research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of N,N′-bis­­(3-tert-butyl-2-hy­dr­oxy-5-methyl­benzyl­­idene)ethane-1,2-di­amine

CROSSMARK_Color_square_no_text.svg

aUskudar University, Faculty of Engineering and Natural Sciences, Department of Forensic Science, 34662, Istanbul, Turkey, bOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Kurupelit, Samsun, Turkey, and cTaras Shevchenko National University of Kyiv, Department of Chemistry, 64, Vladimirska Str., Kiev 01601, Ukraine
*Correspondence e-mail: igolenya@ua.fm

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 4 July 2018; accepted 8 July 2018; online 24 July 2018)

The title compound, C26H36N2O2, crystallizes in the phenol–imine form. In the mol­ecule, there are intra­molecular O—H⋯N hydrogen bonds forming S(6) ring motifs, and the two aromatic rings are inclined to each other by 37.9 (7)°. In the crystal, mol­ecules are linked by pairs of weak C—H⋯O hydrogen bonds, forming inversion dimers. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H⋯H (77.5%), H⋯C/C⋯H (16%), H⋯O/O⋯H (3.1%) and H⋯N/N⋯H (1.7%) inter­actions.

1. Chemical context

The key Schiff base condensation reaction involves simply the reaction of an amine with aldehyde to give an imine and is named after Hugo Schiff who first reported this type of reaction (Schiff, 1864[Schiff, H. (1864). Ann. Chem. Pharm. 131, 118-119.]). Schiff bases are considered to be an important class of organic compounds being versatile tools and having wide applications in analytical chemistry, in medicine and in biological processes, displaying anti­fungal, anti­bacterial and anti­cancer activities (Przybylski et al., 2009[Przybylski, P., Huczynski, A., Pyta, K., Brzezinski, B. & Bartl, F. (2009). Curr. Org. Chem. 13, 124-148.]). Schiff base ligands have also played an important role in the development of coordination and supra­molecular chemistry (Moroz et al., 2012[Moroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445-7447.]), having a chelating structure to coordinate metal ions through the imine nitro­gen and another group to form complexes (Cozzi et al., 2004[Cozzi, P. G. (2004). Chem. Soc. Rev. 33, 410-421.]; Moroz et al., 2008[Moroz, Y. S., Kulon, K., Haukka, M., Gumienna-Kontecka, E., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2008). Inorg. Chem. 47, 5656-5665.], 2010[Moroz, Y. S., Szyrwiel, Ł., Demeshko, S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chem. 49, 4750-4752.]). The complexes of Schiff bases have a wide range of utilization in various areas of science such as in pharmaceutical, agriculture and industrial chemistry (Anis et al., 2013[Anis, I., Aslam, M., Noreen, Z., Afza, N., Hussain, A., Safder, M. & Chaudhry, A. H. (2013). Int. J. Curr. Pharm. Res. 5, 21-24.]).

[Scheme 1]

In this study, we designed a new type of Schiff base by the reaction of an aromatic aldehyde derivative and ethyl­enedi­amine to give N,N′-bis­(3-tert-butyl-2-hy­droxy-5-methyl­benz­yl­idene)ethane-1,2-di­amine and have also performed the synthesis, characterization and the crystal structure analysis of the target compound.

2. Structural commentary

The asymmetric unit of the title Schiff base compound contains one independent mol­ecule (Fig. 1[link]). The imine groups, which display C13—N1—C12—C9 and C14—N2—C15—C16 torsion angles of 175.9 (2) and −179.6 (2)°, respectively, contribute to the general non-planarity of the mol­ecule. The aromatic ring C5–C10 is inclined to the ring C16–C21 by 37.9 (7)°. Two types of intra­molecular hydrogen bonds are observed in Schiff bases: O—H⋯N in phenol-imine and N—H⋯O keto-amine form. The present analysis shows that the title compound exists in the phenol-imine form (Fig. 1[link]) with intra­molecular O1—H1⋯N1 and O2—H2⋯N2 hydrogen bonds,, which generate S(6) ring motifs, stabilizing the mol­ecular structure (Table 1[link] and Fig. 2[link]). The C10—O1 and C17—O2 bond lengths [both 1.361 (3) Å] are in agreement with single bonds and support the mol­ecule being in the phenol-imine form.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.85 2.585 (2) 149
O2—H2⋯N2 0.82 1.83 2.570 (2) 150
C14—H14B⋯O2i 0.97 2.63 3.564 (3) 162
Symmetry code: (i) -x+1, -y+1, -z+1.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 20% probability level. Hydrogen bonds (Table 1[link]) are shown as dashed lines.
[Figure 2]
Figure 2
A partial view of the crystal packing. Dashed lines denote the intra­molecular O—H⋯N and inter­molecular C—H⋯O hydrogen bonds (Table 1[link]).

3. Supra­molecular features

In the crystal, pairs of C—H⋯O hydrogen bond connect the mol­ecules into inversion dimers (Table 1[link], Fig. 2[link]).

4. Hirshfeld surface analysis

Hirshfeld surface analysis was used to investigate the presence of hydrogen bonds and inter­molecular inter­actions in the crystal structure. Plots of Hirshfeld surfaces mapped over dnorm, di and de using a standard (high) surface resolution with a fixed colour scale of −0.080 (red) to 1.716 (blue) a.u. are shown in Fig. 3[link]. Red spots on these surfaces indicate strong hydrogen bonds and inter­atomic contacts (Aydemir et al., 2018[Aydemir, E., Kansiz, S., Gumus, M. K., Gorobets, N. Y. & Dege, N. (2018). Acta Cryst. E74, 367-370.]; Gümüş et al., 2018[Gümüş, M. K., Kansız, S., Aydemir, E., Gorobets, N. Y. & Dege, N. (2018). J. Mol. Struct. 1168, 280-290.]; Hökelek et al., 2018[Hökelek, T., Özkaya, S. & Necefoğlu, H. (2018). Acta Cryst. E74, 422-427.]; Kansız & Dege, 2018[Kansız, S. & Dege, N. (2018). J. Mol. Struct. 1173, 42-51.]); in the case of the title compound, these correspond to C—H⋯O hydrogen-bonding inter­actions. The red spots identified in Fig. 4[link] correspond to the near-type H⋯O contacts resulting from the C—H⋯O hydrogen bond.

[Figure 3]
Figure 3
The Hirshfeld surface of the title compound mapped over dnorm, di and de.
[Figure 4]
Figure 4
dnorm mapped on Hirshfeld surfaces for visualizing the inter­molecular inter­actions of the title compound.

Fig. 5[link] shows the two-dimensional fingerprint [generated with CrystalExplorer (Turner et al., 2017[Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia.])] of the sum of the contacts contributing to the Hirshfeld surface represented in normal mode. The graph shown in Fig. 6[link] (H⋯H) shows the two-dimensional fingerprint of the (di, de) points associated with hydrogen atoms. It is characterized by an end point that points to the origin and corresponds to di = de = 1.08 Å, which indicates the presence of the H⋯H contacts in this study (77.5%). The graph shown in Fig. 6[link] (H⋯C/C⋯H) shows the contact between the carbon atoms inside the surface and the hydrogen atoms outside the surface of Hirshfeld and vice versa. The analysis of this graph shows two symmetrical wings on the left and right sides (16%). Two symmetrical points at the top, bottom left and right at de + di 2.5 Å indicate the presence of the H⋯O/O⋯H (3.1%) contacts. These are characteristic of C—H⋯O hydrogen bonds. Further, there are H⋯N/N⋯H (1.7%), C⋯C (1.2%) and C⋯N/N⋯C (0.2%) contacts.

[Figure 5]
Figure 5
Fingerprint plot for the title compound.
[Figure 6]
Figure 6
Two-dimensional fingerprint plots with a dnorm view of the H⋯H (77.5%), H⋯C/C⋯H (16%), H⋯O/O⋯H (3.1%) and H⋯N/N⋯H (1.7%) contacts in the title compound.

A view of the three-dimensional Hirshfeld surface plotted over electrostatic potential energy in the range −0.047 to 0.041 a.u. using the STO-3G basis set at the Hartree–Fock level of theory is shown in Fig. 7[link]; the C—H⋯O hydrogen-bond donors and acceptors are shown as blue and red areas around the atoms related with positive (hydrogen-bond donors) and negative (hydrogen-bond acceptors) electrostatic potential, respectively.

[Figure 7]
Figure 7
The view of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy.

5. Synthesis and crystallization

A solution of ethyl­enedi­amine (78 mg, 1.3 mmol) in methanol (30 mL) was slowly added over a solution of 3-tert-butyl-2-hy­droxy-5-methyl­benzaldehyde (500 mg, 2.6 mmol) in methanol (30 mL). The reaction mixture was purged with argon at room temperature and heated up to reflux temperature for 12 h. The reaction was monitored by TLC. After completion of the reaction, the mixture was cooled to room temperature. The precipitated Schiff base was filtered off and washed with diethyl ether. The resulting di­imine was recrystallized from methanol and dried under vacuum to give the desired product as a yellow powder (Fig. 8[link]). Crystals suitable for X-ray diffraction analysis were obtained by evaporation in methanol. Yield: 85% (450 mg). FT–IR (UATR–TWOTM) ν max/cm−1: 3063 (Ar, C—H), 2957–2865 (Aliph., C—H), 1630 (C=N), 1592 (Ar, C=C), 1454–1356 (Aliph., C—C), 1265, 1206, 1029, 1043, 975, 859. 1H NMR (CHCl3) δ (ppm): 13.58 (s, 2H), 8.33 (s, 2H), 7.11 (s, 2H), 6.88 (s, 2H), 3.91 (s, 4H), 2.26 (s, 6H), 1.42 (s, 18H). 13C NMR (CHCl3) δ (ppm): 167.43, 158.28, 137.26, 130.79, 129.90, 126.78, 118.48, 68.19, 34.76, 29.31, 20.67. UV–Vis (CHCl3): λmax (nm) (log ) 246 (3.97), 334 (3.99). MS: m/z 409.2724 [M + 1]+.

[Figure 8]
Figure 8
The synthesis of the title compound.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms were positioned geometrically and refined using a riding model: O—H = 0.82 Å and C—H = 0.93–0.97 Å with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O, C-meth­yl).

Table 2
Experimental details

Crystal data
Chemical formula C26H36N2O2
Mr 408.57
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 13.1124 (14), 9.8498 (6), 19.737 (2)
β (°) 106.892 (8)
V3) 2439.1 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.79 × 0.45 × 0.28
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.970, 0.990
No. of measured, independent and observed [I > 2σ(I)] reflections 13737, 4331, 1745
Rint 0.077
(sin θ/λ)max−1) 0.596
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.099, 0.78
No. of reflections 4331
No. of parameters 281
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.10, −0.11
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2017 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

N,N'-Bis(3-tert-butyl-2-hydroxy-5-methylbenzylidene)ethane-1,2-diamine top
Crystal data top
C26H36N2O2F(000) = 888
Mr = 408.57Dx = 1.113 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.1124 (14) ÅCell parameters from 8399 reflections
b = 9.8498 (6) Åθ = 1.6–27.6°
c = 19.737 (2) ŵ = 0.07 mm1
β = 106.892 (8)°T = 296 K
V = 2439.1 (4) Å3Prism, yellow
Z = 40.79 × 0.45 × 0.28 mm
Data collection top
Stoe IPDS 2
diffractometer
4331 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus1745 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.077
rotation method scansθmax = 25.1°, θmin = 1.6°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 1515
Tmin = 0.970, Tmax = 0.990k = 1011
13737 measured reflectionsl = 2323
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0344P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.78(Δ/σ)max < 0.001
4331 reflectionsΔρmax = 0.10 e Å3
281 parametersΔρmin = 0.11 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.27128 (13)0.5225 (2)0.43358 (8)0.0766 (5)
H20.3178180.5228650.4717280.115*
O10.62531 (15)0.62851 (19)0.83874 (8)0.0831 (6)
H10.5858170.6161040.7985920.125*
N10.53204 (16)0.5008 (2)0.72285 (9)0.0756 (7)
N20.42476 (16)0.6117 (3)0.53702 (10)0.0743 (7)
C180.19861 (18)0.6627 (3)0.33295 (11)0.0586 (7)
C170.27244 (18)0.6428 (3)0.39988 (11)0.0584 (7)
C100.67949 (18)0.5121 (3)0.86304 (11)0.0598 (7)
C70.79092 (19)0.2731 (3)0.91154 (12)0.0617 (7)
C90.65923 (18)0.3954 (3)0.82115 (11)0.0590 (7)
C60.80770 (18)0.3918 (3)0.95098 (11)0.0615 (7)
H60.8577880.3892700.9953580.074*
C80.71588 (18)0.2780 (3)0.84646 (12)0.0629 (7)
H80.7026630.2002070.8185340.076*
C160.34498 (19)0.7427 (3)0.43267 (11)0.0620 (7)
C50.75602 (18)0.5135 (3)0.92966 (11)0.0580 (6)
C200.2757 (2)0.8891 (3)0.33156 (13)0.0676 (7)
C190.2038 (2)0.7877 (3)0.30179 (12)0.0666 (7)
H190.1553990.8045150.2577480.080*
C230.11884 (18)0.5534 (3)0.29777 (11)0.0636 (7)
C120.58540 (19)0.3967 (3)0.75008 (12)0.0680 (7)
H120.5768750.3174910.7233360.082*
C210.3460 (2)0.8645 (3)0.39721 (13)0.0737 (8)
H210.3953720.9308930.4184060.088*
C150.41689 (19)0.7228 (3)0.50344 (13)0.0746 (8)
H150.4593170.7952480.5252070.089*
C130.4654 (2)0.4944 (3)0.64935 (11)0.0805 (9)
H13A0.3910910.5066090.6472180.097*
H13B0.4729850.4063920.6292730.097*
C40.7823 (2)0.6408 (3)0.97503 (12)0.0711 (8)
C140.49959 (19)0.6045 (3)0.60811 (11)0.0832 (9)
H14A0.5013350.6908420.6320170.100*
H14B0.5706850.5853980.6050290.100*
C110.8536 (2)0.1455 (3)0.93857 (13)0.0868 (9)
H11A0.9250200.1554270.9355830.130*
H11B0.8201480.0694950.9103020.130*
H11C0.8555000.1304480.9869740.130*
C260.1759 (2)0.4217 (3)0.28836 (13)0.0834 (9)
H26A0.2228390.4395530.2600450.125*
H26B0.1240980.3549970.2652380.125*
H26C0.2164780.3882940.3339060.125*
C240.0501 (2)0.5962 (3)0.22335 (12)0.0914 (10)
H24A0.0131780.6789180.2266970.137*
H24B0.0007270.5260840.2036830.137*
H24C0.0951280.6102190.1933270.137*
C10.6813 (2)0.6924 (3)0.99210 (13)0.0961 (10)
H1A0.6272690.7129120.9488060.144*
H1B0.6982220.7728061.0206520.144*
H1C0.6557240.6234751.0174630.144*
C30.8677 (2)0.6151 (3)1.04592 (12)0.0965 (10)
H3A0.8429980.5465751.0719790.145*
H3B0.8811730.6975771.0729390.145*
H3C0.9323170.5849271.0370800.145*
C250.0425 (2)0.5255 (3)0.34244 (12)0.0947 (10)
H25A0.0825380.4947670.3886810.142*
H25B0.0079010.4568090.3197940.142*
H25C0.0051340.6073580.3467100.142*
C220.2773 (2)1.0227 (3)0.29409 (14)0.0978 (10)
H22A0.2280661.0187720.2473960.147*
H22B0.3477841.0395130.2907520.147*
H22C0.2569801.0946890.3203260.147*
C20.8254 (3)0.7497 (3)0.93535 (15)0.1118 (12)
H2A0.8877770.7159670.9247530.168*
H2B0.8436300.8294540.9643320.168*
H2C0.7719850.7720700.8920660.168*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0776 (13)0.0833 (15)0.0587 (10)0.0033 (11)0.0036 (8)0.0117 (10)
O10.0989 (14)0.0721 (14)0.0616 (10)0.0185 (12)0.0031 (9)0.0020 (9)
N10.0750 (15)0.0851 (19)0.0555 (12)0.0137 (14)0.0012 (11)0.0056 (12)
N20.0655 (14)0.095 (2)0.0539 (13)0.0118 (14)0.0037 (11)0.0046 (12)
C180.0513 (14)0.072 (2)0.0510 (13)0.0041 (14)0.0131 (12)0.0010 (13)
C170.0582 (15)0.066 (2)0.0515 (14)0.0090 (15)0.0163 (12)0.0052 (14)
C100.0621 (15)0.061 (2)0.0533 (14)0.0064 (15)0.0125 (12)0.0055 (13)
C70.0637 (16)0.061 (2)0.0632 (16)0.0062 (15)0.0224 (14)0.0085 (14)
C90.0597 (15)0.062 (2)0.0538 (14)0.0006 (14)0.0146 (12)0.0045 (13)
C60.0624 (16)0.069 (2)0.0512 (13)0.0008 (15)0.0134 (12)0.0045 (14)
C80.0669 (16)0.061 (2)0.0648 (16)0.0030 (15)0.0250 (14)0.0047 (13)
C160.0576 (15)0.069 (2)0.0557 (15)0.0020 (15)0.0117 (13)0.0082 (14)
C50.0632 (15)0.0587 (19)0.0502 (13)0.0005 (15)0.0134 (12)0.0015 (13)
C200.0750 (18)0.060 (2)0.0699 (17)0.0028 (16)0.0249 (15)0.0021 (15)
C190.0644 (16)0.074 (2)0.0601 (15)0.0104 (16)0.0161 (12)0.0016 (15)
C230.0519 (15)0.081 (2)0.0537 (13)0.0074 (15)0.0080 (12)0.0023 (13)
C120.0642 (16)0.078 (2)0.0588 (15)0.0074 (16)0.0129 (13)0.0065 (14)
C210.0743 (18)0.068 (2)0.0782 (18)0.0007 (16)0.0206 (15)0.0164 (16)
C150.0563 (16)0.097 (3)0.0653 (17)0.0032 (17)0.0097 (14)0.0191 (16)
C130.0700 (17)0.103 (3)0.0569 (15)0.0106 (18)0.0004 (13)0.0133 (16)
C40.0847 (19)0.062 (2)0.0578 (14)0.0044 (16)0.0075 (14)0.0033 (14)
C140.0610 (16)0.124 (3)0.0543 (15)0.0044 (17)0.0003 (13)0.0040 (16)
C110.091 (2)0.075 (2)0.0907 (18)0.0168 (18)0.0222 (15)0.0136 (16)
C260.0842 (19)0.082 (2)0.0795 (17)0.0128 (18)0.0162 (14)0.0094 (15)
C240.0814 (19)0.110 (3)0.0680 (16)0.0141 (18)0.0019 (14)0.0071 (16)
C10.115 (2)0.089 (3)0.0775 (17)0.016 (2)0.0179 (17)0.0148 (16)
C30.109 (2)0.096 (3)0.0660 (16)0.004 (2)0.0047 (16)0.0144 (15)
C250.0695 (18)0.133 (3)0.0820 (17)0.0259 (19)0.0234 (15)0.0024 (18)
C220.119 (3)0.075 (2)0.103 (2)0.005 (2)0.0385 (18)0.0075 (18)
C20.146 (3)0.078 (3)0.098 (2)0.032 (2)0.013 (2)0.0019 (18)
Geometric parameters (Å, º) top
O2—C171.361 (3)C15—H150.9300
O2—H20.8200C13—C141.501 (3)
O1—C101.361 (3)C13—H13A0.9700
O1—H10.8200C13—H13B0.9700
N1—C121.270 (3)C4—C21.530 (3)
N1—C131.461 (3)C4—C31.538 (3)
N2—C151.268 (3)C4—C11.544 (4)
N2—C141.462 (3)C14—H14A0.9700
C18—C191.386 (3)C14—H14B0.9700
C18—C171.406 (3)C11—H11A0.9600
C18—C231.521 (3)C11—H11B0.9600
C17—C161.391 (3)C11—H11C0.9600
C10—C91.396 (3)C26—H26A0.9600
C10—C51.403 (3)C26—H26B0.9600
C7—C81.373 (3)C26—H26C0.9600
C7—C61.386 (3)C24—H24A0.9600
C7—C111.512 (3)C24—H24B0.9600
C9—C81.387 (3)C24—H24C0.9600
C9—C121.455 (3)C1—H1A0.9600
C6—C51.381 (3)C1—H1B0.9600
C6—H60.9300C1—H1C0.9600
C8—H80.9300C3—H3A0.9600
C16—C211.390 (3)C3—H3B0.9600
C16—C151.454 (3)C3—H3C0.9600
C5—C41.521 (3)C25—H25A0.9600
C20—C211.376 (3)C25—H25B0.9600
C20—C191.383 (3)C25—H25C0.9600
C20—C221.512 (3)C22—H22A0.9600
C19—H190.9300C22—H22B0.9600
C23—C261.535 (3)C22—H22C0.9600
C23—C251.539 (3)C2—H2A0.9600
C23—C241.542 (3)C2—H2B0.9600
C12—H120.9300C2—H2C0.9600
C21—H210.9300
C17—O2—H2109.5C5—C4—C3112.3 (2)
C10—O1—H1109.5C2—C4—C3107.6 (2)
C12—N1—C13118.8 (2)C5—C4—C1109.7 (2)
C15—N2—C14118.3 (3)C2—C4—C1110.4 (2)
C19—C18—C17115.6 (2)C3—C4—C1107.4 (2)
C19—C18—C23122.8 (2)N2—C14—C13109.4 (2)
C17—C18—C23121.6 (2)N2—C14—H14A109.8
O2—C17—C16119.5 (2)C13—C14—H14A109.8
O2—C17—C18118.6 (2)N2—C14—H14B109.8
C16—C17—C18122.0 (2)C13—C14—H14B109.8
O1—C10—C9119.7 (2)H14A—C14—H14B108.2
O1—C10—C5118.7 (2)C7—C11—H11A109.5
C9—C10—C5121.6 (2)C7—C11—H11B109.5
C8—C7—C6116.7 (2)H11A—C11—H11B109.5
C8—C7—C11121.8 (2)C7—C11—H11C109.5
C6—C7—C11121.5 (2)H11A—C11—H11C109.5
C8—C9—C10118.9 (2)H11B—C11—H11C109.5
C8—C9—C12119.4 (2)C23—C26—H26A109.5
C10—C9—C12121.5 (3)C23—C26—H26B109.5
C5—C6—C7125.2 (2)H26A—C26—H26B109.5
C5—C6—H6117.4C23—C26—H26C109.5
C7—C6—H6117.4H26A—C26—H26C109.5
C7—C8—C9121.9 (2)H26B—C26—H26C109.5
C7—C8—H8119.0C23—C24—H24A109.5
C9—C8—H8119.0C23—C24—H24B109.5
C21—C16—C17118.8 (2)H24A—C24—H24B109.5
C21—C16—C15120.1 (3)C23—C24—H24C109.5
C17—C16—C15121.1 (3)H24A—C24—H24C109.5
C6—C5—C10115.5 (2)H24B—C24—H24C109.5
C6—C5—C4121.9 (2)C4—C1—H1A109.5
C10—C5—C4122.5 (2)C4—C1—H1B109.5
C21—C20—C19117.4 (3)H1A—C1—H1B109.5
C21—C20—C22120.9 (3)C4—C1—H1C109.5
C19—C20—C22121.7 (2)H1A—C1—H1C109.5
C20—C19—C18124.6 (2)H1B—C1—H1C109.5
C20—C19—H19117.7C4—C3—H3A109.5
C18—C19—H19117.7C4—C3—H3B109.5
C18—C23—C26111.0 (2)H3A—C3—H3B109.5
C18—C23—C25109.9 (2)C4—C3—H3C109.5
C26—C23—C25109.8 (2)H3A—C3—H3C109.5
C18—C23—C24112.0 (2)H3B—C3—H3C109.5
C26—C23—C24106.6 (2)C23—C25—H25A109.5
C25—C23—C24107.28 (19)C23—C25—H25B109.5
N1—C12—C9123.1 (3)H25A—C25—H25B109.5
N1—C12—H12118.5C23—C25—H25C109.5
C9—C12—H12118.5H25A—C25—H25C109.5
C20—C21—C16121.6 (3)H25B—C25—H25C109.5
C20—C21—H21119.2C20—C22—H22A109.5
C16—C21—H21119.2C20—C22—H22B109.5
N2—C15—C16123.4 (3)H22A—C22—H22B109.5
N2—C15—H15118.3C20—C22—H22C109.5
C16—C15—H15118.3H22A—C22—H22C109.5
N1—C13—C14108.7 (2)H22B—C22—H22C109.5
N1—C13—H13A110.0C4—C2—H2A109.5
C14—C13—H13A110.0C4—C2—H2B109.5
N1—C13—H13B110.0H2A—C2—H2B109.5
C14—C13—H13B110.0C4—C2—H2C109.5
H13A—C13—H13B108.3H2A—C2—H2C109.5
C5—C4—C2109.3 (2)H2B—C2—H2C109.5
C19—C18—C17—O2179.7 (2)C23—C18—C19—C20179.2 (2)
C23—C18—C17—O20.3 (3)C19—C18—C23—C26121.8 (3)
C19—C18—C17—C160.6 (3)C17—C18—C23—C2658.2 (3)
C23—C18—C17—C16179.4 (2)C19—C18—C23—C25116.4 (3)
O1—C10—C9—C8179.4 (2)C17—C18—C23—C2563.5 (3)
C5—C10—C9—C80.4 (4)C19—C18—C23—C242.7 (3)
O1—C10—C9—C123.4 (4)C17—C18—C23—C24177.3 (2)
C5—C10—C9—C12175.6 (2)C13—N1—C12—C9175.9 (2)
C8—C7—C6—C50.7 (4)C8—C9—C12—N1178.9 (2)
C11—C7—C6—C5178.3 (2)C10—C9—C12—N12.9 (4)
C6—C7—C8—C90.1 (4)C19—C20—C21—C160.2 (4)
C11—C7—C8—C9179.2 (2)C22—C20—C21—C16179.4 (2)
C10—C9—C8—C70.2 (4)C17—C16—C21—C201.4 (4)
C12—C9—C8—C7176.3 (2)C15—C16—C21—C20177.0 (2)
O2—C17—C16—C21179.3 (2)C14—N2—C15—C16179.6 (2)
C18—C17—C16—C211.6 (4)C21—C16—C15—N2175.6 (3)
O2—C17—C16—C152.3 (3)C17—C16—C15—N26.1 (4)
C18—C17—C16—C15176.8 (2)C12—N1—C13—C14122.3 (3)
C7—C6—C5—C101.3 (4)C6—C5—C4—C2117.3 (3)
C7—C6—C5—C4177.5 (2)C10—C5—C4—C261.4 (3)
O1—C10—C5—C6179.9 (2)C6—C5—C4—C32.0 (3)
C9—C10—C5—C61.1 (3)C10—C5—C4—C3179.3 (2)
O1—C10—C5—C41.3 (4)C6—C5—C4—C1121.4 (3)
C9—C10—C5—C4177.7 (2)C10—C5—C4—C159.8 (3)
C21—C20—C19—C181.0 (4)C15—N2—C14—C13155.8 (2)
C22—C20—C19—C18179.5 (3)N1—C13—C14—N2172.3 (2)
C17—C18—C19—C200.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.852.585 (2)149
O2—H2···N20.821.832.570 (2)150
C14—H14B···O2i0.972.633.564 (3)162
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationAnis, I., Aslam, M., Noreen, Z., Afza, N., Hussain, A., Safder, M. & Chaudhry, A. H. (2013). Int. J. Curr. Pharm. Res. 5, 21–24.  Google Scholar
First citationAydemir, E., Kansiz, S., Gumus, M. K., Gorobets, N. Y. & Dege, N. (2018). Acta Cryst. E74, 367–370.  CrossRef IUCr Journals Google Scholar
First citationCozzi, P. G. (2004). Chem. Soc. Rev. 33, 410–421.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGümüş, M. K., Kansız, S., Aydemir, E., Gorobets, N. Y. & Dege, N. (2018). J. Mol. Struct. 1168, 280–290.  Google Scholar
First citationHökelek, T., Özkaya, S. & Necefoğlu, H. (2018). Acta Cryst. E74, 422–427.  CrossRef IUCr Journals Google Scholar
First citationKansız, S. & Dege, N. (2018). J. Mol. Struct. 1173, 42–51.  Google Scholar
First citationMoroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445–7447.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMoroz, Y. S., Kulon, K., Haukka, M., Gumienna-Kontecka, E., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2008). Inorg. Chem. 47, 5656–5665.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMoroz, Y. S., Szyrwiel, Ł., Demeshko, S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chem. 49, 4750–4752.  CrossRef Google Scholar
First citationPrzybylski, P., Huczynski, A., Pyta, K., Brzezinski, B. & Bartl, F. (2009). Curr. Org. Chem. 13, 124–148.  Web of Science CrossRef CAS Google Scholar
First citationSchiff, H. (1864). Ann. Chem. Pharm. 131, 118–119.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTurner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds