redox Signal. 20, 2372–2415.  Google Scholar
First citationDees, A., Zahl, A., Puchta, R., van Eikema Hommes, N. J. R., Heinemann, F. W. & Ivanović-Burmazović, I. (2007). Inorg. Chem. 46, 2459–2470.  Web of Science CrossRef Google Scholar
First citationDeroche, A., Morgenstern-Badarau, I., Cesario, M., Guilhem, J., Keita, B., Nadjo, L. & Houée-Levin, C. (1996). J. Am. Chem. Soc. 118, 4567–4573.  CrossRef Web of Science Google Scholar
First citationDuboc, C., Collomb, M.-N., Pécaut, J., Deronzier, A. & Neese, F. (2008). Chem. Eur. J. 14, 6498–6509.  Web of Science CrossRef Google Scholar
First citationDurot, S., Policar, C., Cisnetti, F., Lambert, F., Renault, J.-P., Pelosi, G., Blain, G., Korri-Youssoufi, H. & Mahy, J.-P. (2005). Eur. J. Inorg. Chem. pp. 3513–3523.  Web of Science CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGultneh, Y., Farooq, A., Karlin, K. D., Liu, S. & Zubiet, J. (1993). Inorg. Chim. Acta, 211, 171–175.  CrossRef Web of Science Google Scholar
First citationHitomi, Y., Ando, A., Matsui, H., Ito, T., Tanaka, T., Ogo, S. & Funabiki, T. (2005). Inorg. Chem. 44, 3473–3478.  Web of Science CrossRef Google Scholar
First citationIranzo, O. (2011). Bioorg. Chem. 39, 73–87.  Web of Science CrossRef Google Scholar
First citationKhullar, S. & Mandal, S. K. (2013). CrystEngComm, 15, 6652–6662.  Web of Science CrossRef Google Scholar
First citationLessa, J. A., Horn, A. Jr, Pinheiro, C. B., Farah, L. L., Eberlin, M. N., Benassi, M., Catharino, R. R. & Fernandes, S. (2007). Inorg. Chem. Commun. 10, 863–866.  Web of Science CrossRef Google Scholar
First citationLieb, D., Friedel, F. C., Yawer, M., Zahl, A., Khusniyarov, M. M., Heinemann, F. W. & Ivanovíc-Burmazović, I. (2013). Inorg. Chem. 52, 222–236.  Web of Science CrossRef Google Scholar
First citationMiriyala, S., Spasojević, I., Tovmasyan, A., Salvemini, D., Vujasković, Z., St. Clair, D. & Batinić-Haberle, I. (2012). Biochim. Biophys. Acta, 1822, 794–814.  Google Scholar
First citationOgo, S., Wantanabe, Y. & Funabiki, T. (2014). Private Communication (Refcode 117555). CCDC, Cambridge, England.  Google Scholar
First citationOshio, H., Ino, E., Mogi, I. & Ito, T. (1993). Inorg. Chem. 32, 5697–5703.  CSD CrossRef CAS Web of Science Google Scholar
First citationPolicar, C. (2016). Redox-Active Therapeutics, edited by I. Batinić-Haberle, J. Robouças & I. Spasojević, pp. 125–164. Switzerland: Springer International Publishing.  Google Scholar
First citationPolicar, C., Durot, S., Lambert, F., Cesario, M., Ramiandrasoa, F. & Morgenstern-Badarau, I. (2001). Eur. J. Inorg. Chem. pp. 1807–1818.  CrossRef Google Scholar
First citationRibeiro, T., Fernandes, C., Melo, K. V., Ferreira, S. S., Lessa, J. A., Franco, R. W. A., Schenk, G., Pereira, M. D. & Horn, A. Jr (2015). Free Radical Biol. Med. 80, 67–76.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShin, B. K., Kim, M. & Han, J. (2010). Polyhedron, 29, 2560–2568.  Web of Science CrossRef Google Scholar
First citationWu, H., Yuan, J., Qi, B., Kong, J., Kou, F., Jiaa, F., Fan, X. & Wang, Y. (2010). Z. Naturforsch. Teil B, 65, 1097–1100.  Google Scholar
First citationXiang, D. F., Duan, C. Y., Tan, X. S., Liu, Y. J. & Tang, W. X. (1998). Polyhedron, 17, 2647–2653.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds