research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of {(E)-2-[(3,4-di­meth­­oxy­phenyl­imino)­meth­yl]phenolato-κ2N,O1}bis­­[2-(pyridin-2-yl)phenyl-κ2C1,N]iridium(III) di­chloro­methane disolvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Applied Chemistry, Kumoh National Institute of Technology, Gumi, 39177, Republic of Korea, bDepartment of Chemistry, Korea University, Seoul 02841, Republic of Korea, and cDepartment of Chemistry, Sejong University, Seoul 05006, Republic of Korea
*Correspondence e-mail: hjk@kumoh.ac.kr

Edited by M. Weil, Vienna University of Technology, Austria (Received 8 June 2018; accepted 11 July 2018; online 17 July 2018)

The asymmetric unit of the solvated title complex, [Ir(C11H8N)2(C15H14NO3)]·2CH2Cl2, consists of two complex mol­ecules together with four di­chloro­methane solvent mol­ecules, one of which is disordered. In each complex mol­ecule, the IrIII ion has a distorted octa­hedral coordination environment defined by two 2-phenyl­pyridine ligands, through two phenyl C and two pyridine N atoms, and by one N,O-bidentate 2-[(2,4-di­meth­oxy­phenyl­imino)­meth­yl]phenolate anion. The IrIII ions lie almost in the equatorial planes with deviations of 0.0396 (17) and 0.0237 (17) Å, respectively, for the two complex mol­ecules. In both complex mol­ecules, the two 2-phenyl­pyridine ligands are nearly perpendicular to each other [dihedral angles between the least-squares-planes of 89.91 (11) and 85.13 (11)°]. In the crystal, inter­molecular C—H⋯O inter­actions as well as inter­molecular C—H⋯π inter­actions are present, leading to a three-dimensional network structure. One of the four dichlormethane solvent mol­ecules shows disorder over two sets of sites [occupancy ratio 0.79 (2):0.21 (2)].

1. Chemical context

Heteroleptic iridium(III) complexes bearing a coordinating phenyl­pyridine ligand are of great inter­est because of their potential applications in the field of organic light-emitting diodes (OLEDs), as phospho­rescence sensors and in photocatalysis (Evans et al., 2006[Evans, R. C., Douglas, P. & Winscom, C. J. (2006). Coord. Chem. Rev. 250, 2093-2126.]; Maity et al., 2015[Maity, A., Sarkar, R. & Rajak, K. K. (2015). RSC Adv. 5, 78852-78863.]; Alam et al., 2017[Alam, P., Dash, S., Climent, C., Kaur, G., Choudhury, A. R., Casanova, D., Alemany, P., Chowdhury, R. & Laskar, I. R. (2017). RSC Adv. 7, 5642-5648.]). In particular, cyclo­metalated IrIII complexes with imine-based ancillary ligands exhibit strong aggregation-induced phospho­rescent emission (AIPE) in the solid state (Howarth et al., 2014[Howarth, A. J., Patia, R., Davies, D. L., Lelj, F., Wolf, M. O. & Singh, K. (2014). Eur. J. Inorg. Chem. pp. 3657-3664.]; You et al., 2008[You, Y., Huh, H. S., Kim, K. S., Lee, S. W., Kim, D. & Park, S. Y. (2008). Chem. Commun. pp. 3998-4000.]). The photophysical properties of these complexes are governed mainly by the coordination environment around the metal ions and the ligand architecture. Hence a small change in the ligand moiety can alter the ground as well as excited states of the metal complexes, making it important to analyze in detail the coordination environment of iridium complexes to understand the origin of phospho­rescence in the solid state (Pal & Singh, 2013[Pal, S. & Singh, B. C. (2013). Acta Cryst. E69, m159.]; Goo et al., 2016[Goo, M.-S., Park, K.-M. & Kim, H.-J. (2016). Acta Cryst. E72, 838-840.]).

Here we report the crystal structure of the title compound, [Ir(C11H8N)2(C15H14NO3)]·2CH2Cl2, a heteroleptic IrIII complex containing a derivative of a salicyl­imine ligand.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title complex consists of two iridium complexes together with four di­chloro­methane solvent mol­ecules. One of the solvent mol­ecules is disordered over two sets of sites. Each complex mol­ecular unit (Fig. 1[link]) consists of one IrIII ion, two C,N-chelating 2-phenyl­pyridine ligands, and one N,O-chelating 2-((2,4-di­meth­oxy­phenyl­imino)­meth­yl)phenolate anion. Each IrIII ion adopts a distorted octa­hedral coordination environment defined by two phenyl C, two pyridine N, and one imine and one phenolic O atoms. Selected bond lengths and angles are given in Table 1[link] for both complex mol­ecules.

Table 1
Selected bond lengths (Å) and angles (°) for the title complex

Mol­ecule 1 (Ir1)   Mol­ecule 2 (Ir2)  
Ir1—N1 2.028 (3) Ir2—C38 2.000 (4)
Ir1—C11 1.998 (4) Ir2—N4 2.030 (3)
Ir1—C12 1.996 (4) Ir2—C49 2.010 (4)
Ir1—N2 2.036 (3) Ir2—N5 2.037 (3)
Ir1—O1 2.147 (2) Ir2—O4 2.151 (2)
Ir1—N3 2.149 (3) Ir2—N6 2.146 (3)
       
C11—Ir1—N1 80.64 (14) N4—Ir2—C38 80.63 (14)
C12—Ir1—N1 94.36 (14) C49—Ir2—C38 86.71 (14)
C12—Ir1—C11 89.53 (14) C49—Ir2—N4 96.13 (14)
N2—Ir1—N1 174.57 (12) N5—Ir2—C38 97.04 (14)
N2—Ir1—C11 97.33 (13) N5—Ir2—N4 176.06 (12)
N2—Ir1—C12 80.55 (14) N5—Ir2—C49 80.52 (14)
O1—Ir1—N1 94.86 (11) O4—Ir2—C38 174.17 (13)
O1—Ir1—C11 175.03 (13) O4—Ir2—N4 95.39 (11)
O1—Ir1—C12 88.70 (12) O4—Ir2—C49 89.50 (12)
O1—Ir1—N2 86.97 (10) O4—Ir2—N5 86.69 (11)
N3—Ir1—N1 86.66 (11) N6—Ir2—C38 97.25 (13)
N3—Ir1—C11 96.53 (13) N6—Ir2—N4 86.08 (12)
N3—Ir1—C12 173.93 (12) N6—Ir2—C49 175.75 (12)
N3—Ir1—N2 98.60 (12) N6—Ir2—N5 97.40 (12)
N3—Ir1—O1 85.25 (10) N6—Ir2—O4 86.67 (10)
[Figure 1]
Figure 1
View of the asymmetric unit of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Purple and green dashed lines represent intra- and inter­molecular C—H⋯π inter­actions, respectively. Solvent mol­ecules are omitted for clarity.

In complex mol­ecule 1 (Ir1), the equatorial plane is defined by atoms O1/N3/C11/C12, the mean deviation from the least-squares plane being 0.044 Å. The Ir1III ion is displaced by 0.0396 (17) Å from the equatorial plane towards the axial N1 atom. The two 2-phenyl­pyridine ligands are nearly planar, with dihedral angles between the aromatic rings of 1.42 (13)° (between rings C6–C11 and N1–C5) and 0.60 (13)° (between rings C12–C17 and N2–C22). The 2-phenyl­pyridine ligands are perpendicular to each other, with a dihedral angle between the least-squares planes of 89.91 (11)°. The coordinating C atoms (C11, C12) are trans to the phenolic O1 atom and the imine N3 atom of the anionic ligand, and the two pyridine N atoms (N1 and N2) are also trans to each other.

In complex mol­ecule 2 (Ir2), a similar bonding situation is observed, with the phenyl C atoms C38 and C49 trans to the O4 and N6 atoms of the 2-[(2,4-di­meth­oxy­phenyl­imino)­meth­yl]phenolate anion. The equatorial plane is formed by atoms O4/C49/C38/N6. The mean deviation from the least-squares plane is 0.055 Å and the Ir2III ion is displaced by 0.0237 (17) Å from the equatorial plane towards the axial N4 atom. The deviation from a perpendicular arrangement of the two 2-phenyl­pyridine ligands is slightly higher than in complex 1 [the dihedral angle between the least-squares planes is 85.13 (11)°], likewise the deviation from planarity with dihedral angles of 1.69 (13)° (between rings C49–C54 and N5–C59) and 3.36 (13)° (between rings C38–C43 and N4–C48), respectively.

The configurations in both complexes are stabilised by intra­molecular C—H⋯O inter­actions between the phenolic O1 and O4 atoms as acceptors and the phenyl C1—H1 and C48—H48 groups as donors (Fig. 1[link], Table 2[link]), as well as by intra­molecular C—H⋯π inter­actions between H13 with Cg1 and H50 with Cg2 (Cg1 and Cg2 are the centroids of the N1/C1–C5 and N4/C44–C48 rings, respectively).

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N1/C1–C5 and N4/C44–C48 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O1 0.95 2.51 3.112 (5) 121
C13—H13⋯Cg1 0.95 3.06 3.83 (4) 139
C74—H74aCg1 0.98 3.40 4.12 (5) 132
C48—H48⋯O4 0.95 2.56 3.155 (5) 121
C36—H36cCg2 0.98 3.47 4.18 (5) 131
C50—H50⋯Cg2 0.95 3.22 3.98 (4) 138
C29—H29⋯O2i 0.95 2.60 3.152 (5) 118
C29—H29⋯O3i 0.95 2.52 3.463 (5) 172
C58—H58⋯O6ii 0.95 2.39 3.330 (5) 170
C75—H75a⋯O4iii 0.99 2.35 3.310 (7) 165
C77—H77a⋯O1iv 0.99 2.19 3.172 (7) 172
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, -y+2, -z+1; (iii) x+1, y, z; (iv) x-1, y, z.

The Ir—C, Ir—N, and Ir—O bond lengths, as shown in Table 1[link], are consistent with values reported in the literature, e.g. for {(E)-2-[(2,6-diiso­propyl­phenyl­imino)­meth­yl]phen­o­lato-κ2N,O}bis­(2-phenyl­pyridine-κ2C,N)iridium(III) (How­arth et al., 2014[Howarth, A. J., Patia, R., Davies, D. L., Lelj, F., Wolf, M. O. & Singh, K. (2014). Eur. J. Inorg. Chem. pp. 3657-3664.]), {(E)-2-[(phenyl­imino)­meth­yl]phenolato-κ2N,O}bis[2-(2,4-di­fluoro­phen­yl)pyridine-κ2C,N]iridium(III) (You et al., 2008[You, Y., Huh, H. S., Kim, K. S., Lee, S. W., Kim, D. & Park, S. Y. (2008). Chem. Commun. pp. 3998-4000.]) or {(E)-2-[(phenyl­imino)­meth­yl]phenolato-κ2N,O}bis­[2-(pyridin-2-yl)phenyl-κ2C,N]iridium(III) (Goo et al., 2016[Goo, M.-S., Park, K.-M. & Kim, H.-J. (2016). Acta Cryst. E72, 838-840.]).

3. Supra­molecular features

In the crystal, the mol­ecules are linked by non-classical C—H⋯O hydrogen-bonds as well as C—H⋯π inter­actions (Figs. 1[link] and 2[link], Table 2[link]). Inter­molecular C—H⋯O inter­actions are present between aromatic and methyl donor groups (also involving solvent mol­ecules) and phenolic and meth­oxy O atoms. Additional C—H⋯π inter­actions (Table 2[link]) are present between H74a with Cg1 and H36c with Cg2. The crystal packing lacks any ππ inter­actiosn (negligible above 3.8 Å), although the title compound is very similar to a previously reported compound (Goo et al., 2016[Goo, M.-S., Park, K.-M. & Kim, H.-J. (2016). Acta Cryst. E72, 838-840.]) where this packing feature is present.

[Figure 2]
Figure 2
Packing plot of the mol­ecular components in the title compound. Cyan lines represent inter­molecular short contact. Solvent mol­ecules are omitted for clarity.

4. Synthesis and crystallization

The title compound was prepared according to a reported procedure (Goo et al., 2016[Goo, M.-S., Park, K.-M. & Kim, H.-J. (2016). Acta Cryst. E72, 838-840.]), using 2-[(2,4-di­meth­oxy­phenyl­imino)­meth­yl]phenol instead of 2-[(phenyl­imino)­meth­yl]phenol. Single crystals suitable for X-ray diffrection were obtained by direct diffusion of n-hexane (5 mL) into a di­chloro­methane (5 mL) solution of the title compound (6 mg; 8.0 × 10−3 mmol) at room temperature.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were positioned geometrically and refined using a riding-model approximation: C—H = 0.95 Å for Csp2—H and 0.99 Å for methyl­ene C—H with Uiso(H) = 1.2Ueq(C); C—H = 0.98 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms. One of the four dichloro­methane solvent mol­ecules shows disorder over two sets of sites [occupancy ratio 0.79 (2):0.21 (2)].

Table 3
Experimental details

Crystal data
Chemical formula 2[Ir(C11H8N)2(C15H14NO3)]·4CH2Cl2
Mr 1853.49
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 130
a, b, c (Å) 12.4000 (5), 14.5371 (6), 21.3502 (8)
α, β, γ (°) 90.112 (1), 106.092 (1), 92.697 (1)
V3) 3693.2 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 3.95
Crystal size (mm) 0.25 × 0.14 × 0.05
 
Data collection
Diffractometer Bruker APEXII CCD area detector
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.439, 0.827
No. of measured, independent and observed [I ≥ 2σ(I)] reflections 51940, 17551, 13646
Rint 0.038
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.066, 1.03
No. of reflections 17551
No. of parameters 921
No. of restraints 14
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 1.25, −1.23
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), olex2.solve and olex2.refine (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: olex2.solve (Bourhis et al., 2015); program(s) used to refine structure: olex2.refine (Bourhis et al., 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009) and DIAMOND (Brandenburg, 2010); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

{(E)-2-[(3,4-Dimethoxyphenylimino)methyl]phenolato-κ2N,O1}bis[2-(pyridin-2-yl)phenyl-κ2C1,N]iridium(III) dichloromethane disolvate top
Crystal data top
2[Ir(C11H8N)2(C15H14NO3)]·4CH2Cl2Z = 2
Mr = 1853.49F(000) = 1829.2575
Triclinic, P1Dx = 1.667 Mg m3
a = 12.4000 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 14.5371 (6) ÅCell parameters from 9867 reflections
c = 21.3502 (8) Åθ = 2.2–28.4°
α = 90.112 (1)°µ = 3.95 mm1
β = 106.092 (1)°T = 130 K
γ = 92.697 (1)°Plate, orange
V = 3693.2 (3) Å30.25 × 0.14 × 0.05 mm
Data collection top
Bruker APEXII CCD area detector
diffractometer
13646 reflections with I 2σ(I)
ω scansRint = 0.038
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 28.3°, θmin = 1.0°
Tmin = 0.439, Tmax = 0.827h = 1616
51940 measured reflectionsk = 1719
17551 independent reflectionsl = 2726
Refinement top
Refinement on F214 restraints
Least-squares matrix: full122 constraints
R[F2 > 2σ(F2)] = 0.032All H-atom parameters refined
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0222P)2 + 3.8204P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.042
17551 reflectionsΔρmax = 1.25 e Å3
921 parametersΔρmin = 1.23 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ir10.787612 (11)0.424026 (9)0.236018 (7)0.01822 (4)
N10.7554 (2)0.5519 (2)0.26199 (14)0.0212 (7)
C10.8299 (3)0.6244 (3)0.2692 (2)0.0305 (9)
H10.8991 (3)0.6170 (3)0.2593 (2)0.0366 (11)*
C20.8080 (4)0.7088 (3)0.2907 (2)0.0422 (11)
H20.8618 (4)0.7590 (3)0.2964 (2)0.0507 (14)*
C30.7060 (4)0.7195 (3)0.3040 (2)0.0391 (11)
H30.6892 (4)0.7773 (3)0.3188 (2)0.0469 (13)*
C40.6294 (4)0.6463 (3)0.2956 (2)0.0347 (10)
H40.5589 (4)0.6534 (3)0.3041 (2)0.0416 (12)*
C50.6551 (3)0.5614 (3)0.27463 (19)0.0255 (8)
C60.5848 (3)0.4760 (3)0.26520 (18)0.0237 (8)
C70.4773 (3)0.4692 (3)0.2740 (2)0.0329 (10)
H70.4459 (3)0.5219 (3)0.2870 (2)0.0395 (12)*
C80.4164 (3)0.3854 (3)0.2636 (2)0.0368 (11)
H80.3436 (3)0.3803 (3)0.2702 (2)0.0441 (13)*
C90.4616 (3)0.3096 (3)0.24380 (19)0.0319 (10)
H90.4193 (3)0.2524 (3)0.23635 (19)0.0383 (12)*
C100.5682 (3)0.3158 (3)0.23460 (18)0.0250 (8)
H100.5980 (3)0.2626 (3)0.22123 (18)0.0300 (10)*
C110.6326 (3)0.3987 (3)0.24456 (17)0.0218 (8)
C120.8508 (3)0.3837 (3)0.32767 (18)0.0231 (8)
C130.8650 (3)0.4342 (3)0.38602 (19)0.0285 (9)
H130.8377 (3)0.4944 (3)0.38418 (19)0.0342 (11)*
C140.9177 (3)0.3981 (3)0.4458 (2)0.0347 (10)
H140.9262 (3)0.4339 (3)0.4843 (2)0.0417 (12)*
C150.9584 (4)0.3104 (3)0.4506 (2)0.0381 (11)
H150.9953 (4)0.2865 (3)0.4920 (2)0.0457 (13)*
C160.9449 (4)0.2579 (3)0.3945 (2)0.0361 (10)
H160.9718 (4)0.1976 (3)0.3974 (2)0.0433 (12)*
C170.8913 (3)0.2940 (3)0.33371 (19)0.0254 (8)
C180.8737 (3)0.2435 (3)0.2723 (2)0.0263 (9)
C190.9052 (4)0.1548 (3)0.2643 (2)0.0379 (11)
H190.9423 (4)0.1211 (3)0.3015 (2)0.0455 (13)*
C200.8837 (4)0.1150 (3)0.2035 (2)0.0418 (11)
H200.9068 (4)0.0547 (3)0.1984 (2)0.0502 (14)*
C210.8282 (4)0.1638 (3)0.1498 (2)0.0353 (10)
H210.8113 (4)0.1373 (3)0.1072 (2)0.0424 (12)*
C220.7977 (3)0.2517 (3)0.15916 (19)0.0274 (9)
H220.7595 (3)0.2854 (3)0.12220 (19)0.0328 (11)*
N20.8201 (2)0.2918 (2)0.21864 (15)0.0224 (7)
O10.9555 (2)0.46108 (18)0.23268 (12)0.0253 (6)
C230.9886 (3)0.4459 (2)0.18083 (18)0.0213 (8)
C241.1033 (3)0.4290 (2)0.18814 (19)0.0244 (8)
H241.1536 (3)0.4286 (2)0.23077 (19)0.0293 (10)*
C251.1437 (3)0.4134 (3)0.1361 (2)0.0304 (9)
H251.2207 (3)0.4009 (3)0.1433 (2)0.0365 (11)*
C261.0738 (3)0.4154 (3)0.0725 (2)0.0354 (10)
H261.1022 (3)0.4036 (3)0.0364 (2)0.0425 (12)*
C270.9633 (3)0.4349 (3)0.0631 (2)0.0312 (9)
H270.9156 (3)0.4380 (3)0.0199 (2)0.0375 (11)*
C280.9189 (3)0.4504 (3)0.11611 (19)0.0238 (8)
C290.8038 (3)0.4767 (3)0.10017 (19)0.0253 (8)
H290.7739 (3)0.5015 (3)0.05814 (19)0.0304 (10)*
N30.7377 (2)0.4700 (2)0.13701 (15)0.0214 (7)
C300.6300 (3)0.5092 (3)0.11168 (17)0.0215 (8)
C310.6223 (3)0.6030 (3)0.10533 (19)0.0276 (9)
H310.6882 (3)0.6426 (3)0.11735 (19)0.0332 (10)*
C320.5164 (3)0.6400 (3)0.08095 (19)0.0302 (9)
H320.5106 (3)0.7047 (3)0.07703 (19)0.0362 (11)*
C330.4212 (3)0.5831 (3)0.06279 (18)0.0274 (9)
C340.4293 (3)0.4871 (3)0.06999 (18)0.0249 (8)
C350.5330 (3)0.4508 (3)0.09482 (17)0.0217 (8)
H350.5387 (3)0.3863 (3)0.10047 (17)0.0260 (9)*
O20.3141 (2)0.6130 (2)0.03783 (14)0.0360 (7)
C360.3044 (4)0.7090 (3)0.0242 (2)0.0449 (12)
H36a0.349 (2)0.7266 (5)0.0057 (12)0.0673 (18)*
H36b0.2254 (5)0.7213 (5)0.0041 (14)0.0673 (18)*
H36c0.332 (2)0.7448 (3)0.0649 (3)0.0673 (18)*
O30.3305 (2)0.43578 (19)0.05053 (13)0.0300 (6)
C370.3382 (3)0.3381 (3)0.0546 (2)0.0332 (10)
H37a0.3872 (18)0.3180 (4)0.0287 (11)0.0498 (15)*
H37b0.370 (2)0.3211 (3)0.1002 (3)0.0498 (15)*
H37c0.2632 (4)0.3083 (3)0.0376 (12)0.0498 (15)*
Ir20.231563 (11)0.938616 (9)0.272341 (7)0.01839 (4)
C380.3875 (3)0.9561 (3)0.26341 (18)0.0237 (8)
C390.4595 (3)1.0350 (3)0.27746 (19)0.0297 (9)
H390.4368 (3)1.0878 (3)0.29586 (19)0.0356 (11)*
C400.5638 (3)1.0374 (3)0.2649 (2)0.0381 (11)
H400.6121 (3)1.0912 (3)0.2761 (2)0.0457 (13)*
C410.5984 (3)0.9630 (3)0.2366 (2)0.0422 (12)
H410.6694 (3)0.9657 (3)0.2277 (2)0.0506 (14)*
C420.5286 (3)0.8846 (3)0.2214 (2)0.0375 (11)
H420.5514 (3)0.8333 (3)0.2014 (2)0.0450 (13)*
C430.4243 (3)0.8800 (3)0.23504 (19)0.0270 (9)
C440.3462 (3)0.7992 (3)0.22164 (18)0.0276 (9)
C450.3637 (4)0.7133 (3)0.1975 (2)0.0367 (10)
H450.4327 (4)0.7031 (3)0.1881 (2)0.0441 (12)*
C460.2824 (4)0.6441 (3)0.1874 (2)0.0437 (12)
H460.2938 (4)0.5863 (3)0.1701 (2)0.0524 (14)*
C470.1832 (4)0.6590 (3)0.2025 (2)0.0404 (11)
H470.1259 (4)0.6114 (3)0.1963 (2)0.0484 (13)*
C480.1688 (3)0.7437 (3)0.2267 (2)0.0323 (10)
H480.1007 (3)0.7538 (3)0.2373 (2)0.0388 (11)*
N40.2477 (2)0.8125 (2)0.23585 (15)0.0238 (7)
C490.1800 (3)1.0004 (3)0.18569 (18)0.0233 (8)
C500.1597 (3)0.9617 (3)0.12341 (19)0.0294 (9)
H500.1723 (3)0.8984 (3)0.11877 (19)0.0353 (11)*
C510.1214 (3)1.0141 (3)0.0681 (2)0.0364 (10)
H510.1082 (3)0.9861 (3)0.0262 (2)0.0436 (12)*
C520.1024 (4)1.1062 (3)0.0730 (2)0.0401 (11)
H520.0756 (4)1.1412 (3)0.0349 (2)0.0481 (13)*
C530.1225 (4)1.1470 (3)0.1339 (2)0.0364 (10)
H530.1108 (4)1.2107 (3)0.1379 (2)0.0436 (12)*
C540.1603 (3)1.0941 (3)0.18968 (19)0.0265 (9)
C550.1824 (3)1.1316 (3)0.2562 (2)0.0274 (9)
C560.1672 (4)1.2216 (3)0.2727 (2)0.0395 (11)
H560.1420 (4)1.2653 (3)0.2395 (2)0.0474 (13)*
C570.1888 (4)1.2474 (3)0.3373 (2)0.0389 (11)
H570.1789 (4)1.3090 (3)0.3489 (2)0.0467 (13)*
C580.2248 (3)1.1832 (3)0.3851 (2)0.0343 (10)
H580.2395 (3)1.1996 (3)0.4299 (2)0.0411 (12)*
C590.2389 (3)1.0951 (3)0.3665 (2)0.0272 (9)
H590.2641 (3)1.0508 (3)0.3993 (2)0.0327 (10)*
N50.2183 (2)1.0690 (2)0.30361 (15)0.0217 (7)
O40.05898 (19)0.91397 (17)0.27204 (12)0.0236 (6)
C600.0248 (3)0.9107 (2)0.32446 (19)0.0224 (8)
C610.0876 (3)0.9321 (2)0.3194 (2)0.0257 (9)
H610.1340 (3)0.9504 (2)0.2785 (2)0.0308 (10)*
C620.1314 (3)0.9272 (3)0.3716 (2)0.0297 (9)
H620.2069 (3)0.9429 (3)0.3661 (2)0.0357 (11)*
C630.0676 (3)0.8998 (3)0.4325 (2)0.0332 (10)
H630.0983 (3)0.8965 (3)0.4686 (2)0.0398 (12)*
C640.0417 (3)0.8775 (3)0.4387 (2)0.0283 (9)
H640.0857 (3)0.8571 (3)0.4796 (2)0.0340 (11)*
C650.0906 (3)0.8838 (2)0.38691 (19)0.0216 (8)
C660.2063 (3)0.8577 (2)0.40021 (18)0.0227 (8)
H660.2343 (3)0.8234 (2)0.43865 (18)0.0273 (10)*
N60.2751 (2)0.8754 (2)0.36617 (14)0.0197 (6)
C670.3841 (3)0.8369 (2)0.39048 (17)0.0203 (8)
C680.4788 (3)0.8960 (2)0.41121 (17)0.0200 (8)
H680.4718 (3)0.9607 (2)0.40859 (17)0.0240 (9)*
C690.5831 (3)0.8604 (2)0.43559 (18)0.0211 (8)
C700.5937 (3)0.7647 (3)0.43798 (18)0.0231 (8)
C710.4995 (3)0.7068 (3)0.41701 (18)0.0243 (8)
H710.5065 (3)0.6420 (3)0.41879 (18)0.0291 (10)*
C720.3937 (3)0.7425 (2)0.39314 (18)0.0237 (8)
H720.3288 (3)0.7023 (2)0.37881 (18)0.0284 (10)*
O50.6809 (2)0.91291 (18)0.45896 (13)0.0290 (6)
C730.6730 (3)1.0102 (3)0.4541 (2)0.0318 (10)
H73a0.638 (2)1.0262 (3)0.4087 (3)0.0476 (14)*
H73b0.6272 (18)1.0313 (3)0.4816 (10)0.0476 (14)*
H73c0.7485 (4)1.0401 (3)0.4688 (12)0.0476 (14)*
O60.7018 (2)0.73717 (18)0.46183 (13)0.0286 (6)
C740.7146 (4)0.6413 (3)0.4727 (2)0.0379 (11)
H74a0.685 (2)0.6073 (3)0.4313 (3)0.0569 (16)*
H74b0.7944 (4)0.6299 (4)0.4908 (13)0.0569 (16)*
H74c0.6731 (19)0.6206 (5)0.5035 (11)0.0569 (16)*
C750.8953 (4)0.8577 (4)0.1249 (3)0.0675 (17)
H75a0.9343 (4)0.8666 (4)0.1718 (3)0.10 (2)*
H75b0.9312 (4)0.9013 (4)0.1002 (3)0.15 (4)*
Cl10.91048 (13)0.74443 (12)0.10109 (8)0.0808 (5)
Cl20.75576 (15)0.88210 (15)0.11117 (12)0.1191 (8)
C760.4050 (4)0.0541 (3)0.0954 (3)0.0478 (12)
H76a0.4118 (4)0.0338 (3)0.1406 (3)0.078 (19)*
H76b0.3336 (4)0.0856 (3)0.0799 (3)0.11 (2)*
Cl30.51784 (13)0.13247 (10)0.09582 (8)0.0679 (4)
Cl40.40064 (15)0.04258 (11)0.04579 (8)0.0792 (5)
C770.1228 (3)0.5166 (3)0.3705 (2)0.0361 (10)
H77a0.0712 (3)0.4932 (3)0.3288 (2)0.039 (12)*
H77b0.1072 (3)0.4795 (3)0.4061 (2)0.057 (15)*
Cl50.26333 (9)0.50318 (7)0.36926 (6)0.0393 (3)
Cl60.09709 (9)0.63296 (8)0.38213 (6)0.0427 (3)
C780.6216 (4)0.3251 (3)0.4127 (2)0.0524 (13)
H78a0.5855 (4)0.3514 (3)0.3697 (2)0.0629 (16)*0.21 (2)
H78b0.6987 (4)0.3098 (3)0.4129 (2)0.0629 (16)*0.21 (2)
H78c0.6104 (4)0.3378 (3)0.3658 (2)0.0629 (16)*0.79 (2)
H78d0.7029 (4)0.3183 (3)0.4330 (2)0.0629 (16)*0.79 (2)
Cl8A0.6309 (11)0.4091 (9)0.4729 (6)0.047 (4)0.21 (2)
Cl8B0.5743 (11)0.41843 (18)0.4508 (4)0.108 (3)0.79 (2)
Cl70.54746 (15)0.22451 (9)0.42112 (7)0.0723 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.01840 (7)0.01837 (8)0.01894 (8)0.00189 (5)0.00675 (6)0.00085 (6)
N10.0242 (15)0.0217 (16)0.0175 (16)0.0041 (13)0.0048 (13)0.0007 (13)
C10.031 (2)0.024 (2)0.037 (3)0.0007 (17)0.0106 (19)0.0019 (18)
C20.047 (3)0.022 (2)0.056 (3)0.0007 (19)0.011 (2)0.003 (2)
C30.052 (3)0.026 (2)0.039 (3)0.013 (2)0.010 (2)0.0028 (19)
C40.039 (2)0.040 (3)0.026 (2)0.017 (2)0.0085 (19)0.0025 (19)
C50.0276 (19)0.028 (2)0.023 (2)0.0105 (16)0.0093 (16)0.0057 (16)
C60.0206 (18)0.034 (2)0.018 (2)0.0039 (16)0.0070 (15)0.0046 (16)
C70.027 (2)0.042 (3)0.032 (2)0.0144 (18)0.0112 (18)0.010 (2)
C80.0196 (19)0.056 (3)0.039 (3)0.0042 (19)0.0143 (18)0.010 (2)
C90.026 (2)0.038 (2)0.030 (2)0.0064 (18)0.0056 (18)0.0085 (19)
C100.0251 (19)0.028 (2)0.024 (2)0.0018 (16)0.0099 (16)0.0035 (16)
C110.0222 (18)0.028 (2)0.0167 (19)0.0025 (15)0.0066 (15)0.0035 (15)
C120.0204 (18)0.027 (2)0.024 (2)0.0006 (15)0.0095 (16)0.0011 (16)
C130.028 (2)0.031 (2)0.027 (2)0.0009 (17)0.0088 (17)0.0009 (17)
C140.041 (2)0.041 (3)0.020 (2)0.012 (2)0.0086 (19)0.0018 (19)
C150.038 (2)0.044 (3)0.027 (2)0.004 (2)0.0024 (19)0.013 (2)
C160.044 (2)0.029 (2)0.034 (3)0.0051 (19)0.007 (2)0.0089 (19)
C170.0257 (19)0.025 (2)0.023 (2)0.0010 (16)0.0035 (16)0.0060 (16)
C180.0258 (19)0.0197 (19)0.032 (2)0.0008 (15)0.0060 (17)0.0038 (17)
C190.049 (3)0.022 (2)0.041 (3)0.0091 (19)0.008 (2)0.0039 (19)
C200.049 (3)0.021 (2)0.058 (3)0.003 (2)0.020 (2)0.002 (2)
C210.042 (2)0.029 (2)0.039 (3)0.0005 (19)0.019 (2)0.0092 (19)
C220.029 (2)0.027 (2)0.027 (2)0.0011 (16)0.0088 (17)0.0063 (17)
N20.0205 (15)0.0220 (16)0.0270 (18)0.0008 (12)0.0108 (13)0.0013 (14)
O10.0189 (13)0.0331 (15)0.0237 (15)0.0014 (11)0.0063 (11)0.0043 (12)
C230.0232 (18)0.0164 (18)0.025 (2)0.0020 (14)0.0078 (16)0.0004 (15)
C240.0208 (18)0.023 (2)0.029 (2)0.0001 (15)0.0070 (16)0.0044 (16)
C250.028 (2)0.029 (2)0.040 (3)0.0079 (17)0.0178 (19)0.0076 (19)
C260.035 (2)0.045 (3)0.034 (3)0.0120 (19)0.020 (2)0.011 (2)
C270.030 (2)0.041 (2)0.027 (2)0.0071 (18)0.0142 (18)0.0082 (19)
C280.0233 (18)0.024 (2)0.026 (2)0.0034 (15)0.0092 (16)0.0066 (16)
C290.0262 (19)0.028 (2)0.022 (2)0.0043 (16)0.0063 (16)0.0027 (16)
N30.0192 (15)0.0221 (16)0.0236 (18)0.0037 (12)0.0067 (13)0.0009 (13)
C300.0211 (18)0.030 (2)0.0153 (19)0.0077 (15)0.0062 (15)0.0006 (15)
C310.027 (2)0.031 (2)0.024 (2)0.0018 (17)0.0063 (17)0.0008 (17)
C320.036 (2)0.027 (2)0.029 (2)0.0101 (18)0.0110 (18)0.0021 (17)
C330.0233 (19)0.044 (2)0.016 (2)0.0130 (17)0.0066 (16)0.0038 (17)
C340.0252 (19)0.035 (2)0.017 (2)0.0047 (16)0.0097 (16)0.0016 (16)
C350.0221 (18)0.028 (2)0.0166 (19)0.0038 (15)0.0072 (15)0.0036 (15)
O20.0288 (15)0.0420 (18)0.0354 (17)0.0163 (13)0.0036 (13)0.0015 (14)
C360.041 (3)0.048 (3)0.042 (3)0.025 (2)0.001 (2)0.007 (2)
O30.0178 (13)0.0398 (17)0.0314 (16)0.0031 (11)0.0048 (12)0.0043 (13)
C370.027 (2)0.039 (2)0.034 (3)0.0031 (18)0.0095 (18)0.0030 (19)
Ir20.01743 (7)0.01797 (8)0.01981 (8)0.00181 (5)0.00509 (6)0.00010 (6)
C380.0217 (18)0.029 (2)0.020 (2)0.0039 (15)0.0057 (15)0.0069 (16)
C390.0246 (19)0.036 (2)0.028 (2)0.0015 (17)0.0071 (17)0.0077 (18)
C400.025 (2)0.049 (3)0.036 (3)0.0076 (19)0.0025 (19)0.014 (2)
C410.023 (2)0.065 (3)0.043 (3)0.007 (2)0.015 (2)0.017 (2)
C420.031 (2)0.053 (3)0.032 (2)0.015 (2)0.0134 (19)0.009 (2)
C430.0234 (19)0.036 (2)0.022 (2)0.0097 (17)0.0055 (16)0.0072 (17)
C440.029 (2)0.034 (2)0.019 (2)0.0118 (17)0.0040 (16)0.0016 (17)
C450.043 (3)0.039 (3)0.029 (2)0.020 (2)0.008 (2)0.0014 (19)
C460.059 (3)0.029 (2)0.039 (3)0.015 (2)0.004 (2)0.005 (2)
C470.045 (3)0.024 (2)0.045 (3)0.0012 (19)0.001 (2)0.008 (2)
C480.032 (2)0.026 (2)0.036 (3)0.0020 (17)0.0057 (19)0.0025 (18)
N40.0247 (16)0.0226 (17)0.0227 (18)0.0027 (13)0.0040 (13)0.0021 (13)
C490.0184 (17)0.027 (2)0.025 (2)0.0013 (15)0.0067 (16)0.0019 (16)
C500.0239 (19)0.038 (2)0.025 (2)0.0020 (17)0.0048 (17)0.0008 (18)
C510.034 (2)0.051 (3)0.022 (2)0.000 (2)0.0056 (18)0.001 (2)
C520.039 (2)0.051 (3)0.027 (3)0.009 (2)0.004 (2)0.013 (2)
C530.042 (2)0.033 (2)0.033 (3)0.0073 (19)0.006 (2)0.0130 (19)
C540.0247 (19)0.027 (2)0.028 (2)0.0035 (16)0.0063 (17)0.0041 (17)
C550.027 (2)0.0190 (19)0.036 (2)0.0009 (16)0.0077 (18)0.0044 (17)
C560.051 (3)0.020 (2)0.044 (3)0.0065 (19)0.008 (2)0.0079 (19)
C570.053 (3)0.019 (2)0.044 (3)0.0058 (19)0.012 (2)0.0057 (19)
C580.041 (2)0.028 (2)0.032 (3)0.0017 (18)0.007 (2)0.0066 (18)
C590.031 (2)0.024 (2)0.028 (2)0.0018 (16)0.0105 (17)0.0005 (17)
N50.0243 (16)0.0177 (15)0.0231 (18)0.0022 (12)0.0063 (13)0.0008 (13)
O40.0152 (12)0.0297 (14)0.0251 (15)0.0003 (10)0.0045 (11)0.0017 (11)
C600.0194 (17)0.0161 (18)0.034 (2)0.0007 (14)0.0106 (16)0.0034 (16)
C610.0213 (18)0.022 (2)0.033 (2)0.0044 (15)0.0059 (17)0.0019 (17)
C620.0186 (18)0.028 (2)0.045 (3)0.0024 (16)0.0122 (18)0.0024 (19)
C630.032 (2)0.037 (2)0.037 (3)0.0011 (18)0.022 (2)0.003 (2)
C640.0243 (19)0.030 (2)0.032 (2)0.0013 (16)0.0115 (17)0.0013 (18)
C650.0182 (17)0.0153 (18)0.031 (2)0.0000 (14)0.0061 (16)0.0016 (15)
C660.0237 (18)0.0206 (19)0.022 (2)0.0025 (15)0.0043 (16)0.0005 (15)
N60.0169 (14)0.0203 (16)0.0217 (17)0.0021 (12)0.0048 (13)0.0016 (13)
C670.0180 (17)0.025 (2)0.019 (2)0.0055 (14)0.0063 (15)0.0042 (15)
C680.0221 (18)0.0197 (18)0.019 (2)0.0025 (14)0.0076 (15)0.0015 (15)
C690.0181 (17)0.026 (2)0.020 (2)0.0009 (15)0.0081 (15)0.0013 (15)
C700.0212 (18)0.028 (2)0.022 (2)0.0083 (15)0.0075 (15)0.0006 (16)
C710.0274 (19)0.0192 (19)0.027 (2)0.0042 (15)0.0086 (17)0.0020 (16)
C720.0223 (18)0.0226 (19)0.027 (2)0.0025 (15)0.0086 (16)0.0013 (16)
O50.0200 (13)0.0282 (15)0.0367 (17)0.0006 (11)0.0045 (12)0.0001 (12)
C730.0225 (19)0.032 (2)0.039 (3)0.0049 (17)0.0066 (18)0.0071 (19)
O60.0207 (13)0.0293 (15)0.0337 (16)0.0078 (11)0.0034 (12)0.0008 (12)
C740.036 (2)0.032 (2)0.042 (3)0.0153 (19)0.003 (2)0.007 (2)
C750.045 (3)0.084 (4)0.067 (4)0.006 (3)0.007 (3)0.024 (3)
Cl10.0607 (9)0.0871 (11)0.0785 (11)0.0087 (8)0.0081 (8)0.0318 (9)
Cl20.0603 (10)0.1180 (16)0.161 (2)0.0132 (10)0.0006 (12)0.0604 (15)
C760.044 (3)0.052 (3)0.047 (3)0.004 (2)0.014 (2)0.006 (2)
Cl30.0760 (10)0.0577 (9)0.0758 (10)0.0187 (7)0.0347 (8)0.0137 (7)
Cl40.0976 (12)0.0687 (10)0.0833 (12)0.0258 (9)0.0503 (10)0.0310 (9)
C770.034 (2)0.035 (2)0.039 (3)0.0043 (19)0.010 (2)0.001 (2)
Cl50.0349 (5)0.0344 (6)0.0472 (7)0.0012 (4)0.0095 (5)0.0049 (5)
Cl60.0409 (6)0.0405 (6)0.0466 (7)0.0017 (5)0.0120 (5)0.0076 (5)
C780.051 (3)0.056 (3)0.049 (3)0.012 (2)0.014 (3)0.004 (3)
Cl8A0.066 (8)0.046 (4)0.027 (5)0.035 (4)0.015 (4)0.013 (4)
Cl8B0.239 (7)0.0434 (13)0.051 (3)0.030 (2)0.062 (4)0.0124 (12)
Cl70.1229 (13)0.0366 (7)0.0646 (10)0.0190 (8)0.0417 (9)0.0050 (6)
Geometric parameters (Å, º) top
Ir1—N12.028 (3)Ir2—N62.146 (3)
Ir1—C111.998 (4)C38—C391.398 (5)
Ir1—C121.996 (4)C38—C431.413 (5)
Ir1—N22.036 (3)C39—C401.390 (5)
Ir1—O12.147 (2)C40—C411.380 (6)
Ir1—N32.149 (3)C41—C421.380 (6)
N1—C11.347 (5)C42—C431.402 (5)
N1—C51.357 (5)C43—C441.462 (5)
C1—C21.374 (5)C44—C451.398 (5)
C2—C31.386 (6)C44—N41.360 (5)
C3—C41.370 (6)C45—C461.363 (6)
C4—C51.392 (5)C46—C471.381 (6)
C5—C61.464 (5)C47—C481.372 (5)
C6—C71.396 (5)C48—N41.341 (5)
C6—C111.419 (5)C49—C501.395 (5)
C7—C81.387 (6)C49—C541.402 (5)
C8—C91.376 (6)C50—C511.389 (6)
C9—C101.389 (5)C51—C521.379 (6)
C10—C111.395 (5)C52—C531.381 (6)
C12—C131.409 (5)C53—C541.400 (5)
C12—C171.413 (5)C54—C551.468 (6)
C13—C141.379 (5)C55—C561.389 (5)
C14—C151.387 (6)C55—N51.358 (5)
C15—C161.383 (6)C56—C571.378 (6)
C16—C171.400 (5)C57—C581.378 (6)
C17—C181.458 (5)C58—C591.374 (5)
C18—C191.388 (5)C59—N51.345 (5)
C18—N21.369 (5)O4—C601.303 (4)
C19—C201.372 (6)C60—C611.416 (5)
C20—C211.379 (6)C60—C651.423 (5)
C21—C221.380 (5)C61—C621.368 (5)
C22—N21.348 (5)C62—C631.393 (6)
O1—C231.304 (4)C63—C641.379 (5)
C23—C241.421 (5)C64—C651.401 (5)
C23—C281.416 (5)C65—C661.452 (5)
C24—C251.361 (5)C66—N61.283 (4)
C25—C261.396 (6)N6—C671.447 (4)
C26—C271.371 (5)C67—C681.388 (5)
C27—C281.412 (5)C67—C721.382 (5)
C28—C291.442 (5)C68—C691.379 (5)
C29—N31.285 (5)C69—C701.403 (5)
N3—C301.439 (4)C69—O51.371 (4)
C30—C311.376 (5)C70—C711.374 (5)
C30—C351.399 (5)C70—O61.375 (4)
C31—C321.405 (5)C71—C721.394 (5)
C32—C331.371 (5)O5—C731.425 (4)
C33—C341.409 (5)O6—C741.423 (5)
C33—O21.378 (4)C75—Cl11.757 (6)
C34—C351.378 (5)C75—Cl21.727 (6)
C34—O31.364 (4)C76—Cl31.761 (5)
O2—C361.430 (5)C76—Cl41.748 (5)
O3—C371.429 (5)C77—Cl51.770 (4)
Ir2—C382.000 (4)C77—Cl61.766 (4)
Ir2—N42.030 (3)C78—Cl8A1.748 (5)
Ir2—C492.010 (4)C78—Cl8B1.784 (4)
Ir2—N52.037 (3)C78—Cl71.727 (5)
Ir2—O42.151 (2)
C11—Ir1—N180.64 (14)C49—Ir2—N496.13 (14)
C12—Ir1—N194.36 (14)N5—Ir2—C3897.04 (14)
C12—Ir1—C1189.53 (14)N5—Ir2—N4176.06 (12)
N2—Ir1—N1174.57 (12)N5—Ir2—C4980.52 (14)
N2—Ir1—C1197.33 (13)O4—Ir2—C38174.17 (13)
N2—Ir1—C1280.55 (14)O4—Ir2—N495.39 (11)
O1—Ir1—N194.86 (11)O4—Ir2—C4989.50 (12)
O1—Ir1—C11175.03 (13)O4—Ir2—N586.69 (11)
O1—Ir1—C1288.70 (12)N6—Ir2—C3897.25 (13)
O1—Ir1—N286.97 (10)N6—Ir2—N486.08 (12)
N3—Ir1—N186.66 (11)N6—Ir2—C49175.75 (12)
N3—Ir1—C1196.53 (13)N6—Ir2—N597.40 (12)
N3—Ir1—C12173.93 (12)N6—Ir2—O486.67 (10)
N3—Ir1—N298.60 (12)C39—C38—Ir2128.3 (3)
N3—Ir1—O185.26 (10)C43—C38—Ir2114.2 (3)
C1—N1—Ir1123.0 (3)C43—C38—C39117.4 (3)
C5—N1—Ir1116.7 (2)C40—C39—C38121.0 (4)
C5—N1—C1120.3 (3)C41—C40—C39121.2 (4)
C2—C1—N1121.5 (4)C42—C41—C40119.2 (4)
C3—C2—C1118.9 (4)C43—C42—C41120.6 (4)
C4—C3—C2119.8 (4)C42—C43—C38120.7 (4)
C5—C4—C3119.8 (4)C44—C43—C38115.2 (3)
C4—C5—N1119.8 (4)C44—C43—C42124.1 (4)
C6—C5—N1113.4 (3)C45—C44—C43127.2 (4)
C6—C5—C4126.8 (4)N4—C44—C43113.6 (3)
C7—C6—C5123.8 (4)N4—C44—C45119.2 (4)
C11—C6—C5115.1 (3)C46—C45—C44120.5 (4)
C11—C6—C7121.1 (4)C47—C46—C45119.3 (4)
C8—C7—C6119.8 (4)C48—C47—C46118.9 (4)
C9—C8—C7119.9 (4)N4—C48—C47122.1 (4)
C10—C9—C8120.7 (4)C44—N4—Ir2116.3 (3)
C11—C10—C9121.4 (4)C48—N4—Ir2123.8 (3)
C6—C11—Ir1114.2 (3)C48—N4—C44119.9 (3)
C10—C11—Ir1128.7 (3)C50—C49—Ir2128.5 (3)
C10—C11—C6117.1 (3)C54—C49—Ir2114.5 (3)
C13—C12—Ir1128.6 (3)C54—C49—C50117.0 (4)
C17—C12—Ir1114.7 (3)C51—C50—C49121.2 (4)
C17—C12—C13116.6 (3)C52—C51—C50120.9 (4)
C14—C13—C12121.4 (4)C53—C52—C51119.6 (4)
C15—C14—C13121.1 (4)C54—C53—C52119.5 (4)
C16—C15—C14119.4 (4)C53—C54—C49121.8 (4)
C17—C16—C15119.9 (4)C55—C54—C49115.1 (3)
C16—C17—C12121.6 (4)C55—C54—C53123.1 (4)
C18—C17—C12114.9 (3)C56—C55—C54125.9 (4)
C18—C17—C16123.5 (4)N5—C55—C54114.0 (3)
C19—C18—C17126.8 (4)N5—C55—C56120.1 (4)
N2—C18—C17113.8 (3)C57—C56—C55120.0 (4)
N2—C18—C19119.4 (4)C58—C57—C56119.5 (4)
C20—C19—C18121.0 (4)C59—C58—C57118.5 (4)
C21—C20—C19119.1 (4)N5—C59—C58122.6 (4)
C22—C21—C20118.6 (4)C55—N5—Ir2115.9 (3)
N2—C22—C21122.6 (4)C59—N5—Ir2124.8 (3)
C18—N2—Ir1115.8 (2)C59—N5—C55119.3 (3)
C22—N2—Ir1125.0 (3)C60—O4—Ir2124.1 (2)
C22—N2—C18119.2 (3)C61—C60—O4118.4 (3)
C23—O1—Ir1121.7 (2)C65—C60—O4125.0 (3)
C24—C23—O1119.1 (3)C65—C60—C61116.6 (3)
C28—C23—O1124.4 (3)C62—C61—C60122.2 (4)
C28—C23—C24116.4 (3)C63—C62—C61121.4 (4)
C25—C24—C23122.2 (4)C64—C63—C62117.7 (4)
C26—C25—C24121.0 (4)C65—C64—C63122.7 (4)
C27—C26—C25118.7 (4)C64—C65—C60119.5 (3)
C28—C27—C26121.5 (4)C66—C65—C60123.7 (3)
C27—C28—C23120.1 (3)C66—C65—C64116.8 (3)
C29—C28—C23123.3 (3)N6—C66—C65127.7 (3)
C29—C28—C27116.5 (3)C66—N6—Ir2124.7 (2)
N3—C29—C28126.7 (4)C67—N6—Ir2119.6 (2)
C29—N3—Ir1124.0 (2)C67—N6—C66115.1 (3)
C30—N3—Ir1119.8 (2)C68—C67—N6119.1 (3)
C30—N3—C29115.6 (3)C72—C67—N6120.4 (3)
C31—C30—N3120.4 (3)C72—C67—C68120.5 (3)
C35—C30—N3119.2 (3)C69—C68—C67119.8 (3)
C35—C30—C31120.4 (3)C70—C69—C68120.0 (3)
C32—C31—C30119.5 (4)O5—C69—C68124.2 (3)
C33—C32—C31120.4 (4)O5—C69—C70115.8 (3)
C34—C33—C32119.9 (3)C71—C70—C69119.7 (3)
O2—C33—C32124.4 (4)O6—C70—C69114.9 (3)
O2—C33—C34115.7 (3)O6—C70—C71125.4 (3)
C35—C34—C33119.8 (3)C72—C71—C70120.5 (3)
O3—C34—C33115.9 (3)C71—C72—C67119.5 (3)
O3—C34—C35124.3 (3)C73—O5—C69116.8 (3)
C34—C35—C30119.9 (3)C74—O6—C70116.5 (3)
C36—O2—C33116.8 (3)Cl2—C75—Cl1111.8 (3)
C37—O3—C34116.4 (3)Cl4—C76—Cl3112.5 (3)
N4—Ir2—C3880.63 (14)Cl6—C77—Cl5111.7 (2)
C49—Ir2—C3886.71 (14)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N1/C1–C5 and N4/C44–C48 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C1—H1···O10.95 (1)2.51 (1)3.112 (5)121 (1)
C13—H13···Cg10.95 (1)3.06 (4)3.83 (4)139 (1)
C74—H74a···Cg10.98 (1)3.40 (17)4.12 (5)132 (2)
C48—H48···O40.95 (1)2.56 (1)3.155 (5)121 (1)
C36—H36c···Cg20.98 (1)3.47 (19)4.18 (5)131 (2)
C50—H50···Cg20.95 (1)3.22 (4)3.98 (4)138 (1)
C29—H29···O2i0.95 (1)2.60 (1)3.152 (5)118 (1)
C29—H29···O3i0.95 (1)2.52 (1)3.463 (5)172 (1)
C58—H58···O6ii0.95 (1)2.39 (1)3.330 (5)170 (1)
C75—H75A···O4iii0.99 (1)2.35 (1)3.310 (7)165 (1)
C77—H77A···O1iv0.99 (1)2.19 (1)3.172 (7)172 (1)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+2, z+1; (iii) x+1, y, z; (iv) x1, y, z.
Selected bond lengths (Å) and angles (°) for the title complex top
Molecule 1 (Ir1)Molecule 2 (Ir2)
Ir1—N12.028 (3)Ir2—C382.000 (4)
Ir1—C111.998 (4)Ir2—N42.030 (3)
Ir1—C121.996 (4)Ir2—C492.010 (4)
Ir1—N22.036 (3)Ir2—N52.037 (3)
Ir1—O12.147 (2)Ir2—O42.151 (2)
Ir1—N32.149 (3)Ir2—N62.146 (3)
C11—Ir1—N180.64 (14)N4—Ir2—C3880.63 (14)
C12—Ir1—N194.36 (14)C49—Ir2—C3886.71 (14)
C12—Ir1—C1189.53 (14)C49—Ir2—N496.13 (14)
N2—Ir1—N1174.57 (12)N5—Ir2—C3897.04 (14)
N2—Ir1—C1197.33 (13)N5—Ir2—N4176.06 (12)
N2—Ir1—C1280.55 (14)N5—Ir2—C4980.52 (14)
O1—Ir1—N194.86 (11)O4—Ir2—C38174.17 (13)
O1—Ir1—C11175.03 (13)O4—Ir2—N495.39 (11)
O1—Ir1—C1288.70 (12)O4—Ir2—C4989.50 (12)
O1—Ir1—N286.97 (10)O4—Ir2—N586.69 (11)
N3—Ir1—N186.66 (11)N6—Ir2—C3897.25 (13)
N3—Ir1—C1196.53 (13)N6—Ir2—N486.08 (12)
N3—Ir1—C12173.93 (12)N6—Ir2—C49175.75 (12)
N3—Ir1—N298.60 (12)N6—Ir2—N597.40 (12)
N3—Ir1—O185.25 (10)N6—Ir2—O486.67 (10)
 

Funding information

This work was supported by Kumoh National Institute of Technology.

References

First citationAlam, P., Dash, S., Climent, C., Kaur, G., Choudhury, A. R., Casanova, D., Alemany, P., Chowdhury, R. & Laskar, I. R. (2017). RSC Adv. 7, 5642–5648.  Web of Science CrossRef Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEvans, R. C., Douglas, P. & Winscom, C. J. (2006). Coord. Chem. Rev. 250, 2093–2126.  Web of Science CrossRef CAS Google Scholar
First citationGoo, M.-S., Park, K.-M. & Kim, H.-J. (2016). Acta Cryst. E72, 838–840.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHowarth, A. J., Patia, R., Davies, D. L., Lelj, F., Wolf, M. O. & Singh, K. (2014). Eur. J. Inorg. Chem. pp. 3657–3664.  Web of Science CSD CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMaity, A., Sarkar, R. & Rajak, K. K. (2015). RSC Adv. 5, 78852–78863.  Web of Science CrossRef Google Scholar
First citationPal, S. & Singh, B. C. (2013). Acta Cryst. E69, m159.  CrossRef IUCr Journals Google Scholar
First citationYou, Y., Huh, H. S., Kim, K. S., Lee, S. W., Kim, D. & Park, S. Y. (2008). Chem. Commun. pp. 3998–4000.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds