research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure analysis of [5-(4-meth­­oxy­phen­yl)-2-methyl-2H-1,2,3-triazol-4-yl](thio­phen-2-yl)methanone

CROSSMARK_Color_square_no_text.svg

aCrystallography and Crystal Chemistry Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India, bDepartment of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and cDepartment of Biotechnology and Food Technology, Durban University of Technology, Durban 4001, South Africa
*Correspondence e-mail: dchopra@iiserb.ac.in

Edited by C. Massera, Università di Parma, Italy (Received 26 June 2018; accepted 24 July 2018; online 31 July 2018)

The title compound, C15H13N3O2S, crystallizes in the monoclinic space group P21/n and its mol­ecular conformation is stabilized via intra­molecular C—H⋯O and C—H⋯N contacts. The supra­molecular structure is mainly governed by C—H⋯N hydrogen-bonded centrosymmetric dimers, C—H⋯O and C—H⋯S hydrogen bonds and S⋯π and ππ stacking inter­actions which, together, lead to the formation of a layered crystal packing. The inter­molecular inter­actions were further evaluated through the mol­ecular electrostatic potential map and Hirshfeld fingerprint analysis.

1. Chemical context

Compounds containing the 1,2,3-triazole scaffold are considered to be an important class of five-membered N-heterocycles (having two carbon and three nitro­gen atoms) because of their unique structural and chemical properties (Kolb & Sharpless, 2003[Kolb, H. C. & Sharpless, K. B. (2003). Drug Discovery Today, 8, 1128-1137.]; Freitas et al., 2014[Freitas, L. B. de O., Borgati, T. F., de Freitas, R. P., Ruiz, A. L. T. G., Marchetti, G. M., de Carvalho, J. E., da Cunha, E. F. F., Ramalho, T. C. & Alves, R. B. (2014). Eur. J. Med. Chem. 84, 595-604.]). In the last few decades, significant attention has been paid to this kind of structural units owing to their versatile applications in the fields of materials science and medicinal chemistry (Zhou & Wang, 2012[Zhou, C.-H. & Wang, Y. (2012). Curr. Med. Chem. 19, 239-280.]; Venugopala et al., 2016[Venugopala, K. N., Rao, D., Bhandary, S., Pillay, M., Chopra, D., Aldhubiab, B. E., Attimarad, M., Alwassil, O. I., Harsha, S. & Mlisana, K. (2016). Drug. Des. Dev. Ther. 10, 2681-2690.]). In addition, 1,2,3-triazoles have also been found to be quite relevant in objective-oriented synthesis (Billing & Nilsson, 2005[Billing, J. F. & Nilsson, U. J. (2005). J. Org. Chem. 70, 4847-4850.]), bioconjugation (Speers et al., 2003[Speers, A. E., Adam, G. C. & Cravatt, B. F. (2003). J. Am. Chem. Soc. 125, 4686-4687.]) and combinatorial chemistry (Löber et al., 2003[Löber, S., Rodriguez-Loaiza, P. & Gmeiner, P. (2003). Org. Lett. 5, 1753-1755.]). The geometrical shapes and inter­action functions of natural heterocycles and amides can be very similar to those of 1,2,3-triazoles (Thibault et al., 2006[Thibault, R. J., Takizawa, K., Lowenheilm, P., Helms, B., Mynar, J. L., Fréchet, J. M. J. & Hawker, C. J. (2006). J. Am. Chem. Soc. 128, 12084-12085.]).

In general, the 1,2,3-triazole nucleus is the most fundamental heterocyclic component found in various pharmacologically active agents (Agalave et al., 2011[Agalave, S. G., Maujan, S. R. & Pore, V. S. (2011). Chem. Asian J. 6, 2696-2718.]). In particular, potential pharmaceuticals based on the 1,2,3-triazole ring include anti-HIV (Giffin et al., 2008[Giffin, M. J., Heaslet, H., Brik, A., Lin, Y.-C., Cauvi, G., Wong, C.-H., McRee, D. E., Elder, J. H., Stout, C. D. & Torbett, B. E. (2008). J. Med. Chem. 51, 6263-6270.]), anti­cancer (Singh et al., 2012[Singh, P., Raj, R., Kumar, V., Mahajan, M. P., Bedi, P. M. S., Kaur, T. & Saxena, A. K. (2012). Eur. J. Med. Chem. 47, 594-600.]), anti-tubercular (Patpi et al., 2012[Patpi, S. R., Pulipati, L., Yogeeswari, P., Sriram, D., Jain, N., Sridhar, B., Murthy, R., Anjana Devi, T., Kalivendi, S. V. & Kantevari, S. (2012). J. Med. Chem. 55, 3911-3922.]), anti­microbial (Demaray et al., 2008[Demaray, J. A., Thuener, J. E., Dawson, M. N. & Sucheck, S. J. (2008). Bioorg. Med. Chem. Lett. 18, 4868-4871.]) and anti­fungal (Lass-Floerl et al., 2011[Lass-Floerl, C. (2011). Drugs, 71, 2405-2419.]) agents. This is due to the fact that the 1,2,3-triazole structural unit is stable against metabolic degradation as well as oxidation and reduction in acidic and basic conditions (Ferreira et al., 2010[Ferreira, S. B., Sodero, A. C. R., Cardoso, M. F. C., Lima, E. S., Kaiser, C. R., Silva, F. P. & Ferreira, V. F. (2010). J. Med. Chem. 53, 2364-2375.]). Importantly, this special class of structural unit is capable of forming hydrogen-bonding inter­actions (the N atom acts as an acceptor) as well as ππ stacking and other inter­molecular inter­actions with biological targets to improve their solubility (Lauria et al., 2014[Lauria, A., Delisi, R., Mingoia, F., Terenzi, A., Martorana, A., Barone, G. & Almerico, A. M. (2014). Eur. J. Org. Chem. 2014, 3289-3306.]). Hence, it is of extreme importance to explore and understand the supra­molecular structure of compounds in which the structural motif is based on 1,2,3-triazole. Keeping in mind the above-mentioned features, we report here the crystal structure and packing analysis of the title compound [5-(4-meth­oxy­phen­yl)-2-methyl-2H-1,2,3-tria­zol-4-yl](thio­phen-2-yl)methanone (1).

[Scheme 1]

2. Structural commentary

The single-crystal X-ray diffraction study shows that compound 1 crystallizes in the monoclinic space group P21/n with one mol­ecule (Z′ = 1) in the asymmetric unit (Fig. 1[link]). In the mol­ecular structure, the N-methyl­ated triazol ring is substituted at the two carbon atoms C7 and C8 by a para-meth­oxy phenyl and a methanone-thienyl ring, respectively, resulting in four conformationally flexible parts in the mol­ecule around the C8—C9, C9—C10, C1—C7 and C4—O1 single bonds (see Fig. 1[link]). The conformation of the mol­ecule in the crystal is stabilized via intra­molecular C2—H2⋯O2 [C2⋯O2 = 2.961 (2) Å] and C11—H11⋯N1 [C11⋯N1 = 2.950 (2) Å] contacts (Fig. 1[link]; Table 1[link]). For this reason, the thienyl and triazole rings are nearly coplanar, with an angle of 13.63 (10)° between their mean planes, while the phenyl ring is tilted out from the mean planes of the thienyl and triazole rings by 38.84 (9) and 34.04 (10)°, respectively. It is also important to mention here that the meth­oxy group attached to C4 is in the same plane as the phenyl ring.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯N1 0.95 2.41 2.950 (2) 116
C2—H2⋯O2 0.95 2.42 2.961 (2) 113
C3—H3⋯S1i 0.95 2.96 3.810 (2) 149
C15—H15A⋯O2ii 0.98 2.98 3.828 (3) 146
C15—H15C⋯N3iii 0.98 2.73 3.490 (3) 135
C12—H12⋯N1iv 0.95 2.95 3.768 (2) 145
C13—H13⋯O2v 0.95 2.38 3.191 (2) 143
C14—H14C⋯O1vi 0.98 2.67 3.230 (2) 117
Symmetry codes: (i) x+1, y, z; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x+2, -y, -z+2; (iv) -x, -y, -z+1; (v) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vi) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
The asymmetric unit of compound 1 highlighting the intra­molecular C—H⋯O and C—H⋯N contacts. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, the mol­ecules form two types of centrosymmetric, weak to very weak C—H⋯N hydrogen-bonding dimeric motifs (Table 1[link]) involving the methyl hydrogen H15C (sp3) of the meth­oxy group with the triazol nitro­gen N3 [C15⋯N3 = 3.490 (3) Å] and the thio­phene hydrogen H12 (sp2) with the triazol nitro­gen N1 [C12⋯N1 = 3.768 (2) Å]. These are extended in an alternate fashion, forming ribbons along the [101] direction (see green and yellow shades in Fig. 2[link]). Two such adjacent hydrogen-bonded ribbons are connected to each other via Csp2/sp3—H⋯O and S⋯C(π) [3.492 (2) Å] inter­actions along the [010] direction, forming a corrugated sheet perpendicular to the (101) plane (Fig. 2[link] and Table 1[link]). These sheets are further stacked to each other by displaced ππ stacking inter­actions distances ranging from 3.375 (3) to 3.384 (4) Å through inversion and translational symmetries, and weak C3—H3⋯S1 [C3⋯S1 = 3.810 (2) Å] inter­actions (Table 1[link]), leading to the formation of a layered packing arrangement of mol­ecules (Fig. 3[link]).

[Figure 2]
Figure 2
Crystal packing of 1 showing the formation of mol­ecular sheets via two types of centrosymmetric C—H⋯N dimers (shaded in light yellow and green), forming ribbons connected through C—H⋯O and S⋯C(π) inter­actions.
[Figure 3]
Figure 3
Stacking of hydrogen-bonded mol­ecular sheets via ππ inter­actions (dotted lines) in compound 1. Hydrogen atoms are omitted for clarity.

4. Analysis of mol­ecular electrostatic potential and Hirshfeld fingerprint plots

A deeper insight into inter­molecular inter­actions can be obtained from mol­ecular electrostatic potential (MESP), and two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814-3816.]) mapped on the Hirshfeld surface (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]). All the plots were computed using the programme CrystalExplorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer 17.5. University of Western Australia.]). The MESP plot of compound 1 (Fig. 4[link]) shows that the centres of both the triazole and thio­phene five-membered rings have nearly neutral ESP values (0.000 and −0.002 a.u., respectively), while the benzene ring is highly electronegative (−0.028 a.u.) compared to the two heterocyclic rings. This electrostatic complementarity among the rings leads to favourable stacking inter­actions in the crystal packing as a result of a layered supra­molecular architecture. Inter­molecular hydrogen-bond donors and acceptors appear as blue (positive ESP) and red (negative ESP) regions, respectively, on the surface (Fig. 4[link]). The two-dimensional fingerprint plots and the contributions of individual inter­atomic contacts toward the overall crystal packing are shown in Fig. 5[link]. It is observed that several directional hydrogen-bonding contacts such as N⋯H (7.7%), O⋯H (11.0%), S⋯H (6.3%) along with C⋯H (18.5%), H⋯H (41.6%) and other inter­atomic contacts stabilize the crystal packing of compound 1.

[Figure 4]
Figure 4
MESP of compound 1 mapped over the Hirshfeld surface with a scale of −0.03 a.u. (red) through 0.00 (white) to +0.03 a.u. (blue). The ESP values (in a.u.) for the centre of each ring are given.
[Figure 5]
Figure 5
Two-dimensional full fingerprint plots and decomposed fingerprint plots over the Hirshfeld surface for various inter­molecular atom–atom contacts in compound 1. The numbers in red indicate the percentage contributions of each contact.

5. Database survey

A Cambridge Structural Database (Version 5.39, update May 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) search for the (2-methyl-2H-1,2,3-triazol-4-yl)(thio­phen-2-yl)methanone subunit resulted in one hit (SONFIM; Girish et al., 2014[Girish, Y. R., Sharath Kumar, K. S., Muddegowda, U., Lokanath, N. K., Rangappa, K. S. & Shashikanth, S. (2014). RSC Adv. 4, 55800-55806.]). Like compound 1, the mol­ecular conformation of SONFIM is also stabilized by intra­molecular C—H⋯O and C—H⋯N hydrogen bonds. The supra­molecular structure of SONFIM is primarily determined by inter­molecular C—H⋯O and C—H⋯π hydrogen bonds, while C—H⋯N hydrogen bonding plays a secondary role in the overall stabilization of the crystal packing.

6. Synthesis and crystallization

The title compound was synthesized according to the procedure described elsewhere (Girish et al., 2014[Girish, Y. R., Sharath Kumar, K. S., Muddegowda, U., Lokanath, N. K., Rangappa, K. S. & Shashikanth, S. (2014). RSC Adv. 4, 55800-55806.]). Single crystals of the pure compound were grown by slow evaporation of a toluene solution at room temperature (297–301 K).

7. Refinement

Crystal data, data collection and structure refinement details are given in Table 2[link]. Hydrogen atoms were positioned geometrically and refined as riding: C—H = 0.98 Å with Uiso(H) =1.5Ueq(C) for the methyl group and C—H = 0.95Å with Uiso(H) = 1.2Ueq(C) for the aromatic C atoms.

Table 2
Experimental details

Crystal data
Chemical formula C15H13N3O2S
Mr 299.34
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 8.5851 (10), 16.8986 (19), 9.3455 (11)
β (°) 92.465 (4)
V3) 1354.6 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.25
Crystal size (mm) 0.30 × 0.10 × 0.06
 
Data collection
Diffractometer Bruker APEXII D8 Venture CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.619, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 17149, 3962, 2914
Rint 0.065
(sin θ/λ)max−1) 0.705
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.114, 1.03
No. of reflections 3962
No. of parameters 192
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.46, −0.53
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR2014 (Burla et al., 2015[Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306-309.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SIR2014 (Burla et al., 2015); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

[5-(4-Methoxyphenyl)-2-methyl-2H-1,2,3-triazol-4-yl](thiophen-2-yl)methanone top
Crystal data top
C15H13N3O2SF(000) = 624
Mr = 299.34Dx = 1.468 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.5851 (10) ÅCell parameters from 6642 reflections
b = 16.8986 (19) Åθ = 2.4–30.0°
c = 9.3455 (11) ŵ = 0.25 mm1
β = 92.465 (4)°T = 100 K
V = 1354.6 (3) Å3Plate, yellow
Z = 40.30 × 0.10 × 0.06 mm
Data collection top
Bruker APEXII D8 Venture CMOS
diffractometer
2914 reflections with I > 2σ(I)
φ and ω scansRint = 0.065
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
θmax = 30.1°, θmin = 2.4°
Tmin = 0.619, Tmax = 0.746h = 1211
17149 measured reflectionsk = 2323
3962 independent reflectionsl = 1013
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.037P)2 + 1.3716P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3962 reflectionsΔρmax = 0.46 e Å3
192 parametersΔρmin = 0.53 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.22992 (6)0.20914 (3)0.39316 (5)0.01627 (13)
O11.18053 (15)0.18243 (8)0.81322 (14)0.0166 (3)
O20.48083 (16)0.18611 (8)0.60466 (16)0.0200 (3)
N10.35646 (18)0.00987 (9)0.68224 (18)0.0160 (3)
N30.57606 (18)0.03357 (10)0.81538 (18)0.0158 (3)
N20.43569 (18)0.05846 (9)0.76814 (18)0.0162 (3)
C10.7388 (2)0.08137 (10)0.7775 (2)0.0130 (4)
C110.1653 (2)0.06385 (11)0.4486 (2)0.0137 (4)
H110.1675300.0122260.4889040.016*
C41.0365 (2)0.14778 (10)0.8101 (2)0.0130 (4)
C30.9476 (2)0.15862 (11)0.6832 (2)0.0132 (4)
H30.9884640.1885520.6073940.016*
C70.5901 (2)0.03848 (11)0.7557 (2)0.0132 (4)
C50.9775 (2)0.10385 (11)0.9210 (2)0.0150 (4)
H51.0371670.0965501.0079820.018*
C100.2700 (2)0.12300 (11)0.4876 (2)0.0128 (4)
C60.8294 (2)0.07061 (11)0.9028 (2)0.0147 (4)
H60.7893700.0398320.9779670.018*
C20.8005 (2)0.12602 (11)0.6675 (2)0.0131 (4)
H20.7404560.1340220.5808810.016*
C80.4519 (2)0.05345 (11)0.6724 (2)0.0138 (4)
C90.4044 (2)0.12489 (11)0.5897 (2)0.0141 (4)
C151.2758 (2)0.17414 (14)0.9413 (2)0.0245 (5)
H15A1.2243950.1994441.0209450.037*
H15B1.3769820.1994480.9284270.037*
H15C1.2915630.1178280.9624130.037*
C120.0541 (2)0.08913 (12)0.3416 (2)0.0160 (4)
H120.0261540.0561840.3014940.019*
C130.0753 (2)0.16613 (12)0.3025 (2)0.0173 (4)
H130.0110530.1927910.2326740.021*
C140.3821 (2)0.13873 (11)0.7969 (2)0.0213 (4)
H14A0.2732210.1443680.7623750.032*
H14B0.3901580.1488300.9001880.032*
H14C0.4468720.1768230.7473410.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0164 (2)0.0123 (2)0.0201 (3)0.00008 (18)0.00098 (18)0.00335 (19)
O10.0124 (6)0.0188 (7)0.0183 (7)0.0030 (5)0.0029 (5)0.0017 (6)
O20.0164 (7)0.0107 (6)0.0325 (8)0.0021 (5)0.0028 (6)0.0009 (6)
N10.0151 (8)0.0118 (7)0.0209 (9)0.0003 (6)0.0009 (7)0.0019 (7)
N30.0124 (8)0.0154 (8)0.0195 (8)0.0002 (6)0.0003 (6)0.0005 (7)
N20.0135 (8)0.0125 (8)0.0223 (9)0.0006 (6)0.0013 (7)0.0036 (7)
C10.0136 (9)0.0092 (8)0.0162 (10)0.0008 (7)0.0014 (7)0.0018 (7)
C110.0150 (9)0.0120 (8)0.0143 (9)0.0017 (7)0.0010 (7)0.0010 (7)
C40.0123 (8)0.0094 (8)0.0173 (9)0.0006 (7)0.0001 (7)0.0019 (7)
C30.0143 (9)0.0117 (8)0.0136 (9)0.0019 (7)0.0019 (7)0.0002 (7)
C70.0139 (9)0.0110 (8)0.0148 (9)0.0012 (7)0.0020 (7)0.0002 (7)
C50.0143 (9)0.0150 (9)0.0154 (9)0.0009 (7)0.0012 (7)0.0002 (7)
C100.0121 (9)0.0105 (8)0.0160 (9)0.0017 (7)0.0028 (7)0.0008 (7)
C60.0173 (9)0.0123 (9)0.0145 (9)0.0005 (7)0.0022 (7)0.0008 (7)
C20.0132 (9)0.0124 (8)0.0136 (9)0.0032 (7)0.0004 (7)0.0010 (7)
C80.0138 (9)0.0099 (8)0.0178 (10)0.0005 (7)0.0009 (7)0.0010 (7)
C90.0115 (9)0.0116 (8)0.0193 (10)0.0012 (7)0.0028 (7)0.0015 (7)
C150.0189 (10)0.0338 (12)0.0203 (11)0.0080 (9)0.0066 (8)0.0034 (9)
C120.0144 (9)0.0170 (9)0.0164 (10)0.0014 (7)0.0015 (7)0.0028 (8)
C130.0160 (9)0.0204 (10)0.0156 (10)0.0025 (7)0.0000 (7)0.0005 (8)
C140.0199 (10)0.0116 (9)0.0322 (12)0.0030 (8)0.0010 (9)0.0070 (8)
Geometric parameters (Å, º) top
S1—C131.706 (2)C3—C21.380 (3)
S1—C101.7292 (19)C3—H30.9500
O1—C41.368 (2)C7—C81.413 (3)
O1—C151.427 (2)C5—C61.394 (3)
O2—C91.230 (2)C5—H50.9500
N1—N21.317 (2)C10—C91.466 (3)
N1—C81.353 (2)C6—H60.9500
N3—N21.334 (2)C2—H20.9500
N3—C71.347 (2)C8—C91.481 (3)
N2—C141.461 (2)C15—H15A0.9800
C1—C61.390 (3)C15—H15B0.9800
C1—C21.398 (3)C15—H15C0.9800
C1—C71.475 (3)C12—C131.365 (3)
C11—C101.383 (3)C12—H120.9500
C11—C121.419 (3)C13—H130.9500
C11—H110.9500C14—H14A0.9800
C4—C51.388 (3)C14—H14B0.9800
C4—C31.394 (3)C14—H14C0.9800
C13—S1—C1091.62 (9)C1—C6—H6119.2
C4—O1—C15117.45 (15)C5—C6—H6119.2
N2—N1—C8103.66 (15)C3—C2—C1120.72 (17)
N2—N3—C7104.09 (15)C3—C2—H2119.6
N1—N2—N3116.16 (15)C1—C2—H2119.6
N1—N2—C14122.16 (16)N1—C8—C7108.49 (16)
N3—N2—C14121.29 (16)N1—C8—C9121.73 (16)
C6—C1—C2118.34 (17)C7—C8—C9129.73 (17)
C6—C1—C7120.11 (17)O2—C9—C10119.57 (17)
C2—C1—C7121.13 (17)O2—C9—C8119.53 (17)
C10—C11—C12112.23 (17)C10—C9—C8120.88 (16)
C10—C11—H11123.9O1—C15—H15A109.5
C12—C11—H11123.9O1—C15—H15B109.5
O1—C4—C5124.87 (17)H15A—C15—H15B109.5
O1—C4—C3115.02 (17)O1—C15—H15C109.5
C5—C4—C3120.10 (17)H15A—C15—H15C109.5
C2—C3—C4120.21 (18)H15B—C15—H15C109.5
C2—C3—H3119.9C13—C12—C11112.45 (17)
C4—C3—H3119.9C13—C12—H12123.8
N3—C7—C8107.60 (16)C11—C12—H12123.8
N3—C7—C1118.64 (16)C12—C13—S1112.53 (15)
C8—C7—C1133.56 (17)C12—C13—H13123.7
C4—C5—C6118.99 (17)S1—C13—H13123.7
C4—C5—H5120.5N2—C14—H14A109.5
C6—C5—H5120.5N2—C14—H14B109.5
C11—C10—C9132.22 (17)H14A—C14—H14B109.5
C11—C10—S1111.18 (14)N2—C14—H14C109.5
C9—C10—S1116.60 (13)H14A—C14—H14C109.5
C1—C6—C5121.63 (18)H14B—C14—H14C109.5
C8—N1—N2—N30.6 (2)C4—C5—C6—C11.0 (3)
C8—N1—N2—C14173.55 (18)C4—C3—C2—C10.4 (3)
C7—N3—N2—N10.5 (2)C6—C1—C2—C30.1 (3)
C7—N3—N2—C14173.46 (18)C7—C1—C2—C3172.69 (17)
C15—O1—C4—C51.4 (3)N2—N1—C8—C70.5 (2)
C15—O1—C4—C3179.19 (17)N2—N1—C8—C9177.17 (17)
O1—C4—C3—C2179.69 (16)N3—C7—C8—N10.3 (2)
C5—C4—C3—C20.2 (3)C1—C7—C8—N1174.3 (2)
N2—N3—C7—C80.1 (2)N3—C7—C8—C9177.16 (19)
N2—N3—C7—C1175.62 (16)C1—C7—C8—C98.3 (4)
C6—C1—C7—N330.9 (3)C11—C10—C9—O2179.7 (2)
C2—C1—C7—N3141.55 (18)S1—C10—C9—O20.5 (2)
C6—C1—C7—C8155.0 (2)C11—C10—C9—C81.3 (3)
C2—C1—C7—C832.5 (3)S1—C10—C9—C8177.88 (14)
O1—C4—C5—C6178.95 (17)N1—C8—C9—O2166.57 (18)
C3—C4—C5—C60.4 (3)C7—C8—C9—O210.5 (3)
C12—C11—C10—C9178.84 (19)N1—C8—C9—C1015.0 (3)
C12—C11—C10—S10.4 (2)C7—C8—C9—C10167.85 (19)
C13—S1—C10—C110.13 (15)C10—C11—C12—C130.5 (2)
C13—S1—C10—C9179.21 (15)C11—C12—C13—S10.4 (2)
C2—C1—C6—C50.8 (3)C10—S1—C13—C120.14 (16)
C7—C1—C6—C5173.47 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···N10.952.412.950 (2)116
C2—H2···O20.952.422.961 (2)113
C3—H3···S1i0.952.963.810 (2)149
C15—H15A···O2ii0.982.983.828 (3)146
C15—H15C···N3iii0.982.733.490 (3)135
C12—H12···N1iv0.952.953.768 (2)145
C13—H13···O2v0.952.383.191 (2)143
C14—H14C···O1vi0.982.673.230 (2)117
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x+2, y, z+2; (iv) x, y, z+1; (v) x1/2, y+1/2, z1/2; (vi) x+3/2, y1/2, z+3/2.
 

Funding information

SB acknowledges IISER Bhopal for a senior research fellowship. DC and SB thank IISER Bhopal for the research facilities and infrastructure. KNV acknowledges the National Research Foundation (96807 and 98884), South Africa, and Durban University of Technology, South Africa, for support and encouragement.

References

First citationAgalave, S. G., Maujan, S. R. & Pore, V. S. (2011). Chem. Asian J. 6, 2696–2718.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBilling, J. F. & Nilsson, U. J. (2005). J. Org. Chem. 70, 4847–4850.  CrossRef Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDemaray, J. A., Thuener, J. E., Dawson, M. N. & Sucheck, S. J. (2008). Bioorg. Med. Chem. Lett. 18, 4868–4871.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFerreira, S. B., Sodero, A. C. R., Cardoso, M. F. C., Lima, E. S., Kaiser, C. R., Silva, F. P. & Ferreira, V. F. (2010). J. Med. Chem. 53, 2364–2375.  CrossRef Google Scholar
First citationFreitas, L. B. de O., Borgati, T. F., de Freitas, R. P., Ruiz, A. L. T. G., Marchetti, G. M., de Carvalho, J. E., da Cunha, E. F. F., Ramalho, T. C. & Alves, R. B. (2014). Eur. J. Med. Chem. 84, 595–604.  Google Scholar
First citationGiffin, M. J., Heaslet, H., Brik, A., Lin, Y.-C., Cauvi, G., Wong, C.-H., McRee, D. E., Elder, J. H., Stout, C. D. & Torbett, B. E. (2008). J. Med. Chem. 51, 6263–6270.  CrossRef Google Scholar
First citationGirish, Y. R., Sharath Kumar, K. S., Muddegowda, U., Lokanath, N. K., Rangappa, K. S. & Shashikanth, S. (2014). RSC Adv. 4, 55800–55806.  CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKolb, H. C. & Sharpless, K. B. (2003). Drug Discovery Today, 8, 1128–1137.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLass-Floerl, C. (2011). Drugs, 71, 2405–2419.  Google Scholar
First citationLauria, A., Delisi, R., Mingoia, F., Terenzi, A., Martorana, A., Barone, G. & Almerico, A. M. (2014). Eur. J. Org. Chem. 2014, 3289–3306.  CrossRef Google Scholar
First citationLöber, S., Rodriguez-Loaiza, P. & Gmeiner, P. (2003). Org. Lett. 5, 1753–1755.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816.  Google Scholar
First citationPatpi, S. R., Pulipati, L., Yogeeswari, P., Sriram, D., Jain, N., Sridhar, B., Murthy, R., Anjana Devi, T., Kalivendi, S. V. & Kantevari, S. (2012). J. Med. Chem. 55, 3911–3922.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, P., Raj, R., Kumar, V., Mahajan, M. P., Bedi, P. M. S., Kaur, T. & Saxena, A. K. (2012). Eur. J. Med. Chem. 47, 594–600.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpeers, A. E., Adam, G. C. & Cravatt, B. F. (2003). J. Am. Chem. Soc. 125, 4686–4687.  CrossRef Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThibault, R. J., Takizawa, K., Lowenheilm, P., Helms, B., Mynar, J. L., Fréchet, J. M. J. & Hawker, C. J. (2006). J. Am. Chem. Soc. 128, 12084–12085.  CrossRef Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer 17.5. University of Western Australia.  Google Scholar
First citationVenugopala, K. N., Rao, D., Bhandary, S., Pillay, M., Chopra, D., Aldhubiab, B. E., Attimarad, M., Alwassil, O. I., Harsha, S. & Mlisana, K. (2016). Drug. Des. Dev. Ther. 10, 2681–2690.  CrossRef Google Scholar
First citationZhou, C.-H. & Wang, Y. (2012). Curr. Med. Chem. 19, 239–280.  Web of Science CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds