research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of di­methyl 5-iodo­iso­phthal­ate and di­methyl 5-ethynyl­iso­phthal­ate

CROSSMARK_Color_square_no_text.svg

aTU Bergakademie Freiberg, Leipziger Str. 29, D-09596 Freiberg/Sachsen, Germany
*Correspondence e-mail: edwin.weber@chemie.tu-freiberg.de

Edited by M. Zeller, Purdue University, USA (Received 29 May 2018; accepted 22 June 2018; online 13 July 2018)

In dimethyl 5-iodo­isophthalate, C10H9IO4, (I), the planes through the methyl carboxyl­ate moieties are tilted with respect to the benzene ring, whereas the mol­ecular framework of dimethyl 5-ethynylisophthalate, C12H10O4, (II), is perfectly planar. The crystal structure of (I) is stabilized by a three-dimensional supra­molecular network comprising C—H⋯O=C hydrogen bonds, as well as I⋯O=C inter­actions. In the crystal of (II), the mol­ecules are connected via C—Hethyn­yl⋯O=C hydrogen bonds to infinite strands. Moreover, ππ arene stacking inter­actions connect the mol­ecular chains into two-dimensional supra­molecular aggregates.

1. Chemical context

In recent years, the design of solid porous framework materials (MacGillivray, 2010[MacGillivray, L. R. (2010). Metal-Organic Frameworks. Hoboken: Wiley.]; Furukawa et al., 2013[Furukawa, H., Cordova, K. E., O'Keeffe, M. & Yaghi, O. M. (2013). Science, 341, 1230444.]; Eddaoudi et al., 2015[Eddaoudi, M., Sava, D. F., Eubank, J. F., Adil, K. & Guillerm, V. (2015). Chem. Soc. Rev. 44, 228-249.]) has become a very important topic in the field of supra­molecular crystal engineering (Desiraju et al., 2011[Desiraju, G. R., Vittal, J. J. & Ramanan, A. (2011). Crystal Engineering. Singapore: World Scientific Publications.]). Associated with it, so-called linker mol­ecules featuring a geometrically rigid structure frequently being of linear, trigonal or tetra­hedral shape and having carb­oxy­lic acid functions as terminal groups play a key role in building such systems (Lin et al., 2006[Lin, X., Jia, J., Zhao, X., Thomas, K. M., Blake, A. J., Walker, G. S., Champness, N. R., Hubberstey, P. & Schröder, M. (2006). Angew. Chem. Int. Ed. 45, 7358-7364.]; Hausdorf et al., 2009[Hausdorf, S., Seichter, W., Weber, E. & Mertens, F. O. R. L. (2009). Dalton Trans. pp. 1107-1113.]; Zheng et al., 2010[Zheng, B., Liang, Z., Li, G., Huo, Q. & Liu, Y. (2010). Cryst. Growth Des. 10, 3405-3409.]). In the course of the synthesis of the respective linkers, the title compounds (I)[link] and (II)[link], both being 5-substituted dimethyl isophthalates, are much used inter­mediates. However, these compounds are not only synthetically significant but also show inter­esting structures in the crystalline state, as demonstrated herein.

[Scheme 1]

2. Structural commentary

The mol­ecular structures of the title compounds, (I)[link] and (II)[link], are illustrated in Fig. 1[link]a and 1b, respectively. Taking into account experimental error, the bond distances within the isophthalate framework agree well with those found in the crystal structure of dimethyl isophthalate (Gallagher, 2012[Gallagher, C. F. & Mocilac, P. (2012). CSD Communication (Refcode GOHRUS). CCDC, Cambridge, England.]). Compound (I)[link] crystallizes in the ortho­rhom­bic space group Pna21 with one mol­ecule in the asymmetric unit. The mol­ecule adopts a twisted conformation with the mean planes defined by the methyl carboxyl­ate moieties inclined at angles of 12.6 (2) and 6.0 (2)° with respect to the plane of the benzene ring. Compound (II)[link] crystallizes in the ortho­rhom­bic space group Pnma with the mol­ecule located on a symmetry plane, i.e. the mol­ecule is perfectly planar. However, the mol­ecule adopts approximate C2v symmetry with the atoms C2, C5, C11 and C12 lying on a non-crystallographic bis­ecting symmetry plane.

[Figure 1]
Figure 1
Perspective view of the mol­ecular structures of the title compounds, (a) (I)[link] and (b) (II)[link], with atom labelling. Anisotropic displacement ellipsoids are drawn at the 40% probability level.

3. Supra­molecular features

Infinite strands with the mol­ecules connected via I⋯O=C interactions [I1⋯O3—C9(x − [1\over2], y + [3\over2], z − 1; DA = 3.129 (2) (Desiraju & Steiner, 1999[Desiraju, G. R. & Steiner, T. (1999). In The Weak Hydrogen Bond. Oxford University Press.]) (Politzer et al. 2007[Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305-311.]; Desiraju et al., 2013[Desiraju, G. R., Ho, P. S., Kloo, L., Legon, A. C., Marquardt, R., Metrangolo, P., Politzer, P., Resnati, G. & Rissanen, K. (2013). Pure Appl. Chem. 85, 1711-1713.]), represent the basic supra­molecular aggregates of the crystal structure of (I)[link]. Association of the mol­ecular strands by C—H⋯O=C type hydrogen bonds (Table 1[link]) (Desiraju & Steiner, 1999[Desiraju, G. R. & Steiner, T. (1999). In The Weak Hydrogen Bond. Oxford University Press.]) and ππ stacking inter­actions [centroid–centroid distance = 4.149 (2) Å] (Tiekink & Zukerman-Schpector, 2012[Tiekink, E. R. T. & Zukerman-Schpector, J. (2012). In The Importance of Pi-Interactions in Crystal Engineering. Frontiers in Crystal Engineering. Chichester: Wiley.]) generate a three-dimensional supra­molecular network (Fig. 2[link]). In the crystal structure of (II)[link], the mol­ecules are connected via Cethyn­yl—H⋯O=C bonds (Table 2[link]) into infinite strands, which are further arranged into mol­ecular sheets that extend parallel to the ac plane (Fig. 3[link]). Furthermore, ππ arene inter­actions with a centroid–centroid distance of 3.566 (1) Å and a slippage of 1.325 Å between the inter­acting aromatic rings stabilize the crystal structure along the stacking axis of the mol­ecular sheets.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O1i 0.98 2.55 3.257 (4) 129
Symmetry code: (i) [-x+1, -y+1, z-{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O1i 0.94 2.29 3.223 (1) 172
Symmetry code: (i) x-1, y, z.
[Figure 2]
Figure 2
Packing diagram of compound (I)[link] viewed down the a axis. Dashed lines represent hydrogen-bonding inter­actions.
[Figure 3]
Figure 3
Packing excerpt of compound (II)[link] viewed down the b axis. Dashed lines represent hydrogen-bonding inter­actions.

4. Database survey

The search in the Cambridge Structural Database (CSD, Version 5.38, update May 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for meta-substituted derivatives of dimethyl isophthalate excluding their metal complexes, solvates and salts gave 18 hits. None of these compounds represents a 5-halogen- and 5-alkynyl-substituted dimethyl isophalate. The parent compound, dimethyl isophthalate (CSD refcode GOHRUS; Gallagher & Mocilac, 2012[Gallagher, C. F. & Mocilac, P. (2012). CSD Communication (Refcode GOHRUS). CCDC, Cambridge, England.]) crystallizes in space group Pna21 with two conformationally similar mol­ecules in the asymmetric unit. The independent mol­ecules participate in different ways in non-covalent bonding. One of them is involved in the formation of linear strands with the mol­ecules connected by C—Har­yl⋯O=C bonds. Inter­strand association is accomplished by ππ arene stacking. Mol­ecules related by the twofold screw axis are also linked via C—Har­yl⋯O=C bonding to form helical strands. In addition, these strands are stabilized by ππ stacking forces.

5. Synthesis and crystallization

Compounds (I)[link] and (II)[link] were synthesized following literature procedures. This involves a diazo­tization/iodination reaction of dimethyl 5-amino­isophthalate (Mazik & König, 2006[Mazik, M. & König, A. (2006). J. Org. Chem. 71, 7854-7857.]) to give compound (I)[link]. Subsequent reaction of (I)[link] with 2-methyl­but-3-yne-2-ol (MEBYNOL) using a Pd-catalysed Sonogashira coupling procedure (Doucet & Hierso, 2007[Doucet, H. & Hierso, J. C. (2007). Angew. Chem. Int. Ed. 46, 834-871.]; Rafael & Carmen, 2007[Rafael, C. & Carmen, N. (2007). Chem. Rev. B107, 874-922.]) yielded the corresponding blocked acetyl­enic diester as an inter­mediate (Hauptvogel et al., 2011[Hauptvogel, I. M., Seichter, W. & Weber, E. (2011). Supramol. Chem. 23, 398-406.]). Removal of the 2-hy­droxy­propyl blocking group was undertaken using sodium hydride in toluene and quenching with water to result in the title compound (II)[link] (Havens & Hergenrother, 1985[Havens, S. J. & Hergenrother, P. M. (1985). J. Org. Chem. 50, 1863-1865.]; Hauptvogel et al., 2011[Hauptvogel, I. M., Seichter, W. & Weber, E. (2011). Supramol. Chem. 23, 398-406.]).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Hydrogen atoms were positioned geometrically and refined using a riding model with C—H distances of 0.94–0.98 Å and Uiso(H) = 1.5Ueq(C-meth­yl) or Uiso(H) = 1.2Ueq(C) for other H atoms.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C10H9IO4 C12H10O4
Mr 320.07 218.20
Crystal system, space group Orthorhombic, Pna21 Orthorhombic, Pnma
Temperature (K) 143 223
a, b, c (Å) 7.7483 (2), 19.3451 (6), 7.2338 (2) 10.1206 (5), 6.6219 (4), 16.3658 (8)
V3) 1084.29 (5) 1096.80 (10)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 2.94 0.10
Crystal size (mm) 0.30 × 0.22 × 0.15 0.54 × 0.12 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD area detector Bruker APEXII CCD area detector
Absorption correction Multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.]) Multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.472, 0.666 0.948, 0.990
No. of measured, independent and observed [I > 2σ(I)] reflections 22794, 2909, 2806 12397, 1292, 932
Rint 0.026 0.033
(sin θ/λ)max−1) 0.684 0.638
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.015, 0.038, 1.05 0.039, 0.110, 1.03
No. of reflections 2909 1292
No. of parameters 139 87
No. of restraints 1 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.47, −0.44 0.17, −0.18
Absolute structure Flack x determined using 1255 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.004 (8)
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and SHELXTL (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a). Program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b) for (I); SHELXL2014 (Sheldrick, 2015b) for (II). For both structures, molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).

1,3-Dimethyl 1-iodocyclohexa-3,5-diene-1,3-dicarboxylate (I) top
Crystal data top
C10H9IO4Dx = 1.961 Mg m3
Mr = 320.07Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 5755 reflections
a = 7.7483 (2) Åθ = 3.0–33.7°
b = 19.3451 (6) ŵ = 2.94 mm1
c = 7.2338 (2) ÅT = 143 K
V = 1084.29 (5) Å3Irregular, colourless
Z = 40.30 × 0.22 × 0.15 mm
F(000) = 616
Data collection top
Bruker APEXII CCD area detector
diffractometer
2806 reflections with I > 2σ(I)
φ and ω scansRint = 0.026
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
θmax = 29.1°, θmin = 1.1°
Tmin = 0.472, Tmax = 0.666h = 1010
22794 measured reflectionsk = 2626
2909 independent reflectionsl = 99
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.015 w = 1/[σ2(Fo2) + (0.019P)2 + 0.3689P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.038(Δ/σ)max = 0.002
S = 1.05Δρmax = 0.47 e Å3
2909 reflectionsΔρmin = 0.44 e Å3
139 parametersAbsolute structure: Flack x determined using 1255 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.004 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.81504 (2)0.66115 (2)0.83115 (6)0.02386 (5)
O10.5202 (3)0.54751 (11)0.1864 (3)0.0327 (5)
O20.3831 (3)0.63417 (11)0.0411 (3)0.0260 (4)
O30.4971 (3)0.87789 (10)0.2029 (3)0.0281 (5)
O40.6557 (3)0.89701 (11)0.4576 (3)0.0282 (5)
C10.5514 (4)0.66267 (12)0.2993 (4)0.0190 (8)
C20.5347 (3)0.73272 (14)0.2585 (4)0.0198 (5)
H20.4793690.7469650.1477200.024*
C30.5994 (3)0.78152 (14)0.3805 (3)0.0194 (5)
C40.6796 (3)0.76086 (15)0.5445 (4)0.0206 (5)
H40.7239310.7944390.6277700.025*
C50.6940 (3)0.69088 (15)0.5850 (4)0.0207 (5)
C60.6295 (4)0.64128 (15)0.4637 (4)0.0209 (5)
H60.6384850.5935020.4924780.025*
C70.4856 (4)0.60819 (14)0.1721 (4)0.0223 (5)
C80.3221 (5)0.58545 (18)0.0951 (5)0.0330 (7)
H8A0.4185440.5710140.1738230.049*
H8B0.2329320.6072880.1713410.049*
H8C0.2735090.5449370.0325930.049*
C90.5768 (3)0.85636 (11)0.3323 (8)0.0214 (4)
C100.6363 (5)0.97101 (16)0.4293 (5)0.0338 (7)
H10A0.6888030.9840360.3110340.051*
H10B0.6937160.9959470.5298960.051*
H10C0.5133960.9829190.4278000.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.02804 (8)0.02336 (8)0.02019 (8)0.00006 (6)0.00121 (12)0.00381 (11)
O10.0500 (14)0.0174 (10)0.0308 (12)0.0032 (9)0.0060 (10)0.0006 (9)
O20.0300 (11)0.0187 (10)0.0293 (11)0.0017 (8)0.0066 (9)0.0048 (8)
O30.0347 (12)0.0194 (10)0.0301 (11)0.0027 (9)0.0082 (9)0.0019 (8)
O40.0382 (12)0.0165 (9)0.0299 (11)0.0011 (8)0.0073 (9)0.0004 (9)
C10.0216 (11)0.0183 (10)0.017 (2)0.0009 (9)0.0020 (10)0.0004 (9)
C20.0196 (12)0.0190 (12)0.0209 (11)0.0022 (10)0.0042 (10)0.0019 (10)
C30.0191 (11)0.0183 (11)0.0208 (13)0.0013 (9)0.0025 (9)0.0012 (8)
C40.0217 (13)0.0191 (13)0.0211 (12)0.0014 (10)0.0017 (10)0.0012 (10)
C50.0224 (13)0.0217 (13)0.0181 (12)0.0022 (10)0.0023 (10)0.0017 (10)
C60.0242 (13)0.0183 (12)0.0201 (12)0.0016 (10)0.0024 (11)0.0013 (10)
C70.0256 (13)0.0197 (12)0.0217 (13)0.0011 (10)0.0035 (11)0.0011 (10)
C80.0409 (19)0.0257 (15)0.0323 (15)0.0005 (13)0.0088 (13)0.0075 (13)
C90.0218 (10)0.0173 (9)0.0250 (10)0.0001 (8)0.0096 (18)0.002 (2)
C100.0453 (19)0.0174 (14)0.0387 (19)0.0014 (13)0.0064 (15)0.0021 (12)
Geometric parameters (Å, º) top
I1—C52.093 (3)C3—C41.398 (4)
O1—C71.209 (3)C3—C91.499 (4)
O2—C71.335 (4)C4—C51.390 (4)
O2—C81.443 (4)C4—H40.9500
O3—C91.196 (5)C5—C61.393 (4)
O4—C91.347 (5)C6—H60.9500
O4—C101.454 (4)C8—H8A0.9800
C1—C21.393 (3)C8—H8B0.9800
C1—C61.398 (4)C8—H8C0.9800
C1—C71.489 (4)C10—H10A0.9800
C2—C31.386 (4)C10—H10B0.9800
C2—H20.9500C10—H10C0.9800
C7—O2—C8115.7 (2)C1—C6—H6120.4
C9—O4—C10115.7 (3)O1—C7—O2124.0 (3)
C2—C1—C6120.5 (3)O1—C7—C1124.0 (3)
C2—C1—C7121.8 (3)O2—C7—C1112.1 (2)
C6—C1—C7117.7 (2)O2—C8—H8A109.5
C3—C2—C1119.7 (3)O2—C8—H8B109.5
C3—C2—H2120.2H8A—C8—H8B109.5
C1—C2—H2120.2O2—C8—H8C109.5
C2—C3—C4120.4 (3)H8A—C8—H8C109.5
C2—C3—C9117.9 (3)H8B—C8—H8C109.5
C4—C3—C9121.7 (3)O3—C9—O4123.9 (2)
C5—C4—C3119.5 (3)O3—C9—C3125.3 (3)
C5—C4—H4120.2O4—C9—C3110.7 (3)
C3—C4—H4120.2O4—C10—H10A109.5
C4—C5—C6120.6 (3)O4—C10—H10B109.5
C4—C5—I1118.9 (2)H10A—C10—H10B109.5
C6—C5—I1120.5 (2)O4—C10—H10C109.5
C5—C6—C1119.2 (3)H10A—C10—H10C109.5
C5—C6—H6120.4H10B—C10—H10C109.5
C6—C1—C2—C31.3 (4)C8—O2—C7—O14.1 (4)
C7—C1—C2—C3179.4 (2)C8—O2—C7—C1176.3 (3)
C1—C2—C3—C40.6 (4)C2—C1—C7—O1168.0 (3)
C1—C2—C3—C9179.3 (3)C6—C1—C7—O112.7 (4)
C2—C3—C4—C50.1 (4)C2—C1—C7—O212.5 (4)
C9—C3—C4—C5178.5 (3)C6—C1—C7—O2166.8 (3)
C3—C4—C5—C60.1 (4)C10—O4—C9—O31.1 (5)
C3—C4—C5—I1179.86 (19)C10—O4—C9—C3177.5 (3)
C4—C5—C6—C10.7 (4)C2—C3—C9—O35.3 (5)
I1—C5—C6—C1179.1 (2)C4—C3—C9—O3173.3 (3)
C2—C1—C6—C51.3 (4)C2—C3—C9—O4176.1 (3)
C7—C1—C6—C5179.4 (2)C4—C3—C9—O45.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O1i0.982.553.257 (4)129
Symmetry code: (i) x+1, y+1, z1/2.
1,3-Dimethyl 1-ethynylcyclohexa-3,5-diene-1,3-dicarboxylate (II) top
Crystal data top
C12H10O4Dx = 1.321 Mg m3
Mr = 218.20Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 2950 reflections
a = 10.1206 (5) Åθ = 2.4–23.1°
b = 6.6219 (4) ŵ = 0.10 mm1
c = 16.3658 (8) ÅT = 223 K
V = 1096.80 (10) Å3Column, colourless
Z = 40.54 × 0.12 × 0.10 mm
F(000) = 456
Data collection top
Bruker APEXII CCD area detector
diffractometer
932 reflections with I > 2σ(I)
φ and ω scansRint = 0.033
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
θmax = 27.0°, θmin = 2.5°
Tmin = 0.948, Tmax = 0.990h = 1212
12397 measured reflectionsk = 85
1292 independent reflectionsl = 2019
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0486P)2 + 0.2932P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
1292 reflectionsΔρmax = 0.17 e Å3
87 parametersΔρmin = 0.18 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O11.25864 (13)0.25000.40733 (10)0.0552 (4)
O21.08848 (14)0.25000.32081 (9)0.0519 (4)
O31.15356 (16)0.25000.70802 (10)0.0759 (6)
O40.94247 (15)0.25000.74402 (9)0.0617 (5)
C10.98919 (18)0.25000.60451 (11)0.0339 (4)
C21.08100 (18)0.25000.54143 (12)0.0350 (4)
H21.17180.25000.55360.042*
C31.03958 (18)0.25000.46063 (12)0.0339 (4)
C40.90505 (19)0.25000.44325 (12)0.0361 (4)
H40.87670.25000.38860.043*
C50.81192 (17)0.25000.50582 (12)0.0348 (4)
C60.85496 (18)0.25000.58682 (12)0.0340 (4)
H60.79290.25000.62960.041*
C71.0392 (2)0.25000.68995 (13)0.0428 (5)
C80.9818 (3)0.25000.82935 (14)0.0791 (9)
H8A1.02030.12020.84310.119*0.5
H8B0.90500.27400.86340.119*0.5
H8C1.04650.35580.83850.119*0.5
C91.14180.25000.39490.039
C101.18130.25000.25300.067
H10A1.13530.21490.20300.101*0.5
H10B1.25050.15190.26330.101*0.5
H10C1.22020.38320.24740.101*0.5
C110.67260 (19)0.25000.48649 (12)0.0406 (5)
C120.5604 (2)0.25000.47022 (14)0.0532 (6)
H120.47000.25000.45710.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0293 (8)0.0828 (11)0.0536 (10)0.0000.0049 (7)0.000
O20.0409 (9)0.0783 (11)0.0364 (8)0.0000.0066 (7)0.000
O30.0329 (9)0.1475 (18)0.0473 (10)0.0000.0079 (8)0.000
O40.0362 (9)0.1153 (14)0.0336 (8)0.0000.0026 (7)0.000
C10.0294 (10)0.0371 (10)0.0352 (11)0.0000.0006 (8)0.000
C20.0257 (9)0.0385 (10)0.0408 (11)0.0000.0029 (8)0.000
C30.0295 (10)0.0338 (9)0.0385 (11)0.0000.0023 (8)0.000
C40.0343 (11)0.0404 (10)0.0334 (10)0.0000.0020 (9)0.000
C50.0275 (9)0.0379 (10)0.0389 (11)0.0000.0002 (8)0.000
C60.0276 (9)0.0398 (10)0.0347 (11)0.0000.0011 (8)0.000
C70.0299 (11)0.0568 (12)0.0416 (12)0.0000.0013 (9)0.000
C80.0550 (16)0.151 (3)0.0315 (13)0.0000.0049 (12)0.000
C90.0340.0430.0390.0000.0030.000
C100.0630.0980.0410.0000.0180.000
C110.0341 (11)0.0558 (12)0.0319 (10)0.0000.0003 (9)0.000
C120.0340 (12)0.0849 (17)0.0409 (13)0.0000.0041 (10)0.000
Geometric parameters (Å, º) top
O1—C91.1998 (14)C4—C51.392 (3)
O2—C91.3272 (15)C4—H40.9400
O2—C101.4544 (14)C5—C61.395 (3)
O3—C71.195 (3)C5—C111.445 (3)
O4—C71.319 (3)C6—H60.9400
O4—C81.452 (3)C8—H8A0.9700
C1—C21.389 (3)C8—H8B0.9700
C1—C61.389 (3)C8—H8C0.9700
C1—C71.487 (3)C10—H10A0.9700
C2—C31.387 (3)C10—H10B0.9700
C2—H20.9400C10—H10C0.9700
C3—C41.391 (3)C11—C121.166 (3)
C3—C91.4925 (18)C12—H120.9400
C9—O2—C10115.75 (10)O3—C7—O4123.6 (2)
C7—O4—C8116.19 (18)O3—C7—C1124.21 (19)
C2—C1—C6119.96 (18)O4—C7—C1112.23 (17)
C2—C1—C7118.13 (17)O4—C8—H8A109.5
C6—C1—C7121.91 (17)O4—C8—H8B109.5
C3—C2—C1120.42 (17)H8A—C8—H8B109.5
C3—C2—H2119.8O4—C8—H8C109.5
C1—C2—H2119.8H8A—C8—H8C109.5
C2—C3—C4119.39 (18)H8B—C8—H8C109.5
C2—C3—C9118.53 (15)O1—C9—O2123.76 (10)
C4—C3—C9122.09 (16)O1—C9—C3124.12 (11)
C3—C4—C5120.83 (18)O2—C9—C3112.12 (9)
C3—C4—H4119.6O2—C10—H10A109.5
C5—C4—H4119.6O2—C10—H10B109.5
C4—C5—C6119.18 (17)H10A—C10—H10B109.5
C4—C5—C11119.98 (18)O2—C10—H10C109.5
C6—C5—C11120.84 (17)H10A—C10—H10C109.5
C1—C6—C5120.21 (17)H10B—C10—H10C109.5
C1—C6—H6119.9C12—C11—C5179.5 (2)
C5—C6—H6119.9C11—C12—H12180.0
C6—C1—C2—C30.000 (1)C8—O4—C7—O30.000 (1)
C7—C1—C2—C3180.000 (1)C8—O4—C7—C1180.000 (1)
C1—C2—C3—C40.000 (1)C2—C1—C7—O30.000 (1)
C1—C2—C3—C9180.000 (1)C6—C1—C7—O3180.000 (1)
C2—C3—C4—C50.000 (1)C2—C1—C7—O4180.000 (1)
C9—C3—C4—C5180.000 (1)C6—C1—C7—O40.000 (1)
C3—C4—C5—C60.000 (1)C10—O2—C9—O10.000 (1)
C3—C4—C5—C11180.000 (1)C10—O2—C9—C3180.000 (1)
C2—C1—C6—C50.000 (1)C2—C3—C9—O10.000 (1)
C7—C1—C6—C5180.000 (1)C4—C3—C9—O1180.000 (1)
C4—C5—C6—C10.000 (1)C2—C3—C9—O2180.000 (1)
C11—C5—C6—C1180.000 (1)C4—C3—C9—O20.000 (1)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O1i0.942.293.223 (1)172
Symmetry code: (i) x1, y, z.
 

Funding information

We acknowledge the financial support by the Deutsche Forschungsgemeinschaft (DFG Priority Program 1362 `Porous Metal-Organic Frameworks').

References

First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R., Ho, P. S., Kloo, L., Legon, A. C., Marquardt, R., Metrangolo, P., Politzer, P., Resnati, G. & Rissanen, K. (2013). Pure Appl. Chem. 85, 1711–1713.  Web of Science CrossRef CAS Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). In The Weak Hydrogen Bond. Oxford University Press.  Google Scholar
First citationDesiraju, G. R., Vittal, J. J. & Ramanan, A. (2011). Crystal Engineering. Singapore: World Scientific Publications.  Google Scholar
First citationDoucet, H. & Hierso, J. C. (2007). Angew. Chem. Int. Ed. 46, 834–871.  Web of Science CrossRef Google Scholar
First citationEddaoudi, M., Sava, D. F., Eubank, J. F., Adil, K. & Guillerm, V. (2015). Chem. Soc. Rev. 44, 228–249.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFurukawa, H., Cordova, K. E., O'Keeffe, M. & Yaghi, O. M. (2013). Science, 341, 1230444.  Web of Science CrossRef PubMed Google Scholar
First citationGallagher, C. F. & Mocilac, P. (2012). CSD Communication (Refcode GOHRUS). CCDC, Cambridge, England.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHauptvogel, I. M., Seichter, W. & Weber, E. (2011). Supramol. Chem. 23, 398–406.  Web of Science CrossRef Google Scholar
First citationHausdorf, S., Seichter, W., Weber, E. & Mertens, F. O. R. L. (2009). Dalton Trans. pp. 1107–1113.  Web of Science CSD CrossRef Google Scholar
First citationHavens, S. J. & Hergenrother, P. M. (1985). J. Org. Chem. 50, 1863–1865.  CrossRef Web of Science Google Scholar
First citationLin, X., Jia, J., Zhao, X., Thomas, K. M., Blake, A. J., Walker, G. S., Champness, N. R., Hubberstey, P. & Schröder, M. (2006). Angew. Chem. Int. Ed. 45, 7358–7364.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacGillivray, L. R. (2010). Metal-Organic Frameworks. Hoboken: Wiley.  Google Scholar
First citationMazik, M. & König, A. (2006). J. Org. Chem. 71, 7854–7857.  Web of Science CrossRef PubMed CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPolitzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305–311.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRafael, C. & Carmen, N. (2007). Chem. Rev. B107, 874–922.  Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTiekink, E. R. T. & Zukerman-Schpector, J. (2012). In The Importance of Pi-Interactions in Crystal Engineering. Frontiers in Crystal Engineering. Chichester: Wiley.  Google Scholar
First citationZheng, B., Liang, Z., Li, G., Huo, Q. & Liu, Y. (2010). Cryst. Growth Des. 10, 3405–3409.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds