research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A strongly fluorescent NiII complex with 2-(2-hy­dr­oxy­eth­yl)pyridine ligands: synthesis, characterization and theoretical analysis and comparison with a related polymeric CuII complex

CROSSMARK_Color_square_no_text.svg

aUnité de Recherche Chimie de l'Environnement et Moléculaire Structurale, 'CHEMS', Faculté des Sciences Exactes, Campus Chaabet Ersas, Université Frères Mentouri Constantine 1, 25000 Constantine, Algeria, bCentre de Recherche en Biotechnologie, Constantine, Algeria, cLaboratoire de Chimie des Matériaux et des Vivants: Activité, Réactivité, Université Hadj-Lakhdar Batna, Algeria, dLaboratoire Pollution et Traitement des Eaux, Département de Chimie, Faculté des Sciences Exactes, Université Frères Mentouri Constantine 1, 25000 Constantine, Algeria, and eLaboratoire de Chimie de Coordination, UPR-CNRS 8241, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
*Correspondence e-mail: ouahida.zeghouan@gmail.com

Edited by A. Van der Lee, Université de Montpellier II, France (Received 5 June 2018; accepted 27 June 2018; online 6 July 2018)

The synthesis and characterization of di­aqua­bis­[2-(2-hy­droxy­eth­yl)pyridine-κ2N,O)nickel(II) dinitrate, [Ni(C7H9NO)2(H2O)2](NO3)2, under ambient conditions is reported and compared with catena-poly[[bis­[2-(2-hy­droxy­eth­yl)pyridine-κ2N,O]copper(II)]-μ-sulfato-κ2O:O′], [Cu(C7H9NO)2(SO4)]n [Zegh­ouan et al. (2016[Zeghouan, O., Bendjeddou, L., Dems, M. A. & Merazig, H. (2016). Private communication (refcode 1481676). CCDC, Cambridge, England.]). Private communication (refcode 1481676). CCDC, Cambridge, England]. In the two complexes, the 2-(2-hy­droxy­eth­yl)pyridine ligands coordinate the metal ions through the N atom of the pyridine ring and the O atom of the hy­droxy group, creating a chelate ring. The NiII or CuII ion lies on an inversion centre and exhibits a slightly distorted MO4N2 octa­hedral coordination geometry, build up by O and N atoms from two 2-(2-hy­droxy­eth­yl)pyridine ligands and two water mol­ecules or two O atoms belonging to sulfate anions. The sulfate anion bridges the CuII ions, forming a polymeric chain. The photoluminescence properties of these complexes have been studied on as-synthesized samples and reveal that both compounds display a strong blue-light emission with maxima around 497 nm. From DFT/TDDFT studies, the blue emission appears to be derived from the ligand-to-metal charge-transfer (LMCT) excited state. In addition, the IR spectroscopic properties and thermogravimetric behaviours of both complexes have been investigated.

1. Chemical context

A wide variety of nitro­gen-containing heterocyclic ligands has been used to construct coordination complexes (Lin et al., 2015[Lin, R.-G., Wang, Y.-L. & Liang, Q. (2015). Acta Cryst. C71, 44-47.]; Kim et al., 2015[Kim, Y.-I., Song, Y.-K., Kim, D. & Kang, S. K. (2015). Acta Cryst. C71, 908-911.]; Huang et al., 2015[Huang, Q.-Y., Yang, Y. & Meng, X.-R. (2015). Acta Cryst. C71, 701-705.]). In particular, pyridine alcohol derivatives and their metal complexes have been studied extensively in recent years, focusing on the rational design and synthesis of coordination monomers and polymers because of their intriguing structural features as well as potential applications in catalysis and fluorescence and as chemical sensors (Ley et al., 2010[Ley, A. N., Dunaway, L. E., Brewster, T. P., Dembo, M. D., Harris, T. D., Baril-Robert, F., Li, X., Patterson, H. H. & Pike, R. D. (2010). Chem. Commun. 46, 4565-4567.]). Moreover, luminescent compounds have also attracted attention because of their applications, particularly in modern electronics, as materials for producing organic light-emitting diodes (OLEDs) (Kelley et al., 2004[Kelley, T. W., Baude, P. F., Gerlach, C., Ender, D. E., Muyres, D., Haase, M. A., Vogel, D. E. & Theiss, S. D. (2004). Chem. Mater. 16, 4413-4422.]). The 2-(2-hy­droxy­eth­yl)pyridine (hep-H) ligand may adopt many coordinating variants because of its donating capabilities: N-monodentate (N) (Martínez et al., 2007[Martínez, A., Lorenzo, J., Prieto, M. J., Font-Bardia, M., Solans, X., Avilés, F. X. & Moreno, V. (2007). Bioorg. Med. Chem. 15, 969-979.]), N,O-chelating (2N,O) (Antonioli et al., 2007[Antonioli, B., Bray, D. J., Clegg, J. K., Jolliffe, K. A., Gloe, K., Gloe, K. & Lindoy, L. F. (2007). Polyhedron, 26, 673-678.]); deprotonated chelating (2N,O) (Antonioli et al., 2007[Antonioli, B., Bray, D. J., Clegg, J. K., Jolliffe, K. A., Gloe, K., Gloe, K. & Lindoy, L. F. (2007). Polyhedron, 26, 673-678.]) and bridging (N:O) (Antonioli et al., 2007[Antonioli, B., Bray, D. J., Clegg, J. K., Jolliffe, K. A., Gloe, K., Gloe, K. & Lindoy, L. F. (2007). Polyhedron, 26, 673-678.]), 2N,O:O7and 2N,O:O:O (Wang et al., 2010[Wang, F.-M., Lu, C.-S., Li, Y.-Z. & Meng, Q.-J. (2010). Acta Cryst. E66, m594.]) or simultaneously 2N,O:O and 2N,O:O:O bridging (Stamatatos, Boudalis et al., 2007[Stamatatos, T. C., Boudalis, A. K., Pringouri, K. V., Raptopoulou, C. P., Terzis, A., Wolowska, J., McInnes, E. J. L. & Perlepes, S. P. (2007). Eur. J. Inorg. Chem. pp. 5098-5104.]).

[Scheme 1]

We are in particular inter­ested in the hep-H ligand, which has attracted much attention in biology and chemistry because it is a useful model and for its practical applications (Kong et al., 2009[Kong, L.-Q., Ju, X.-P. & Li, D.-C. (2009). Acta Cryst. E65, m1518.]; Mobin et al., 2010[Mobin, Sh. M., Srivastava, A. K., Mathur, P. & Lahiri, G. K. (2010). Dalton Trans. 39, 1447-1449.]). The hep-H ligand could be a good candidate to construct simultaneously nitro­gen heteroaromatic alcohol coordination monomers and polymers with inter­esting magnetic behaviour. On the other hand, with NiII and CuII metals, the hep-H ligand could also be a desirable candidate for fluorescent materials. The flexible coordination sphere around the NiII and CuII ions, in combination with steric and packing forces, is one of the effects that gives rise to a wide structural diversity in NiII/CuII coordination chemistry (Comba & Remenyi, 2003[Comba, P. & Remenyi, R. (2003). Coord. Chem. Rev. 238, 9-20.]).

The combination of multidentate ligands with suitable cations has led to a large number of novel mononuclear and polynuclear complexes. In this study, by reacting the flexible hep-H ligand with Ni(NO3)2·6H2O, we have successfully obtained the monomeric NiII complex di­aqua­bis­[2-(2-hy­droxy­eth­yl)pyridine-κ2N,O)nickel(II) dinitrate, [Ni(C7H8NO)2(H2O)2](NO3)2 (1). The related polymeric complex, catena-poly[[bis­[2-(2-hy­droxy­eth­yl)pyridine-κ2N,O]copper(II)]-μ-sulfato-κ2O:O′], [Cu(C7H8NO)2(SO4)]n (Zeghouan et al., 2016[Zeghouan, O., Bendjeddou, L., Dems, M. A. & Merazig, H. (2016). Private communication (refcode 1481676). CCDC, Cambridge, England.]; Zienkiewicz-Machnik et al., 2016[Zienkiewicz-Machnik, M., Masternak, J., Kazimierczuk, K. & Barszcz, B. (2016). J. Mol. Struct. 1126, 37-46.]) had previously been obtained by reacting the hep-H ligand with Cu(SO4)2·6H2O. Herein we compare their structures, IR spectra, thermostability, fluorescence and absorption properties and tge results of a theoretical study performed using TDDFT calculations.

2. Structural commentary

In the mononuclear title NiII complex 1 as well as in the polymeric CuII complex 2 (Zeghouan et al., 2016[Zeghouan, O., Bendjeddou, L., Dems, M. A. & Merazig, H. (2016). Private communication (refcode 1481676). CCDC, Cambridge, England.]; Zienkiewicz-Machnik et al., 2016[Zienkiewicz-Machnik, M., Masternak, J., Kazimierczuk, K. & Barszcz, B. (2016). J. Mol. Struct. 1126, 37-46.]), the metal ions are located on inversion centers with the neutral hep-H mol­ecule acting as a bidentate ligand in a 2N,O fashion and forming the equatorial plane of an octa­hedron, the apex of which is occupied by the water mol­ecules in the case of the NiII complex or an O atom of an SO42− anion in the CuII complex (Figs. 1[link] and 2[link]). The main difference between the two structures is the occurrence of the SO42− anion in 2, which links complex mol­ecules, forming a polymeric chain. Moreover, in this structure the asymmetric unit contains two half mol­ecules of the complex. In the NiII complex, two nitrate anions balance the charges. The coordination environment around the nickel ions can be described as a nearly perfect octa­hedron. The O1—Ni1—N1 [88.68 (3)°], N1—Ni1—O1W [90.00 (4)°] and O1—Ni1—O1W [89.26 (4)°] angles are all very close to 90° (Table 1[link]). The two hep-H ligands are trans with respect to each other. The hydroxyl O atom and the pyridine N atoms define the equatorial plane while the water mol­ecules occupy the apices. In the case of the CuII complex, the octa­hedron is slightly distorted with the angles around the metal ranging from 83.39 (5) to 96.62 (5)°. This distortion might result from the influence of the SO42− linking the Cu complex to form a polymeric chain.

Table 1
Comparison of experimental and calculated distances and angles (Å, °) in 1 and 2

1    
Ni1—O1 2.0622 (14) 2.07
Ni1—O1W 2.0831 (15) 2.10
Ni1—N1 2.1019 (14) 2.12
O2—N2 1.2520 (14) 1.23
O3—N2 1.2548 (12) 1.22
O4—N2 1.2537 (12) 1.27
     
O1—Ni1—O1W 90.74 (4) 93.00
O1—Ni1—N1 88.68 (3) 87.00
O1—Ni1—O1Wi 89.26 (4) 91.8
O1—Ni1—N1i 91.32 (3) 92.3
O1W—Ni1—N1 90.00 (4) 92
O1i—Ni1—O1W 89.26 (4) 87.00
O1W—Ni1—N1i 90.00 (4) 91.8
O1i—Ni1—N1 91.32 (3) 92.3
O1Wi—Ni1—N1 90.00 (4) 91.8
O1i—Ni1—O1Wi 90.74 (4) 87.5
     
O1W—Ni1—O1—C2 −79.99 (10) 80.02
N1i—Ni1—O1—C2 −170.01 (10) 166.70
O1—Ni1—N1—C4 −29.33 (10) 31.30
O1—Ni1—N1—C8 151.96 (9) −147.60
O1Wi—Ni1—N1—C4 −118.59 (9) 114.9
O1Wi—Ni1—N1—C8 62.70 (9) −64.00
     
2    
Cu1—O1 2.01 2.08
Cu1—N1 2.02 1.99
Cu1—O1i 2.01 2.08
Cu1—N1i 2.02 1.99
Cu2—O2 2.05 2.08
     
N2—Cu2—N2ii 180 180.00
O1—Cu1—N1 92.39 90.60
O1—Cu1—O1i 180 180.00
     
O3—Cu1—O1—C1 −93.9 −98
O1—Cu1—N1—C7 −151.03 −153
N2—Cu2—O2—C8 151.24 148
Cu1—O1—C1—C2 −37.55. −40
C7—N1—C3—C2 177 179
C7—N1—C3—C4 −0.5 −0.4
[Figure 1]
Figure 1
View of the Ni complex, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as circles of arbitrary radii. Hydrogen bonds are shown as dashed lines. [Symmetry code: (i): − x + 1, −y + 1, −z + 2].
[Figure 2]
Figure 2
Partial view of the polymer chain in the Cu compound, with displacement ellipsoids drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines. [Symmetry code: (i) −x + 1, −y + 2, −z + 2; (ii) −x, −y + 1, −z + 1].

In both complexes, the chelate ring displays a twist-boat conformation with puckering parameters θ = 81.9° and φ = 162° for 1 and θ = 79.2° and φ = 159.9° and θ = 87.75° and φ= 176.08° for the two mol­ecules of 2.

3. Supra­molecular features

Although not coordinated to the Ni atom, the nitrate anion in 1 participates in the packing motif. The hydroxyl group and water mol­ecules are involved in strong O—H⋯O hydrogen bonds (Table 2[link]) with the O atoms of the nitrate anions, resulting in the formation of R44(12) and R44(16) graph-set motifs, as shown in Fig. 3[link], building up a three-dimensional network. C—H⋯O hydrogen bonds also occur.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H2W⋯O3i 0.84 1.95 2.7870 (16) 176
O1W—H2W⋯N2i 0.84 2.68 3.455 (2) 153
O1W—H1W⋯O4 0.85 1.93 2.7720 (19) 174
O1—H1⋯O2ii 0.82 1.88 2.6952 (15) 172
O1—H1⋯N2ii 0.82 2.65 3.4208 (17) 159
C2—H2B⋯O3iii 0.97 2.64 3.378 (2) 133
C3—H3A⋯O1W 0.97 2.55 3.2278 (17) 127
C8—H8⋯O1iv 0.93 2.49 3.0136 (19) 116
C8—H8⋯O4iv 0.93 2.66 3.4448 (18) 143
C5—H5⋯O2v 0.93 2.41 3.3076 (19) 163
Symmetry codes: (i) -x+2, -y+1, -z+2; (ii) -x+1, -y, -z+2; (iii) x-1, y, z; (iv) -x+1, -y+1, -z+2; (v) -x+1, -y, -z+1.
[Figure 3]
Figure 3
Partial view of the packing in the NiII complex showing the O—H⋯O hydrogen bonds (dashed lines) and the formation of the R44(12) and R44(16) graph-set motifs. [Symmetry codes: (i) − x + 2, −y + 1, −z + 2; (ii) −x + 1, −y, −z + 2].

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.36; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) based on an Ni(hep-H)2O2 fragment gave 11 hits for closely related structures with an octa­hedral Ni complex, located on an inversion center, coordinated by two chelating N,O hep-H ligands in the equatorial plane and two O atoms of different ligands at the apices. A comparison of the Ni—N and Ni—O bond lengths as well as of the dihedral angles between the equatorial NiO2N2 plane and the pyridine ring is displayed in Table 3[link]. There are no notable differences between the Ni—O(H) distances, which range from 2.057 (2) to 2.114 (1) Å, and the Ni—O(ligand) bonds, ranging from 2.052 (1) to 2.112 (2) Å. Clearly the organic substituent attached to the O atom in the axial position has no real influence on the Ni—O(R) bond length. The dihedral angles between the pryridine ring and the NiN2O2 basal square plane range from 28.3 to 37.6°. The largest angle is observed for two polymeric structures in which the succinato or adipato organic ligand bridge the Ni atoms, forming a chain; this is possibly related to steric effects. A similar search on the Cu(Hep-H)2O2 fragment gave seven hits. The major difference observed with the related Ni complexes is the large discrepancy in the Cu—O(H) bond lengths, which range from 2.012 (2) to 2.428 (2) Å and the Cu—O(R) lengths, ranging from 1.982 (1) to 2.387 (4) Å. The difference observed between the Cu—O(H) and Cu—O(R) bond lengths might be due to the Jahn–Teller effect. The dihedral angles between the pryridine ring and the CuN2O2 basal square plane, ranging from 26 to 38°, are close to those found in the Ni complexes. Similar twist-boat conformations are observed in all of the related Ni and Cu complexes bearing the hep-H ligand (Table 3[link]).

Table 3
Comparison of selected geometrical parameters (%, Å, °) for NiII and CuII complexes bearing the hep-H ligand

Δ is the dihedral angle between the basal MO2N2 square plane and the pyridine ring.

Ref. R-factor M—N M—OH M—O(R) Δ θ φ
1 1.80 2.102 (1) 2.062 (1) 2.083 (2) 28.28 (4) 81.9 (1) 162.6 (1)
BOZJADa 3.80 2.102 (2) 2.065 (3) 2.084 (3) 28.4 (1) 80.6 (3) 163.4 (3)
HULYAOb 3.22 2.073 (1) 2.064 (1) 2.085 (1) 30.37 (6) 78.7 (1) 156.3 (1)
EJEZEZc 2.58 2.082 (1) 2.089 (1) 2.090 (1) 30.88 (6) 99.0 (1) 346.8 (1)
FEFWIYd 3.13 2.100 (2) 2.088 (1) 2.072 (2) 30.4 (1) 96.8 (2) 349.7 (2)
FEFWIY01d 3.05 2.090 (1) 2.104 (1) 2.064 (1) 31.86 (8) 95.9 (1) 354.6 (2)
FEFWIY02d 2.59 2.096 (1) 2.085 (1) 2.064 (1) 30.51 (7) 97.9 (1) 346.1 (1)
BOZJORa 3.75 2.078 (2) 2.096 (1) 2.063 (2) 37.6 (1) 89.2 (2) 175.3 (2)
BOZJUXa 3.03 2.083 (1) 2.114 (1) 2.052 (1) 35.43 (8) 94.3 (1) 352.5 (2)
BOZKAEa 4.36 2.098 (2) 2.096 (2) 2.064 (2) 29.9 (1) 81.9 (2) 160.4 (2)
RAJQOLe 4.07 2.083 (2) 2.057 (2) 2.112 (2) 31.9 (1) 84.5 (2) 167.7 (2)
               
2 NABBEA01f 1.9 2.025 (2) 1.988 (2) 2.012 (2) 2.055 (1) 2.380 (1) 2.298 (1) 28.5 (1) 38.0 (1) 79.2 (1) 87.8 (1) 159.9 (1) 176.2 (1)
NABBEAg 5.2 1.993 (4) 2.031 (4) 2.070 (4) 2.016 (4) 2.298 (4) 2.387 (4) 37.5 (2) 28.8 (2) 87.5 (3) 100.3 (4) 175.9 (3) 340.6 (4)
HAYHASh 2.8 2.032 (2) 2.422 (1) 1.982 (1) 29.50 (7) 81.9 (1) 171.9 (1)
IREREDi 4.04 2.017 (2) 2.385 (2) 2.025 (2) 31.0 (1) 94.4 (2) 356.0 (2)
OJOBAQj 2.35 2.009 (1) 2.041 (1) 2.312 (1) 33.96 (4) 98.6 (1) 340.0 (1)
SOJGABk 3.52 2.029 (2) 2.428 (2) 1.998 (1) 25.97 (8) 101.4 (2) 346.6 (2)
UGAROKl 3.44 2.021 (2) 2.030 (2) 2.019 (2) 2.024 (2) 2.357 (2) 2.346 (2) 31.4 (1) 32.5 (1) 95.9 (2) 80.6 (2) 345.3 (2) 167.0 (2)
Notes: (a) Trdin et al. (2015[Trdin, M., Leban, I. & Lah, N. (2015). Acta Chim. Slov. 62, 249-254.]); (b) Hamamci et al. (2002[Hamamci, S., Yilmaz, V. T. & Thöne, C. (2002). Acta Cryst. E58, m700-m701.]); (c) Yilmaz et al. (2011[Yilmaz, V. T., Yilmaz, F., Guney, E. & Buyukgungor, O. (2011). J. Coord. Chem. 64, 159-169.]); (d) Trdin & Lah (2012[Trdin, M. & Lah, N. (2012). Acta Cryst. C68, m359-m362.]); (e) Çolak et al. (2017[Çolak, A. T., Günay, H., Temel, E., Büyükgüngör, O. & Çolak, F. (2017). Transit. Met. Chem. 42, 85-93.]); (f) Zeghouan et al. (2016[Zeghouan, O., Bendjeddou, L., Dems, M. A. & Merazig, H. (2016). Private communication (refcode 1481676). CCDC, Cambridge, England.]); (g) Zienkiewicz-Machnik et al. (2016[Zienkiewicz-Machnik, M., Masternak, J., Kazimierczuk, K. & Barszcz, B. (2016). J. Mol. Struct. 1126, 37-46.]); (h) Lapanje et al. (2012[Lapanje, K., Leban, I. & Lah, N. (2012). Acta Cryst. E68, m599.]); (i) Pothiraja et al. (2011[Pothiraja, R., Sathiyendiran, M., Steiner, A. & Murugavel, R. (2011). Inorg. Chim. Acta, 372, 347-352.]); (j) Yilmaz et al. (2003[Yilmaz, V. T., Hamamci, S. & Thöne, C. (2003). J. Coord. Chem. 56, 787-795.]); (k) Caglar et al. (2014[Caglar, S., Saykal, T., Buyukgungor, O. & Sahin, E. (2014). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 44, 1234-1242.]); (l) Yeşılel et al. (2009[Yeşılel, O. Z., Erer, H., Soylu, M. S. & Büyükgüngör, O. (2009). J. Coord. Chem. 62, 2438-2448.]).

5. Thermogravimetric and differential thermal analysis

Thermal analyses were performed on a SETARM 92-16.18 PC/PG 1 instrument from 303 to 1273 K under a dynamic air atmosphere and under nitro­gen at 200.0 ml min−1 with a heating rate of 283 K min −1. The stability of the two complexes was measured by TGA and the experimental results are in agreement with the calculated data.

The TG curve for 1 (Fig. 4[link]a) shows that the monomer is stable up to 424 K with the first weight loss of 33.55% (calculated 34.21%) at 303 −438 K corresponding to the loss of two coordinated water mol­ecules and the organic hep-H ligand. The second loss of 47.51% (calculated 40.02%) at 438–488 K corresponds to the loss of the second hep-H ligand and the nitrate anion, and then the second nitrate anion decomposes (DP/P = 12.14%, calculated =13.34%). In addition, the corresponding endothermic and exothermic peaks (at 424.26, 475.06 and 631.85 K) in the differential scanning ATD curve also record the processes of weight loss. As illustrated in Fig. 4[link]b, the TG curve for 2 shows that the polymer is stable up to 470 K with the first weight loss of 24.16% (calculated 23.66%) at 470–483 K corresponding to the loss of the sulfate anion and the second loss of 29.42% (calculated 30.30%) at 483–573 K to the loss of the first hep-H ligand, and then the second hep-H ligand decomposes (DP/P = 28.55%, calculated =30.30%). In addition, the corresponding endothermic and exothermic peaks (at 473, 558 and 773 K) in the differential scanning ATD curve also record the processes of weight loss.

[Figure 4]
Figure 4
The thermogravimetric (TG) and differential thermal analysis (DTA) curves for (a) the monomer and (b) the polymer.

6. Luminescence properties

Photoluminescence spectra were measured using a Cary Eclipse (Agilent Technologies) fluorescence spectrophotometer with quartz cell (1 × 1 cm2 cross-section) equipped with a xenon lamp and a dual monochromator. The measurements were carried out at ambient temperature (298 K) with the slitex/em = 10 nm/10 nm. The photoluminescence properties of 1, 2 and free hep-H in an ethanol–water (v/v = 1:1) solution were investigated in the visible region. As shown in Fig. 5[link], free hep-H displays orange emission with a band at 496.06 nm (excited at 269.70 nm), which may be assigned to a ππ* electronic transition. When hep-H is combined with NiII or CuII in 1 or 2, an intense blue emission band is seen at λem/λex = 498.03 nm/250.93 nm or 496.96 nm/250.00 nm respectively. This should probably be assigned to the ππ* charge-transfer inter­action of the hep-H ligands. The observed blue shift of the emission maximum between 1, 2 and free hep-H is considered to originate mainly from the influence of the coordination of the metal atoms to the hep-H ligand (Leitl et al., 2016[Leitl, M. J., Zink, D. M., Schinabeck, A., Baumann, T., Volz, D. & Yersin, H. (2016). Top Curr Chem (Z), 374, 25-68.]). Thus, these compounds may be candidates for blue-light luminescent materials which suggests that more transition metal, pyridine alcohol compounds with good luminescent properties can be developed.

[Figure 5]
Figure 5
The fluorescence spectrum of the hep-H ligand and the title compounds (excitation at 250 and 269.70 nm for the complexes and hep-H, respectively)

7. TDDFT calculations

In an effort to better understand the nature of the electronic transitions exhibited by compounds 1 and 2, DFT calculations using the Amsterdam density function (ADF) software (Baerends et al., 1973[Baerends, E. J., Ellis, D. E. & Ros, P. (1973). J. Chem. Phys. 2(1), 41-51.]) along with generalized gradient approximations, exchange and correlation functional GGA (PBE) (Perdew et al., 1997[Perdew, J. P., Burke, K. & Ernzerhof, M. (1997). Phys. Rev. Lett. 78, 1396-1396.]), employing the TZP (triple zeta polarized) basis set. The singlet excited state was optimized using time-dependent density functional theory calculations (TDDFT) (Bauernschmitt & Ahlrichs, 1996[Bauernschmitt, R. & Ahlrichs, R. (1996). J. Chem. Phys. 104, 9047-9052.]; Gross & Kohn, 1990[Gross, E. K. U. & Kohn, W. (1990). Adv. Quantum Chem. 21, 255-291.]; Gross et al., 1996[Gross, E. U. K., Dobson, J. F. & Petersilka, M. (1996). Density Functional Theory of Time Dependent Phenomena in Topics in Current Chemistry - Density Functional Theory II, edited by K. Hafner, K. N. Houk, I. J. M. Lehn, K. N. Raymond, C. W. Rees, J. Thiem & F. Vogtle, pp. 81-172. Berlin: Springer.]).

The ground-state geometry of 1 and 2 was adapted from the X-ray data. The calculated structural parameters show a good agreement with the original X-ray diffraction data (Table 1[link]); the root-mean-square deviation f between the X-ray and the DFT structure for non-hydrogen atoms is 0.603 and 0.620 Å for 1 and 2, respectively. The computed absorption bands, dominant transitions, characters, and oscillator strengths (f) are given in Table 4[link]. As shown in this table, two absorption features are predicted for the monomer; these mainly consist of absorption peaks located at λ = 286 and 280 nm, resulting from the HOMO-2 to LUMO transition and the HOMO-3 to LUMO transition, which is attributed to a ligand–metal charge transfer (LMTC) (Fig. 6[link]a). Three absorption features are predicted in the polymer, consisting mainly of absorption peaks that are located at λ = 507, 443 and 244 nm, resulting from HOMO-4 to LUMO, HOMO-5 to LUMO and HOMO-2 to LUMO transitions, which are attributed to a ligand–metal charge transfer (LMTC) (Fig. 6[link]b). The HOMO–LUMO energy gap was found to be 4.33, 4.42 for the transitions in 1 and 2.44, 4.03, 5.81 ev for the transitions in 2.

Table 4
The calculated optical transition energies (nm) and their corresponding oscillator strengths (f) (ev) for 1 and 2

λ f E Transition Type
1        
286 0.03 4.33 HOMO-2 to LUMO LMTC
280 0.01 4.42 HOMO-3 to LUMO LMTC
2        
507 0.009 2.44 HOMO-4 to LUMO LMTC
443 0.08 4.03 HOMO-5 to LUMO LMTC
244 0.07 5.81 HOMO-2 to LUMO+1 LLTC
[Figure 6]
Figure 6
Plots of the mol­ecular orbitals dominating the contribution of the low-energy transitions for (a) the monomer and (b) the polymer.

8. Synthesis and crystallization

All chemicals and solvents were commercially purchased and used as received. The infrared spectra were recorded on a Perkin–Elmer spectrometer at room temperature in the range of 4000–500 cm−1.

The hep-H ligand was obtained from commercial sources. The synthesis of the two compounds followed the same procedures as previously described for the CoII analog (Zeghouan et al., 2013[Zeghouan, O., Guenifa, F., Hadjadj, N., Bendjeddou, L. & Merazig, H. (2013). Acta Cryst. E69, m439-m440.]). (2-Hy­droxy­eth­yl)pyridine (10.0 mmol, 1.67 g) was reacted in a mixture of ethanol–water (v/v = 1:1) with Ni(NO3)2·6H2O (10.0 mmol, 2.50 g) for the NiII analogue and with Cu(SO4)2·6H2O (10.0 mmol, 2.3 g) for the CuII analogue. The solutions were maintained under agitation for 24 h at room temperature. Green prisms of the monomer and green prisms of the polymer were obtained by slow evaporation of the solvents within three weeks. The crystals formed were filtered and washed with 15 ml of water.

IR (cm−1, pure crystals of compounds without KBr): Ni analogue: 3389 (vs), 3124 (vs), 2862 (m), 2764 (m), 2360 (m), 1658 (m), 1442 (m), 1371 (vs), 1306 (vs), 1084 (m), 1021 (m), 763 (m), 586 (m). Cu analogue: 3392 (vs), 3127 (s), 2911 (m), 1655 (m), 1609 (m), 1572 (w), 1493 (w), 1444 (w), 1373 (vs), 1356 (vs), 1313 (m), 1159 (m), 1082 (m), 1023 (m), 907 (w), 860 (s), 764 (m), 706 (s), 643 (s).

9. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. O-bound H atoms were located in a difference-Fourier map and refined with O—H restrained to 0.85 (1) Å, with Uiso(H) = 1.5Ueq(O). For the water mol­ecule a further H⋯H distance restraint of 1.39 (2) Å was used. C-bound H atoms were placed at calculated positions with C—H = 0.93 Å (aromatic H atoms) and 0.97 Å (methyl­ene H atoms), and refined in riding mode with Uiso(H) = 1.2Ueq(C). Four reflections were omitted from the refinement.

Table 5
Experimental details

Crystal data
Chemical formula [Ni(C7H9NO)2(H2O)2](NO3)2
Mr 465.05
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 7.782 (5), 8.185 (5), 8.811 (5)
α, β, γ (°) 96.785 (5), 113.856 (5), 109.140 (5)
V3) 464.0 (5)
Z 1
Radiation type Mo Kα
μ (mm−1) 1.11
Crystal size (mm) 0.18 × 0.11 × 0.08
 
Data collection
Diffractometer Bruker APEXII
No. of measured, independent and observed [I > 2σ(I)] reflections 2478, 2478, 2471
Rint 0.019
(sin θ/λ)max−1) 0.685
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.051, 1.08
No. of reflections 2478
No. of parameters 133
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.42, −0.29
Computer programs: APEX2 and SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and Mercury (Macrae et al., 2006).

Diaquabis[2-(2-hydroxyethyl)pyridine-κ2N,O)nickel(II) dinitrate top
Crystal data top
[Ni(C7H9NO)2(H2O)2](NO3)2Z = 1
Mr = 465.05F(000) = 242
Triclinic, P1Dx = 1.664 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.782 (5) ÅCell parameters from 1536 reflections
b = 8.185 (5) Åθ = 2.8–33.8°
c = 8.811 (5) ŵ = 1.11 mm1
α = 96.785 (5)°T = 293 K
β = 113.856 (5)°Prism, green
γ = 109.140 (5)°0.18 × 0.11 × 0.08 mm
V = 464.0 (5) Å3
Data collection top
Bruker APEXII
diffractometer
2471 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
Graphite monochromatorθmax = 29.1°, θmin = 3.0°
φ scansh = 1111
2478 measured reflectionsk = 1111
2478 independent reflectionsl = 1211
Refinement top
Refinement on F24 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.018H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.051 w = 1/[σ2(Fo2) + (0.0235P)2 + 0.1863P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2478 reflectionsΔρmax = 0.42 e Å3
133 parametersΔρmin = 0.29 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.5000000.5000001.0000000.01030 (6)
O1W0.76119 (11)0.49746 (9)0.98827 (9)0.01538 (14)
H2W0.8704710.5912061.0514100.023*
H1W0.7866230.4059911.0022860.023*
O10.36368 (11)0.22139 (9)0.92461 (9)0.01563 (14)
H10.3124960.1674950.9788130.023*
O30.88841 (12)0.18215 (11)0.80898 (10)0.02212 (16)
O40.81394 (14)0.18243 (11)1.02219 (11)0.02427 (17)
O20.77192 (14)0.06798 (10)0.86796 (11)0.02611 (18)
N10.36503 (12)0.49127 (11)0.73709 (10)0.01265 (15)
N20.82483 (13)0.09922 (11)0.89982 (11)0.01520 (16)
C20.26126 (17)0.10590 (13)0.75001 (13)0.01930 (19)
H2B0.1169460.0852980.6947280.023*
H2A0.2686330.0099870.7513700.023*
C30.36373 (16)0.19383 (13)0.64843 (13)0.01691 (18)
H3A0.5116490.2324020.7152150.020*
H3B0.3159950.1043720.5412110.020*
C70.24432 (16)0.64650 (14)0.52920 (13)0.01830 (19)
H70.2202540.7473490.5069200.022*
C60.20270 (16)0.50690 (15)0.39547 (13)0.01914 (19)
H60.1515050.5130730.2819240.023*
C80.32254 (15)0.63218 (13)0.69660 (12)0.01527 (17)
H80.3469370.7243790.7854760.018*
C40.32151 (14)0.35408 (13)0.60574 (12)0.01359 (17)
C50.23876 (16)0.35837 (14)0.43420 (12)0.01737 (18)
H50.2078650.2618410.3460230.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01338 (8)0.00887 (8)0.00873 (8)0.00453 (6)0.00534 (6)0.00257 (6)
O1W0.0160 (3)0.0134 (3)0.0175 (3)0.0064 (3)0.0085 (3)0.0041 (3)
O10.0221 (3)0.0099 (3)0.0129 (3)0.0034 (3)0.0092 (3)0.0027 (2)
O30.0254 (4)0.0203 (4)0.0214 (4)0.0055 (3)0.0140 (3)0.0093 (3)
O40.0394 (5)0.0201 (4)0.0242 (4)0.0169 (3)0.0210 (4)0.0073 (3)
O20.0401 (5)0.0120 (3)0.0290 (4)0.0060 (3)0.0232 (4)0.0038 (3)
N10.0150 (3)0.0124 (3)0.0109 (3)0.0058 (3)0.0062 (3)0.0035 (3)
N20.0148 (4)0.0143 (4)0.0157 (4)0.0055 (3)0.0069 (3)0.0042 (3)
C20.0266 (5)0.0106 (4)0.0149 (4)0.0034 (4)0.0088 (4)0.0006 (3)
C30.0241 (5)0.0144 (4)0.0140 (4)0.0097 (4)0.0097 (4)0.0026 (3)
C70.0214 (5)0.0195 (5)0.0160 (4)0.0103 (4)0.0081 (4)0.0090 (4)
C60.0200 (4)0.0248 (5)0.0116 (4)0.0086 (4)0.0065 (4)0.0072 (4)
C80.0186 (4)0.0144 (4)0.0136 (4)0.0076 (3)0.0075 (3)0.0046 (3)
C40.0144 (4)0.0139 (4)0.0121 (4)0.0049 (3)0.0069 (3)0.0026 (3)
C50.0188 (4)0.0198 (4)0.0111 (4)0.0065 (4)0.0067 (3)0.0018 (3)
Geometric parameters (Å, º) top
Ni1—O1i2.0622 (14)C2—C31.5193 (15)
Ni1—O12.0622 (14)C2—H2B0.9700
Ni1—O1Wi2.0831 (15)C2—H2A0.9700
Ni1—O1W2.0831 (15)C3—C41.5063 (15)
Ni1—N12.1019 (14)C3—H3A0.9700
Ni1—N1i2.1019 (14)C3—H3B0.9700
O1W—H2W0.8426C7—C81.3861 (15)
O1W—H1W0.8451C7—C61.3891 (16)
O1—C21.4374 (14)C7—H70.9300
O1—H10.8184C6—C51.3848 (16)
O3—N21.2548 (12)C6—H60.9300
O4—N21.2537 (12)C8—H80.9300
O2—N21.2520 (14)C4—C51.3930 (15)
N1—C81.3485 (14)C5—H50.9300
N1—C41.3570 (13)
O1i—Ni1—O1180.0O1—C2—C3109.66 (9)
O1i—Ni1—O1Wi90.74 (4)O1—C2—H2B109.7
O1—Ni1—O1Wi89.26 (4)C3—C2—H2B109.7
O1i—Ni1—O1W89.26 (4)O1—C2—H2A109.7
O1—Ni1—O1W90.74 (4)C3—C2—H2A109.7
O1Wi—Ni1—O1W180.0H2B—C2—H2A108.2
O1i—Ni1—N191.32 (3)C4—C3—C2113.88 (9)
O1—Ni1—N188.68 (3)C4—C3—H3A108.8
O1Wi—Ni1—N190.00 (4)C2—C3—H3A108.8
O1W—Ni1—N190.00 (4)C4—C3—H3B108.8
O1i—Ni1—N1i88.68 (3)C2—C3—H3B108.8
O1—Ni1—N1i91.32 (3)H3A—C3—H3B107.7
O1Wi—Ni1—N1i90.00 (4)C8—C7—C6118.53 (10)
O1W—Ni1—N1i90.00 (4)C8—C7—H7120.7
N1—Ni1—N1i180.0C6—C7—H7120.7
Ni1—O1W—H2W114.9C5—C6—C7118.83 (10)
Ni1—O1W—H1W117.1C5—C6—H6120.6
H2W—O1W—H1W108.6C7—C6—H6120.6
C2—O1—Ni1125.84 (6)N1—C8—C7123.30 (9)
C2—O1—H1107.8N1—C8—H8118.3
Ni1—O1—H1120.3C7—C8—H8118.3
C8—N1—C4117.93 (9)N1—C4—C5121.60 (9)
C8—N1—Ni1118.03 (6)N1—C4—C3118.57 (9)
C4—N1—Ni1124.03 (7)C5—C4—C3119.83 (9)
O2—N2—O4119.76 (9)C6—C5—C4119.75 (9)
O2—N2—O3119.70 (9)C6—C5—H5120.1
O4—N2—O3120.54 (9)C4—C5—H5120.1
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W···O3ii0.841.952.7870 (16)176
O1W—H2W···N2ii0.842.683.455 (2)153
O1W—H1W···O40.851.932.7720 (19)174
O1—H1···O2iii0.821.882.6952 (15)172
O1—H1···N2iii0.822.653.4208 (17)159
C2—H2B···O3iv0.972.643.378 (2)133
C3—H3A···O1W0.972.553.2278 (17)127
C8—H8···O1i0.932.493.0136 (19)116
C8—H8···O4i0.932.663.4448 (18)143
C5—H5···O2v0.932.413.3076 (19)163
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+2, y+1, z+2; (iii) x+1, y, z+2; (iv) x1, y, z; (v) x+1, y, z+1.
Comparison of distances and angles (Å, °) in 1 and 2 top
1
Ni1—O12.0622 (14)2.07
Ni1—O1W2.0831 (15)2.10
Ni1—N12.1019 (14)2.12
O2—N21.2520 (14)1.23
O3—N21.2548 (12)1.22
O4—N21.2537 (12)1.27
O1—Ni1—O1W90.74 (4)93.00
O1—Ni1—N188.68 (3)87.00
O1—Ni1—O1i180179.00
O1—Ni1—O1Wi89.26 (4)91.8
O1—Ni1—N1i91.32 (3)92.3
O1W—Ni1—N190.00 (4)92
O1i—Ni1—O1W89.26 (4)87.00
O1W—Ni1—O1Wi180178.2
O1W—Ni1—N1i90.00 (4)91.8
O1i—Ni1—N191.32 (3)92.3
O1Wi—Ni1—N190.00 (4)91.8
N1—Ni1—N1i180179
O1i—Ni1—O1Wi90.74 (4)87.5
O1W—Ni1—O1—C2-79.99 (10)80.02
N1i—Ni1—O1—C2-170.01 (10)166.70
O1—Ni1—N1—C4-29.33 (10)31.30
O1—Ni1—N1—C8151.96 (9)-147.60
O1Wi—Ni1—N1—C4-118.59 (9)114.9
O1Wi—Ni1—N1—C862.70 (9)-64.00
2
Cu1—O12.012.08
Cu1—N12.021.99
Cu1—O1i2.012.08
Cu1—N1i2.021.99
Cu2—O22.052.08
N2—Cu2—N2ii180180.00
O1—Cu1—N192.3990.60
O1—Cu1—O1i180180.00
O3—Cu1—O1—C1-93.9-98
O1—Cu1—N1—C7-151.03-153
N2—Cu2—O2—C8151.24148
Cu1—O1—C1—C2-37.55.-40
C7—N1—C3—C2177179
C7—N1—C3—C4-0.5-0.4
Comparison of selected geometrical parameters (%, Å, °) for NiII and CuII complexes bearing the Hep-H ligand top
Δ is dihedral angle between the basal MO2N2 square plane and the pyridine ring.
Ref.R-factorM—NM—OHM—O(R)Δθφ
11.802.102 (1)2.062 (1)2.083 (2)28.28 (4)81.9 (1)162.6 (1)
BOZJADa3.802.102 (2)2.065 (3)2.084 (3)28.4 (1)80.6 (3)163.4 (3)
HULYAOb3.222.073 (1)2.064 (1)2.085 (1)30.37 (6)78.7 (1)156.3 (1)
EJEZEZc2.582.082 (1)2.089 (1)2.090 (1)30.88 (6)99.0 (1)346.8 (1)
FEFWIYd3.132.100 (2)2.088 (1)2.072 (2)30.4 (1)96.8 (2)349.7 (2)
FEFWIY01d3.052.090 (1)2.104 (1)2.064 (1)31.86 (8)95.9 (1)354.6 (2)
FEFWIY02d2.592.096 (1)2.085 (1)2.064 (1)30.51 (7)97.9 (1)346.1 (1)
BOZJORa3.752.078 (2)2.096 (1)2.063 (2)37.6 (1)89.2 (2)175.3 (2)
BOZJUXa3.032.083 (1)2.114 (1)2.052 (1)35.43 (8)94.3 (1)352.5 (2)
BOZKAEa4.362.098 (2)2.096 (2)2.064 (2)29.9 (1)81.9 (2)160.4 (2)
RAJQOLe4.072.083 (2)2.057 (2)2.112 (2)31.9 (1)84.5 (2)167.7 (2)
2 NABBEA01f1.92.025 (2) 1.988 (2)2.012 (2) 2.055 (1)2.380 (1) 2.298 (1)28.5 (1) 38.0 (1)79.2 (1) 87.8 (1)159.9 (1) 176.2 (1)
NABBEAg5.21.993 (4) 2.031 (4)2.070 (4) 2.016 (4)2.298 (4) 2.387 (4)37.5 (2) 28.8 (2)87.5 (3) 100.3 (4)175.9 (3) 340.6 (4)
HAYHASh2.82.032 (2)2.422 (1)1.982 (1)29.50 (7)81.9 (1)171.9 (1)
IREREDi4.042.017 (2)2.385 (2)2.025 (2)31.0 (1)94.4 (2)356.0 (2)
OJOBAQj2.352.009 (1)2.041 (1)2.312 (1)33.96 (4)98.6 (1)340.0 (1)
SOJGABk3.522.029 (2)2.428 (2)1.998 (1)25.97 (8)101.4 (2)346.6 (2)
UGAROKl3.442.021 (2) 2.030 (2)2.019 (2) 2.024 (2)2.357 (2) 2.346 (2)31.4 (1) 32.5 (1)95.9 (2) 80.6 (2)345.3 (2) 167.0 (2)
Notes: (a) Trdin et al. (2015); (b) Hamamci et al. (2002); (c) Yilmaz et al. (2011); (d) Trdin & Lah (2012); (e) Çolak et al. (2017); (f) Zeghouan et al. (2016); (g) Zienkiewicz-Machnik et al. (2016); (h) Lapanje et al. (2012); (i) Pothiraja et al. (2011); (j) Yilmaz et al. (2003); (k) Caglar et al. (2014); (l) Yeşılel et al. (2009).
The calculated optical transition energies (nm) and their corresponding oscillator strengths (f) (ev) for 1 and 2 top
λfETransitionType
1
2860.034.33HOMO-2 to LUMOLMTC
2800.014.42HOMO-3 to LUMOLMTC
2
5070.0092.44HOMO-4 to LUMOLMTC
4430.084.03HOMO-5 to LUMOLMTC
2440.075.81HOMO-2 to LUMO+1LLTC
 

Funding information

This work was supported by the Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (URCHEMS), Université Frères Mentouri Constantine, Algeria and the Biotechnology Research Center (CRBt), Constantine, Algeria. Thanks are due to MESRS and ATRST (Ministère de l'Enseignement Supérieur et de la Recherche Scientifique et l'Agence Thématique de Recherche en Sciences et Technologie, Algeria) for financial support via the PNR program.

References

First citationAntonioli, B., Bray, D. J., Clegg, J. K., Jolliffe, K. A., Gloe, K., Gloe, K. & Lindoy, L. F. (2007). Polyhedron, 26, 673–678.  Web of Science CSD CrossRef CAS Google Scholar
First citationBaerends, E. J., Ellis, D. E. & Ros, P. (1973). J. Chem. Phys. 2(1), 41–51.  Google Scholar
First citationBauernschmitt, R. & Ahlrichs, R. (1996). J. Chem. Phys. 104, 9047–9052.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCaglar, S., Saykal, T., Buyukgungor, O. & Sahin, E. (2014). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 44, 1234–1242.  Web of Science CrossRef Google Scholar
First citationÇolak, A. T., Günay, H., Temel, E., Büyükgüngör, O. & Çolak, F. (2017). Transit. Met. Chem. 42, 85–93.  Google Scholar
First citationComba, P. & Remenyi, R. (2003). Coord. Chem. Rev. 238, 9–20.  Web of Science CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGross, E. U. K., Dobson, J. F. & Petersilka, M. (1996). Density Functional Theory of Time Dependent Phenomena in Topics in Current Chemistry – Density Functional Theory II, edited by K. Hafner, K. N. Houk, I. J. M. Lehn, K. N. Raymond, C. W. Rees, J. Thiem & F. Vogtle, pp. 81–172. Berlin: Springer.  Google Scholar
First citationGross, E. K. U. & Kohn, W. (1990). Adv. Quantum Chem. 21, 255–291.  CrossRef CAS Google Scholar
First citationHamamci, S., Yilmaz, V. T. & Thöne, C. (2002). Acta Cryst. E58, m700–m701.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHuang, Q.-Y., Yang, Y. & Meng, X.-R. (2015). Acta Cryst. C71, 701–705.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKelley, T. W., Baude, P. F., Gerlach, C., Ender, D. E., Muyres, D., Haase, M. A., Vogel, D. E. & Theiss, S. D. (2004). Chem. Mater. 16, 4413–4422.  Web of Science CrossRef CAS Google Scholar
First citationKim, Y.-I., Song, Y.-K., Kim, D. & Kang, S. K. (2015). Acta Cryst. C71, 908–911.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKong, L.-Q., Ju, X.-P. & Li, D.-C. (2009). Acta Cryst. E65, m1518.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLapanje, K., Leban, I. & Lah, N. (2012). Acta Cryst. E68, m599.  CSD CrossRef IUCr Journals Google Scholar
First citationLeitl, M. J., Zink, D. M., Schinabeck, A., Baumann, T., Volz, D. & Yersin, H. (2016). Top Curr Chem (Z), 374, 25–68.  Web of Science CrossRef Google Scholar
First citationLey, A. N., Dunaway, L. E., Brewster, T. P., Dembo, M. D., Harris, T. D., Baril-Robert, F., Li, X., Patterson, H. H. & Pike, R. D. (2010). Chem. Commun. 46, 4565–4567.  Web of Science CrossRef Google Scholar
First citationLin, R.-G., Wang, Y.-L. & Liang, Q. (2015). Acta Cryst. C71, 44–47.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMartínez, A., Lorenzo, J., Prieto, M. J., Font-Bardia, M., Solans, X., Avilés, F. X. & Moreno, V. (2007). Bioorg. Med. Chem. 15, 969–979.  Google Scholar
First citationMobin, Sh. M., Srivastava, A. K., Mathur, P. & Lahiri, G. K. (2010). Dalton Trans. 39, 1447–1449.  Web of Science CrossRef Google Scholar
First citationPerdew, J. P., Burke, K. & Ernzerhof, M. (1997). Phys. Rev. Lett. 78, 1396–1396.  CrossRef CAS Web of Science Google Scholar
First citationPothiraja, R., Sathiyendiran, M., Steiner, A. & Murugavel, R. (2011). Inorg. Chim. Acta, 372, 347–352.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStamatatos, T. C., Boudalis, A. K., Pringouri, K. V., Raptopoulou, C. P., Terzis, A., Wolowska, J., McInnes, E. J. L. & Perlepes, S. P. (2007). Eur. J. Inorg. Chem. pp. 5098–5104.  Web of Science CSD CrossRef Google Scholar
First citationTrdin, M. & Lah, N. (2012). Acta Cryst. C68, m359–m362.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationTrdin, M., Leban, I. & Lah, N. (2015). Acta Chim. Slov. 62, 249–254.  Web of Science CrossRef Google Scholar
First citationWang, F.-M., Lu, C.-S., Li, Y.-Z. & Meng, Q.-J. (2010). Acta Cryst. E66, m594.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYeşılel, O. Z., Erer, H., Soylu, M. S. & Büyükgüngör, O. (2009). J. Coord. Chem. 62, 2438–2448.  Google Scholar
First citationYilmaz, V. T., Hamamci, S. & Thöne, C. (2003). J. Coord. Chem. 56, 787–795.  Web of Science CSD CrossRef CAS Google Scholar
First citationYilmaz, V. T., Yilmaz, F., Guney, E. & Buyukgungor, O. (2011). J. Coord. Chem. 64, 159–169.  Web of Science CrossRef CAS Google Scholar
First citationZeghouan, O., Bendjeddou, L., Dems, M. A. & Merazig, H. (2016). Private communication (refcode 1481676). CCDC, Cambridge, England.  Google Scholar
First citationZeghouan, O., Guenifa, F., Hadjadj, N., Bendjeddou, L. & Merazig, H. (2013). Acta Cryst. E69, m439–m440.  CrossRef IUCr Journals Google Scholar
First citationZienkiewicz-Machnik, M., Masternak, J., Kazimierczuk, K. & Barszcz, B. (2016). J. Mol. Struct. 1126, 37–46.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds