research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of N-allyl-4-methyl­benzene­sulfonamide

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Grand Valley State University, 1 Campus Dr., Allendale, MI 49401, USA, and bCenter for Crystallographic Research, Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
*Correspondence e-mail: ngassaf@gvsu.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 6 July 2018; accepted 16 July 2018; online 20 July 2018)

The title compound, C10H13NO2S, was synthesized by a nucleophilic substitution reaction between allyl amine and p-toluene­sulfonyl chloride. The sulfonate S—O bond lengths are 1.4282 (17) and 1.4353 (17) Å, and the C—N—S—C torsion angle involving the sulfonamide moiety is −61.0 (2)°. In the crystal, centrosymmetric dimers of the title compound are present via inter­molecular N—H⋯O hydrogen bonds between sulfonamide groups. These dimers are linked into ribbons along the c-axis direction through offset ππ inter­actions.

1. Chemical context

The sulfonamide moiety has been widely studied and its application in drug design has been reported (Qadir et al., 2015[Qadir, M. A., Ahmed, M. & Khaleeq, A. (2015). Lat. Am. J. Pharm. 34, 719-724.]; Rehman et al., 2017[Rehman, H., Qadir, M. A., Shad, H. A. & Khan, Z. I. (2017). Med. Chem. (Los Angeles) 7, 252-256.]; Gul et al., 2018[Gul, H. I., Yamali, C., Sakagami, H., Angeli, A., Leitans, J., Kazaks, A., Tars, K., Ozgun, D. O. & Supuran, C. T. (2018). Bioorg. Chem. 77, 411-419.]). Sulfa drugs, which incorporate the sulfonamide moiety, have found applications as anti­bacterial, anti­cancer, anti­fungal, anti-inflammatory, and anti­viral agents (Alaoui et al., 2017[Alaoui, S., Dufies, M., Driowya, M., Demange, L., Bougrin, K., Robert, G., Auberger, P., Pagès, G. & Benhida, R. (2017). Bioorg. Med. Chem. Lett. 27, 1989-1992.]).

The synthesis of sulfonamides generally relies on the use of sulfonyl chlorides as electrophilic partners that react with nucleophilic amines. According to the current state of knowledge in the field, the use of sulfonyl chlorides as electrophilic substrates in the synthesis of sulfonamides suffers from some drawbacks. One such drawback is the difficulty in handling and storage (Caddick et al., 2004[Caddick, S., Wilden, J. D. & Judd, D. B. (2004). J. Am. Chem. Soc. 126, 1024-1025.]). Other alternatives to sulfonyl chlorides have been reported (Parumala & Peddinti, 2016[Parumala, S. K. R. & Peddinti, R. K. (2016). Tetrahedron Lett. 57, 1232-1235.]; Yang & Tian, 2017[Yang, F.-L. & Tian, S.-K. (2017). Tetrahedron Lett. 58, 487-504.]). Nucleophilic acyl substitution is the mechanism that describes the reaction between a carb­oxy­lic acid derivative such as acid chloride with an amine to form the corresponding amide. The mechanism of the reaction between sulfonyl chlorides and amines is analogous to nucleophilic acyl substitution, except that it occurs at the sulfonyl group and not the carbonyl group (Um et al., 2013[Um, I. H., Kang, J. S., Shin, Y. H. & Buncel, E. (2013). J. Org. Chem. 78, 490-497.]).

Recently, we have been particularly inter­ested in the structural motif of sulfonamide compounds that are known to modulate 5-HT6 receptor activity and are used for the treatment of CNS diseases and disorders (Blass, 2016[Blass, B. (2016). ACS Med. Chem. Lett. 7, 12-14.]). We are also inter­ested in the therapeutic application of sulfonamide mol­ecules used for chondrogenic differentiation (Choi et al., 2016[Choi, E., Lee, J., Lee, S., Song, B. W., Seo, H. H., Cha, M. J., Lim, S., Lee, C., Song, S. W., Han, G. & Hwang, K. C. (2016). Bioorg. Med. Chem. Lett. 26, 5098-5102.]), and for the treatment of cancer (Gul et al., 2018[Gul, H. I., Yamali, C., Sakagami, H., Angeli, A., Leitans, J., Kazaks, A., Tars, K., Ozgun, D. O. & Supuran, C. T. (2018). Bioorg. Chem. 77, 411-419.]). Fig. 1[link] shows the structure of Sulefonur, which has been reported as a potent anti­cancer sulfonamide drug candidate and is under anti­cancer clinical trials (Gul et al., 2018[Gul, H. I., Yamali, C., Sakagami, H., Angeli, A., Leitans, J., Kazaks, A., Tars, K., Ozgun, D. O. & Supuran, C. T. (2018). Bioorg. Chem. 77, 411-419.]). As part of our ongoing effort to synthesize small sulfonamide mol­ecules that mimic the structural motifs of known sulfonamide drug candidates, we synthesized the title compound, C10H13NO2S, (I)[link] and determined its crystal structure from single crystal X-ray diffraction data.

[Scheme 1]
[Figure 1]
Figure 1
The structure of Sulefonur.

2. Structural commentary

The mol­ecular structure of compound (I)[link], which was solved in the triclinic space group P[\overline{1}], is shown in Fig. 2[link]. The S—O bond lengths of 1.4282 (17) and 1.4353 (17) Å and the O1—S1—O2 bond angle of 118.87 (11)° are typical for sulfonamide moieties. The S1—N1 bond length is 1.617 (2) Å, and the C1—N1—S1—C4 torsion angle is −61.0 (2)°.

[Figure 2]
Figure 2
The mol­ecular structure of the title compound, showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

Mol­ecules of the title compound are linked to one another via hydrogen bonds and ππ inter­actions. Centrosymmetric dimers of compound (I)[link] are formed through inter­molecular hydrogen bonds between the sulfonamide N—H group and an O atom of a neighbouring sulfonamide group (Fig. 3[link]). The N1⋯O2i distance of 2.900 (3) Å suggests inter­actions of medium strength with a nearly linear N—H⋯O hydrogen bond of 174 (3)° (Table 1[link]). These dimers are then linked through offset ππ inter­actions into ribbons that lie along the c axis (Figs. 3[link], 4[link]). The inter­centroid distance CgCgii is 3.8340 (17) Å, with a slippage of 1.320 Å and a plane-to-plane distance between phenyl rings of 3.600 Å [symmetry code (ii) = −x, −y, −z].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.83 (1) 2.07 (1) 2.900 (3) 174 (3)
Symmetry code: (i) -x, -y, -z+1.
[Figure 3]
Figure 3
A depiction of the inter­molecular hydrogen bonds and offset ππ inter­actions present in the crystal, viewed down the a axis, using a ball and stick model with standard CPK colors. [Symmetry codes: (i) −x, −y, −z + 1; (ii) −x, −y, −z.]
[Figure 4]
Figure 4
A view along the a axis of the title compound showing the supra­molecular ribbons assembled via N—H⋯O hydrogen bonds (blue, dashed lines) and ππ inter­actions (red, dotted lines).

4. Database survey

The Cambridge Structural Database (CSD, Version 5.39, February 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) contains 17 structures of p-tolyl­sulfonamides where there is a –CH2—C=C group bonded to the sulfonamide-N atom. The alkene group in these structures is a part of, for example, furan rings (DERTIE and DERTOK, Hashmi et al., 2006[Hashmi, A. S. K., Weyrauch, J. P., Kurpejović, E., Frost, T. M., Miehlich, B., Frey, W. & Bats, J. W. (2006). Chem. Eur. J. 12, 5806-5814.]), an allene (XUDNEP, Lan & Hammond, 2002[Lan, Y. & Hammond, G. B. (2002). Org. Lett. 4, 2437-2439.]), and various acyclic systems (BUXYUQ, Kiyokawa et al., 2015[Kiyokawa, K., Kojima, T., Hishikawa, Y. & Minakata, S. (2015). Chem. Eur. J. 21, 15548-15552.]; KIHMIY, Lee et al., 2007[Lee, Y. T., Choi, S. Y. & Chung, Y. K. (2007). Tetrahedron Lett. 48, 5673-5677.]). While all of the structures listed here display inter­molecular hydrogen bonds between sulfonamide groups, none of them display ππ inter­actions between the p-tolyl­sulfonamide rings as seen in the title compound.

5. Synthesis and crystallization

Allyl­amine (1.31 ml, 18 mmol) was added in 20 ml of degassed di­chloro­methane. This was followed by the addition of pyridine (1.42 ml, 18 mmol). The resulting solution was stirred under an atmosphere of N2, followed by the portion-wise addition of p-toluene­sulfonyl chloride (3.05 g, 16 mmol). The mixture was stirred at room temperature for 24 h. Reaction completion was verified by using TLC analysis. The mixture was acidified to pH 2–3 using concentrated HCl. After dilution with 20 ml of CH2Cl2, the organic phase was washed with H2O (3 × 20 ml) and the aqueous layer was back-extracted with CH2Cl2 (20 ml). The combined organic extracts were dried over anhydrous Na2SO4. After solvent evaporation, the residue was obtained as a yellow solid which was recrystallized in cold ethanol to afford pale-yellow crystals (56%; m.p. 332–333 K).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All hydrogen atoms bonded to carbon atoms were placed in calculated positions and refined as riding: Csp3—H = 0.95–1.00 Å with Uiso(H) = 1.2Ueq(C) for methine and methyl­ene groups, and Uiso(H) = 1.5Ueq(C) for methyl groups. The hydrogen atom bonded to the nitro­gen atom (H1) was located using electron-density difference maps, and the N—H bond length was restrained to 0.84±0.01 Å using the DFIX command as executed in SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Table 2
Experimental details

Crystal data
Chemical formula C10H13NO2S
Mr 211.27
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 7.5538 (10), 8.2591 (11), 9.7145 (13)
α, β, γ (°) 85.9415 (16), 72.9167 (16), 67.6989 (15)
V3) 535.42 (12)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.28
Crystal size (mm) 0.28 × 0.25 × 0.20
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.672, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 6472, 1963, 1564
Rint 0.036
(sin θ/λ)max−1) 0.604
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.156, 1.09
No. of reflections 1963
No. of parameters 132
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.60, −0.26
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]; Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]) and CrystalMaker (Palmer, 2007[Palmer, D. (2007). CrystalMaker. CrystalMaker, Bicester, England.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009; Bourhis et al., 2015); software used to prepare material for publication: CrystalMaker (Palmer, 2007).

N-Allyl-4-methylbenzenesulfonamide top
Crystal data top
C10H13NO2SZ = 2
Mr = 211.27F(000) = 224
Triclinic, P1Dx = 1.310 Mg m3
a = 7.5538 (10) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.2591 (11) ÅCell parameters from 2805 reflections
c = 9.7145 (13) Åθ = 2.2–25.3°
α = 85.9415 (16)°µ = 0.28 mm1
β = 72.9167 (16)°T = 173 K
γ = 67.6989 (15)°Chunk, pale yellow
V = 535.42 (12) Å30.28 × 0.25 × 0.20 mm
Data collection top
Bruker APEXII CCD
diffractometer
1564 reflections with I > 2σ(I)
φ and ω scansRint = 0.036
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 25.4°, θmin = 2.2°
Tmin = 0.672, Tmax = 0.745h = 99
6472 measured reflectionsk = 99
1963 independent reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.053H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.156 w = 1/[σ2(Fo2) + (0.0902P)2 + 0.112P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
1963 reflectionsΔρmax = 0.60 e Å3
132 parametersΔρmin = 0.26 e Å3
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.23035 (9)0.06592 (8)0.28093 (6)0.0355 (3)
O10.4258 (2)0.1649 (2)0.19086 (19)0.0423 (5)
O20.1100 (3)0.1576 (2)0.36436 (18)0.0407 (5)
N10.2532 (3)0.0508 (3)0.3966 (2)0.0352 (5)
H10.153 (3)0.085 (4)0.468 (2)0.048 (8)*
C10.3608 (4)0.1687 (4)0.3441 (3)0.0436 (7)
H1A0.29230.25650.28300.052*
H1B0.49840.10060.28470.052*
C20.3677 (4)0.2590 (4)0.4684 (3)0.0483 (7)
H20.43230.18740.53390.058*
C30.2948 (6)0.4239 (5)0.4948 (4)0.0705 (10)
H3A0.22890.50050.43220.085*
H3B0.30630.47030.57700.085*
C40.0966 (3)0.0803 (3)0.1729 (3)0.0318 (6)
C50.1007 (4)0.1904 (3)0.2347 (3)0.0390 (6)
H50.16550.18270.33340.047*
C60.2011 (4)0.3105 (4)0.1516 (3)0.0424 (7)
H60.33630.38490.19370.051*
C70.1092 (4)0.3257 (3)0.0072 (3)0.0397 (6)
C80.0869 (4)0.2125 (4)0.0528 (3)0.0423 (7)
H80.15090.21870.15200.051*
C90.1909 (4)0.0909 (4)0.0291 (3)0.0380 (6)
H90.32580.01560.01300.046*
C100.2180 (5)0.4608 (4)0.0817 (3)0.0506 (7)
H10A0.12120.48910.16140.076*
H10B0.30760.56690.02120.076*
H10C0.29640.41470.12050.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0316 (4)0.0323 (4)0.0372 (4)0.0107 (3)0.0031 (3)0.0010 (3)
O10.0323 (10)0.0378 (10)0.0444 (10)0.0067 (8)0.0007 (8)0.0047 (8)
O20.0425 (10)0.0322 (10)0.0428 (10)0.0158 (9)0.0034 (8)0.0010 (8)
N10.0325 (11)0.0363 (12)0.0333 (11)0.0124 (10)0.0049 (9)0.0010 (9)
C10.0464 (16)0.0444 (16)0.0430 (15)0.0237 (13)0.0087 (12)0.0036 (12)
C20.0484 (17)0.0476 (18)0.0550 (17)0.0218 (14)0.0196 (14)0.0063 (14)
C30.084 (3)0.056 (2)0.073 (2)0.0282 (19)0.020 (2)0.0084 (18)
C40.0280 (12)0.0331 (13)0.0346 (13)0.0140 (11)0.0058 (10)0.0009 (10)
C50.0337 (14)0.0439 (16)0.0344 (13)0.0135 (12)0.0032 (11)0.0019 (12)
C60.0334 (14)0.0474 (17)0.0421 (15)0.0113 (12)0.0086 (12)0.0027 (13)
C70.0431 (15)0.0423 (16)0.0433 (15)0.0228 (13)0.0173 (12)0.0013 (12)
C80.0415 (15)0.0546 (17)0.0312 (13)0.0227 (14)0.0045 (11)0.0008 (12)
C90.0339 (14)0.0442 (15)0.0337 (13)0.0169 (12)0.0022 (11)0.0038 (11)
C100.0553 (18)0.0505 (18)0.0528 (17)0.0216 (15)0.0242 (14)0.0076 (14)
Geometric parameters (Å, º) top
S1—O11.4282 (17)C4—C91.383 (3)
S1—O21.4353 (17)C5—H50.9500
S1—N11.617 (2)C5—C61.373 (4)
S1—C41.760 (3)C6—H60.9500
N1—H10.831 (10)C6—C71.390 (4)
N1—C11.468 (3)C7—C81.388 (3)
C1—H1A0.9900C7—C101.501 (4)
C1—H1B0.9900C8—H80.9500
C1—C21.487 (4)C8—C91.383 (4)
C2—H20.9500C9—H90.9500
C2—C31.273 (4)C10—H10A0.9800
C3—H3A0.9500C10—H10B0.9800
C3—H3B0.9500C10—H10C0.9800
C4—C51.390 (3)
O1—S1—O2118.87 (11)C9—C4—C5120.4 (2)
O1—S1—N1107.94 (11)C4—C5—H5120.3
O1—S1—C4108.08 (11)C6—C5—C4119.3 (2)
O2—S1—N1105.56 (11)C6—C5—H5120.3
O2—S1—C4108.64 (11)C5—C6—H6119.3
N1—S1—C4107.21 (11)C5—C6—C7121.5 (2)
S1—N1—H1112 (2)C7—C6—H6119.3
C1—N1—S1119.02 (17)C6—C7—C10121.1 (3)
C1—N1—H1118 (2)C8—C7—C6118.2 (2)
N1—C1—H1A109.7C8—C7—C10120.7 (2)
N1—C1—H1B109.7C7—C8—H8119.4
N1—C1—C2109.8 (2)C9—C8—C7121.2 (2)
H1A—C1—H1B108.2C9—C8—H8119.4
C2—C1—H1A109.7C4—C9—C8119.3 (2)
C2—C1—H1B109.7C4—C9—H9120.3
C1—C2—H2117.1C8—C9—H9120.3
C3—C2—C1125.7 (3)C7—C10—H10A109.5
C3—C2—H2117.1C7—C10—H10B109.5
C2—C3—H3A120.0C7—C10—H10C109.5
C2—C3—H3B120.0H10A—C10—H10B109.5
H3A—C3—H3B120.0H10A—C10—H10C109.5
C5—C4—S1119.60 (19)H10B—C10—H10C109.5
C9—C4—S1119.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.83 (1)2.07 (1)2.900 (3)174 (3)
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

The authors thank Pfizer, Inc. for the donation of a Varian INOVA 400 FT NMR. The CCD-based X-ray diffractometers at Michigan State University were upgraded and/or replaced by departmental funds.

Funding information

Funding for this research was provided by: National Science Foundation (grant No. CCLI CHE-0087655; grant No. MRI CHE-1725699); GVSU Chemistry Department's Weldon Fund.

References

First citationAlaoui, S., Dufies, M., Driowya, M., Demange, L., Bougrin, K., Robert, G., Auberger, P., Pagès, G. & Benhida, R. (2017). Bioorg. Med. Chem. Lett. 27, 1989–1992.  CrossRef Google Scholar
First citationBlass, B. (2016). ACS Med. Chem. Lett. 7, 12–14.  CrossRef Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaddick, S., Wilden, J. D. & Judd, D. B. (2004). J. Am. Chem. Soc. 126, 1024–1025.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChoi, E., Lee, J., Lee, S., Song, B. W., Seo, H. H., Cha, M. J., Lim, S., Lee, C., Song, S. W., Han, G. & Hwang, K. C. (2016). Bioorg. Med. Chem. Lett. 26, 5098–5102.  CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGul, H. I., Yamali, C., Sakagami, H., Angeli, A., Leitans, J., Kazaks, A., Tars, K., Ozgun, D. O. & Supuran, C. T. (2018). Bioorg. Chem. 77, 411–419.  CrossRef Google Scholar
First citationHashmi, A. S. K., Weyrauch, J. P., Kurpejović, E., Frost, T. M., Miehlich, B., Frey, W. & Bats, J. W. (2006). Chem. Eur. J. 12, 5806–5814.  CrossRef Google Scholar
First citationKiyokawa, K., Kojima, T., Hishikawa, Y. & Minakata, S. (2015). Chem. Eur. J. 21, 15548–15552.  CrossRef Google Scholar
First citationLan, Y. & Hammond, G. B. (2002). Org. Lett. 4, 2437–2439.  CrossRef Google Scholar
First citationLee, Y. T., Choi, S. Y. & Chung, Y. K. (2007). Tetrahedron Lett. 48, 5673–5677.  CrossRef Google Scholar
First citationPalmer, D. (2007). CrystalMaker. CrystalMaker, Bicester, England.  Google Scholar
First citationParumala, S. K. R. & Peddinti, R. K. (2016). Tetrahedron Lett. 57, 1232–1235.  CrossRef Google Scholar
First citationQadir, M. A., Ahmed, M. & Khaleeq, A. (2015). Lat. Am. J. Pharm. 34, 719–724.  Google Scholar
First citationRehman, H., Qadir, M. A., Shad, H. A. & Khan, Z. I. (2017). Med. Chem. (Los Angeles) 7, 252–256.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationUm, I. H., Kang, J. S., Shin, Y. H. & Buncel, E. (2013). J. Org. Chem. 78, 490–497.  Web of Science CrossRef CAS PubMed Google Scholar
First citationYang, F.-L. & Tian, S.-K. (2017). Tetrahedron Lett. 58, 487–504.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds