research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of disilver(I) dizinc(II) iron(III) tris­­(orthovanadate) with an alluaudite-type structure

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Batouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: nlamsakhar@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 5 July 2018; accepted 24 July 2018; online 27 July 2018)

The title compound, Ag2Zn2Fe(VO4)3, has been synthesized by solid-state reactions and belongs to the alluaudite structure family. In the crystal structure, four sites are positioned at special positions. One silver site is located on an inversion centre (Wyckoff position 4b), and an additional silver site, as well as one zinc and one vanadium site, on twofold rotation axes (4e). One site on a general position is statistically occupied by FeIII and ZnII cations that are octa­hedrally surrounded by O atoms. The three-dimensional framework structure of the title vanadate results from [(Zn,Fe)2O10] units of edge-sharing [(Zn,Fe)O6] octa­hedra that alternate with [ZnO6] octa­hedra so as to form infinite chains parallel to [10[\overline{1}]]. These chains are linked through VO4 tetra­hedra by sharing vertices, giving rise to layers extending parallel to (010). Such layers are shared by common vanadate tetra­hedra. The resulting three-dimensional framework delimits two types of channels parallel to [001] in which the silver sites are located with four- and sixfold coordination by oxygen.

1. Chemical context

The crystal structure of the mineral alluaudite with general formula A(1)A(2)M(1)M(2)2(XO4)3 was determined nearly fifty years ago by Moore (1971[Moore, P. B. (1971). Am. Mineral. 56, 1955-1975.]). In the structure, the two A sites can be occupied by mono- or divalent cations of medium size, and the M(1) and M(2) sites can accommodate di- or trivalent cations, which are generally transition metals and are octa­hedrally surrounded. The specific feature of the alluaudite structure is the existence of two channels parallel to [001] in which the A-site cations are located. As a result, alluaudite-type compounds can exhibit electronic and/or ionic conductivity (Hatert, 2008[Hatert, F. (2008). J. Solid State Chem. 181, 1258-1272.]). In addition, alluaudite-type compounds have been reported as materials for fossil energy conversion, as sensor materials and storage energy materials (Korzenski et al., 1998[Korzenski, M. B., Schimek, G. L., Kolis, J. W. & Long, G. J. (1998). J. Solid State Chem. 139, 152-160.]), and as materials used in catalysis (Kacimi et al., 2005[Kacimi, M., Ziyad, M. & Hatert, F. (2005). Mater. Res. Bull. 40, 682-693.]).

Accordingly, the synthesis and structural characterization of new alluaudite-type phosphates and vanadates within pseudo-ternary A2O/MO/P2O5 or pseudo-quaternary A2O/MO/Fe2O3/P2O5 systems using hydro­thermal or solid-state reactions was the focus of our current research. Obtained phases are, for example, NaMg3(HPO4)2(PO4) (Ould Saleck et al., 2015[Ould Saleck, A., Assani, A., Saadi, M., Mercier, C., Follet, C. & El Ammari, L. (2015). Acta Cryst. E71, 813-815.]), Na2Co2Fe(PO4)3 (Bouraima et al., 2015[Bouraima, A., Assani, A., Saadi, M., Makani, T. & El Ammari, L. (2015). Acta Cryst. E71, 558-560.]) or Na1.67Zn1.67Fe1.33(PO4)3 (Khmiyas et al., 2015[Khmiyas, J., Assani, A., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, 690-692.]). We have also succeeded in preparing the first vanadate-based alluaudite-type phase (Na0.70)(Na0.70,Mn0.30)(FeIII,FeII)2FeII(VO4)3 (Benhsina et al., 2016[Benhsina, E., Assani, A., Saadi, M. & El Ammari, L. (2016). Acta Cryst. E72, 220-222.]). A second alluaudite-type vanadate with composition Na2(FeIII/CoII)2CoII(VO4)3 was prepared by Hadouchi et al. (2016[Hadouchi, M., Assani, A., Saadi, M. & El Ammari, L. (2016). Acta Cryst. E72, 1017-1020.]) shortly afterwards.

In this context, the current exploration of A2O/MO/Fe2O3/V2O5 systems, where A is a monovalent cation and M a divalent cation, led to another vandanate with alluaudite-type structure, namely Ag2Zn2Fe(VO4)3. Its synthesis and crystal structure are reported in this article.

2. Structural commentary

The principal building units of the crystal structure of the new member of the alluaudite-type family are represented in Fig. 1[link]. All atoms are in general positions except for four atoms that are located on special positions. Ag1 is located on an inversion centre (Wyckoff position 4b), and Ag2 as well as Zn2 and V2 are located on twofold rotation axes (4e) of space group C2/c. The M2 site is in a general position (8f) and statistically occupied by Fe1 and Zn1 atoms that are octa­hedrally surrounded by O atoms. Such a partial cationic disorder was also reported for the cobalt homologue Na2(FeIII/CoII)2CoII(VO4)3 (Hadouchi et al., 2016[Hadouchi, M., Assani, A., Saadi, M. & El Ammari, L. (2016). Acta Cryst. E72, 1017-1020.]).

[Figure 1]
Figure 1
The principal building units in the structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) x, −y + 1, z − [{1\over 2}]; (ii) −x + 1, −y + 1, −z + 2; (iii) −x + 1, y, −z + [{3\over 2}]; (iv) x, −y, z − [{1\over 2}]; (v) x + [{1\over 2}], −y + [{1\over 2}], z − [{1\over 2}]; (vi) −x + [{1\over 2}], y − [{1\over 2}], −z + [{3\over 2}]; (vii) x + [{1\over 2}], y − [{1\over 2}], z; (viii) −x + [{1\over 2}], −y + [{1\over 2}], −z + 1; (ix) −x + 1, y, −z + [{1\over 2}]; (x) x, y, z − 1.]

The crystal structure of Ag2Zn2Fe(VO4)3 is made up from [(Zn,Fe)12O10] dimers, resulting from edge-sharing [(Zn,Fe)1O6] octa­hedra, that are connected by a common edge to [Zn2O6] octa­hedra. The linkage of alternating [(Zn,Fe)12O10] and [Zn2O6] units leads to infinite zigzag chains along [10[\overline{1}]] (Fig. 2[link]). These chains are linked via the vertices of VO4 tetra­hedra into layers parallel to (010), as shown in Fig. 3[link]. Adjacent layers are linked by V1O4 tetra­hedra into a three-dimensional framework structure that delimits two types of channels in which the AgI cations reside (Fig. 4[link]). The Ag1 site is located in one channel and is surrounded by four oxygen atoms, whereas the Ag2 site in the second channel is surrounded by six oxygen atoms.

[Figure 2]
Figure 2
Edge-sharing [(Zn,Fe)1O6] and [Zn2O6] octa­hedra forming a kinked chain running parallel to [10[\overline{1}]].
[Figure 3]
Figure 3
A layer perpendicular to (010), resulting from the connection of chains via the vertices of VO4 tetra­hedra and [ZnO6] octa­hedra.
[Figure 4]
Figure 4
Polyhedral representation of Ag2Zn2Fe(VO4)3 showing the channels running parallel to the [001] direction.

The calculated bond-valences sums (Brown & Altermatt, 1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]) of the atoms in the structure are in the expected ranges for AgI, ZnII, FeIII and VV and are as follows (values in valence units): Ag1 (0.83), Ag2 (1.11), Zn1 (1.95), Zn2 (2.20), Fe1 (2.67), V1 (4.98) and V2 (4.93); values of oxygen atoms range between 1.90 and 2.01 valence units.

3. Database Survey

Over the last twenty years, many synthetic alluaudite-type phosphates, arsenates, sulfates and molybdates have been reported, such as NaMnFe2(PO4)3 used as the positive electrode in sodium and lithium batteries (Trad et al., 2010[Trad, K., Carlier, D., Croguennec, L., Wattiaux, A., Ben Amara, M. & Delmas, C. (2010). Chem. Mater. 22, 5554-5562.]; Kim et al., 2014[Kim, J., Kim, H., Park, K.-Y., Park, Y.-U., Lee, S., Kwon, H.-S., Yoo, H.-I. & Kang, K. (2014). J. Mater. Chem. A, 2, 8632-8636.]; Huang et al., 2015[Huang, W., Li, B., Saleem, M. F., Wu, X., Li, J., Lin, J., Xia, D., Chu, W. & Wu, Z. (2015). Chem. Eur. J. 21, 851-860.]), Na2.44Mn1.79(SO4)3 used as a potential high-voltage cathode material (ca 4.4 V) for sodium batteries (Dwibedi et al., 2015[Dwibedi, D., Araujo, R. B., Chakraborty, S., Shanbogh, P. P., Sundaram, N. G., Ahuja, R. & Barpanda, P. (2015). J. Mater. Chem. A, 3, 18564-18571.]), K0.13Na3.87Mg(MoO4)3 as a promising compound for developing new materials with high ionic conductivity (Ennajeh et al., 2015[Ennajeh, I., Georges, S., Smida, Y. B., Guesmi, A., Zid, M. F. & Boughazala, H. (2015). RSC Adv. 5, 38918-38925.]), or NaZn3(AsO4)(AsO3OH)2 (Đorđević et al., 2015[Đorđević, T., Wittwer, A. & Krivovichev, S. V. (2015). Eur. J. Mineral. 27, 559-573.]).

4. Synthesis and crystallization

Ag2Zn2Fe(VO4)3 was prepared by a solid-state reaction. A stoichiometric amount of silver nitrate (AgNO3), zinc acetate (Zn(CH3COO)2·2H2O), iron nitrate (Fe(NO3)3)·9H2O) and vanadium oxide (V2O5) was employed in the molar ratio Ag: Zn:Fe:V = 2:2:1:3 and put into a platinum cruicible. After different heat treatments at lower temperatures to remove water and other voliatile gaseous products, the reaction mixture was melted at 1033 K for 30 minutes, followed by slow cooling with a 5 K h−1 rate to room temperature. The resulting product contained parallelepipedic orange crystals corres­ponding to the studied title vanadate. In addition, small block-like crystals with poor quality and unidentified by X-ray powder diffraction were present.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The remaining maximum and minimum electron density peaks in the final Fourier map are 0.40 Å away from Fe1 and 0.62 Å from Ag1, respectively. Due to charge neutrality, sites Zn1 and Fe2 were modelled as statistically occupied, assuming a trivalent oxidation state for the iron site.

Table 1
Experimental details

Crystal data
Chemical formula Ag2Zn2Fe(VO4)3
Mr 747.15
Crystal system, space group Monoclinic, C2/c
Temperature (K) 296
a, b, c (Å) 11.8025 (2), 12.9133 (2), 6.8000 (1)
β (°) 110.759 (1)
V3) 969.10 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 13.09
Crystal size (mm) 0.31 × 0.26 × 0.20
 
Data collection
Diffractometer Bruker X8 APEX
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.596, 0.748
No. of measured, independent and observed [I > 2σ(I)] reflections 30791, 2662, 2437
Rint 0.042
(sin θ/λ)max−1) 0.869
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.048, 1.13
No. of reflections 2662
No. of parameters 95
Δρmax, Δρmin (e Å−3) 1.36, −2.41
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Disilver(I) dizinc(II) iron(III) tris(orthovanadate) top
Crystal data top
Ag2Zn2Fe(VO4)3F(000) = 1380
Mr = 747.15Dx = 5.121 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 11.8025 (2) ÅCell parameters from 2662 reflections
b = 12.9133 (2) Åθ = 2.4–38.1°
c = 6.8000 (1) ŵ = 13.09 mm1
β = 110.759 (1)°T = 296 K
V = 969.10 (3) Å3Parallelepiped, orange
Z = 40.31 × 0.26 × 0.20 mm
Data collection top
Bruker X8 APEX
diffractometer
2662 independent reflections
Radiation source: fine-focus sealed tube2437 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
φ and ω scansθmax = 38.1°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1820
Tmin = 0.596, Tmax = 0.748k = 2222
30791 measured reflectionsl = 119
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0126P)2 + 4.2342P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.021(Δ/σ)max = 0.001
wR(F2) = 0.048Δρmax = 1.36 e Å3
S = 1.13Δρmin = 2.41 e Å3
2662 reflectionsExtinction correction: SHELXL2016 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
95 parametersExtinction coefficient: 0.00163 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ag10.5000000.49090 (3)0.7500000.02736 (7)
Ag20.5000000.0000000.5000000.02115 (6)
Zn20.5000000.23529 (2)0.2500000.00945 (6)
Zn10.29222 (2)0.34062 (2)0.38041 (3)0.00652 (5)0.5
Fe10.29222 (2)0.34062 (2)0.38041 (3)0.00652 (5)0.5
V10.27045 (3)0.38683 (2)0.88206 (4)0.00612 (5)
V20.5000000.20643 (3)0.7500000.00602 (6)
O10.12116 (12)0.39616 (11)0.8338 (2)0.0128 (2)
O20.28524 (13)0.31700 (11)0.6746 (2)0.0124 (2)
O30.33803 (14)0.50767 (11)0.8997 (2)0.0139 (2)
O40.33926 (12)0.32576 (11)1.1233 (2)0.0112 (2)
O50.46319 (12)0.27705 (11)0.5152 (2)0.0099 (2)
O60.38484 (12)0.12416 (10)0.7343 (2)0.0115 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.01209 (9)0.05204 (18)0.01674 (11)0.0000.00362 (8)0.000
Ag20.03519 (13)0.01557 (9)0.01224 (9)0.01110 (8)0.00786 (9)0.00296 (7)
Zn20.00905 (11)0.01104 (12)0.00942 (12)0.0000.00472 (9)0.000
Zn10.00607 (8)0.00863 (9)0.00535 (9)0.00074 (6)0.00264 (6)0.00062 (6)
Fe10.00607 (8)0.00863 (9)0.00535 (9)0.00074 (6)0.00264 (6)0.00062 (6)
V10.00655 (10)0.00709 (10)0.00474 (10)0.00040 (8)0.00202 (8)0.00021 (8)
V20.00649 (14)0.00644 (14)0.00448 (14)0.0000.00112 (11)0.000
O10.0095 (5)0.0130 (5)0.0160 (6)0.0017 (4)0.0045 (5)0.0008 (5)
O20.0140 (6)0.0155 (6)0.0082 (5)0.0017 (5)0.0046 (4)0.0004 (4)
O30.0149 (6)0.0116 (5)0.0158 (6)0.0010 (4)0.0061 (5)0.0017 (5)
O40.0123 (5)0.0133 (5)0.0078 (5)0.0037 (4)0.0034 (4)0.0019 (4)
O50.0090 (5)0.0135 (5)0.0075 (5)0.0019 (4)0.0035 (4)0.0027 (4)
O60.0087 (5)0.0103 (5)0.0136 (6)0.0007 (4)0.0019 (4)0.0016 (4)
Geometric parameters (Å, º) top
Ag1—O3i2.4699 (15)Zn2—O1v2.1619 (15)
Ag1—O3ii2.4699 (16)Zn1—O6viii2.0068 (14)
Ag1—O3iii2.4734 (16)Zn1—O4x2.0222 (14)
Ag1—O32.4734 (16)Zn1—O3i2.0241 (15)
Ag2—O6iv2.4374 (14)Zn1—O22.0540 (14)
Ag2—O6iii2.4374 (14)Zn1—O52.0675 (13)
Ag2—O1v2.5032 (15)Zn1—O2viii2.2082 (15)
Ag2—O1vi2.5032 (15)V1—O11.6784 (14)
Ag2—O1vii2.5873 (14)V1—O21.7343 (14)
Ag2—O1viii2.5873 (14)V1—O31.7372 (15)
Zn2—O5ix2.0704 (14)V1—O41.7402 (13)
Zn2—O52.0705 (14)V2—O61.6984 (14)
Zn2—O4iii2.1325 (13)V2—O6iii1.6984 (14)
Zn2—O4x2.1325 (13)V2—O5iii1.7544 (13)
Zn2—O1viii2.1619 (15)V2—O51.7544 (13)
O3i—Ag1—O3ii179.15 (7)O5—Zn2—O1v107.36 (5)
O3i—Ag1—O3iii92.83 (5)O4iii—Zn2—O1v85.01 (5)
O3ii—Ag1—O3iii87.10 (5)O4x—Zn2—O1v161.31 (5)
O3i—Ag1—O387.10 (5)O1viii—Zn2—O1v76.52 (7)
O3ii—Ag1—O392.83 (5)O6viii—Zn1—O4x104.63 (6)
O3iii—Ag1—O3169.95 (7)O6viii—Zn1—O3i91.33 (6)
O6iv—Ag2—O6iii180.00 (6)O4x—Zn1—O3i89.94 (6)
O6iv—Ag2—O1v105.99 (5)O6viii—Zn1—O290.95 (6)
O6iii—Ag2—O1v74.01 (5)O4x—Zn1—O2161.09 (6)
O6iv—Ag2—O1vi74.01 (5)O3i—Zn1—O2100.52 (6)
O6iii—Ag2—O1vi105.99 (5)O6viii—Zn1—O5168.70 (6)
O1v—Ag2—O1vi180.00 (6)O4x—Zn1—O579.73 (5)
O6iv—Ag2—O1vii107.39 (5)O3i—Zn1—O599.16 (6)
O6iii—Ag2—O1vii72.61 (5)O2—Zn1—O583.05 (5)
O1v—Ag2—O1vii116.56 (6)O6viii—Zn1—O2viii80.30 (5)
O1vi—Ag2—O1vii63.44 (6)O4x—Zn1—O2viii89.43 (5)
O6iv—Ag2—O1viii72.61 (5)O3i—Zn1—O2viii171.16 (6)
O6iii—Ag2—O1viii107.39 (5)O2—Zn1—O2viii82.59 (6)
O1v—Ag2—O1viii63.44 (6)O5—Zn1—O2viii89.40 (5)
O1vi—Ag2—O1viii116.56 (6)O1—V1—O2106.24 (7)
O1vii—Ag2—O1viii180.0O1—V1—O3111.93 (7)
O5ix—Zn2—O5149.81 (8)O2—V1—O3110.32 (7)
O5ix—Zn2—O4iii77.17 (5)O1—V1—O4108.88 (7)
O5—Zn2—O4iii86.37 (5)O2—V1—O4112.54 (7)
O5ix—Zn2—O4x86.37 (5)O3—V1—O4107.01 (7)
O5—Zn2—O4x77.17 (5)O6—V2—O6iii102.56 (10)
O4iii—Zn2—O4x113.56 (8)O6—V2—O5iii108.46 (7)
O5ix—Zn2—O1viii107.36 (5)O6iii—V2—O5iii109.48 (6)
O5—Zn2—O1viii96.35 (6)O6—V2—O5109.48 (6)
O4iii—Zn2—O1viii161.31 (5)O6iii—V2—O5108.47 (7)
O4x—Zn2—O1viii85.01 (5)O5iii—V2—O5117.36 (9)
O5ix—Zn2—O1v96.35 (6)
Symmetry codes: (i) x, y+1, z1/2; (ii) x+1, y+1, z+2; (iii) x+1, y, z+3/2; (iv) x, y, z1/2; (v) x+1/2, y+1/2, z1/2; (vi) x+1/2, y1/2, z+3/2; (vii) x+1/2, y1/2, z; (viii) x+1/2, y+1/2, z+1; (ix) x+1, y, z+1/2; (x) x, y, z1.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

Funding information

The authors thank Mohammed V University, Rabat, Morocco, for financial support.

References

First citationBenhsina, E., Assani, A., Saadi, M. & El Ammari, L. (2016). Acta Cryst. E72, 220–222.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBouraima, A., Assani, A., Saadi, M., Makani, T. & El Ammari, L. (2015). Acta Cryst. E71, 558–560.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationĐorđević, T., Wittwer, A. & Krivovichev, S. V. (2015). Eur. J. Mineral. 27, 559–573.  Google Scholar
First citationDwibedi, D., Araujo, R. B., Chakraborty, S., Shanbogh, P. P., Sundaram, N. G., Ahuja, R. & Barpanda, P. (2015). J. Mater. Chem. A, 3, 18564–18571.  Web of Science CrossRef CAS Google Scholar
First citationEnnajeh, I., Georges, S., Smida, Y. B., Guesmi, A., Zid, M. F. & Boughazala, H. (2015). RSC Adv. 5, 38918–38925.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHadouchi, M., Assani, A., Saadi, M. & El Ammari, L. (2016). Acta Cryst. E72, 1017–1020.  CrossRef IUCr Journals Google Scholar
First citationHatert, F. (2008). J. Solid State Chem. 181, 1258–1272.  Web of Science CrossRef CAS Google Scholar
First citationHuang, W., Li, B., Saleem, M. F., Wu, X., Li, J., Lin, J., Xia, D., Chu, W. & Wu, Z. (2015). Chem. Eur. J. 21, 851–860.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKacimi, M., Ziyad, M. & Hatert, F. (2005). Mater. Res. Bull. 40, 682–693.  Web of Science CrossRef CAS Google Scholar
First citationKhmiyas, J., Assani, A., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, 690–692.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKim, J., Kim, H., Park, K.-Y., Park, Y.-U., Lee, S., Kwon, H.-S., Yoo, H.-I. & Kang, K. (2014). J. Mater. Chem. A, 2, 8632–8636.  Web of Science CrossRef CAS Google Scholar
First citationKorzenski, M. B., Schimek, G. L., Kolis, J. W. & Long, G. J. (1998). J. Solid State Chem. 139, 152–160.  Web of Science CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMoore, P. B. (1971). Am. Mineral. 56, 1955–1975.  CAS Google Scholar
First citationOuld Saleck, A., Assani, A., Saadi, M., Mercier, C., Follet, C. & El Ammari, L. (2015). Acta Cryst. E71, 813–815.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTrad, K., Carlier, D., Croguennec, L., Wattiaux, A., Ben Amara, M. & Delmas, C. (2010). Chem. Mater. 22, 5554–5562.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds