research communications
Crystal structures of dimethyl 5-iodoisophthalate and dimethyl 5-ethynylisophthalate
aTU Bergakademie Freiberg, Leipziger Str. 29, D-09596 Freiberg/Sachsen, Germany
*Correspondence e-mail: edwin.weber@chemie.tu-freiberg.de
In dimethyl 5-iodoisophthalate, C10H9IO4, (I), the planes through the methyl carboxylate moieties are tilted with respect to the benzene ring, whereas the molecular framework of dimethyl 5-ethynylisophthalate, C12H10O4, (II), is perfectly planar. The of (I) is stabilized by a three-dimensional supramolecular network comprising C—H⋯O=C hydrogen bonds, as well as I⋯O=C interactions. In the crystal of (II), the molecules are connected via C—Hethynyl⋯O=C hydrogen bonds to infinite strands. Moreover, π–π arene stacking interactions connect the molecular chains into two-dimensional supramolecular aggregates.
1. Chemical context
In recent years, the design of solid porous framework materials (MacGillivray, 2010; Furukawa et al., 2013; Eddaoudi et al., 2015) has become a very important topic in the field of supramolecular crystal engineering (Desiraju et al., 2011). Associated with it, so-called linker molecules featuring a geometrically rigid structure frequently being of linear, trigonal or tetrahedral shape and having carboxylic acid functions as terminal groups play a key role in building such systems (Lin et al., 2006; Hausdorf et al., 2009; Zheng et al., 2010). In the course of the synthesis of the respective linkers, the title compounds (I) and (II), both being 5-substituted dimethyl isophthalates, are much used intermediates. However, these compounds are not only synthetically significant but also show interesting structures in the crystalline state, as demonstrated herein.
2. Structural commentary
The molecular structures of the title compounds, (I) and (II), are illustrated in Fig. 1a and 1b, respectively. Taking into account experimental error, the bond distances within the isophthalate framework agree well with those found in the of dimethyl isophthalate (Gallagher, 2012). Compound (I) crystallizes in the orthorhombic Pna21 with one molecule in the The molecule adopts a twisted conformation with the mean planes defined by the methyl carboxylate moieties inclined at angles of 12.6 (2) and 6.0 (2)° with respect to the plane of the benzene ring. Compound (II) crystallizes in the orthorhombic Pnma with the molecule located on a symmetry plane, i.e. the molecule is perfectly planar. However, the molecule adopts approximate C2v symmetry with the atoms C2, C5, C11 and C12 lying on a non-crystallographic bisecting symmetry plane.
3. Supramolecular features
Infinite strands with the molecules connected via I⋯O=C interactions [I1⋯O3—C9(x − , y + , z − 1; D⋯A = 3.129 (2) (Desiraju & Steiner, 1999) (Politzer et al. 2007; Desiraju et al., 2013), represent the basic supramolecular aggregates of the of (I). Association of the molecular strands by C—H⋯O=C type hydrogen bonds (Table 1) (Desiraju & Steiner, 1999) and π–π stacking interactions [centroid–centroid distance = 4.149 (2) Å] (Tiekink & Zukerman-Schpector, 2012) generate a three-dimensional supramolecular network (Fig. 2). In the of (II), the molecules are connected via Cethynyl—H⋯O=C bonds (Table 2) into infinite strands, which are further arranged into molecular sheets that extend parallel to the ac plane (Fig. 3). Furthermore, π–π arene interactions with a centroid–centroid distance of 3.566 (1) Å and a slippage of 1.325 Å between the interacting aromatic rings stabilize the along the stacking axis of the molecular sheets.
4. Database survey
The search in the Cambridge Structural Database (CSD, Version 5.38, update May 2017; Groom et al., 2016) for meta-substituted derivatives of dimethyl isophthalate excluding their metal complexes, solvates and salts gave 18 hits. None of these compounds represents a 5-halogen- and 5-alkynyl-substituted dimethyl isophalate. The parent compound, dimethyl isophthalate (CSD refcode GOHRUS; Gallagher & Mocilac, 2012) crystallizes in Pna21 with two conformationally similar molecules in the The independent molecules participate in different ways in non-covalent bonding. One of them is involved in the formation of linear strands with the molecules connected by C—Haryl⋯O=C bonds. Interstrand association is accomplished by π–π arene stacking. Molecules related by the twofold screw axis are also linked via C—Haryl⋯O=C bonding to form helical strands. In addition, these strands are stabilized by π–π stacking forces.
5. Synthesis and crystallization
Compounds (I) and (II) were synthesized following literature procedures. This involves a diazotization/iodination reaction of dimethyl 5-aminoisophthalate (Mazik & König, 2006) to give compound (I). Subsequent reaction of (I) with 2-methylbut-3-yne-2-ol (MEBYNOL) using a Pd-catalysed Sonogashira coupling procedure (Doucet & Hierso, 2007; Rafael & Carmen, 2007) yielded the corresponding blocked acetylenic diester as an intermediate (Hauptvogel et al., 2011). Removal of the 2-hydroxypropyl blocking group was undertaken using sodium hydride in toluene and quenching with water to result in the title compound (II) (Havens & Hergenrother, 1985; Hauptvogel et al., 2011).
6. Refinement
Crystal data, data collection and structure . Hydrogen atoms were positioned geometrically and refined using a riding model with C—H distances of 0.94–0.98 Å and Uiso(H) = 1.5Ueq(C-methyl) or Uiso(H) = 1.2Ueq(C) for other H atoms.
details are summarized in Table 3Supporting information
https://doi.org/10.1107/S205698901800912X/zl2732sup1.cif
contains datablocks I, II, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698901800912X/zl2732Isup4.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S205698901800912X/zl2732IIsup5.hkl
Supporting information file. DOI: https://doi.org/10.1107/S205698901800912X/zl2732Isup4.cml
Supporting information file. DOI: https://doi.org/10.1107/S205698901800912X/zl2732IIsup5.cml
For both structures, data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a). Program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b) for (I); SHELXL2014 (Sheldrick, 2015b) for (II). For both structures, molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).C10H9IO4 | Dx = 1.961 Mg m−3 |
Mr = 320.07 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pna21 | Cell parameters from 5755 reflections |
a = 7.7483 (2) Å | θ = 3.0–33.7° |
b = 19.3451 (6) Å | µ = 2.94 mm−1 |
c = 7.2338 (2) Å | T = 143 K |
V = 1084.29 (5) Å3 | Irregular, colourless |
Z = 4 | 0.30 × 0.22 × 0.15 mm |
F(000) = 616 |
Bruker APEXII CCD area detector diffractometer | 2806 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.026 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) | θmax = 29.1°, θmin = 1.1° |
Tmin = 0.472, Tmax = 0.666 | h = −10→10 |
22794 measured reflections | k = −26→26 |
2909 independent reflections | l = −9→9 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.015 | w = 1/[σ2(Fo2) + (0.019P)2 + 0.3689P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.038 | (Δ/σ)max = 0.002 |
S = 1.05 | Δρmax = 0.47 e Å−3 |
2909 reflections | Δρmin = −0.44 e Å−3 |
139 parameters | Absolute structure: Flack x determined using 1255 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
1 restraint | Absolute structure parameter: −0.004 (8) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component twin. |
x | y | z | Uiso*/Ueq | ||
I1 | 0.81504 (2) | 0.66115 (2) | 0.83115 (6) | 0.02386 (5) | |
O1 | 0.5202 (3) | 0.54751 (11) | 0.1864 (3) | 0.0327 (5) | |
O2 | 0.3831 (3) | 0.63417 (11) | 0.0411 (3) | 0.0260 (4) | |
O3 | 0.4971 (3) | 0.87789 (10) | 0.2029 (3) | 0.0281 (5) | |
O4 | 0.6557 (3) | 0.89701 (11) | 0.4576 (3) | 0.0282 (5) | |
C1 | 0.5514 (4) | 0.66267 (12) | 0.2993 (4) | 0.0190 (8) | |
C2 | 0.5347 (3) | 0.73272 (14) | 0.2585 (4) | 0.0198 (5) | |
H2 | 0.479369 | 0.746965 | 0.147720 | 0.024* | |
C3 | 0.5994 (3) | 0.78152 (14) | 0.3805 (3) | 0.0194 (5) | |
C4 | 0.6796 (3) | 0.76086 (15) | 0.5445 (4) | 0.0206 (5) | |
H4 | 0.723931 | 0.794439 | 0.627770 | 0.025* | |
C5 | 0.6940 (3) | 0.69088 (15) | 0.5850 (4) | 0.0207 (5) | |
C6 | 0.6295 (4) | 0.64128 (15) | 0.4637 (4) | 0.0209 (5) | |
H6 | 0.638485 | 0.593502 | 0.492478 | 0.025* | |
C7 | 0.4856 (4) | 0.60819 (14) | 0.1721 (4) | 0.0223 (5) | |
C8 | 0.3221 (5) | 0.58545 (18) | −0.0951 (5) | 0.0330 (7) | |
H8A | 0.418544 | 0.571014 | −0.173823 | 0.049* | |
H8B | 0.232932 | 0.607288 | −0.171341 | 0.049* | |
H8C | 0.273509 | 0.544937 | −0.032593 | 0.049* | |
C9 | 0.5768 (3) | 0.85636 (11) | 0.3323 (8) | 0.0214 (4) | |
C10 | 0.6363 (5) | 0.97101 (16) | 0.4293 (5) | 0.0338 (7) | |
H10A | 0.688803 | 0.984036 | 0.311034 | 0.051* | |
H10B | 0.693716 | 0.995947 | 0.529896 | 0.051* | |
H10C | 0.513396 | 0.982919 | 0.427800 | 0.051* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.02804 (8) | 0.02336 (8) | 0.02019 (8) | −0.00006 (6) | −0.00121 (12) | 0.00381 (11) |
O1 | 0.0500 (14) | 0.0174 (10) | 0.0308 (12) | 0.0032 (9) | −0.0060 (10) | −0.0006 (9) |
O2 | 0.0300 (11) | 0.0187 (10) | 0.0293 (11) | 0.0017 (8) | −0.0066 (9) | −0.0048 (8) |
O3 | 0.0347 (12) | 0.0194 (10) | 0.0301 (11) | 0.0027 (9) | −0.0082 (9) | 0.0019 (8) |
O4 | 0.0382 (12) | 0.0165 (9) | 0.0299 (11) | −0.0011 (8) | −0.0073 (9) | −0.0004 (9) |
C1 | 0.0216 (11) | 0.0183 (10) | 0.017 (2) | 0.0009 (9) | 0.0020 (10) | −0.0004 (9) |
C2 | 0.0196 (12) | 0.0190 (12) | 0.0209 (11) | 0.0022 (10) | 0.0042 (10) | 0.0019 (10) |
C3 | 0.0191 (11) | 0.0183 (11) | 0.0208 (13) | 0.0013 (9) | 0.0025 (9) | 0.0012 (8) |
C4 | 0.0217 (13) | 0.0191 (13) | 0.0211 (12) | −0.0014 (10) | 0.0017 (10) | −0.0012 (10) |
C5 | 0.0224 (13) | 0.0217 (13) | 0.0181 (12) | 0.0022 (10) | 0.0023 (10) | 0.0017 (10) |
C6 | 0.0242 (13) | 0.0183 (12) | 0.0201 (12) | 0.0016 (10) | 0.0024 (11) | 0.0013 (10) |
C7 | 0.0256 (13) | 0.0197 (12) | 0.0217 (13) | −0.0011 (10) | 0.0035 (11) | −0.0011 (10) |
C8 | 0.0409 (19) | 0.0257 (15) | 0.0323 (15) | 0.0005 (13) | −0.0088 (13) | −0.0075 (13) |
C9 | 0.0218 (10) | 0.0173 (9) | 0.0250 (10) | −0.0001 (8) | 0.0096 (18) | −0.002 (2) |
C10 | 0.0453 (19) | 0.0174 (14) | 0.0387 (19) | 0.0014 (13) | −0.0064 (15) | −0.0021 (12) |
I1—C5 | 2.093 (3) | C3—C4 | 1.398 (4) |
O1—C7 | 1.209 (3) | C3—C9 | 1.499 (4) |
O2—C7 | 1.335 (4) | C4—C5 | 1.390 (4) |
O2—C8 | 1.443 (4) | C4—H4 | 0.9500 |
O3—C9 | 1.196 (5) | C5—C6 | 1.393 (4) |
O4—C9 | 1.347 (5) | C6—H6 | 0.9500 |
O4—C10 | 1.454 (4) | C8—H8A | 0.9800 |
C1—C2 | 1.393 (3) | C8—H8B | 0.9800 |
C1—C6 | 1.398 (4) | C8—H8C | 0.9800 |
C1—C7 | 1.489 (4) | C10—H10A | 0.9800 |
C2—C3 | 1.386 (4) | C10—H10B | 0.9800 |
C2—H2 | 0.9500 | C10—H10C | 0.9800 |
C7—O2—C8 | 115.7 (2) | C1—C6—H6 | 120.4 |
C9—O4—C10 | 115.7 (3) | O1—C7—O2 | 124.0 (3) |
C2—C1—C6 | 120.5 (3) | O1—C7—C1 | 124.0 (3) |
C2—C1—C7 | 121.8 (3) | O2—C7—C1 | 112.1 (2) |
C6—C1—C7 | 117.7 (2) | O2—C8—H8A | 109.5 |
C3—C2—C1 | 119.7 (3) | O2—C8—H8B | 109.5 |
C3—C2—H2 | 120.2 | H8A—C8—H8B | 109.5 |
C1—C2—H2 | 120.2 | O2—C8—H8C | 109.5 |
C2—C3—C4 | 120.4 (3) | H8A—C8—H8C | 109.5 |
C2—C3—C9 | 117.9 (3) | H8B—C8—H8C | 109.5 |
C4—C3—C9 | 121.7 (3) | O3—C9—O4 | 123.9 (2) |
C5—C4—C3 | 119.5 (3) | O3—C9—C3 | 125.3 (3) |
C5—C4—H4 | 120.2 | O4—C9—C3 | 110.7 (3) |
C3—C4—H4 | 120.2 | O4—C10—H10A | 109.5 |
C4—C5—C6 | 120.6 (3) | O4—C10—H10B | 109.5 |
C4—C5—I1 | 118.9 (2) | H10A—C10—H10B | 109.5 |
C6—C5—I1 | 120.5 (2) | O4—C10—H10C | 109.5 |
C5—C6—C1 | 119.2 (3) | H10A—C10—H10C | 109.5 |
C5—C6—H6 | 120.4 | H10B—C10—H10C | 109.5 |
C6—C1—C2—C3 | 1.3 (4) | C8—O2—C7—O1 | −4.1 (4) |
C7—C1—C2—C3 | −179.4 (2) | C8—O2—C7—C1 | 176.3 (3) |
C1—C2—C3—C4 | −0.6 (4) | C2—C1—C7—O1 | 168.0 (3) |
C1—C2—C3—C9 | −179.3 (3) | C6—C1—C7—O1 | −12.7 (4) |
C2—C3—C4—C5 | −0.1 (4) | C2—C1—C7—O2 | −12.5 (4) |
C9—C3—C4—C5 | 178.5 (3) | C6—C1—C7—O2 | 166.8 (3) |
C3—C4—C5—C6 | 0.1 (4) | C10—O4—C9—O3 | 1.1 (5) |
C3—C4—C5—I1 | 179.86 (19) | C10—O4—C9—C3 | −177.5 (3) |
C4—C5—C6—C1 | 0.7 (4) | C2—C3—C9—O3 | 5.3 (5) |
I1—C5—C6—C1 | −179.1 (2) | C4—C3—C9—O3 | −173.3 (3) |
C2—C1—C6—C5 | −1.3 (4) | C2—C3—C9—O4 | −176.1 (3) |
C7—C1—C6—C5 | 179.4 (2) | C4—C3—C9—O4 | 5.3 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8A···O1i | 0.98 | 2.55 | 3.257 (4) | 129 |
Symmetry code: (i) −x+1, −y+1, z−1/2. |
C12H10O4 | Dx = 1.321 Mg m−3 |
Mr = 218.20 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pnma | Cell parameters from 2950 reflections |
a = 10.1206 (5) Å | θ = 2.4–23.1° |
b = 6.6219 (4) Å | µ = 0.10 mm−1 |
c = 16.3658 (8) Å | T = 223 K |
V = 1096.80 (10) Å3 | Column, colourless |
Z = 4 | 0.54 × 0.12 × 0.10 mm |
F(000) = 456 |
Bruker APEXII CCD area detector diffractometer | 932 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.033 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) | θmax = 27.0°, θmin = 2.5° |
Tmin = 0.948, Tmax = 0.990 | h = −12→12 |
12397 measured reflections | k = −8→5 |
1292 independent reflections | l = −20→19 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.039 | H-atom parameters constrained |
wR(F2) = 0.110 | w = 1/[σ2(Fo2) + (0.0486P)2 + 0.2932P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
1292 reflections | Δρmax = 0.17 e Å−3 |
87 parameters | Δρmin = −0.18 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 1.25864 (13) | 0.2500 | 0.40733 (10) | 0.0552 (4) | |
O2 | 1.08848 (14) | 0.2500 | 0.32081 (9) | 0.0519 (4) | |
O3 | 1.15356 (16) | 0.2500 | 0.70802 (10) | 0.0759 (6) | |
O4 | 0.94247 (15) | 0.2500 | 0.74402 (9) | 0.0617 (5) | |
C1 | 0.98919 (18) | 0.2500 | 0.60451 (11) | 0.0339 (4) | |
C2 | 1.08100 (18) | 0.2500 | 0.54143 (12) | 0.0350 (4) | |
H2 | 1.1718 | 0.2500 | 0.5536 | 0.042* | |
C3 | 1.03958 (18) | 0.2500 | 0.46063 (12) | 0.0339 (4) | |
C4 | 0.90505 (19) | 0.2500 | 0.44325 (12) | 0.0361 (4) | |
H4 | 0.8767 | 0.2500 | 0.3886 | 0.043* | |
C5 | 0.81192 (17) | 0.2500 | 0.50582 (12) | 0.0348 (4) | |
C6 | 0.85496 (18) | 0.2500 | 0.58682 (12) | 0.0340 (4) | |
H6 | 0.7929 | 0.2500 | 0.6296 | 0.041* | |
C7 | 1.0392 (2) | 0.2500 | 0.68995 (13) | 0.0428 (5) | |
C8 | 0.9818 (3) | 0.2500 | 0.82935 (14) | 0.0791 (9) | |
H8A | 1.0203 | 0.1202 | 0.8431 | 0.119* | 0.5 |
H8B | 0.9050 | 0.2740 | 0.8634 | 0.119* | 0.5 |
H8C | 1.0465 | 0.3558 | 0.8385 | 0.119* | 0.5 |
C9 | 1.1418 | 0.2500 | 0.3949 | 0.039 | |
C10 | 1.1813 | 0.2500 | 0.2530 | 0.067 | |
H10A | 1.1353 | 0.2149 | 0.2030 | 0.101* | 0.5 |
H10B | 1.2505 | 0.1519 | 0.2633 | 0.101* | 0.5 |
H10C | 1.2202 | 0.3832 | 0.2474 | 0.101* | 0.5 |
C11 | 0.67260 (19) | 0.2500 | 0.48649 (12) | 0.0406 (5) | |
C12 | 0.5604 (2) | 0.2500 | 0.47022 (14) | 0.0532 (6) | |
H12 | 0.4700 | 0.2500 | 0.4571 | 0.064* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0293 (8) | 0.0828 (11) | 0.0536 (10) | 0.000 | 0.0049 (7) | 0.000 |
O2 | 0.0409 (9) | 0.0783 (11) | 0.0364 (8) | 0.000 | 0.0066 (7) | 0.000 |
O3 | 0.0329 (9) | 0.1475 (18) | 0.0473 (10) | 0.000 | −0.0079 (8) | 0.000 |
O4 | 0.0362 (9) | 0.1153 (14) | 0.0336 (8) | 0.000 | −0.0026 (7) | 0.000 |
C1 | 0.0294 (10) | 0.0371 (10) | 0.0352 (11) | 0.000 | −0.0006 (8) | 0.000 |
C2 | 0.0257 (9) | 0.0385 (10) | 0.0408 (11) | 0.000 | −0.0029 (8) | 0.000 |
C3 | 0.0295 (10) | 0.0338 (9) | 0.0385 (11) | 0.000 | 0.0023 (8) | 0.000 |
C4 | 0.0343 (11) | 0.0404 (10) | 0.0334 (10) | 0.000 | −0.0020 (9) | 0.000 |
C5 | 0.0275 (9) | 0.0379 (10) | 0.0389 (11) | 0.000 | −0.0002 (8) | 0.000 |
C6 | 0.0276 (9) | 0.0398 (10) | 0.0347 (11) | 0.000 | 0.0011 (8) | 0.000 |
C7 | 0.0299 (11) | 0.0568 (12) | 0.0416 (12) | 0.000 | −0.0013 (9) | 0.000 |
C8 | 0.0550 (16) | 0.151 (3) | 0.0315 (13) | 0.000 | −0.0049 (12) | 0.000 |
C9 | 0.034 | 0.043 | 0.039 | 0.000 | 0.003 | 0.000 |
C10 | 0.063 | 0.098 | 0.041 | 0.000 | 0.018 | 0.000 |
C11 | 0.0341 (11) | 0.0558 (12) | 0.0319 (10) | 0.000 | 0.0003 (9) | 0.000 |
C12 | 0.0340 (12) | 0.0849 (17) | 0.0409 (13) | 0.000 | −0.0041 (10) | 0.000 |
O1—C9 | 1.1998 (14) | C4—C5 | 1.392 (3) |
O2—C9 | 1.3272 (15) | C4—H4 | 0.9400 |
O2—C10 | 1.4544 (14) | C5—C6 | 1.395 (3) |
O3—C7 | 1.195 (3) | C5—C11 | 1.445 (3) |
O4—C7 | 1.319 (3) | C6—H6 | 0.9400 |
O4—C8 | 1.452 (3) | C8—H8A | 0.9700 |
C1—C2 | 1.389 (3) | C8—H8B | 0.9700 |
C1—C6 | 1.389 (3) | C8—H8C | 0.9700 |
C1—C7 | 1.487 (3) | C10—H10A | 0.9700 |
C2—C3 | 1.387 (3) | C10—H10B | 0.9700 |
C2—H2 | 0.9400 | C10—H10C | 0.9700 |
C3—C4 | 1.391 (3) | C11—C12 | 1.166 (3) |
C3—C9 | 1.4925 (18) | C12—H12 | 0.9400 |
C9—O2—C10 | 115.75 (10) | O3—C7—O4 | 123.6 (2) |
C7—O4—C8 | 116.19 (18) | O3—C7—C1 | 124.21 (19) |
C2—C1—C6 | 119.96 (18) | O4—C7—C1 | 112.23 (17) |
C2—C1—C7 | 118.13 (17) | O4—C8—H8A | 109.5 |
C6—C1—C7 | 121.91 (17) | O4—C8—H8B | 109.5 |
C3—C2—C1 | 120.42 (17) | H8A—C8—H8B | 109.5 |
C3—C2—H2 | 119.8 | O4—C8—H8C | 109.5 |
C1—C2—H2 | 119.8 | H8A—C8—H8C | 109.5 |
C2—C3—C4 | 119.39 (18) | H8B—C8—H8C | 109.5 |
C2—C3—C9 | 118.53 (15) | O1—C9—O2 | 123.76 (10) |
C4—C3—C9 | 122.09 (16) | O1—C9—C3 | 124.12 (11) |
C3—C4—C5 | 120.83 (18) | O2—C9—C3 | 112.12 (9) |
C3—C4—H4 | 119.6 | O2—C10—H10A | 109.5 |
C5—C4—H4 | 119.6 | O2—C10—H10B | 109.5 |
C4—C5—C6 | 119.18 (17) | H10A—C10—H10B | 109.5 |
C4—C5—C11 | 119.98 (18) | O2—C10—H10C | 109.5 |
C6—C5—C11 | 120.84 (17) | H10A—C10—H10C | 109.5 |
C1—C6—C5 | 120.21 (17) | H10B—C10—H10C | 109.5 |
C1—C6—H6 | 119.9 | C12—C11—C5 | 179.5 (2) |
C5—C6—H6 | 119.9 | C11—C12—H12 | 180.0 |
C6—C1—C2—C3 | 0.000 (1) | C8—O4—C7—O3 | 0.000 (1) |
C7—C1—C2—C3 | 180.000 (1) | C8—O4—C7—C1 | 180.000 (1) |
C1—C2—C3—C4 | 0.000 (1) | C2—C1—C7—O3 | 0.000 (1) |
C1—C2—C3—C9 | 180.000 (1) | C6—C1—C7—O3 | 180.000 (1) |
C2—C3—C4—C5 | 0.000 (1) | C2—C1—C7—O4 | 180.000 (1) |
C9—C3—C4—C5 | 180.000 (1) | C6—C1—C7—O4 | 0.000 (1) |
C3—C4—C5—C6 | 0.000 (1) | C10—O2—C9—O1 | 0.000 (1) |
C3—C4—C5—C11 | 180.000 (1) | C10—O2—C9—C3 | 180.000 (1) |
C2—C1—C6—C5 | 0.000 (1) | C2—C3—C9—O1 | 0.000 (1) |
C7—C1—C6—C5 | 180.000 (1) | C4—C3—C9—O1 | 180.000 (1) |
C4—C5—C6—C1 | 0.000 (1) | C2—C3—C9—O2 | 180.000 (1) |
C11—C5—C6—C1 | 180.000 (1) | C4—C3—C9—O2 | 0.000 (1) |
D—H···A | D—H | H···A | D···A | D—H···A |
C12—H12···O1i | 0.94 | 2.29 | 3.223 (1) | 172 |
Symmetry code: (i) x−1, y, z. |
Funding information
We acknowledge the financial support by the Deutsche Forschungsgemeinschaft (DFG Priority Program 1362 `Porous Metal-Organic Frameworks').
References
Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Desiraju, G. R., Ho, P. S., Kloo, L., Legon, A. C., Marquardt, R., Metrangolo, P., Politzer, P., Resnati, G. & Rissanen, K. (2013). Pure Appl. Chem. 85, 1711–1713. Web of Science CrossRef CAS Google Scholar
Desiraju, G. R. & Steiner, T. (1999). In The Weak Hydrogen Bond. Oxford University Press. Google Scholar
Desiraju, G. R., Vittal, J. J. & Ramanan, A. (2011). Crystal Engineering. Singapore: World Scientific Publications. Google Scholar
Doucet, H. & Hierso, J. C. (2007). Angew. Chem. Int. Ed. 46, 834–871. Web of Science CrossRef Google Scholar
Eddaoudi, M., Sava, D. F., Eubank, J. F., Adil, K. & Guillerm, V. (2015). Chem. Soc. Rev. 44, 228–249. Web of Science CrossRef CAS PubMed Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Furukawa, H., Cordova, K. E., O'Keeffe, M. & Yaghi, O. M. (2013). Science, 341, 1230444. Web of Science CrossRef PubMed Google Scholar
Gallagher, C. F. & Mocilac, P. (2012). CSD Communication (Refcode GOHRUS). CCDC, Cambridge, England. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hauptvogel, I. M., Seichter, W. & Weber, E. (2011). Supramol. Chem. 23, 398–406. Web of Science CrossRef Google Scholar
Hausdorf, S., Seichter, W., Weber, E. & Mertens, F. O. R. L. (2009). Dalton Trans. pp. 1107–1113. Web of Science CSD CrossRef Google Scholar
Havens, S. J. & Hergenrother, P. M. (1985). J. Org. Chem. 50, 1863–1865. CrossRef Web of Science Google Scholar
Lin, X., Jia, J., Zhao, X., Thomas, K. M., Blake, A. J., Walker, G. S., Champness, N. R., Hubberstey, P. & Schröder, M. (2006). Angew. Chem. Int. Ed. 45, 7358–7364. Web of Science CSD CrossRef CAS Google Scholar
MacGillivray, L. R. (2010). Metal-Organic Frameworks. Hoboken: Wiley. Google Scholar
Mazik, M. & König, A. (2006). J. Org. Chem. 71, 7854–7857. Web of Science CrossRef PubMed CAS Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305–311. Web of Science CrossRef PubMed CAS Google Scholar
Rafael, C. & Carmen, N. (2007). Chem. Rev. B107, 874–922. Google Scholar
Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008b). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Tiekink, E. R. T. & Zukerman-Schpector, J. (2012). In The Importance of Pi-Interactions in Crystal Engineering. Frontiers in Crystal Engineering. Chichester: Wiley. Google Scholar
Zheng, B., Liang, Z., Li, G., Huo, Q. & Liu, Y. (2010). Cryst. Growth Des. 10, 3405–3409. Web of Science CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.