research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Three-component reaction between isatoic anhydride, amine and meth­yl-subs­tituted furyl­acryl­alde­hydes: crystal structures of 3-benzyl-2-[(E)-2-(5-methylfuran-2-yl)vin­yl]-2,3-di­hydro­quinazolin-4(1H)-one, 3-benzyl-2-[(E)-2-(furan-2-yl)-1-methyl­vin­yl]-2,3-di­hydro­quinazolin-4(1H)-one and 3-(furan-2-ylmeth­yl)-2-[(E)-2-(furan-2-yl)-1-methyl­vin­yl]-2,3-di­hydro­quinazolin-4(1H)-one

CROSSMARK_Color_square_no_text.svg

aOrganic Chemistry Department, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklay St., Moscow 117198, Russian Federation, bDepartment of Chemistry, Faculty of Sciences, University of Douala, PO Box 24157, Douala, Republic of , Cameroon, cDepartment of Chemistry, Goa University, Taleigao Plateau, Goa 403 206, India, dNational Research Centre "Kurchatov Institute", 1 Acad. Kurchatov Sq., Moscow 123182, Russian Federation, and eInorganic Chemistry Department, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklay St., Moscow 117198, Russian Federation
*Correspondence e-mail: toflavien@yahoo.fr, vnkhrustalev@gmail.com

Edited by A. V. Yatsenko, Moscow State University, Russia (Received 12 June 2018; accepted 11 July 2018; online 13 July 2018)

Compounds (I), C22H20N2O2, (II), C22H20N2O2 and (III), C20H18N2O3 are the products of three-component reactions between isatoic anhydride, the corresponding amine and 3-(5-methylfuran-2-yl)- or (furan-2-yl)-2-methyl­acryl­aldehyde. Compound (I) crystallizes in the monoclinic space group P21/n, while compounds (II) and (III) are isostructural and crystallize in the ortho­rhom­bic space group Pbca. The tetra­hydro­pyrimidine ring in (I)–(III) adopts a sofa conformation. The NH nitro­gen atom has a trigonal–pyramidal geometry, whereas the N(R) nitro­gen atom is flattened. The furyl-vinyl substituents in (I)–(III) are practically planar and have an E configuration at the C=C double bond. In (I), this bulky fragment occupies the axial position at the quaternary carbon atom of the tetra­hydro­pyrimidine ring, whereas in (II) and (III) it is equatorially disposed. In the crystal of (I), mol­ecules form hydrogen-bonded chains propagating along [001] by strong inter­molecular N—H⋯O hydrogen bonds. The chains are packed in stacks along the a-axis direction. In the crystals of (II) and (III), mol­ecules also form hydrogen-bonded chains propagating along [100] by strong inter­molecular N—H⋯O hydrogen bonds. However, despite the fact that compounds (II) and (III) are isostructural, steric differences between the phenyl and furyl substituents result in chains with different geometries. Thus in the crystal of (II) the chains have a zigzag-like structure, whereas in the crystal of (III), they are almost linear. In both (II) and (III), the hydrogen-bonded chains are further packed in stacks along the b-axis direction.

1. Chemical context

3-Aryl- and 3-hetaryl-substituted allyl­amines and allylic alcohols are readily available and are common starting materials for the synthesis of complex cyclic systems with useful properties (Frackenpohl et al., 2016[Frackenpohl, J., Zeishans, J., Heinemann, I., Willms, L., Mueller, T., Busch, M., Vonkoskull, P. D., Haeuser-Hahn, I., Rosinger, C. H., Dittgen, J. & Schmitt, M. H. (2016). Patent CN103228141B, Bayer Intellectual Property GmbH.]; Celltech R&D Ltd, 2004[Celltech R&D Ltd (2004). Patent WO2004/18462A1.]).

As depicted in Fig. 1[link], these substances most often undergo an N-acyl­ation reaction with unsaturated anhydrides or acyl chlorides to trigger the subsequent intra­molecular Diels–Alder cyclization. As a result, this sequence gives functionalized two- or three-membered heterocycles. A wide range of dienes (Tomberg et al., 2015[Tomberg, A., De Cesco, S., Huot, M. & Moitessier, N. (2015). Tetrahedron Lett. 56, 6852-6856.]; Magedov et al., 2012[Magedov, I. V., Evdokimov, N. M., Karki, M., Peretti, A. S., Lima, D. T., Frolova, L. V., Reisenauer, M. R., Romero, A. E., Tongwa, P., Fonari, A., Altig, J., Rogelj, S., Antipin, M. Yu., Shuster, C. B. & Kornienko, A. (2012). Chem. Commun. 48, 10416-10418.]; Slauson et al., 2015[Slauson, S. R., Pemberton, R., Ghosh, P., Tantillo, D. J. & Aubé, J. (2015). J. Org. Chem. 80, 5260-5271.]; Sun et al., 2000[Sun, S., Turchi, I. J., Xu, D. & Murray, W. V. (2000). J. Org. Chem. 65, 2555-2559.]), arenes (Hu et al., 2010[Hu, Y., Qu, Y., Wu, F., Gui, J., Wei, Y., Hu, Q. & Wang, S. (2010). Chem. Asian J. 5, 309-314.]; Sun et al., 2000[Sun, S., Turchi, I. J., Xu, D. & Murray, W. V. (2000). J. Org. Chem. 65, 2555-2559.]; Yamazaki et al., 2016[Yamazaki, S., Sugiura, H., Ohashi, S., Ishizuka, K., Saimu, R., Mikata, Y. & Ogawa, A. (2016). J. Org. Chem. 81, 10863-10886.]; Kocsis et al., 2015[Kocsis, L. S., Kagalwala, H. N., Mutto, S., Godugu, B., Bernhard, S., Tantillo, D. J. & Brummond, K. M. (2015). J. Org. Chem. 80, 11686-11698.]) and various heterocycles (Lu et al., 2005[Lu, K., Luo, T., Xiang, Z., You, Z., Fathi, R., Chen, J. & Yang, Z. (2005). J. Comb. Chem. 7, 958-967.]; Kim et al., 2014[Kim, K. H., Lim, J. W., Moon, H. R. & Kim, J. N. (2014). Bull. Korean Chem. Soc. 35, 3254-3260.]; He et al., 2011[He, Y., Krishnamoorthy, P., Lima, H. M., Chen, Y., Wu, H., Sivappa, R., Dias, H. V. R. & Lovely, C. J. (2011). Org. Biomol. Chem. 9, 2685-2701.]) can be applied in this transformation.

[Figure 1]
Figure 1
One of the synthetic pathways for the exploration of 3-substituted allyl­amines and allylic alcohols.

Until now, only one example of the synthesis of 3-(fur­yl)allyl­amines linked to a quinazoline fragment has been described in literature (Zaytsev et al., 2015[Zaytsev, V. P., Revutskaya, E. L., Kuzmenko, M. G., Novikov, R. A., Zubkov, F. I., Sorokina, E. A., Nikitina, E. V., Toze, F. A. A. & Varlamov, A. V. (2015). Russ. Chem. Bull. 64, 1345-1353.]). 2-Vinyl­furylquinazolinones containing no methyl groups were obtained by a three-component reaction between isatoic anhydride, a primary amine, and furylacrolein. Some further transformation of these quinazolinones has been demonstrated.

This communication pursues the aim of acquiring structural information about 2-vinyl­furylquinazolinones bearing a methyl group on the furan ring or at the double bond of the allyl­amine fragment, with the aim of further elucidating all aspects of its inter­action with α,β-unsaturated acid anhydrides.

[Scheme 1]

2. Structural commentary

Compounds (I)[link], C22H20N2O2, (II)[link], C22H20N2O2 and (III)[link], C20H18N2O3 (Figs. 2[link]–4[link][link]) are the products of three-component reactions between isatoic anhydride, the corresponding amine and 3-(5-methylfuran-2-yl)- or (furan-2-yl)-2-methyl­acryl­aldehyde. Compound (I)[link] crystallizes in the monoclinic space group P21/n, while compounds (II)[link] and (III)[link] are isostructural and crystallize in the ortho­rhom­bic space group Pbca.

[Figure 2]
Figure 2
Mol­ecular structure of (I)[link]. Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 3]
Figure 3
Mol­ecular structure of (II)[link]. Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 4]
Figure 4
Mol­ecular structure of (III)[link]. Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

The tetra­hydro­pyrimidine ring in (I)–(III) adopts a sofa conformation, with the C2 carbon atom deviating from the mean plane of the other atoms of the ring by 0.639 (2), 0.476 (3) and 0.465 (3) Å, respectively. The nitro­gen atom N1 has a trigonal–pyramidal geometry [the sums of the bond angles are 345, 348 and 350° for (I)–(III), respectively], whereas the nitro­gen atom N3 is flattened [the sums of the bond angles are 357.3, 356.2 and 356.8° for (I)–(III), respectively]. The furyl-vinyl substituents in (I)–(III) are practically planar and have an E configuration at the C9=C10 double bond. Inter­estingly, in (I)[link] this bulky fragment occupies the axial position at the quaternary C2 carbon atom of the tetra­hydro­pyrimidine ring, whereas in (II)[link] and (III)[link] it is equatorially disposed. Apparently, this may be explained by the different directions of the three-component reactions.

The mol­ecules of (I)–(III) possess an asymmetric center at the C2 carbon atom. The crystals of (I)–(III) are racemates.

3. Supra­molecular features

In the crystal of (I)[link], mol­ecules form infinite hydrogen-bonded chains propagating along [001] by strong inter­molecular N1—H1⋯O2i hydrogen bonds (Table 1[link], Fig. 5[link]). Neighboring mol­ecules within the chains are rotated by 180° relative to each other. The chains are packed in stacks along the a-axis direction (Fig. 5[link]).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.92 (2) 1.92 (2) 2.817 (2) 164.4 (19)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 5]
Figure 5
Crystal structure of (I)[link] illustrating the N—H⋯O hydrogen-bonded chains (dashed lines) propagating along [001].

In the crystals of (II)[link] and (III)[link], mol­ecules also form infinite hydrogen-bonded chains propagating along [100] by strong inter­molecular N1—H1⋯O2i (Table 2[link], Fig. 6[link]) and N1—H1⋯O3i (Table 3[link], Fig. 7[link]) hydrogen bonds, respectively, with neighboring mol­ecules rotated by 180° relative to each other. However, despite the fact that compounds (II)[link] and (III)[link] are isostructural, steric differences between the phenyl and furyl substituents result in chains with different geometries. Thus, in the crystal of (II)[link] the chains have a zigzag-like structure (Fig. 6[link]), whereas in the crystal of (III)[link] they are almost linear (Fig. 7[link]). In both (II)[link] and (III)[link], the hydrogen-bonded chains are further packed in stacks along the b-axis direction (Figs. 6[link] and 7[link]).

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.90 (3) 2.07 (3) 2.971 (3) 174 (2)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Table 3
Hydrogen-bond geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.92 (4) 2.04 (4) 2.949 (4) 169 (3)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].
[Figure 6]
Figure 6
Crystal structure of (II)[link] illustrating the zigzag N—H⋯O hydrogen-bonded chains (dashed lines) propagating along [100].
[Figure 7]
Figure 7
Crystal structure of (III)[link] illustrating the almost linear N—H⋯O hydrogen-bonded chains (dashed lines) propagating along [100].

4. Synthesis and crystallization

3-Aryl­methyl-2-[(E)-2-(furan-2-yl)vin­yl]-2,3-di­hydro­quin­azolin-4-ones (I)–(III) were synthesized using a method similar to the recently described procedure (Zaytsev et al., 2017[Zaytsev, V. P., Revutskaya, E. L., Nikanorova, T. V., Nikitina, E. V., Dorovatovskii, P. V., Khrustalev, V. N., Yagafarov, N. Z., Zubkov, F. I. & Varlamov, A. V. (2017). Synthesis, 49, 3749-3767.]).

General procedure. p-TsOH (0.79 g, 4.6 mmol) was added to a mixture of isatoic anhydride (1.5 g, 9.2 mmol), corres­ponding amine (11.0 mmol), and 3-(5-methylfuran-2-yl)- or (furan-2-yl)-2-methyl­acryl­aldehyde (9.2 mmol) in EtOH (50 mL) (Fig. 8[link]). The reaction mixture was heated under reflux for 4 h. The progress of the reaction was monitored by TLC. When the reaction was complete, the mixture was diluted with H2O (100 mL) and extracted with EtOAc (3×50 mL). The organic layers were combined, dried (MgSO4), concentrated in vacuo and the residue was purified by column chromatography (3×20 cm) on SiO2 using hexane and then EtOAc/hexane (1/10→1/5) mixtures as eluent. The resulting product was recrystallized from a mixture hexa­ne–EtOAc to afford analytically pure samples of the target products.

[Figure 8]
Figure 8
Synthesis of (I)–(III) by the three-component reaction between isatoic anhydride, the corresponding amine and 3-(5-methylfuran-2-yl)- or (furan-2-yl)-2-methyl­acryl­aldehyde.

3-Benzyl-2-[(E)-2-(5-methylfuran-2-yl)vin­yl]-2,3-di­hydro­quin­azolin-4(1H)-one (I). Colourless needles, yield 0.7 g (22%), m.p. 430.1–432.1 K. IR (KBr), ν (cm−1): 3272, 1632, 1611. 1H NMR (CDCl3, 400 MHz, 301 K): δ = 2.25 (s, 3H, CH3), 3.86 (d, 1H, CH2—N, J = 15.1), 4.34 (br s, 1H, NH), 4.97 (dd, 1H, H2, J = 3.2, J = 4.6), 5.63 (d, 1H, CH2—N, J = 15.1), 5.95 (dd, 1H, H4, furyl, J = 0.9, J = 3.2), 6.15–6.20 (m, 2H, –CH=CH–, H3, fur­yl), 6.59 (d, 1H, H8, J = 7.8), 6.87 (br t, 1H, H6, J = 7.8), 7.27–7.34 (m, 7H, HAr, –CH=CH–), 7.99 (dd, 1H, H5, J = 1.4, J = 7.8). 13C NMR (CDCl3, 150.9 MHz, 301 K): δ = 13.8 (CH3), 46.6 (CH2–N), 70.1 (C2), 107.8, 111.4, 114.8, 115.8, 119.3, 121.5, 121.8, 127.6, 128.1, 128.8, 128.9, 133.6, 137.1, 145.4, 149.6, 153.1 (CAr, –CH=CH–), 162.9 (NCO). MS (EI, 70 eV): m/z = 344 [M]+ (2), 251 (16), 209 (14), 104 (10), 91 (100), 77 (20), 65 (27), 43 (24).

3-Benzyl-2-[(E)-2-(furan-2-yl)-1-methyl­vin­yl]-2,3-di­hydro­quinazolin-4(1H)-one (II). Colourless plates, yield 0.95 g (30%), m.p. 405.1–406.1 K. IR (KBr), ν (cm−1): 3294, 1630. 1H NMR (CDCl3, 400 MHz, 301 K): δ = 1.96 (s, 3H, CH3), 3.77 (d, 1H, CH2—N, J = 15.1), 4.36 (br s, 1H, NH), 5.12 (br s, 1H, H2), 5.63 (d, 1H, CH2—N, J = 15.1), 6.11 (s, 1H, –C=CH–), 6.31 (d, 1H, H3, furyl, J = 3.2), 6.41 (dd, 1H, H4, furyl, J = 1.8, J = 3.2), 6.51 (d, 1H, H8, J = 7.8), 6.78 (t, 1H, H6, J = 7.8), 7.21–7.31 (m, 6H, HAr), 7.41 (br d, 1H, H5, furyl, J = 1.8), 7.94 (dd, 1H, H5, J = 1.4, J = 7.8). 13C NMR (CDCl3, 150.9 MHz, 301 K): δ = 13.6 (CH3), 46.5 (CH2—N), 75.1 (C2), 111.0, 111.5, 113.6, 114.4, 117.4, 118.6, 127.6, 128.2, 128.7, 128.8, 133.6, 133.8, 136.9, 142.3, 145.7, 151.8 (CAr, –C=CH–), 163.0 (NCO). MS (EI, 70 eV): m/z = 344 [M]+ (4), 237 (55), 207 (14), 167 (5), 91 (100), 77 (19), 65 (11), 44 (8).

3-(2-Furylmeth­yl)-2-[(E)-2-(furan-2-yl)-1-methyl­vin­yl]-2,3-di­hydro­quinazolin-4(1H)-one (III)[link]. Yellow plates, yield 0.83 g (27%), m.p. 380.1–381.1 K (hexa­ne–EtOAc). IR (KBr), ν (cm−1): 3308, 1632. 1H NMR (CDCl3, 400 MHz, 301 K): δ = 1.99 (s, 3H, CH3), 3.93 (d, 1H, CH2—N, J = 15.4), 4.22 (br s, 1H, NH), 5.32 (br s, 1H, H2), 5.39 (d, 1H, CH2—N, J = 15.4), 6.26 (s, 1H, –C=CH–), 6.28 (br d, 1H, H3, furyl, J = 3.3), 6.30 (dd, 1H, H4, furyl, J = 1.7, J = 3.3), 6.35 (br d, 1H, H3, furyl, J = 3.3), 6.42 (dd, 1H, H4, furyl, J = 1.7, J = 3.3), 6.51 (d, 1H, H8, J = 7.7), 6.78 (t, 1H, H6, J = 7.7), 7.23 (dt, 1H, H7, J = 1.1, J = 7.7), 7.34 (br d, 1H, H5, furyl, J = 1.7), 7.42 (br d, 1H, H5, furyl, J = 1.7), 7.92 (dd, 1H, H5, J = 1.1, J = 7.7). 13C NMR (CDCl3, 150.9 MHz, 301 K): δ = 13.4 (CH3), 39.7 (CH2—N), 75.8 (C2), 109.0, 110.5, 111.0, 111.5, 113.6, 114.4, 117.9, 118.6, 128.7, 133.4, 133.8, 142.3, 142.4, 145.7, 150.5, 151.8 (CAr, –C=CH–), 162.9 (NCO). MS (EI, 70 eV): m/z = 334 [M]+ (16), 227 (24), 224 (10), 81 (100), 77 (14), 53 (22).

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. X-ray diffraction studies were carried out on the `Belok' beamline of the National Research Center `Kurchatov Institute' (Moscow, Russian Federation) using a Rayonix SX165 CCD detector. A total of 360 images for each compound was collected using an oscillation range of 1.0° (φ scan mode, two different crystal orientations) and corrected for absorption using the SCALA program (Evans, 2006[Evans, P. (2006). Acta Cryst. D62, 72-82.]). The data were indexed, integrated and scaled using the utility iMosflm in the CCP4 programme suite (Battye et al., 2011[Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271-281.]).

Table 4
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula C22H20N2O2 C22H20N2O2 C20H18N2O3
Mr 344.40 344.40 334.36
Crystal system, space group Monoclinic, P21/n Orthorhombic, Pbca Orthorhombic, Pbca
Temperature (K) 100 100 100
a, b, c (Å) 7.9416 (16), 19.202 (4), 12.497 (3) 13.921 (3), 11.296 (2), 22.623 (5) 13.928 (3), 10.684 (2), 22.368 (5)
α, β, γ (°) 90, 99.663 (3), 90 90, 90, 90 90, 90, 90
V3) 1878.7 (7) 3557.5 (13) 3328.5 (12)
Z 4 8 8
Radiation type Synchrotron, λ = 0.96990 Å Synchrotron, λ = 0.96990 Å Synchrotron, λ = 0.96990 Å
μ (mm−1) 0.16 0.17 0.19
Crystal size (mm) 0.25 × 0.08 × 0.03 0.20 × 0.15 × 0.01 0.30 × 0.30 × 0.07
 
Data collection
Diffractometer Rayonix SX165 CCD Rayonix SX165 CCD Rayonix SX165 CCD
Absorption correction Multi-scan (SCALA; Evans, 2006[Evans, P. (2006). Acta Cryst. D62, 72-82.]) Multi-scan (SCALA; Evans, 2006[Evans, P. (2006). Acta Cryst. D62, 72-82.]) Multi-scan (SCALA; Evans, 2006[Evans, P. (2006). Acta Cryst. D62, 72-82.])
Tmin, Tmax 0.950, 0.990 0.960, 0.990 0.940, 0.980
No. of measured, independent and observed [I > 2σ(I)] reflections 20568, 3781, 2264 18942, 3764, 2411 27461, 3460, 2414
Rint 0.080 0.070 0.097
(sin θ/λ)max−1) 0.640 0.640 0.641
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.097, 0.218, 1.00 0.074, 0.190, 1.05 0.089, 0.224, 1.05
No. of reflections 3781 3764 3460
No. of parameters 240 240 231
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.37, −0.31 0.30, −0.28 0.42, −0.57
Computer programs: Marccd (Doyle, 2011[Doyle, R. A. (2011). Marccd software manual. Rayonix L. L. C. Evanston, Illinois, USA.]), iMosflm (Battye et al., 2011[Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271-281.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]) and SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

The hydrogen atoms of the amino groups were localized in difference-Fourier maps and refined isotropically with fixed displacement parameters [Uiso(H) = 1.2Ueq(N)]. The other hydrogen atoms were placed in calculated positions with C—H = 0.95–1.00 Å and refined in the riding model with fixed isotropic displacement parameters [Uiso(H) = 1.5Ueq(C-meth­yl) or 1.2Ueq(C) for all others].

A relatively large number of reflections (a few dozen) were omitted for the following reasons: (1) In order to achieve better I/σ statistics for high-angle reflections, we selected a longer exposure time, which resulted in some intensity overloads in the low-angle part of the area. These corrupted intensities were excluded from final steps of the refinement. (2) In the current setup of the instrument, the low-temperature device eclipses a small region of the detector near its high-angle limit. This resulted in zero intensity for some reflections. (3) The quality of the single crystals chosen for the diffraction experiments was far from perfect. Some systematic intensity deviations can be due to extinction and defects present in the crystals.

Supporting information


Computing details top

For all structures, data collection: Marccd (Doyle, 2011); cell refinement: iMosflm (Battye et al., 2011); data reduction: iMosflm (Battye et al., 2011); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

3-Benzyl-2-[(E)-2-(5-methylfuran-2-yl)vinyl]-2,3-dihydroquinazolin-4(1H)-one (I) top
Crystal data top
C22H20N2O2F(000) = 728
Mr = 344.40Dx = 1.218 Mg m3
Monoclinic, P21/nSynchrotron radiation, λ = 0.96990 Å
a = 7.9416 (16) ÅCell parameters from 500 reflections
b = 19.202 (4) Åθ = 3.5–35.0°
c = 12.497 (3) ŵ = 0.16 mm1
β = 99.663 (3)°T = 100 K
V = 1878.7 (7) Å3Needle, colourless
Z = 40.25 × 0.08 × 0.03 mm
Data collection top
Rayonix SX165 CCD
diffractometer
2264 reflections with I > 2σ(I)
/f scanRint = 0.080
Absorption correction: multi-scan
(SCALA; Evans, 2006)
θmax = 38.4°, θmin = 3.7°
Tmin = 0.950, Tmax = 0.990h = 89
20568 measured reflectionsk = 2424
3781 independent reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.097H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.218 w = 1/[σ2(Fo2)]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
3781 reflectionsΔρmax = 0.37 e Å3
240 parametersΔρmin = 0.31 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: difference Fourier mapExtinction coefficient: 0.085 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.28682 (18)0.44379 (6)0.47756 (11)0.0354 (5)
O20.2968 (2)0.25305 (7)0.07159 (12)0.0523 (5)
N10.6282 (3)0.24206 (7)0.35460 (14)0.0350 (5)
H10.701 (3)0.2458 (8)0.4204 (18)0.042*
C20.4453 (3)0.24277 (9)0.35967 (16)0.0346 (6)
H20.42340.20600.41240.042*
N30.3532 (2)0.22258 (8)0.25120 (12)0.0351 (5)
C40.3922 (3)0.25582 (9)0.16113 (18)0.0378 (6)
C4A0.5591 (3)0.29244 (9)0.17600 (15)0.0347 (6)
C50.6075 (3)0.33384 (9)0.09282 (15)0.0428 (7)
H50.52780.34180.02830.051*
C60.7685 (3)0.36302 (10)0.10347 (17)0.0440 (7)
H60.79870.39120.04720.053*
C70.8863 (3)0.35072 (9)0.19744 (18)0.0437 (6)
H70.99800.36980.20390.052*
C80.8432 (3)0.31105 (9)0.28204 (17)0.0398 (6)
H80.92490.30320.34570.048*
C8A0.6779 (3)0.28254 (9)0.27292 (15)0.0348 (6)
C90.3811 (3)0.31155 (9)0.39732 (15)0.0353 (6)
H90.38920.35180.35430.042*
C100.3141 (3)0.31829 (10)0.48751 (16)0.0355 (6)
H100.30020.27690.52670.043*
C110.2603 (3)0.38264 (9)0.53159 (16)0.0352 (6)
C120.1939 (3)0.39832 (9)0.62208 (16)0.0415 (6)
H120.16360.36610.67330.050*
C130.1783 (3)0.47279 (10)0.62563 (16)0.0417 (6)
H130.13590.49910.67980.050*
C140.2355 (3)0.49853 (9)0.53705 (17)0.0355 (6)
C150.2558 (3)0.56945 (8)0.49272 (18)0.0433 (6)
H15A0.37670.57800.49030.065*
H15B0.21430.60420.53950.065*
H15C0.18970.57280.41930.065*
C160.1931 (3)0.18476 (10)0.24752 (16)0.0416 (6)
H16A0.13650.18080.17090.050*
H16B0.11700.21220.28660.050*
C170.2130 (3)0.11236 (10)0.29657 (16)0.0377 (6)
C180.0692 (3)0.07756 (11)0.31936 (18)0.0490 (7)
H180.03840.10030.30630.059*
C190.0799 (4)0.00989 (12)0.3611 (2)0.0599 (8)
H190.02010.01340.37440.072*
C200.2384 (4)0.02327 (12)0.38311 (18)0.0601 (8)
H200.24720.06910.41210.072*
C210.3821 (4)0.01103 (10)0.36237 (16)0.0485 (7)
H210.49040.01120.37790.058*
C220.3698 (3)0.07805 (10)0.31880 (16)0.0410 (7)
H220.46970.10070.30400.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0423 (11)0.0291 (8)0.0371 (9)0.0006 (6)0.0135 (7)0.0021 (5)
O20.0677 (14)0.0512 (10)0.0321 (10)0.0035 (8)0.0082 (9)0.0004 (6)
N10.0476 (15)0.0303 (10)0.0265 (10)0.0035 (8)0.0042 (9)0.0001 (7)
C20.0437 (17)0.0324 (11)0.0278 (12)0.0006 (9)0.0066 (11)0.0010 (8)
N30.0454 (14)0.0274 (9)0.0314 (10)0.0021 (8)0.0028 (9)0.0021 (7)
C40.0564 (19)0.0256 (10)0.0298 (13)0.0040 (10)0.0024 (12)0.0020 (9)
C4A0.0507 (17)0.0254 (10)0.0286 (12)0.0041 (10)0.0088 (11)0.0025 (8)
C50.069 (2)0.0277 (11)0.0327 (13)0.0061 (12)0.0115 (12)0.0006 (8)
C60.069 (2)0.0262 (11)0.0415 (14)0.0023 (12)0.0215 (13)0.0001 (9)
C70.0540 (18)0.0276 (11)0.0528 (15)0.0001 (10)0.0192 (14)0.0041 (10)
C80.0499 (18)0.0288 (11)0.0418 (13)0.0049 (10)0.0110 (12)0.0034 (9)
C8A0.0512 (17)0.0240 (10)0.0302 (12)0.0036 (10)0.0095 (11)0.0020 (8)
C90.0477 (16)0.0259 (10)0.0324 (12)0.0009 (9)0.0069 (11)0.0011 (8)
C100.0397 (16)0.0287 (11)0.0382 (12)0.0031 (9)0.0076 (11)0.0008 (8)
C110.0428 (16)0.0291 (11)0.0357 (12)0.0006 (10)0.0125 (11)0.0002 (8)
C120.0507 (17)0.0327 (11)0.0438 (14)0.0032 (10)0.0158 (12)0.0045 (9)
C130.0508 (17)0.0380 (12)0.0396 (13)0.0078 (11)0.0168 (12)0.0041 (9)
C140.0389 (15)0.0289 (11)0.0382 (12)0.0021 (9)0.0048 (11)0.0066 (9)
C150.0516 (18)0.0313 (12)0.0471 (14)0.0006 (10)0.0084 (12)0.0017 (9)
C160.0421 (17)0.0343 (12)0.0463 (14)0.0005 (11)0.0016 (11)0.0091 (9)
C170.0490 (17)0.0306 (11)0.0336 (12)0.0009 (11)0.0070 (11)0.0057 (9)
C180.0476 (18)0.0475 (14)0.0512 (15)0.0068 (12)0.0063 (12)0.0027 (11)
C190.063 (2)0.0498 (15)0.0672 (18)0.0180 (14)0.0125 (15)0.0054 (11)
C200.088 (2)0.0374 (13)0.0567 (16)0.0095 (15)0.0158 (15)0.0045 (11)
C210.071 (2)0.0307 (12)0.0466 (14)0.0065 (12)0.0193 (13)0.0005 (10)
C220.0602 (19)0.0296 (11)0.0371 (13)0.0012 (11)0.0192 (12)0.0031 (9)
Geometric parameters (Å, º) top
O1—C141.388 (2)C10—H100.9500
O1—C111.388 (2)C11—C121.359 (3)
O2—C41.243 (2)C12—C131.437 (3)
N1—C8A1.392 (2)C12—H120.9500
N1—C21.465 (3)C13—C141.358 (3)
N1—H10.92 (2)C13—H130.9500
C2—N31.480 (3)C14—C151.489 (2)
C2—C91.518 (2)C15—H15A0.9800
C2—H21.0000C15—H15B0.9800
N3—C41.374 (2)C15—H15C0.9800
N3—C161.459 (3)C16—C171.517 (3)
C4—C4A1.485 (3)C16—H16A0.9900
C4A—C51.412 (2)C16—H16B0.9900
C4A—C8A1.417 (3)C17—C181.393 (3)
C5—C61.382 (3)C17—C221.394 (3)
C5—H50.9500C18—C191.397 (3)
C6—C71.393 (3)C18—H180.9500
C6—H60.9500C19—C201.396 (4)
C7—C81.392 (3)C19—H190.9500
C7—H70.9500C20—C211.380 (3)
C8—C8A1.410 (3)C20—H200.9500
C8—H80.9500C21—C221.394 (2)
C9—C101.331 (2)C21—H210.9500
C9—H90.9500C22—H220.9500
C10—C111.446 (2)
C14—O1—C11107.34 (15)C12—C11—C10133.37 (18)
C8A—N1—C2115.58 (17)O1—C11—C10117.32 (17)
C8A—N1—H1113.4 (12)C11—C12—C13107.09 (16)
C2—N1—H1116.0 (13)C11—C12—H12126.5
N1—C2—N3107.40 (15)C13—C12—H12126.5
N1—C2—C9114.10 (15)C14—C13—C12107.13 (15)
N3—C2—C9111.83 (16)C14—C13—H13126.4
N1—C2—H2107.8C12—C13—H13126.4
N3—C2—H2107.8C13—C14—O1109.23 (15)
C9—C2—H2107.8C13—C14—C15135.07 (18)
C4—N3—C16121.37 (18)O1—C14—C15115.69 (17)
C4—N3—C2118.97 (17)C14—C15—H15A109.5
C16—N3—C2116.97 (15)C14—C15—H15B109.5
O2—C4—N3122.1 (2)H15A—C15—H15B109.5
O2—C4—C4A121.97 (19)C14—C15—H15C109.5
N3—C4—C4A115.89 (19)H15A—C15—H15C109.5
C5—C4A—C8A118.7 (2)H15B—C15—H15C109.5
C5—C4A—C4121.5 (2)N3—C16—C17114.34 (19)
C8A—C4A—C4119.71 (18)N3—C16—H16A108.7
C6—C5—C4A121.3 (2)C17—C16—H16A108.7
C6—C5—H5119.4N3—C16—H16B108.7
C4A—C5—H5119.4C17—C16—H16B108.7
C5—C6—C7119.46 (18)H16A—C16—H16B107.6
C5—C6—H6120.3C18—C17—C22117.9 (2)
C7—C6—H6120.3C18—C17—C16119.2 (2)
C8—C7—C6121.1 (2)C22—C17—C16122.9 (2)
C8—C7—H7119.4C17—C18—C19121.5 (2)
C6—C7—H7119.4C17—C18—H18119.3
C7—C8—C8A119.7 (2)C19—C18—H18119.3
C7—C8—H8120.1C20—C19—C18119.6 (2)
C8A—C8—H8120.1C20—C19—H19120.2
N1—C8A—C8122.2 (2)C18—C19—H19120.2
N1—C8A—C4A118.1 (2)C21—C20—C19119.5 (2)
C8—C8A—C4A119.62 (18)C21—C20—H20120.3
C10—C9—C2123.34 (17)C19—C20—H20120.3
C10—C9—H9118.3C20—C21—C22120.5 (2)
C2—C9—H9118.3C20—C21—H21119.7
C9—C10—C11126.24 (18)C22—C21—H21119.7
C9—C10—H10116.9C21—C22—C17121.1 (2)
C11—C10—H10116.9C21—C22—H22119.5
C12—C11—O1109.20 (16)C17—C22—H22119.5
C8A—N1—C2—N354.70 (19)N1—C2—C9—C10117.6 (2)
C8A—N1—C2—C969.8 (2)N3—C2—C9—C10120.2 (2)
N1—C2—N3—C449.9 (2)C2—C9—C10—C11175.94 (19)
C9—C2—N3—C476.0 (2)C14—O1—C11—C120.2 (2)
N1—C2—N3—C16148.38 (16)C14—O1—C11—C10176.56 (17)
C9—C2—N3—C1685.71 (19)C9—C10—C11—C12178.5 (2)
C16—N3—C4—O22.9 (3)C9—C10—C11—O12.7 (3)
C2—N3—C4—O2163.75 (17)O1—C11—C12—C130.2 (2)
C16—N3—C4—C4A179.93 (16)C10—C11—C12—C13175.8 (2)
C2—N3—C4—C4A19.1 (2)C11—C12—C13—C140.1 (2)
O2—C4—C4A—C58.7 (3)C12—C13—C14—O10.0 (2)
N3—C4—C4A—C5174.14 (15)C12—C13—C14—C15179.3 (3)
O2—C4—C4A—C8A167.33 (16)C11—O1—C14—C130.1 (2)
N3—C4—C4A—C8A9.8 (3)C11—O1—C14—C15179.34 (18)
C8A—C4A—C5—C61.6 (3)C4—N3—C16—C17131.92 (18)
C4—C4A—C5—C6174.45 (18)C2—N3—C16—C1766.9 (2)
C4A—C5—C6—C70.8 (3)N3—C16—C17—C18165.99 (17)
C5—C6—C7—C81.7 (3)N3—C16—C17—C2215.0 (3)
C6—C7—C8—C8A0.1 (3)C22—C17—C18—C191.3 (3)
C2—N1—C8A—C8152.99 (17)C16—C17—C18—C19177.8 (2)
C2—N1—C8A—C4A29.7 (2)C17—C18—C19—C201.6 (3)
C7—C8—C8A—N1179.53 (15)C18—C19—C20—C210.6 (4)
C7—C8—C8A—C4A2.3 (3)C19—C20—C21—C220.6 (3)
C5—C4A—C8A—N1179.53 (15)C20—C21—C22—C170.9 (3)
C4—C4A—C8A—N14.3 (3)C18—C17—C22—C210.1 (3)
C5—C4A—C8A—C83.1 (3)C16—C17—C22—C21178.98 (17)
C4—C4A—C8A—C8172.99 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.92 (2)1.92 (2)2.817 (2)164.4 (19)
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
3-Benzyl-2-[(E)-2-(furan-2-yl)-1-methylvinyl]-2,3-dihydroquinazolin-4(1H)-one (II) top
Crystal data top
C22H20N2O2Dx = 1.286 Mg m3
Mr = 344.40Synchrotron radiation, λ = 0.96990 Å
Orthorhombic, PbcaCell parameters from 500 reflections
a = 13.921 (3) Åθ = 3.2–32.0°
b = 11.296 (2) ŵ = 0.17 mm1
c = 22.623 (5) ÅT = 100 K
V = 3557.5 (13) Å3Plate, colourless
Z = 80.20 × 0.15 × 0.01 mm
F(000) = 1456
Data collection top
Rayonix SX165 CCD
diffractometer
2411 reflections with I > 2σ(I)
/f scanRint = 0.070
Absorption correction: multi-scan
(SCALA; Evans, 2006)
θmax = 38.4°, θmin = 3.2°
Tmin = 0.960, Tmax = 0.990h = 1717
18942 measured reflectionsk = 1414
3764 independent reflectionsl = 2828
Refinement top
Refinement on F2Secondary atom site location: difmap2
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.074H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.190 w = 1/[σ2(Fo2) + 2P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3764 reflectionsΔρmax = 0.30 e Å3
240 parametersΔρmin = 0.28 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: difference Fourier mapExtinction coefficient: 0.0102 (10)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.54343 (13)0.33368 (16)0.38217 (8)0.0430 (5)
O20.13105 (12)0.75727 (16)0.49206 (8)0.0405 (5)
N10.42208 (15)0.77868 (19)0.48819 (9)0.0339 (5)
H10.486 (2)0.772 (2)0.4927 (11)0.041*
C20.37955 (17)0.6658 (2)0.47071 (11)0.0328 (6)
H20.38890.60720.50330.039*
N30.27451 (14)0.68234 (18)0.46041 (9)0.0326 (5)
C40.21959 (18)0.7574 (2)0.49452 (11)0.0329 (6)
C4A0.27357 (17)0.8430 (2)0.53208 (11)0.0329 (6)
C50.22296 (18)0.9208 (2)0.56907 (11)0.0364 (6)
H50.15520.91340.57270.044*
C60.27111 (19)1.0090 (2)0.60050 (11)0.0395 (7)
H60.23661.06190.62520.047*
C70.3704 (2)1.0183 (2)0.59511 (11)0.0392 (6)
H70.40351.07850.61620.047*
C80.42221 (18)0.9407 (2)0.55936 (11)0.0365 (6)
H80.49010.94760.55660.044*
C8A0.37381 (17)0.8521 (2)0.52727 (10)0.0317 (6)
C90.43039 (16)0.6209 (2)0.41535 (11)0.0319 (6)
C100.46061 (16)0.5072 (2)0.41468 (11)0.0334 (6)
H100.44910.46250.44950.040*
C110.50873 (17)0.4455 (2)0.36658 (11)0.0354 (6)
C120.52915 (19)0.4665 (2)0.30866 (12)0.0421 (7)
H120.51360.53560.28670.051*
C130.5792 (2)0.3627 (3)0.28702 (12)0.0441 (7)
H130.60280.35030.24810.053*
C140.5856 (2)0.2871 (3)0.33296 (13)0.0461 (7)
H140.61560.21160.33130.055*
C150.4437 (2)0.7071 (2)0.36493 (11)0.0405 (7)
H15A0.51220.71380.35550.061*
H15B0.41880.78490.37650.061*
H15C0.40870.67860.33010.061*
C160.22429 (17)0.5853 (2)0.42882 (11)0.0356 (6)
H16A0.15910.57600.44560.043*
H16B0.25950.51040.43540.043*
C170.21601 (17)0.6074 (2)0.36272 (11)0.0337 (6)
C180.16896 (19)0.7080 (2)0.34142 (12)0.0387 (6)
H180.13990.76150.36840.046*
C190.1643 (2)0.7306 (2)0.28113 (12)0.0406 (7)
H190.13170.79920.26730.049*
C200.2067 (2)0.6539 (3)0.24086 (12)0.0428 (7)
H200.20480.67080.19970.051*
C210.2521 (2)0.5522 (3)0.26139 (13)0.0461 (7)
H210.28030.49830.23430.055*
C220.25596 (19)0.5296 (2)0.32196 (12)0.0421 (7)
H220.28650.45960.33560.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0384 (11)0.0384 (11)0.0522 (12)0.0046 (8)0.0039 (9)0.0038 (9)
O20.0210 (9)0.0485 (11)0.0520 (12)0.0021 (8)0.0008 (8)0.0008 (9)
N10.0192 (10)0.0379 (13)0.0445 (13)0.0006 (9)0.0006 (9)0.0058 (10)
C20.0225 (12)0.0362 (14)0.0397 (14)0.0014 (10)0.0003 (10)0.0011 (11)
N30.0210 (10)0.0353 (12)0.0415 (12)0.0007 (8)0.0012 (9)0.0012 (10)
C40.0243 (12)0.0374 (14)0.0370 (14)0.0021 (10)0.0016 (10)0.0050 (11)
C4A0.0250 (13)0.0368 (14)0.0369 (14)0.0040 (10)0.0014 (10)0.0034 (11)
C50.0284 (13)0.0405 (15)0.0404 (14)0.0057 (11)0.0025 (11)0.0034 (12)
C60.0384 (15)0.0401 (15)0.0400 (15)0.0085 (12)0.0013 (12)0.0007 (12)
C70.0397 (15)0.0359 (14)0.0421 (15)0.0002 (11)0.0026 (12)0.0011 (12)
C80.0274 (12)0.0369 (14)0.0452 (15)0.0001 (11)0.0006 (11)0.0018 (12)
C8A0.0277 (13)0.0332 (13)0.0341 (14)0.0024 (10)0.0013 (10)0.0025 (11)
C90.0217 (11)0.0358 (14)0.0383 (14)0.0013 (10)0.0011 (10)0.0000 (11)
C100.0222 (11)0.0396 (15)0.0383 (14)0.0004 (10)0.0004 (10)0.0024 (12)
C110.0252 (12)0.0343 (14)0.0466 (15)0.0003 (10)0.0023 (11)0.0021 (12)
C120.0397 (15)0.0427 (16)0.0439 (16)0.0075 (12)0.0004 (13)0.0037 (13)
C130.0394 (16)0.0513 (18)0.0415 (16)0.0040 (13)0.0065 (12)0.0111 (14)
C140.0383 (15)0.0447 (17)0.0554 (18)0.0001 (13)0.0061 (13)0.0124 (15)
C150.0373 (15)0.0397 (16)0.0446 (16)0.0034 (12)0.0027 (12)0.0015 (12)
C160.0233 (12)0.0335 (14)0.0500 (16)0.0038 (10)0.0020 (11)0.0011 (12)
C170.0217 (11)0.0326 (13)0.0467 (15)0.0025 (10)0.0028 (10)0.0032 (12)
C180.0339 (14)0.0350 (14)0.0471 (16)0.0030 (11)0.0001 (12)0.0014 (12)
C190.0380 (15)0.0338 (14)0.0499 (17)0.0027 (11)0.0050 (13)0.0001 (12)
C200.0343 (15)0.0474 (17)0.0467 (16)0.0043 (12)0.0052 (12)0.0032 (13)
C210.0382 (16)0.0508 (17)0.0493 (18)0.0058 (13)0.0048 (13)0.0154 (14)
C220.0365 (14)0.0375 (15)0.0524 (18)0.0043 (12)0.0118 (12)0.0084 (13)
Geometric parameters (Å, º) top
O1—C141.364 (3)C10—H100.9500
O1—C111.398 (3)C11—C121.362 (4)
O2—C41.234 (3)C12—C131.449 (4)
N1—C8A1.386 (3)C12—H120.9500
N1—C21.460 (3)C13—C141.348 (4)
N1—H10.90 (3)C13—H130.9500
C2—N31.493 (3)C14—H140.9500
C2—C91.525 (3)C15—H15A0.9800
C2—H21.0000C15—H15B0.9800
N3—C41.378 (3)C15—H15C0.9800
N3—C161.483 (3)C16—C171.520 (4)
C4—C4A1.490 (4)C16—H16A0.9900
C4A—C8A1.403 (3)C16—H16B0.9900
C4A—C51.404 (3)C17—C221.390 (4)
C5—C61.395 (4)C17—C181.398 (4)
C5—H50.9500C18—C191.389 (4)
C6—C71.392 (4)C18—H180.9500
C6—H60.9500C19—C201.389 (4)
C7—C81.393 (4)C19—H190.9500
C7—H70.9500C20—C211.391 (4)
C8—C8A1.408 (3)C20—H200.9500
C8—H80.9500C21—C221.395 (4)
C9—C101.351 (3)C21—H210.9500
C9—C151.511 (4)C22—H220.9500
C10—C111.455 (3)
C14—O1—C11107.0 (2)C12—C11—C10137.1 (2)
C8A—N1—C2119.9 (2)O1—C11—C10113.8 (2)
C8A—N1—H1117.1 (16)C11—C12—C13106.5 (2)
C2—N1—H1111.2 (17)C11—C12—H12126.7
N1—C2—N3109.3 (2)C13—C12—H12126.7
N1—C2—C9108.9 (2)C14—C13—C12106.5 (2)
N3—C2—C9111.59 (19)C14—C13—H13126.7
N1—C2—H2109.0C12—C13—H13126.7
N3—C2—H2109.0C13—C14—O1110.9 (3)
C9—C2—H2109.0C13—C14—H14124.6
C4—N3—C16117.6 (2)O1—C14—H14124.6
C4—N3—C2122.2 (2)C9—C15—H15A109.5
C16—N3—C2116.39 (19)C9—C15—H15B109.5
O2—C4—N3121.9 (2)H15A—C15—H15B109.5
O2—C4—C4A122.0 (2)C9—C15—H15C109.5
N3—C4—C4A116.0 (2)H15A—C15—H15C109.5
C8A—C4A—C5119.9 (2)H15B—C15—H15C109.5
C8A—C4A—C4120.3 (2)N3—C16—C17112.9 (2)
C5—C4A—C4119.5 (2)N3—C16—H16A109.0
C6—C5—C4A120.7 (2)C17—C16—H16A109.0
C6—C5—H5119.7N3—C16—H16B109.0
C4A—C5—H5119.7C17—C16—H16B109.0
C7—C6—C5119.1 (2)H16A—C16—H16B107.8
C7—C6—H6120.4C22—C17—C18118.2 (2)
C5—C6—H6120.4C22—C17—C16121.2 (2)
C6—C7—C8121.2 (2)C18—C17—C16120.5 (2)
C6—C7—H7119.4C19—C18—C17120.6 (2)
C8—C7—H7119.4C19—C18—H18119.7
C7—C8—C8A119.9 (2)C17—C18—H18119.7
C7—C8—H8120.1C18—C19—C20120.6 (3)
C8A—C8—H8120.1C18—C19—H19119.7
N1—C8A—C4A119.2 (2)C20—C19—H19119.7
N1—C8A—C8121.5 (2)C19—C20—C21119.3 (3)
C4A—C8A—C8119.2 (2)C19—C20—H20120.4
C10—C9—C15124.5 (2)C21—C20—H20120.4
C10—C9—C2118.0 (2)C20—C21—C22119.8 (3)
C15—C9—C2117.5 (2)C20—C21—H21120.1
C9—C10—C11127.3 (2)C22—C21—H21120.1
C9—C10—H10116.3C17—C22—C21121.4 (3)
C11—C10—H10116.3C17—C22—H22119.3
C12—C11—O1109.1 (2)C21—C22—H22119.3
C8A—N1—C2—N341.3 (3)N1—C2—C9—C10131.6 (2)
C8A—N1—C2—C9163.4 (2)N3—C2—C9—C10107.7 (2)
N1—C2—N3—C436.7 (3)N1—C2—C9—C1548.3 (3)
C9—C2—N3—C4157.3 (2)N3—C2—C9—C1572.5 (3)
N1—C2—N3—C16165.83 (19)C15—C9—C10—C111.3 (4)
C9—C2—N3—C1645.3 (3)C2—C9—C10—C11178.8 (2)
C16—N3—C4—O211.4 (3)C14—O1—C11—C120.3 (3)
C2—N3—C4—O2168.5 (2)C14—O1—C11—C10179.6 (2)
C16—N3—C4—C4A171.8 (2)C9—C10—C11—C129.7 (5)
C2—N3—C4—C4A14.6 (3)C9—C10—C11—O1171.3 (2)
O2—C4—C4A—C8A170.6 (2)O1—C11—C12—C130.1 (3)
N3—C4—C4A—C8A6.2 (3)C10—C11—C12—C13179.2 (3)
O2—C4—C4A—C54.5 (4)C11—C12—C13—C140.1 (3)
N3—C4—C4A—C5178.7 (2)C12—C13—C14—O10.3 (3)
C8A—C4A—C5—C61.1 (4)C11—O1—C14—C130.4 (3)
C4—C4A—C5—C6174.0 (2)C4—N3—C16—C17106.2 (2)
C4A—C5—C6—C70.5 (4)C2—N3—C16—C1795.3 (2)
C5—C6—C7—C80.5 (4)N3—C16—C17—C22120.2 (3)
C6—C7—C8—C8A0.9 (4)N3—C16—C17—C1858.8 (3)
C2—N1—C8A—C4A24.3 (3)C22—C17—C18—C191.4 (4)
C2—N1—C8A—C8159.8 (2)C16—C17—C18—C19177.7 (2)
C5—C4A—C8A—N1176.6 (2)C17—C18—C19—C200.4 (4)
C4—C4A—C8A—N11.5 (4)C18—C19—C20—C211.6 (4)
C5—C4A—C8A—C80.7 (4)C19—C20—C21—C221.2 (4)
C4—C4A—C8A—C8174.4 (2)C18—C17—C22—C211.8 (4)
C7—C8—C8A—N1175.5 (2)C16—C17—C22—C21177.2 (2)
C7—C8—C8A—C4A0.3 (4)C20—C21—C22—C170.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.90 (3)2.07 (3)2.971 (3)174 (2)
Symmetry code: (i) x+1/2, y+3/2, z+1.
3-(Furan-2-ylmethyl)-2-[(E)-2-(furan-2-yl)-1-methylvinyl]-2,3-dihydroquinazolin-4(1H)-one (III) top
Crystal data top
C20H18N2O3Dx = 1.334 Mg m3
Mr = 334.36Synchrotron radiation, λ = 0.96990 Å
Orthorhombic, PbcaCell parameters from 600 reflections
a = 13.928 (3) Åθ = 3.2–32.0°
b = 10.684 (2) ŵ = 0.19 mm1
c = 22.368 (5) ÅT = 100 K
V = 3328.5 (12) Å3Plate, yellow
Z = 80.30 × 0.30 × 0.07 mm
F(000) = 1408
Data collection top
Rayonix SX165 CCD
diffractometer
2414 reflections with I > 2σ(I)
/f scanRint = 0.097
Absorption correction: multi-scan
(SCALA; Evans, 2006)
θmax = 38.4°, θmin = 3.2°
Tmin = 0.940, Tmax = 0.980h = 1717
27461 measured reflectionsk = 1313
3460 independent reflectionsl = 2626
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.089H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.224 w = 1/[σ2(Fo2) + (0.05P)2 + 6P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3460 reflectionsΔρmax = 0.42 e Å3
231 parametersΔρmin = 0.57 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: difference Fourier mapExtinction coefficient: 0.0078 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.53713 (18)0.6665 (2)0.63004 (12)0.0493 (7)
O20.1753 (2)0.2666 (3)0.64505 (16)0.0672 (9)
O30.12657 (16)0.2418 (3)0.49520 (14)0.0646 (9)
N10.41678 (19)0.2216 (3)0.50272 (13)0.0392 (7)
H10.483 (3)0.224 (3)0.5002 (16)0.047*
C20.3738 (2)0.3381 (3)0.52287 (15)0.0390 (8)
H20.38520.40450.49220.047*
N30.26847 (17)0.3192 (3)0.53043 (13)0.0432 (8)
C40.2161 (2)0.2432 (4)0.49362 (18)0.0475 (10)
C4A0.2709 (2)0.1577 (3)0.45443 (16)0.0434 (9)
C50.2225 (3)0.0789 (4)0.41411 (19)0.0551 (11)
H50.15500.08680.40930.066*
C60.2718 (3)0.0095 (4)0.3815 (2)0.0597 (12)
H60.23870.06300.35460.072*
C70.3707 (3)0.0196 (4)0.38855 (19)0.0537 (10)
H70.40490.08080.36630.064*
C80.4203 (3)0.0584 (3)0.42746 (17)0.0461 (9)
H80.48790.05060.43140.055*
C8A0.3708 (2)0.1484 (3)0.46093 (15)0.0390 (8)
C90.4206 (2)0.3773 (3)0.58156 (15)0.0346 (7)
C100.4528 (2)0.4952 (3)0.58733 (15)0.0357 (7)
H100.44550.54830.55360.043*
C110.4974 (2)0.5494 (3)0.63964 (15)0.0374 (8)
C120.5116 (3)0.5158 (3)0.69790 (16)0.0477 (9)
H120.49170.44010.71640.057*
C130.5625 (3)0.6176 (4)0.72574 (19)0.0569 (11)
H130.58260.62240.76630.068*
C140.5760 (3)0.7043 (4)0.68329 (19)0.0533 (10)
H140.60830.78160.68930.064*
C150.4279 (2)0.2790 (3)0.62950 (16)0.0388 (8)
H15A0.49480.27210.64280.058*
H15B0.40650.19830.61350.058*
H15C0.38730.30260.66350.058*
C160.2168 (2)0.4154 (4)0.56476 (18)0.0523 (10)
H16A0.15190.42610.54760.063*
H16B0.25120.49610.56070.063*
C170.2076 (2)0.3842 (3)0.62962 (17)0.0402 (8)
C180.2340 (3)0.4544 (3)0.67787 (16)0.0546 (11)
H180.26230.53530.67830.066*
C190.2087 (4)0.3767 (5)0.7279 (2)0.0819 (17)
H190.21370.40030.76870.098*
C200.1777 (3)0.2682 (5)0.7084 (3)0.0787 (17)
H200.15930.20030.73330.094*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0430 (14)0.0457 (14)0.0591 (17)0.0026 (11)0.0040 (12)0.0069 (12)
O20.0530 (17)0.0562 (17)0.092 (2)0.0120 (13)0.0018 (16)0.0252 (16)
O30.0191 (12)0.0779 (19)0.097 (2)0.0025 (11)0.0024 (13)0.0442 (16)
N10.0194 (13)0.0550 (18)0.0431 (17)0.0007 (12)0.0018 (11)0.0013 (13)
C20.0246 (16)0.053 (2)0.0396 (19)0.0017 (14)0.0008 (13)0.0122 (15)
N30.0180 (13)0.0623 (18)0.0494 (18)0.0049 (12)0.0032 (12)0.0202 (15)
C40.0201 (15)0.064 (2)0.059 (2)0.0056 (15)0.0048 (15)0.0344 (19)
C4A0.0258 (16)0.055 (2)0.050 (2)0.0099 (15)0.0069 (15)0.0240 (17)
C50.040 (2)0.056 (2)0.069 (3)0.0214 (18)0.0226 (19)0.033 (2)
C60.055 (2)0.047 (2)0.077 (3)0.0234 (19)0.027 (2)0.019 (2)
C70.051 (2)0.046 (2)0.064 (3)0.0138 (17)0.0180 (19)0.0059 (18)
C80.0353 (18)0.049 (2)0.053 (2)0.0092 (15)0.0078 (16)0.0025 (17)
C8A0.0268 (16)0.0492 (19)0.0411 (19)0.0095 (14)0.0055 (14)0.0128 (15)
C90.0256 (15)0.0421 (17)0.0362 (18)0.0072 (13)0.0037 (12)0.0089 (14)
C100.0281 (16)0.0392 (17)0.0398 (18)0.0057 (13)0.0058 (13)0.0060 (14)
C110.0331 (17)0.0330 (15)0.046 (2)0.0089 (13)0.0101 (14)0.0050 (14)
C120.064 (2)0.0369 (18)0.042 (2)0.0108 (17)0.0086 (18)0.0027 (15)
C130.076 (3)0.047 (2)0.048 (2)0.015 (2)0.005 (2)0.0113 (18)
C140.051 (2)0.047 (2)0.063 (3)0.0034 (17)0.0029 (19)0.0081 (19)
C150.0380 (18)0.0364 (17)0.042 (2)0.0068 (13)0.0013 (15)0.0079 (14)
C160.0288 (17)0.058 (2)0.070 (3)0.0146 (16)0.0111 (17)0.028 (2)
C170.0269 (15)0.0302 (16)0.064 (2)0.0049 (12)0.0127 (15)0.0106 (15)
C180.098 (3)0.0220 (15)0.044 (2)0.0102 (18)0.025 (2)0.0029 (15)
C190.127 (5)0.070 (3)0.049 (3)0.047 (3)0.032 (3)0.002 (2)
C200.068 (3)0.067 (3)0.102 (4)0.020 (2)0.046 (3)0.043 (3)
Geometric parameters (Å, º) top
O1—C141.369 (5)C8—H80.9500
O1—C111.386 (4)C9—C101.342 (5)
O2—C171.378 (4)C9—C151.504 (4)
O2—C201.418 (6)C10—C111.446 (5)
O3—C41.247 (4)C10—H100.9500
N1—C8A1.377 (4)C11—C121.366 (5)
N1—C21.453 (4)C12—C131.441 (6)
N1—H10.92 (4)C12—H120.9500
C2—N31.491 (4)C13—C141.339 (6)
C2—C91.524 (5)C13—H130.9500
C2—H21.0000C14—H140.9500
N3—C41.367 (5)C15—H15A0.9800
N3—C161.471 (5)C15—H15B0.9800
C4—C4A1.478 (6)C15—H15C0.9800
C4A—C8A1.402 (4)C16—C171.494 (5)
C4A—C51.406 (5)C16—H16A0.9900
C5—C61.376 (6)C16—H16B0.9900
C5—H50.9500C17—C181.365 (5)
C6—C71.390 (6)C18—C191.437 (6)
C6—H60.9500C18—H180.9500
C7—C81.389 (5)C19—C201.311 (7)
C7—H70.9500C19—H190.9500
C8—C8A1.400 (5)C20—H200.9500
C14—O1—C11106.8 (3)C9—C10—H10116.7
C17—O2—C20103.4 (3)C11—C10—H10116.7
C8A—N1—C2120.4 (3)C12—C11—O1109.1 (3)
C8A—N1—H1116 (2)C12—C11—C10136.8 (3)
C2—N1—H1114 (2)O1—C11—C10114.1 (3)
N1—C2—N3108.9 (3)C11—C12—C13106.6 (3)
N1—C2—C9109.1 (3)C11—C12—H12126.7
N3—C2—C9111.1 (3)C13—C12—H12126.7
N1—C2—H2109.2C14—C13—C12106.5 (4)
N3—C2—H2109.2C14—C13—H13126.7
C9—C2—H2109.2C12—C13—H13126.7
C4—N3—C16117.9 (3)C13—C14—O1111.0 (4)
C4—N3—C2122.5 (3)C13—C14—H14124.5
C16—N3—C2116.4 (3)O1—C14—H14124.5
O3—C4—N3121.6 (4)C9—C15—H15A109.5
O3—C4—C4A121.7 (4)C9—C15—H15B109.5
N3—C4—C4A116.6 (3)H15A—C15—H15B109.5
C8A—C4A—C5120.0 (4)C9—C15—H15C109.5
C8A—C4A—C4119.7 (3)H15A—C15—H15C109.5
C5—C4A—C4120.2 (3)H15B—C15—H15C109.5
C6—C5—C4A120.8 (3)N3—C16—C17113.1 (3)
C6—C5—H5119.6N3—C16—H16A109.0
C4A—C5—H5119.6C17—C16—H16A109.0
C5—C6—C7119.2 (4)N3—C16—H16B109.0
C5—C6—H6120.4C17—C16—H16B109.0
C7—C6—H6120.4H16A—C16—H16B107.8
C8—C7—C6121.1 (4)C18—C17—O2113.0 (3)
C8—C7—H7119.4C18—C17—C16128.5 (3)
C6—C7—H7119.4O2—C17—C16118.3 (3)
C7—C8—C8A120.2 (3)C17—C18—C19103.4 (4)
C7—C8—H8119.9C17—C18—H18128.3
C8A—C8—H8119.9C19—C18—H18128.3
N1—C8A—C8121.6 (3)C20—C19—C18109.5 (4)
N1—C8A—C4A119.5 (3)C20—C19—H19125.3
C8—C8A—C4A118.8 (3)C18—C19—H19125.3
C10—C9—C15124.3 (3)C19—C20—O2110.5 (4)
C10—C9—C2118.9 (3)C19—C20—H20124.8
C15—C9—C2116.8 (3)O2—C20—H20124.8
C9—C10—C11126.7 (3)
C8A—N1—C2—N340.4 (4)N1—C2—C9—C10130.5 (3)
C8A—N1—C2—C9161.8 (3)N3—C2—C9—C10109.4 (3)
N1—C2—N3—C435.4 (4)N1—C2—C9—C1549.0 (4)
C9—C2—N3—C4155.6 (3)N3—C2—C9—C1571.0 (4)
N1—C2—N3—C16164.9 (3)C15—C9—C10—C111.5 (5)
C9—C2—N3—C1644.8 (4)C2—C9—C10—C11179.0 (3)
C16—N3—C4—O310.5 (5)C14—O1—C11—C120.1 (4)
C2—N3—C4—O3169.9 (3)C14—O1—C11—C10180.0 (3)
C16—N3—C4—C4A173.0 (3)C9—C10—C11—C129.7 (6)
C2—N3—C4—C4A13.6 (4)C9—C10—C11—O1170.4 (3)
O3—C4—C4A—C8A169.9 (3)O1—C11—C12—C130.1 (4)
N3—C4—C4A—C8A6.7 (4)C10—C11—C12—C13179.8 (4)
O3—C4—C4A—C55.2 (5)C11—C12—C13—C140.3 (4)
N3—C4—C4A—C5178.3 (3)C12—C13—C14—O10.4 (4)
C8A—C4A—C5—C61.3 (5)C11—O1—C14—C130.3 (4)
C4—C4A—C5—C6173.7 (3)C4—N3—C16—C17105.9 (4)
C4A—C5—C6—C70.5 (6)C2—N3—C16—C1793.5 (4)
C5—C6—C7—C80.4 (6)C20—O2—C17—C183.2 (4)
C6—C7—C8—C8A0.6 (6)C20—O2—C17—C16178.6 (3)
C2—N1—C8A—C8160.4 (3)N3—C16—C17—C18125.8 (4)
C2—N1—C8A—C4A24.1 (5)N3—C16—C17—O248.8 (4)
C7—C8—C8A—N1175.7 (3)O2—C17—C18—C194.7 (4)
C7—C8—C8A—C4A0.2 (5)C16—C17—C18—C19179.5 (4)
C5—C4A—C8A—N1176.7 (3)C17—C18—C19—C204.5 (5)
C4—C4A—C8A—N11.7 (5)C18—C19—C20—O22.8 (6)
C5—C4A—C8A—C81.1 (5)C17—O2—C20—C190.1 (5)
C4—C4A—C8A—C8173.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.92 (4)2.04 (4)2.949 (4)169 (3)
Symmetry code: (i) x+1/2, y+1/2, z+1.
 

Funding information

This work was supported by the Ministry of Education and Science of the Russian Federation (grant No. 4.1154.2017/4.6) (X-ray structural analysis) and by the Russian Foundation for Basic Research (grant Nos. 16–03-00125, INT/RUS/RFBR/P-294 and 17–53-45016) (synthetic part).

References

First citationBattye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271–281.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCelltech R&D Ltd (2004). Patent WO2004/18462A1.  Google Scholar
First citationDoyle, R. A. (2011). Marccd software manual. Rayonix L. L. C. Evanston, Illinois, USA.  Google Scholar
First citationEvans, P. (2006). Acta Cryst. D62, 72–82.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrackenpohl, J., Zeishans, J., Heinemann, I., Willms, L., Mueller, T., Busch, M., Vonkoskull, P. D., Haeuser-Hahn, I., Rosinger, C. H., Dittgen, J. & Schmitt, M. H. (2016). Patent CN103228141B, Bayer Intellectual Property GmbH.  Google Scholar
First citationHe, Y., Krishnamoorthy, P., Lima, H. M., Chen, Y., Wu, H., Sivappa, R., Dias, H. V. R. & Lovely, C. J. (2011). Org. Biomol. Chem. 9, 2685–2701.  Web of Science CrossRef Google Scholar
First citationHu, Y., Qu, Y., Wu, F., Gui, J., Wei, Y., Hu, Q. & Wang, S. (2010). Chem. Asian J. 5, 309–314.  Web of Science CrossRef Google Scholar
First citationKim, K. H., Lim, J. W., Moon, H. R. & Kim, J. N. (2014). Bull. Korean Chem. Soc. 35, 3254–3260.  Web of Science CrossRef Google Scholar
First citationKocsis, L. S., Kagalwala, H. N., Mutto, S., Godugu, B., Bernhard, S., Tantillo, D. J. & Brummond, K. M. (2015). J. Org. Chem. 80, 11686–11698.  Web of Science CrossRef Google Scholar
First citationLu, K., Luo, T., Xiang, Z., You, Z., Fathi, R., Chen, J. & Yang, Z. (2005). J. Comb. Chem. 7, 958–967.  Web of Science CrossRef Google Scholar
First citationMagedov, I. V., Evdokimov, N. M., Karki, M., Peretti, A. S., Lima, D. T., Frolova, L. V., Reisenauer, M. R., Romero, A. E., Tongwa, P., Fonari, A., Altig, J., Rogelj, S., Antipin, M. Yu., Shuster, C. B. & Kornienko, A. (2012). Chem. Commun. 48, 10416–10418.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSlauson, S. R., Pemberton, R., Ghosh, P., Tantillo, D. J. & Aubé, J. (2015). J. Org. Chem. 80, 5260–5271.  Web of Science CrossRef Google Scholar
First citationSun, S., Turchi, I. J., Xu, D. & Murray, W. V. (2000). J. Org. Chem. 65, 2555–2559.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTomberg, A., De Cesco, S., Huot, M. & Moitessier, N. (2015). Tetrahedron Lett. 56, 6852–6856.  Web of Science CrossRef Google Scholar
First citationYamazaki, S., Sugiura, H., Ohashi, S., Ishizuka, K., Saimu, R., Mikata, Y. & Ogawa, A. (2016). J. Org. Chem. 81, 10863–10886.  Web of Science CrossRef Google Scholar
First citationZaytsev, V. P., Revutskaya, E. L., Kuzmenko, M. G., Novikov, R. A., Zubkov, F. I., Sorokina, E. A., Nikitina, E. V., Toze, F. A. A. & Varlamov, A. V. (2015). Russ. Chem. Bull. 64, 1345–1353.  Web of Science CrossRef Google Scholar
First citationZaytsev, V. P., Revutskaya, E. L., Nikanorova, T. V., Nikitina, E. V., Dorovatovskii, P. V., Khrustalev, V. N., Yagafarov, N. Z., Zubkov, F. I. & Varlamov, A. V. (2017). Synthesis, 49, 3749–3767.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds