research communications
Template or ligand? Different structural behaviours of aromatic
in combination with zincophosphite networksaDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, and bSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk
The solution-mediated syntheses and crystal structures of catena-poly[bis(2-amino-3-hydroxypyridinium) [zinc-di-μ-phosphonato] dihydrate], {(C5H7N2O)[Zn(HPO3)2]·2H2O}n, (I), and poly[(benzene-1,2-diamine)(μ5-phosphonato)zinc], [Zn(HPO3)(C6H8N2)]n, (II) are described. The extended structure of (I) features [010] anionic chains of vertex-sharing ZnO4 tetrahedra and HPO3 pseudopyramids; these chains are characterized by disorder over major [occupancy 0.7962 (13)] and minor [0.2038 (13)] components, which can be superimposed on each other by a nominal translational shift. The 2-amino-3-hydroxypyridinium cations and water molecules of crystallization interact with the ZnPO chains by way of numerous O—H⋯O and N—H⋯O hydrogen bonds. The structure of (II) features a direct Zn—N bond to the neutral 1,2-diaminobenzene species as part of ZnO3N tetrahedra as well as HPO3 pseudopyramids. The Zn- and P-centred groupings are linked through their O-atom vertices into infinite (010) sheets and the structure is consolidated by N—H⋯O hydrogen bonds and N—H⋯π interactions. The crystal of (I) chosen for data collection was found to be an in a 0.56 (2):0.44 (2) domain ratio.
Keywords: zinc phosphite; ligand; template; disorder; crystal structure.
1. Chemical context
Organically templated zinc phosphites (ZnPOs) are a well-established family of organic/inorganic open frameworks (e.g. Harrison et al., 2001; Dong et al., 2015; Huang et al., 2017). The stated motivations for studying these phases include their potential applications in catalysis, separation and as `functional materials' (Wang et al., 2003). Important features of their crystal structures include the nature of the polyhedral building units [ZnO4, ZnO3(H2O), ZnO3N, HPO3] and their connectivity, which defines the Zn:P ratio; for example, ZnO4 and HPO3 units sharing all their vertices as Zn—O—P bonds will lead to an anionic [Zn3(HPO3)4]n2n− framework (a 3:4 Zn:P ratio), the charge of which must be balanced by the organic templating cation (e.g. Katinaitė & Harrison, 2017). If, however, one of the P—O vertices is `terminal' (a formal P=O double bond that does not link to zinc), then a [Zn(HPO3)2]n2n− stoichiometry (1:2 Zn:P ratio) arises (e.g. Halime et al., 2011). A combination of HPO3 (all vertices bonding) and HPO3 (one terminal vertex) units leads to a [Zn2(HPO3)3]n2n− framework (2:3 Zn:P ratio) (Lin et al., 2004a). Another important structural feature of these phases is the `dual character' of the organic species: most commonly it is a protonated organic amine, which interacts with the ZnPO framework via N—H⋯O hydrogen bonds (e.g. Harrison & McNamee, 2010). However, direct Zn—N bonds are also possible (e.g. Fan et al., 2005), in which case the (unprotonated) organic species could be said to be acting as a ligand, although its steric bulk means that it does exert a `templating effect' on the extended structure. This has an important effect on the zinc-to-phosphorus ratio; for example, a combination of ZnO3N and HPO3 (all vertices bonding) units leads to a neutral [Zn(HPO3)]n (1:1 Zn:P ratio) network (e.g. Lin et al., 2004b). The complex structure of {(C4H12N2)[Zn5(HPO3)6(C4H10N2)]}n (Harrison, 2006) is notable for featuring the same organic species acting as a protonated template and a ligand in the same structure.
As part of our ongoing studies in this area we now describe the syntheses and structures of (C5H7N2O)[Zn(HPO3)2]·2H2O, (I), and [Zn(HPO3)(C6H8N2)], (II), where C5H7N2O+ is the 2-amino-3-hydroxypyridinium cation and C6H8N2 is neutral 1,2-diaminobenzene (also known as o-phenylenediamine).
2. Structural commentary
Compound (I) features unusual disorder of the zincophosphite component of the structure, in a 0.7962 (13):0.2038 (13) ratio for the major and minor components, respectively. The major component features two zinc atoms (Zn1 and Zn2), four phosphorus atoms (P1–P4) and 12 oxygen atoms (O1–O12), the latter being parts of pseudo-pyramidal HPO32− hydrogenphosphite anions (Fig. 1). Both zinc ions adopt typical tetrahedral coordination geometries to four nearby O atoms (which all bridge to an adjacent P atom) with mean Zn—O separations of 1.939 and 1.937 Å for Zn1 and Zn2, respectively. The ranges of O—Zn—O bond angles for Zn1 [101.6 (3)–126.2 (3)] and Zn2 [102.1 (3)–125.8 (3)°] seem to indicate a high degree of distortion from a regular tetrahedral geometry for these polyhedra, but these data should be approached with caution because of the disorder of the ZnPO framework (vide infra). The P atoms in (I) all display their expected tetrahedral geometries to three O atoms (two of which bridge to Zn atoms and one is `terminal', hence the 1:2 Zn:P stoichiometry) and one H atom. As usual (Harrison, 2011) the H atom attached to the P atom does not show any propensity to form hydrogen bonds. The mean P—O separation for the terminal vertices (1.510 Å) is slightly shorter than the corresponding value for the bridging O atoms (1.538 Å), although there is some overlap of individual values. The O—P—O bond angles in (I) are clustered in the narrow range of 111.0 (4)–113.8 (4)° (mean = 112.5°) and are comparable to those in related structures (e.g. Dong et al., 2015). For the oxygen atoms (O1–O12) associated with the major disorder component, the mean Zn—O—P angle is 129.6° (Table 1); four of these O atoms (O3, O6, O9 and O12) are parts of the terminal P=O vertices. The geometrical data for the minor disorder component of the chain (atoms Zn11, Zn12, P11–P14, O21–O28) are broadly similar to those of the major component, although their precision is about four to five times lower.
A striking feature of the disorder as modelled here is that atoms O1, O4, O7 and O10 are common to both major and minor components (i.e. they were modelled with full occupancies). These atoms are involved in the most distorted bond angles [e.g. O1—Zn1—O4 = 126.2 (3)°] and their mean Uiso value of 0.0191 is notably higher than the corresponding value of 0.0146 Å2 for the major-disorder O atoms. This may indicate that there are actually separate, adjacent, sites for the major and minor components for these O atoms but they cannot be resolved from the present data.
The polyhedral connectivity in (I) leads to [010] infinite anionic four-ring [Zn(HPO3)2]n2n− chains of strictly alternating vertex-sharing ZnO4 and HPO3 groups with only translational symmetry building up the chains. Fig. 2 shows a fragment of a chain including both disorder components in which it may be seen that one can be superimposed on the other by means of a simple translation of approximately b/2. Each disorder component of the chain has four crystallographically unique water molecules of crystallization associated with it (O1w–O4w and O11w–O14w for the major and minor disorder components, respectively) and all of them form two O—H⋯O hydrogen bonds to their adjacent chains.
The structure of (I) is completed by four unique, ordered, charge-balancing C5H7N2O+ cations, with each one protonated at its pyridine N atom rather than the amine group as always appears to be the case with this species (e.g. Stilinović & Kaitner, 2011). Each cation in (I) features an intramolecular N—H⋯O hydrogen bond (Table 2) from the 2-amino group to the adjacent 3-hydroxy moiety, generating an S(5) ring in each case. In the extended structure, each cation forms numerous N—H⋯O and O—H⋯O hydrogen bonds with chain and water O atoms from both disorder components acting as acceptors. The situation for the N1 cation is illustrated in Figs. 3 and 4 for the major and minor disorder components of the chain, respectively. A view down [010] of the packing for (I) (Fig. 5) shows the anionic chains interspersed by the organic cations, which themselves form wavy (001) sheets.
|
The structure of (II) consists of ZnO3N tetrahedra and HPO3 pseudo pyramids as well as neutral 1,2-diaminobenzene molecules (Table 3, Fig. 6). The Zn—N bond, which is notably longer than the Zn—O vertices (mean = 1.935 Å) arises from a direct bond to the organic species, which could be said to be acting as a ligand rather than a (protonated) templating agent. The Zn- and P-centred polyhedra are linked by O atoms (mean Zn—O—P angle = 133.0°) and there are no terminal O atoms. This `3+3' bonding mode naturally leads to the 1:1 Zn:P stoichiometry in (II).
|
The extended structure of (II) contains (010) sheets of strictly alternating Zn- and P-centred polyhedra incorporating very contorted six-ring windows (Fig. 7). The pendant organic molecules protrude either side of the sheets (Fig. 8). The structure of (II) is consolidated by N—H⋯O hydrogen bonds, which are absolutely typical in this family of phases (Huang et al., 2017) and less common N—H⋯π interactions (Table 4). All of these bonds are intra-sheet interactions and no directional inter-sheet interactions beyond normal van der Waals contacts could be identified, the shortest of these being H3⋯H4 (2.67 Å).
3. Database survey
So far as we are aware, no zincophosphites with either of the organic species described here have been reported previously. It may be noted that the C6H7N2O+ cation in (I) has been reported as a counter-ion with simple, discrete MCl42− anions where M = Co (Koval'chukova et al., 2008) and Cu (Halvorson et al., 1990) and with polymeric two-dimensional copper/bromide networks (Place et al., 1998). A structure containing Zn—N bonds related to (II) featuring the isomeric 1,4-diaminobenzene species has been described (Kirkpatrick & Harrison, 2004). In this compound, the diamine bonds to zinc atoms from both its N atoms and acts as a `pillar' linking ZnPO sheets into a three-dimensional framework. A survey of of the Cambridge Structural Database (Groom et al., 2016: updated to April 2018) for zinc phosphite frameworks with a directly bonded ligand/template (i.e. those containing a N—Zn—O—P—H fragment) revealed 21 matches.
4. Synthesis and crystallization
Compound (I) was prepared from 1.00 g ZnO, 2.00 g H3PO3 and 1.35 g 2-amino-3-hydroxypyridine. These components were added to a PTFE bottle containing 20 ml of water and shaken well, to result in an off-white slurry. The bottle was sealed and placed in an oven at 353 K for 48 h and then removed to cool to room temperature. Product recovery by vacuum filtration yielded a mass of pale-brown laths of (I).
To prepare (II), 1.00 g zinc acetate, 0.74 g H3PO3, 0.99 g 1,2-diaminobenzene and 20 ml of water were placed in a PTFE bottle and shaken well, to result in a brown slurry. The bottle was sealed and placed in an oven at 353 K for 48 h and then removed to cool to room temperature. Product recovery by vacuum filtration yielded a few colourless blocks of (II) accompanied by unidentified dark-brown sludge.
5. Refinement
Crystal data, data collection and structure . The structure of (I) proved to be difficult to solve and refine. The pointed to P21/n but no chemically reasonable models could be established in this centrosymmetric Lower symmetry space groups were then tried and a plausible model in Pn was developed, as the complex nature of the disorder of the chain became apparent. In the early stages of the site occupancies were freely varied to establish which atoms belonged to which disorder component; the occupancies for O1, O4, O7 and O10 barely varied from unity and were fixed as fully occupied. When the disorder model was becoming clear, constrained refinements of site occupancies for the major and minor disorder components (including their associated water molecules of crystallization) led to refined values of 0.7962 (13):0.2038 (13). The structure of (II) was solved and refined without difficulty.
details are summarized in Table 5
|
For (I), the H atoms associated with the P atoms were located in difference maps, relocated to idealized positions (P—H = 1.32 Å) and refined as riding atoms. The N- and O-bound H atoms of the cations were located in difference maps and refined as riding atoms in their as-found relative positions. Most of the water H atoms were located in difference maps and refined in a similar fashion; the remainder were placed geometrically to form reasonable hydrogen bonds and refined as riding atoms. The C-bound H atoms were placed geometrically (C—H = 0.95 Å) and refined as riding atoms. In every case, the constraint Uiso(H) = 1.2Ueq(carrier) was applied. The crystal of (I) chosen for data collection was found to be an in a 0.56 (2):0.44 (2) domain ratio.
For (II), the phosphite H atom was located in a difference map, relocated to an idealized position (P—H = 1.32 Å) and refined as a riding atom. The N-bound H atoms were located in difference maps and their positions were freely refined. The C-bound H atoms were placed geometrically (C—H = 0.95 Å) and refined as riding atoms. The constraint Uiso(H) = 1.2Ueq(carrier) was applied to all H atoms.
Supporting information
https://doi.org/10.1107/S2056989018012343/cq2027sup1.cif
contains datablocks I, II, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018012343/cq2027Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989018012343/cq2027IIsup3.hkl
Data collection: CrysAlis PRO (Rigaku OD, 2017) for (I); CrysAlis PRO (Rigaku, 2017) for (II). Cell
CrysAlis PRO (Rigaku OD, 2017) for (I); CrysAlis PRO (Rigaku, 2017) for (II). Data reduction: CrysAlis PRO (Rigaku OD, 2017) for (I); CrysAlis PRO (Rigaku, 2017) for (II). For both structures, program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).(C5H7N2O)[Zn(HPO3)2]·2H2O | F(000) = 992 |
Mr = 483.61 | Dx = 1.751 Mg m−3 |
Monoclinic, Pn | Mo Kα radiation, λ = 0.71073 Å |
a = 10.5172 (3) Å | Cell parameters from 11223 reflections |
b = 7.4210 (2) Å | θ = 3.4–30.0° |
c = 23.5592 (5) Å | µ = 1.57 mm−1 |
β = 93.861 (2)° | T = 100 K |
V = 1834.58 (8) Å3 | Lath, pale brown |
Z = 4 | 0.20 × 0.05 × 0.04 mm |
Rigaku XtaLAB AFC12 (RCD3): Kappa single CCD diffractometer | 7166 reflections with I > 2σ(I) |
ω scans | Rint = 0.070 |
Absorption correction: gaussian (CrysAlis PRO; Rigaku OD, 2017) | θmax = 27.5°, θmin = 2.9° |
Tmin = 0.653, Tmax = 1.000 | h = −13→13 |
30281 measured reflections | k = −9→9 |
8399 independent reflections | l = −30→30 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.046 | H-atom parameters constrained |
wR(F2) = 0.121 | w = 1/[σ2(Fo2) + (0.0553P)2 + 0.7374P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
8399 reflections | Δρmax = 0.73 e Å−3 |
561 parameters | Δρmin = −0.93 e Å−3 |
116 restraints | Absolute structure: Refined as an inversion twin. |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.44 (2) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component inversion twin |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Zn1 | 0.29788 (9) | 0.12391 (12) | 0.47099 (5) | 0.0097 (2) | 0.7962 (13) |
Zn2 | 0.39776 (9) | 0.63750 (12) | 0.52509 (5) | 0.0107 (2) | 0.7962 (13) |
P1 | 0.5742 (2) | −0.0631 (3) | 0.49814 (11) | 0.0100 (5) | 0.7962 (13) |
H1P | 0.6345 | −0.1706 | 0.4643 | 0.012* | 0.7962 (13) |
P2 | 0.2957 (2) | 0.3226 (3) | 0.59341 (11) | 0.0117 (5) | 0.7962 (13) |
H2P | 0.2057 | 0.4351 | 0.6074 | 0.014* | 0.7962 (13) |
P3 | 0.1214 (2) | 0.8237 (3) | 0.50040 (10) | 0.0096 (5) | 0.7962 (13) |
H3P | 0.0635 | 0.9329 | 0.5346 | 0.012* | 0.7962 (13) |
P4 | 0.4029 (3) | 0.4338 (3) | 0.40242 (11) | 0.0121 (5) | 0.7962 (13) |
H4P | 0.4949 | 0.3204 | 0.3916 | 0.015* | 0.7962 (13) |
O1 | 0.4630 (6) | 0.0229 (7) | 0.4606 (3) | 0.0187 (12) | |
O2 | 0.5283 (7) | −0.1830 (8) | 0.5457 (3) | 0.0130 (15) | 0.7962 (13) |
O3 | 0.6701 (7) | 0.0742 (9) | 0.5199 (3) | 0.0128 (14) | 0.7962 (13) |
O4 | 0.2409 (6) | 0.2209 (7) | 0.5406 (3) | 0.0166 (12) | |
O5 | 0.4101 (6) | 0.4405 (8) | 0.5792 (3) | 0.0141 (15) | 0.7962 (13) |
O6 | 0.3238 (8) | 0.2047 (9) | 0.6441 (3) | 0.0173 (15) | 0.7962 (13) |
O7 | 0.2333 (6) | 0.7341 (7) | 0.5368 (3) | 0.0195 (12) | |
O8 | 0.1677 (7) | 0.9409 (8) | 0.4521 (3) | 0.0108 (14) | 0.7962 (13) |
O9 | 0.0226 (7) | 0.6864 (10) | 0.4784 (3) | 0.0187 (16) | 0.7962 (13) |
O10 | 0.4529 (6) | 0.5428 (7) | 0.4536 (3) | 0.0215 (13) | |
O11 | 0.2885 (7) | 0.3175 (8) | 0.4147 (3) | 0.0122 (14) | 0.7962 (13) |
O12 | 0.3790 (8) | 0.5469 (9) | 0.3488 (3) | 0.0180 (16) | 0.7962 (13) |
C1 | −0.0430 (9) | 0.7452 (9) | 0.3345 (4) | 0.0127 (15) | |
C2 | −0.1081 (8) | 0.7173 (10) | 0.2791 (3) | 0.0153 (16) | |
C3 | −0.2282 (10) | 0.6467 (10) | 0.2765 (4) | 0.0197 (18) | |
H3 | −0.2730 | 0.6291 | 0.2405 | 0.024* | |
C4 | −0.2865 (9) | 0.5996 (12) | 0.3264 (4) | 0.0209 (19) | |
H4 | −0.3712 | 0.5541 | 0.3247 | 0.025* | |
C5 | −0.2178 (11) | 0.6210 (10) | 0.3778 (5) | 0.023 (2) | |
H5 | −0.2530 | 0.5846 | 0.4121 | 0.028* | |
N1 | −0.1006 (7) | 0.6937 (8) | 0.3792 (3) | 0.0155 (14) | |
H1N | −0.0595 | 0.7076 | 0.4127 | 0.019* | |
N2 | 0.0727 (7) | 0.8217 (9) | 0.3387 (3) | 0.0192 (15) | |
H2N | 0.1103 | 0.8436 | 0.3085 | 0.023* | |
H3N | 0.1172 | 0.8327 | 0.3713 | 0.023* | |
O13 | −0.0441 (6) | 0.7701 (8) | 0.2354 (3) | 0.0205 (13) | |
H1O | −0.1011 | 0.7477 | 0.2025 | 0.025* | |
C6 | −0.0411 (8) | 0.2483 (9) | 0.3353 (4) | 0.0132 (15) | |
C7 | −0.1160 (8) | 0.2107 (10) | 0.2836 (4) | 0.0154 (16) | |
C8 | −0.2329 (10) | 0.1395 (10) | 0.2858 (5) | 0.0214 (19) | |
H8 | −0.2832 | 0.1163 | 0.2516 | 0.026* | |
C9 | −0.2817 (9) | 0.0987 (12) | 0.3391 (4) | 0.0219 (19) | |
H9 | −0.3647 | 0.0495 | 0.3411 | 0.026* | |
C10 | −0.2057 (10) | 0.1323 (9) | 0.3877 (5) | 0.020 (2) | |
H10 | −0.2348 | 0.1036 | 0.4239 | 0.023* | |
N3 | −0.0902 (7) | 0.2056 (8) | 0.3837 (3) | 0.0147 (14) | |
H4N | −0.0439 | 0.2268 | 0.4155 | 0.018* | |
N4 | 0.0743 (7) | 0.3240 (9) | 0.3337 (3) | 0.0176 (15) | |
H5N | 0.1026 | 0.3503 | 0.3014 | 0.021* | |
H6N | 0.1196 | 0.3271 | 0.3696 | 0.021* | |
O14 | −0.0615 (6) | 0.2569 (8) | 0.2359 (3) | 0.0187 (13) | |
H2O | −0.1066 | 0.2487 | 0.2002 | 0.022* | |
C11 | 0.7386 (9) | 0.5063 (9) | 0.6604 (3) | 0.0132 (15) | |
C12 | 0.8096 (8) | 0.5368 (10) | 0.7127 (4) | 0.0137 (15) | |
C13 | 0.9285 (10) | 0.6141 (10) | 0.7120 (5) | 0.0193 (18) | |
H13 | 0.9764 | 0.6387 | 0.7467 | 0.023* | |
C14 | 0.9794 (10) | 0.6566 (12) | 0.6599 (4) | 0.024 (2) | |
H14 | 1.0616 | 0.7096 | 0.6598 | 0.029* | |
C15 | 0.9143 (10) | 0.6237 (9) | 0.6116 (5) | 0.021 (2) | |
H15 | 0.9509 | 0.6487 | 0.5767 | 0.025* | |
N5 | 0.7913 (7) | 0.5519 (8) | 0.6112 (3) | 0.0153 (14) | |
H7N | 0.7471 | 0.5361 | 0.5786 | 0.018* | |
N6 | 0.6241 (7) | 0.4317 (10) | 0.6582 (3) | 0.0175 (15) | |
H8N | 0.5904 | 0.3944 | 0.6910 | 0.021* | |
H9N | 0.5721 | 0.4240 | 0.6261 | 0.021* | |
O15 | 0.7456 (6) | 0.4867 (8) | 0.7589 (3) | 0.0200 (13) | |
H3O | 0.8041 | 0.5036 | 0.7911 | 0.024* | |
C16 | 0.7461 (8) | 0.0065 (9) | 0.6661 (4) | 0.0127 (15) | |
C17 | 0.8178 (8) | 0.0341 (10) | 0.7183 (4) | 0.0149 (16) | |
C18 | 0.9372 (9) | 0.1088 (10) | 0.7185 (4) | 0.0189 (18) | |
H18 | 0.9857 | 0.1277 | 0.7535 | 0.023* | |
C19 | 0.9884 (10) | 0.1580 (12) | 0.6663 (5) | 0.024 (2) | |
H19 | 1.0712 | 0.2092 | 0.6663 | 0.029* | |
C20 | 0.9206 (10) | 0.1322 (9) | 0.6180 (5) | 0.0185 (19) | |
H20 | 0.9553 | 0.1627 | 0.5830 | 0.022* | |
N7 | 0.7986 (7) | 0.0608 (8) | 0.6178 (3) | 0.0179 (15) | |
H10N | 0.7535 | 0.0502 | 0.5851 | 0.021* | |
N8 | 0.6313 (7) | −0.0675 (9) | 0.6625 (3) | 0.0161 (14) | |
H11N | 0.5974 | −0.0978 | 0.6959 | 0.019* | |
H12N | 0.5858 | −0.0779 | 0.6314 | 0.019* | |
O16 | 0.7579 (6) | −0.0175 (8) | 0.7652 (3) | 0.0193 (13) | |
H4O | 0.8095 | −0.0032 | 0.7982 | 0.023* | |
Zn11 | 0.3031 (7) | 0.6147 (5) | 0.4721 (3) | 0.0135 (10)* | 0.2038 (13) |
Zn12 | 0.4040 (7) | 0.1296 (5) | 0.5270 (3) | 0.0187 (12)* | 0.2038 (13) |
P11 | 0.1234 (12) | 0.3165 (13) | 0.4996 (5) | 0.016 (2)* | 0.2038 (13) |
H11P | 0.0600 | 0.4218 | 0.5330 | 0.019* | 0.2038 (13) |
P12 | 0.5783 (12) | 0.4298 (14) | 0.4968 (6) | 0.016 (2)* | 0.2038 (13) |
H12P | 0.6349 | 0.3214 | 0.4620 | 0.020* | 0.2038 (13) |
P13 | 0.4039 (13) | 0.9269 (15) | 0.4043 (6) | 0.019 (2)* | 0.2038 (13) |
H13P | 0.4927 | 0.8130 | 0.3899 | 0.022* | 0.2038 (13) |
P14 | 0.2970 (12) | 0.8186 (14) | 0.5952 (6) | 0.018 (2)* | 0.2038 (13) |
H14P | 0.2128 | 0.9396 | 0.6095 | 0.021* | 0.2038 (13) |
O21 | 0.675 (2) | 0.558 (3) | 0.5173 (10) | 0.006 (5)* | 0.2038 (13) |
O22 | 0.024 (3) | 0.171 (4) | 0.4733 (14) | 0.032 (8)* | 0.2038 (13) |
O23 | 0.318 (3) | 0.712 (3) | 0.6457 (13) | 0.016 (6)* | 0.2038 (13) |
O24 | 0.298 (3) | 0.815 (4) | 0.4172 (13) | 0.021 (6)* | 0.2038 (13) |
O25 | 0.416 (3) | 0.935 (4) | 0.5815 (13) | 0.022 (7)* | 0.2038 (13) |
O26 | 0.535 (3) | 0.311 (4) | 0.5443 (14) | 0.025 (7)* | 0.2038 (13) |
O27 | 0.375 (3) | 1.048 (4) | 0.3498 (15) | 0.026 (7)* | 0.2038 (13) |
O28 | 0.170 (3) | 0.437 (3) | 0.4515 (12) | 0.013 (6)* | 0.2038 (13) |
O1W | 0.6860 (7) | 0.4392 (8) | 0.5070 (3) | 0.0134 (14) | 0.7962 (13) |
H1W | 0.6406 | 0.4900 | 0.4889 | 0.016* | 0.7962 (13) |
H2W | 0.6747 | 0.3343 | 0.5127 | 0.016* | 0.7962 (13) |
O2W | 0.0054 (7) | 0.3238 (9) | 0.4897 (3) | 0.0155 (15) | 0.7962 (13) |
H3W | 0.0564 | 0.2613 | 0.5103 | 0.019* | 0.7962 (13) |
H4W | 0.0227 | 0.4412 | 0.4873 | 0.019* | 0.7962 (13) |
O3W | 0.2802 (7) | 0.8476 (9) | 0.6495 (3) | 0.0145 (15) | 0.7962 (13) |
H5W | 0.2959 | 0.9675 | 0.6465 | 0.017* | 0.7962 (13) |
H6W | 0.2657 | 0.8138 | 0.6159 | 0.017* | 0.7962 (13) |
O4W | 0.4104 (7) | 0.9072 (10) | 0.3501 (3) | 0.0186 (16) | 0.7962 (13) |
H7W | 0.4055 | 0.7825 | 0.3475 | 0.022* | 0.7962 (13) |
H8W | 0.4376 | 0.9703 | 0.3758 | 0.022* | 0.7962 (13) |
O11W | 0.001 (3) | 0.811 (4) | 0.4927 (14) | 0.032 (8)* | 0.2038 (13) |
H11W | 0.0064 | 0.9202 | 0.4871 | 0.038* | 0.2038 (13) |
H12W | 0.0688 | 0.7889 | 0.5063 | 0.038* | 0.2038 (13) |
O12W | 0.688 (3) | −0.064 (3) | 0.5100 (11) | 0.016 (6)* | 0.2038 (13) |
H13W | 0.6193 | −0.0367 | 0.4955 | 0.019* | 0.2038 (13) |
H14W | 0.6829 | −0.1755 | 0.5124 | 0.019* | 0.2038 (13) |
O13W | 0.280 (3) | 0.347 (4) | 0.6471 (12) | 0.012 (6)* | 0.2038 (13) |
H15W | 0.2663 | 0.3098 | 0.6153 | 0.014* | 0.2038 (13) |
H16W | 0.2890 | 0.4585 | 0.6469 | 0.014* | 0.2038 (13) |
O14W | 0.410 (3) | 0.411 (5) | 0.3459 (15) | 0.031 (7)* | 0.2038 (13) |
H17W | 0.4193 | 0.4521 | 0.3779 | 0.037* | 0.2038 (13) |
H18W | 0.3956 | 0.3043 | 0.3470 | 0.037* | 0.2038 (13) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0089 (5) | 0.0115 (4) | 0.0084 (4) | −0.0025 (3) | −0.0025 (3) | 0.0013 (3) |
Zn2 | 0.0104 (5) | 0.0119 (4) | 0.0096 (5) | −0.0026 (3) | −0.0019 (3) | 0.0012 (3) |
P1 | 0.0089 (10) | 0.0114 (10) | 0.0095 (9) | −0.0009 (7) | −0.0006 (7) | 0.0006 (7) |
P2 | 0.0133 (11) | 0.0133 (10) | 0.0080 (9) | −0.0032 (8) | −0.0013 (7) | 0.0002 (7) |
P3 | 0.0087 (10) | 0.0119 (9) | 0.0080 (9) | −0.0009 (7) | −0.0016 (7) | 0.0009 (7) |
P4 | 0.0134 (11) | 0.0139 (10) | 0.0088 (9) | −0.0032 (8) | −0.0012 (8) | 0.0009 (7) |
O1 | 0.014 (3) | 0.024 (3) | 0.018 (3) | −0.001 (2) | −0.002 (2) | −0.003 (2) |
O2 | 0.019 (3) | 0.013 (3) | 0.006 (3) | −0.006 (2) | −0.004 (2) | 0.0006 (19) |
O3 | 0.015 (3) | 0.013 (3) | 0.010 (3) | −0.003 (2) | −0.004 (2) | 0.004 (2) |
O4 | 0.015 (3) | 0.017 (2) | 0.017 (3) | −0.001 (2) | 0.000 (2) | −0.005 (2) |
O5 | 0.009 (3) | 0.015 (3) | 0.018 (3) | −0.004 (2) | −0.002 (2) | 0.005 (2) |
O6 | 0.023 (3) | 0.019 (3) | 0.009 (3) | −0.009 (3) | −0.005 (2) | 0.005 (2) |
O7 | 0.018 (3) | 0.027 (3) | 0.013 (3) | −0.005 (2) | 0.001 (2) | 0.000 (2) |
O8 | 0.010 (3) | 0.013 (3) | 0.008 (2) | −0.006 (2) | −0.003 (2) | 0.0034 (19) |
O9 | 0.019 (3) | 0.020 (3) | 0.016 (3) | −0.009 (3) | −0.005 (2) | 0.000 (2) |
O10 | 0.021 (3) | 0.031 (3) | 0.013 (3) | −0.009 (2) | 0.002 (2) | −0.007 (2) |
O11 | 0.012 (3) | 0.015 (3) | 0.009 (3) | −0.004 (2) | −0.005 (2) | 0.0054 (19) |
O12 | 0.026 (4) | 0.017 (3) | 0.010 (3) | −0.005 (3) | −0.007 (2) | 0.004 (2) |
C1 | 0.015 (4) | 0.009 (3) | 0.014 (3) | 0.001 (3) | −0.002 (3) | −0.004 (3) |
C2 | 0.021 (4) | 0.010 (3) | 0.014 (4) | 0.000 (3) | −0.002 (3) | −0.001 (3) |
C3 | 0.019 (4) | 0.017 (4) | 0.022 (4) | −0.003 (3) | −0.002 (3) | −0.005 (3) |
C4 | 0.012 (4) | 0.017 (4) | 0.034 (5) | −0.001 (3) | 0.002 (3) | −0.001 (3) |
C5 | 0.024 (5) | 0.015 (4) | 0.032 (5) | 0.003 (3) | 0.014 (4) | 0.002 (3) |
N1 | 0.018 (3) | 0.015 (3) | 0.012 (3) | 0.004 (3) | −0.001 (3) | 0.001 (2) |
N2 | 0.018 (4) | 0.023 (3) | 0.017 (3) | −0.004 (3) | −0.005 (3) | 0.000 (3) |
O13 | 0.026 (3) | 0.024 (3) | 0.012 (3) | 0.001 (2) | 0.005 (2) | −0.002 (2) |
C6 | 0.009 (4) | 0.014 (3) | 0.016 (4) | 0.001 (3) | −0.005 (3) | −0.001 (3) |
C7 | 0.020 (4) | 0.012 (3) | 0.014 (4) | 0.000 (3) | −0.001 (3) | 0.001 (3) |
C8 | 0.019 (4) | 0.020 (4) | 0.025 (4) | 0.002 (3) | −0.006 (3) | −0.006 (3) |
C9 | 0.017 (5) | 0.015 (3) | 0.035 (5) | −0.002 (3) | 0.008 (4) | −0.001 (3) |
C10 | 0.017 (4) | 0.017 (4) | 0.025 (4) | 0.001 (3) | 0.001 (3) | 0.007 (3) |
N3 | 0.014 (3) | 0.014 (3) | 0.016 (3) | 0.004 (2) | 0.001 (3) | 0.005 (2) |
N4 | 0.017 (4) | 0.022 (3) | 0.014 (3) | −0.001 (3) | −0.003 (3) | 0.000 (3) |
O14 | 0.021 (3) | 0.023 (3) | 0.014 (3) | 0.001 (2) | 0.005 (2) | −0.004 (2) |
C11 | 0.018 (4) | 0.010 (3) | 0.012 (4) | 0.003 (3) | 0.006 (3) | 0.003 (3) |
C12 | 0.012 (4) | 0.016 (4) | 0.014 (4) | 0.008 (3) | 0.004 (3) | 0.000 (3) |
C13 | 0.016 (4) | 0.013 (4) | 0.029 (5) | 0.004 (3) | −0.001 (3) | −0.008 (3) |
C14 | 0.017 (5) | 0.014 (4) | 0.043 (5) | −0.005 (3) | 0.010 (4) | −0.004 (4) |
C15 | 0.021 (4) | 0.013 (4) | 0.031 (5) | −0.001 (3) | 0.016 (4) | −0.001 (3) |
N5 | 0.019 (3) | 0.018 (3) | 0.010 (3) | 0.001 (3) | 0.008 (3) | −0.002 (2) |
N6 | 0.012 (3) | 0.026 (3) | 0.015 (3) | −0.004 (3) | 0.005 (3) | 0.001 (3) |
O15 | 0.023 (3) | 0.023 (3) | 0.014 (3) | 0.002 (2) | 0.003 (2) | 0.003 (2) |
C16 | 0.012 (4) | 0.011 (3) | 0.017 (4) | 0.003 (3) | 0.007 (3) | 0.003 (3) |
C17 | 0.011 (4) | 0.017 (4) | 0.017 (4) | 0.006 (3) | 0.001 (3) | −0.002 (3) |
C18 | 0.017 (4) | 0.014 (4) | 0.025 (4) | −0.001 (3) | −0.002 (3) | −0.005 (3) |
C19 | 0.014 (4) | 0.017 (4) | 0.042 (5) | −0.004 (3) | 0.003 (3) | −0.004 (4) |
C20 | 0.015 (4) | 0.016 (4) | 0.025 (4) | −0.001 (3) | 0.011 (3) | 0.005 (3) |
N7 | 0.016 (3) | 0.022 (3) | 0.016 (3) | 0.001 (3) | 0.004 (3) | 0.005 (3) |
N8 | 0.014 (3) | 0.020 (3) | 0.014 (3) | −0.008 (3) | 0.002 (3) | 0.003 (3) |
O16 | 0.021 (3) | 0.024 (3) | 0.013 (3) | 0.000 (2) | 0.004 (2) | 0.004 (2) |
O1W | 0.014 (3) | 0.010 (3) | 0.015 (3) | 0.000 (2) | −0.004 (2) | 0.001 (2) |
O2W | 0.014 (3) | 0.017 (3) | 0.016 (3) | 0.000 (2) | −0.003 (2) | 0.001 (2) |
O3W | 0.017 (3) | 0.015 (3) | 0.011 (3) | −0.004 (2) | −0.004 (2) | 0.001 (2) |
O4W | 0.027 (4) | 0.016 (3) | 0.012 (3) | 0.000 (3) | −0.006 (2) | −0.003 (2) |
Zn1—O1 | 1.922 (6) | C11—N6 | 1.322 (11) |
Zn1—O4 | 1.923 (6) | C11—N5 | 1.360 (11) |
Zn1—O11 | 1.953 (6) | C11—C12 | 1.415 (11) |
Zn1—O8i | 1.958 (6) | C12—O15 | 1.369 (10) |
Zn2—O7 | 1.909 (7) | C12—C13 | 1.378 (13) |
Zn2—O5 | 1.938 (6) | C13—C14 | 1.406 (15) |
Zn2—O10 | 1.950 (7) | C13—H13 | 0.9500 |
Zn2—O2ii | 1.951 (7) | C14—C15 | 1.311 (15) |
P1—O3 | 1.499 (7) | C14—H14 | 0.9500 |
P1—O2 | 1.534 (7) | C15—N5 | 1.399 (13) |
P1—O1 | 1.556 (6) | C15—H15 | 0.9500 |
P1—H1P | 1.3200 | N5—H7N | 0.8800 |
P2—O6 | 1.494 (7) | N6—H8N | 0.9143 |
P2—O4 | 1.533 (6) | N6—H9N | 0.9058 |
P2—O5 | 1.543 (7) | O15—H3O | 0.9530 |
P2—H2P | 1.3200 | C16—N8 | 1.324 (11) |
P3—O9 | 1.522 (8) | C16—N7 | 1.360 (11) |
P3—O8 | 1.537 (7) | C16—C17 | 1.412 (11) |
P3—O7 | 1.559 (6) | C17—O16 | 1.363 (10) |
P3—H3P | 1.3200 | C17—C18 | 1.373 (13) |
P4—O10 | 1.516 (6) | C18—C19 | 1.423 (15) |
P4—O12 | 1.523 (7) | C18—H18 | 0.9500 |
P4—O11 | 1.524 (7) | C19—C20 | 1.317 (15) |
P4—H4P | 1.3200 | C19—H19 | 0.9500 |
O1—P13i | 1.594 (14) | C20—N7 | 1.388 (12) |
O1—Zn12 | 1.895 (10) | C20—H20 | 0.9500 |
O2—Zn2i | 1.951 (7) | N7—H10N | 0.8800 |
O4—P11 | 1.674 (12) | N8—H11N | 0.9147 |
O4—Zn12 | 1.891 (9) | N8—H12N | 0.8500 |
O7—P14 | 1.615 (13) | O16—H4O | 0.9249 |
O7—Zn11 | 1.950 (9) | Zn11—O28 | 1.96 (3) |
O8—Zn1ii | 1.958 (6) | Zn11—O24 | 1.97 (3) |
O10—Zn11 | 1.746 (9) | Zn12—O25i | 1.93 (3) |
O10—P12 | 1.816 (13) | Zn12—O26 | 1.94 (3) |
C1—N1 | 1.306 (11) | P11—O28 | 1.55 (3) |
C1—N2 | 1.341 (12) | P11—O22 | 1.60 (3) |
C1—C2 | 1.449 (11) | P11—H11P | 1.3200 |
C2—O13 | 1.326 (10) | P12—O21 | 1.45 (3) |
C2—C3 | 1.365 (13) | P12—O26 | 1.52 (3) |
C3—C4 | 1.406 (14) | P12—H12P | 1.3200 |
C3—H3 | 0.9500 | P13—O24 | 1.44 (3) |
C4—C5 | 1.377 (15) | P13—O27 | 1.58 (3) |
C4—H4 | 0.9500 | P13—O1ii | 1.594 (14) |
C5—N1 | 1.345 (13) | P13—H13P | 1.3200 |
C5—H5 | 0.9500 | P14—O23 | 1.43 (3) |
N1—H1N | 0.8800 | P14—O25 | 1.58 (3) |
N2—H2N | 0.8530 | P14—H14P | 1.3200 |
N2—H3N | 0.8749 | O25—Zn12ii | 1.93 (3) |
O13—H1O | 0.9625 | O1W—H1W | 0.7246 |
C6—N3 | 1.322 (11) | O1W—H2W | 0.8001 |
C6—N4 | 1.340 (11) | O2W—H3W | 0.8384 |
C6—C7 | 1.434 (11) | O2W—H4W | 0.8930 |
C7—O14 | 1.340 (10) | O3W—H5W | 0.9093 |
C7—C8 | 1.342 (13) | O3W—H6W | 0.8355 |
C8—C9 | 1.421 (14) | O4W—H7W | 0.9286 |
C8—H8 | 0.9500 | O4W—H8W | 0.8023 |
C9—C10 | 1.373 (14) | O11W—H11W | 0.8200 |
C9—H9 | 0.9500 | O11W—H12W | 0.7846 |
C10—N3 | 1.339 (12) | O12W—H13W | 0.8024 |
C10—H10 | 0.9500 | O12W—H14W | 0.8329 |
N3—H4N | 0.8800 | O13W—H15W | 0.8035 |
N4—H5N | 0.8578 | O13W—H16W | 0.8307 |
N4—H6N | 0.9428 | O14W—H17W | 0.8153 |
O14—H2O | 0.9391 | O14W—H18W | 0.8034 |
O1—Zn1—O4 | 126.2 (3) | N6—C11—N5 | 119.6 (8) |
O1—Zn1—O11 | 101.8 (3) | N6—C11—C12 | 121.7 (8) |
O4—Zn1—O11 | 107.4 (3) | N5—C11—C12 | 118.7 (8) |
O1—Zn1—O8i | 108.9 (3) | O15—C12—C13 | 128.2 (8) |
O4—Zn1—O8i | 101.6 (3) | O15—C12—C11 | 112.9 (7) |
O11—Zn1—O8i | 110.7 (3) | C13—C12—C11 | 118.8 (8) |
O7—Zn2—O5 | 102.1 (3) | C12—C13—C14 | 120.2 (10) |
O7—Zn2—O10 | 125.8 (3) | C12—C13—H13 | 119.9 |
O5—Zn2—O10 | 106.6 (3) | C14—C13—H13 | 119.9 |
O7—Zn2—O2ii | 109.7 (3) | C15—C14—C13 | 120.6 (10) |
O5—Zn2—O2ii | 109.7 (3) | C15—C14—H14 | 119.7 |
O10—Zn2—O2ii | 102.5 (3) | C13—C14—H14 | 119.7 |
O3—P1—O2 | 112.4 (4) | C14—C15—N5 | 120.3 (10) |
O3—P1—O1 | 112.2 (3) | C14—C15—H15 | 119.9 |
O2—P1—O1 | 113.1 (4) | N5—C15—H15 | 119.9 |
O3—P1—H1P | 106.1 | C11—N5—C15 | 121.3 (8) |
O2—P1—H1P | 106.1 | C11—N5—H7N | 119.3 |
O1—P1—H1P | 106.1 | C15—N5—H7N | 119.3 |
O6—P2—O4 | 113.8 (4) | C11—N6—H8N | 119.9 |
O6—P2—O5 | 113.0 (4) | C11—N6—H9N | 123.8 |
O4—P2—O5 | 111.0 (4) | H8N—N6—H9N | 116.0 |
O6—P2—H2P | 106.1 | C12—O15—H3O | 105.8 |
O4—P2—H2P | 106.1 | N8—C16—N7 | 119.2 (8) |
O5—P2—H2P | 106.1 | N8—C16—C17 | 123.2 (8) |
O9—P3—O8 | 111.7 (4) | N7—C16—C17 | 117.6 (8) |
O9—P3—O7 | 112.0 (4) | O16—C17—C18 | 125.7 (8) |
O8—P3—O7 | 112.5 (4) | O16—C17—C16 | 114.6 (7) |
O9—P3—H3P | 106.7 | C18—C17—C16 | 119.8 (9) |
O8—P3—H3P | 106.7 | C17—C18—C19 | 120.0 (9) |
O7—P3—H3P | 106.7 | C17—C18—H18 | 120.0 |
O10—P4—O12 | 113.2 (4) | C19—C18—H18 | 120.0 |
O10—P4—O11 | 112.8 (4) | C20—C19—C18 | 119.7 (9) |
O12—P4—O11 | 112.4 (4) | C20—C19—H19 | 120.1 |
O10—P4—H4P | 105.9 | C18—C19—H19 | 120.1 |
O12—P4—H4P | 105.9 | C19—C20—N7 | 120.3 (10) |
O11—P4—H4P | 105.9 | C19—C20—H20 | 119.8 |
P13i—O1—Zn12 | 138.0 (7) | N7—C20—H20 | 119.8 |
P1—O1—Zn1 | 137.6 (4) | C16—N7—C20 | 122.5 (8) |
P1—O2—Zn2i | 117.7 (4) | C16—N7—H10N | 118.7 |
P11—O4—Zn12 | 134.2 (6) | C20—N7—H10N | 118.7 |
P2—O4—Zn1 | 139.0 (4) | C16—N8—H11N | 116.9 |
P2—O5—Zn2 | 123.5 (4) | C16—N8—H12N | 123.5 |
P3—O7—Zn2 | 137.6 (4) | H11N—N8—H12N | 119.3 |
P14—O7—Zn11 | 133.3 (7) | C17—O16—H4O | 111.9 |
P3—O8—Zn1ii | 118.4 (4) | O10—Zn11—O7 | 136.7 (5) |
Zn11—O10—P12 | 129.3 (6) | O10—Zn11—O28 | 111.9 (9) |
P4—O10—Zn2 | 140.5 (4) | O7—Zn11—O28 | 101.5 (9) |
P4—O11—Zn1 | 122.8 (4) | O10—Zn11—O24 | 93.0 (9) |
N1—C1—N2 | 122.2 (8) | O7—Zn11—O24 | 100.1 (9) |
N1—C1—C2 | 117.9 (8) | O28—Zn11—O24 | 110.8 (12) |
N2—C1—C2 | 119.9 (8) | O4—Zn12—O1 | 129.8 (5) |
O13—C2—C3 | 126.6 (8) | O4—Zn12—O25i | 100.1 (10) |
O13—C2—C1 | 115.0 (8) | O1—Zn12—O25i | 103.1 (9) |
C3—C2—C1 | 118.3 (9) | O4—Zn12—O26 | 110.7 (10) |
C2—C3—C4 | 120.8 (9) | O1—Zn12—O26 | 101.3 (10) |
C2—C3—H3 | 119.6 | O25i—Zn12—O26 | 111.2 (13) |
C4—C3—H3 | 119.6 | O28—P11—O22 | 109.6 (17) |
C5—C4—C3 | 118.3 (9) | O28—P11—O4 | 114.1 (13) |
C5—C4—H4 | 120.9 | O22—P11—O4 | 112.0 (13) |
C3—C4—H4 | 120.9 | O28—P11—H11P | 106.9 |
N1—C5—C4 | 119.6 (10) | O22—P11—H11P | 106.9 |
N1—C5—H5 | 120.2 | O4—P11—H11P | 106.9 |
C4—C5—H5 | 120.2 | O21—P12—O26 | 112.1 (17) |
C1—N1—C5 | 124.9 (8) | O21—P12—O10 | 110.4 (11) |
C1—N1—H1N | 117.5 | O26—P12—O10 | 115.9 (14) |
C5—N1—H1N | 117.5 | O21—P12—H12P | 105.9 |
C1—N2—H2N | 119.2 | O26—P12—H12P | 105.9 |
C1—N2—H3N | 122.2 | O10—P12—H12P | 105.9 |
H2N—N2—H3N | 117.7 | O24—P13—O27 | 112.8 (19) |
C2—O13—H1O | 104.7 | O24—P13—O1ii | 110.3 (14) |
N3—C6—N4 | 122.1 (8) | O27—P13—O1ii | 117.8 (13) |
N3—C6—C7 | 117.6 (8) | O24—P13—H13P | 104.9 |
N4—C6—C7 | 120.3 (8) | O27—P13—H13P | 104.9 |
O14—C7—C8 | 125.4 (8) | O1ii—P13—H13P | 104.9 |
O14—C7—C6 | 114.9 (8) | O23—P14—O25 | 113.0 (18) |
C8—C7—C6 | 119.7 (9) | O23—P14—O7 | 121.7 (13) |
C7—C8—C9 | 120.4 (9) | O25—P14—O7 | 109.3 (13) |
C7—C8—H8 | 119.8 | O23—P14—H14P | 103.5 |
C9—C8—H8 | 119.8 | O25—P14—H14P | 103.5 |
C10—C9—C8 | 118.2 (9) | O7—P14—H14P | 103.5 |
C10—C9—H9 | 120.9 | P13—O24—Zn11 | 125.8 (18) |
C8—C9—H9 | 120.9 | P14—O25—Zn12ii | 122.0 (18) |
N3—C10—C9 | 119.7 (10) | P12—O26—Zn12 | 119.5 (19) |
N3—C10—H10 | 120.1 | P11—O28—Zn11 | 117.6 (16) |
C9—C10—H10 | 120.1 | H1W—O1W—H2W | 120.3 |
C6—N3—C10 | 124.5 (8) | H3W—O2W—H4W | 116.8 |
C6—N3—H4N | 117.8 | H5W—O3W—H6W | 104.0 |
C10—N3—H4N | 117.8 | H7W—O4W—H8W | 130.4 |
C6—N4—H5N | 119.3 | H11W—O11W—H12W | 101.5 |
C6—N4—H6N | 112.9 | H13W—O12W—H14W | 102.7 |
H5N—N4—H6N | 127.3 | H15W—O13W—H16W | 110.6 |
C7—O14—H2O | 121.0 | H17W—O14W—H18W | 110.6 |
O3—P1—O1—Zn1 | −90.4 (6) | O15—C12—C13—C14 | 180.0 (8) |
O2—P1—O1—Zn1 | 38.1 (6) | C11—C12—C13—C14 | −1.9 (12) |
O3—P1—O2—Zn2i | 177.4 (4) | C12—C13—C14—C15 | 0.1 (13) |
O1—P1—O2—Zn2i | 49.0 (5) | C13—C14—C15—N5 | 2.4 (13) |
O6—P2—O4—Zn1 | −99.7 (6) | N6—C11—N5—C15 | −177.1 (7) |
O5—P2—O4—Zn1 | 29.0 (7) | C12—C11—N5—C15 | 1.6 (11) |
O6—P2—O5—Zn2 | −168.7 (5) | C14—C15—N5—C11 | −3.3 (12) |
O4—P2—O5—Zn2 | 62.1 (6) | N8—C16—C17—O16 | −1.6 (11) |
O9—P3—O7—Zn2 | 92.4 (6) | N7—C16—C17—O16 | 177.8 (6) |
O8—P3—O7—Zn2 | −34.5 (7) | N8—C16—C17—C18 | 178.8 (7) |
O9—P3—O8—Zn1ii | −178.8 (4) | N7—C16—C17—C18 | −1.8 (11) |
O7—P3—O8—Zn1ii | −51.8 (5) | O16—C17—C18—C19 | −179.6 (8) |
O12—P4—O10—Zn2 | 107.1 (6) | C16—C17—C18—C19 | 0.0 (12) |
O11—P4—O10—Zn2 | −21.9 (7) | C17—C18—C19—C20 | 0.3 (13) |
O10—P4—O11—Zn1 | −62.7 (6) | C18—C19—C20—N7 | 1.3 (13) |
O12—P4—O11—Zn1 | 167.8 (4) | N8—C16—N7—C20 | −177.1 (7) |
N1—C1—C2—O13 | −179.1 (6) | C17—C16—N7—C20 | 3.4 (11) |
N2—C1—C2—O13 | 0.8 (11) | C19—C20—N7—C16 | −3.3 (12) |
N1—C1—C2—C3 | 3.0 (11) | P12—O10—Zn11—O7 | 42.2 (9) |
N2—C1—C2—C3 | −177.1 (7) | P12—O10—Zn11—O28 | −95.7 (10) |
O13—C2—C3—C4 | −178.6 (8) | P12—O10—Zn11—O24 | 150.4 (10) |
C1—C2—C3—C4 | −1.0 (12) | P11—O4—Zn12—O1 | −30.3 (9) |
C2—C3—C4—C5 | −2.1 (13) | P11—O4—Zn12—O25i | −146.9 (11) |
C3—C4—C5—N1 | 3.2 (13) | P11—O4—Zn12—O26 | 95.7 (12) |
N2—C1—N1—C5 | 178.1 (7) | P13i—O1—Zn12—O4 | −20.5 (11) |
C2—C1—N1—C5 | −2.0 (12) | P13i—O1—Zn12—O25i | 94.9 (12) |
C4—C5—N1—C1 | −1.2 (12) | P13i—O1—Zn12—O26 | −149.9 (12) |
N3—C6—C7—O14 | 180.0 (6) | Zn12—O4—P11—O28 | −34.9 (15) |
N4—C6—C7—O14 | −0.1 (11) | Zn12—O4—P11—O22 | 90.5 (16) |
N3—C6—C7—C8 | 1.9 (12) | Zn11—O10—P12—O21 | −99.3 (13) |
N4—C6—C7—C8 | −178.2 (7) | Zn11—O10—P12—O26 | 29.5 (16) |
O14—C7—C8—C9 | −178.9 (8) | Zn11—O7—P14—O23 | −89.2 (17) |
C6—C7—C8—C9 | −1.0 (12) | Zn11—O7—P14—O25 | 45.3 (15) |
C7—C8—C9—C10 | −0.7 (13) | O27—P13—O24—Zn11 | 168.1 (19) |
C8—C9—C10—N3 | 1.6 (13) | O1ii—P13—O24—Zn11 | −58 (2) |
N4—C6—N3—C10 | 179.0 (7) | O23—P14—O25—Zn12ii | −165.9 (18) |
C7—C6—N3—C10 | −1.1 (12) | O7—P14—O25—Zn12ii | 55 (2) |
C9—C10—N3—C6 | −0.7 (13) | O21—P12—O26—Zn12 | 179.3 (17) |
N6—C11—C12—O15 | −1.9 (11) | O10—P12—O26—Zn12 | 51 (2) |
N5—C11—C12—O15 | 179.4 (6) | O22—P11—O28—Zn11 | −175.2 (17) |
N6—C11—C12—C13 | 179.6 (7) | O4—P11—O28—Zn11 | −48.6 (18) |
N5—C11—C12—C13 | 1.0 (11) |
Symmetry codes: (i) x, y−1, z; (ii) x, y+1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···O1Wiii | 0.95 | 2.60 | 3.539 (13) | 169 |
N1—H1N···O9 | 0.88 | 1.73 | 2.595 (10) | 168 |
N2—H2N···O16iv | 0.85 | 2.31 | 3.060 (10) | 147 |
N2—H3N···O8 | 0.87 | 2.10 | 2.926 (9) | 157 |
O13—H1O···O6iv | 0.96 | 1.58 | 2.488 (9) | 156 |
C8—H8···O3Wiv | 0.95 | 2.55 | 3.225 (13) | 128 |
C9—H9···O4Wv | 0.95 | 2.61 | 3.562 (12) | 178 |
C10—H10···O3iii | 0.95 | 2.54 | 3.486 (14) | 171 |
N3—H4N···O2W | 0.88 | 1.93 | 2.771 (10) | 160 |
N4—H5N···O15iv | 0.86 | 2.22 | 2.959 (10) | 144 |
N4—H6N···O11 | 0.94 | 2.01 | 2.853 (9) | 148 |
O14—H2O···O3Wiv | 0.94 | 1.78 | 2.656 (9) | 154 |
C14—H14···O3Wvi | 0.95 | 2.54 | 3.490 (12) | 175 |
C15—H15···O9vi | 0.95 | 2.50 | 3.442 (14) | 172 |
N5—H7N···O1W | 0.88 | 1.91 | 2.756 (9) | 162 |
N6—H8N···O13vii | 0.91 | 2.19 | 3.019 (9) | 151 |
N6—H9N···O5 | 0.91 | 1.97 | 2.824 (10) | 156 |
O15—H3O···O12vii | 0.95 | 1.57 | 2.474 (9) | 157 |
C18—H18···O4Wvii | 0.95 | 2.47 | 3.134 (12) | 127 |
C20—H20···O2Wvi | 0.95 | 2.59 | 3.508 (13) | 163 |
N7—H10N···O3 | 0.88 | 1.73 | 2.595 (10) | 169 |
N8—H11N···O14viii | 0.91 | 2.30 | 3.090 (9) | 145 |
N8—H12N···O2 | 0.85 | 2.21 | 3.012 (9) | 157 |
O16—H4O···O4Wvii | 0.92 | 1.72 | 2.611 (10) | 161 |
O1W—H1W···O10 | 0.72 | 2.13 | 2.787 (9) | 152 |
O1W—H2W···O3 | 0.80 | 1.94 | 2.732 (8) | 171 |
O2W—H3W···O4 | 0.84 | 2.04 | 2.785 (9) | 147 |
O2W—H4W···O9 | 0.89 | 1.83 | 2.711 (9) | 168 |
O3W—H5W···O6ii | 0.91 | 1.79 | 2.694 (9) | 177 |
O3W—H6W···O7 | 0.84 | 1.96 | 2.797 (9) | 180 |
O4W—H7W···O12 | 0.93 | 1.77 | 2.694 (9) | 172 |
O4W—H8W···O1ii | 0.80 | 2.03 | 2.760 (9) | 150 |
O11W—H11W···O22ii | 0.82 | 1.90 | 2.72 (4) | 178 |
O11W—H12W···O7 | 0.78 | 1.87 | 2.66 (4) | 178 |
O12W—H13W···O1 | 0.80 | 1.84 | 2.65 (3) | 179 |
O12W—H14W···O21i | 0.83 | 1.98 | 2.81 (3) | 179 |
O13W—H15W···O4 | 0.80 | 1.88 | 2.68 (3) | 178 |
O13W—H16W···O23 | 0.83 | 1.91 | 2.74 (4) | 177 |
O14W—H17W···O10 | 0.82 | 1.92 | 2.73 (4) | 176 |
O14W—H18W···O27i | 0.80 | 1.92 | 2.72 (4) | 176 |
Symmetry codes: (i) x, y−1, z; (ii) x, y+1, z; (iii) x−1, y, z; (iv) x−1/2, −y+1, z−1/2; (v) x−1, y−1, z; (vi) x+1, y, z; (vii) x+1/2, −y+1, z+1/2; (viii) x+1/2, −y, z+1/2. |
[Zn(HPO3)(C6H8N2)] | Dx = 1.907 Mg m−3 |
Mr = 253.49 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pca21 | Cell parameters from 8070 reflections |
a = 8.0419 (2) Å | θ = 2.9–28.8° |
b = 13.5008 (4) Å | µ = 2.94 mm−1 |
c = 8.1307 (2) Å | T = 173 K |
V = 882.77 (4) Å3 | Plate, colourless |
Z = 4 | 0.27 × 0.10 × 0.02 mm |
F(000) = 512 |
Rigaku XtaLAB P200 HPC diffractometer | 2038 independent reflections |
Radiation source: rotating_anode, Rigaku FR-X | 1952 reflections with I > 2σ(I) |
Rigaku Osmic Confocal Optical System monochromator | Rint = 0.044 |
ω scans | θmax = 29.2°, θmin = 3.0° |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2017) | h = −10→10 |
Tmin = 0.731, Tmax = 1.000 | k = −17→16 |
11004 measured reflections | l = −10→10 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.022 | w = 1/[σ2(Fo2) + (0.0292P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.051 | (Δ/σ)max < 0.001 |
S = 1.03 | Δρmax = 0.71 e Å−3 |
2038 reflections | Δρmin = −0.27 e Å−3 |
131 parameters | Absolute structure: Flack (1983) parameter |
1 restraint | Absolute structure parameter: 0.016 (14) |
Primary atom site location: structure-invariant direct methods |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component inversion twin |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.34696 (3) | 0.06830 (2) | 0.34354 (5) | 0.01300 (11) | |
P1 | 0.00036 (8) | 0.12113 (5) | 0.21567 (10) | 0.01250 (16) | |
H1 | −0.0400 | 0.2127 | 0.1753 | 0.015* | |
O1 | 0.1265 (2) | 0.12693 (13) | 0.3561 (3) | 0.0175 (4) | |
O2 | −0.1583 (2) | 0.06927 (12) | 0.2738 (3) | 0.0164 (5) | |
O3 | 0.0745 (3) | 0.07310 (14) | 0.0661 (3) | 0.0229 (5) | |
C1 | 0.5193 (3) | 0.2527 (2) | 0.2485 (4) | 0.0149 (6) | |
C2 | 0.4078 (3) | 0.3236 (2) | 0.1875 (4) | 0.0181 (6) | |
C3 | 0.4181 (4) | 0.4194 (2) | 0.2496 (4) | 0.0235 (7) | |
H3 | 0.3426 | 0.4681 | 0.2106 | 0.028* | |
C4 | 0.5345 (4) | 0.4458 (2) | 0.3662 (5) | 0.0269 (7) | |
H4 | 0.5386 | 0.5119 | 0.4059 | 0.032* | |
C5 | 0.6460 (4) | 0.3756 (3) | 0.4257 (4) | 0.0263 (8) | |
H5 | 0.7264 | 0.3931 | 0.5062 | 0.032* | |
C6 | 0.6374 (3) | 0.2797 (2) | 0.3651 (5) | 0.0202 (7) | |
H6 | 0.7138 | 0.2314 | 0.4041 | 0.024* | |
N1 | 0.5069 (3) | 0.14987 (17) | 0.2000 (4) | 0.0155 (5) | |
H1N | 0.601 (4) | 0.121 (2) | 0.199 (5) | 0.019* | |
H2N | 0.465 (4) | 0.139 (2) | 0.113 (4) | 0.019* | |
N2 | 0.2847 (3) | 0.2972 (2) | 0.0758 (4) | 0.0261 (7) | |
H3N | 0.230 (5) | 0.343 (3) | 0.039 (5) | 0.031* | |
H4N | 0.311 (4) | 0.250 (3) | 0.025 (5) | 0.031* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.01069 (16) | 0.01757 (17) | 0.01076 (17) | −0.00001 (9) | −0.00039 (16) | −0.00114 (16) |
P1 | 0.0106 (3) | 0.0163 (3) | 0.0105 (4) | 0.0005 (2) | 0.0004 (3) | 0.0012 (3) |
O1 | 0.0137 (8) | 0.0240 (9) | 0.0148 (11) | 0.0020 (6) | −0.0017 (10) | −0.0028 (11) |
O2 | 0.0092 (11) | 0.0186 (12) | 0.0214 (13) | 0.0005 (6) | 0.0007 (7) | 0.0033 (8) |
O3 | 0.0256 (13) | 0.0302 (13) | 0.0130 (12) | 0.0011 (8) | 0.0044 (9) | −0.0023 (8) |
C1 | 0.0144 (13) | 0.0176 (13) | 0.0127 (14) | −0.0031 (10) | 0.0054 (11) | 0.0018 (10) |
C2 | 0.0158 (13) | 0.0225 (14) | 0.0160 (15) | −0.0001 (11) | 0.0036 (12) | 0.0032 (11) |
C3 | 0.0272 (18) | 0.0223 (14) | 0.0210 (17) | 0.0020 (12) | 0.0048 (14) | 0.0039 (11) |
C4 | 0.0350 (15) | 0.0215 (14) | 0.024 (2) | −0.0052 (12) | 0.0038 (16) | −0.0063 (14) |
C5 | 0.0244 (16) | 0.0315 (19) | 0.0230 (19) | −0.0061 (13) | −0.0028 (12) | −0.0056 (14) |
C6 | 0.0168 (13) | 0.0249 (14) | 0.019 (2) | 0.0000 (10) | 0.0000 (12) | 0.0007 (14) |
N1 | 0.0140 (11) | 0.0197 (11) | 0.0128 (14) | 0.0028 (9) | −0.0015 (10) | 0.0001 (11) |
N2 | 0.0288 (19) | 0.0244 (13) | 0.0250 (16) | 0.0087 (11) | −0.0079 (14) | −0.0021 (12) |
Zn1—O3i | 1.918 (2) | C2—N2 | 1.389 (4) |
Zn1—O2ii | 1.9425 (17) | C2—C3 | 1.390 (4) |
Zn1—O1 | 1.9445 (16) | C3—C4 | 1.379 (5) |
Zn1—N1 | 2.056 (3) | C3—H3 | 0.9500 |
P1—O3 | 1.501 (2) | C4—C5 | 1.391 (5) |
P1—O1 | 1.529 (3) | C4—H4 | 0.9500 |
P1—O2 | 1.5299 (19) | C5—C6 | 1.388 (5) |
P1—H1 | 1.3200 | C5—H5 | 0.9500 |
O2—Zn1iii | 1.9424 (17) | C6—H6 | 0.9500 |
O3—Zn1iv | 1.918 (2) | N1—H1N | 0.85 (3) |
C1—C6 | 1.390 (4) | N1—H2N | 0.80 (3) |
C1—C2 | 1.402 (4) | N2—H3N | 0.82 (4) |
C1—N1 | 1.447 (4) | N2—H4N | 0.79 (4) |
O3i—Zn1—O2ii | 108.36 (9) | C4—C3—C2 | 122.0 (3) |
O3i—Zn1—O1 | 103.71 (10) | C4—C3—H3 | 119.0 |
O2ii—Zn1—O1 | 112.63 (7) | C2—C3—H3 | 119.0 |
O3i—Zn1—N1 | 108.15 (11) | C3—C4—C5 | 120.1 (3) |
O2ii—Zn1—N1 | 111.10 (10) | C3—C4—H4 | 120.0 |
O1—Zn1—N1 | 112.46 (9) | C5—C4—H4 | 120.0 |
O3—P1—O1 | 111.30 (12) | C6—C5—C4 | 118.7 (3) |
O3—P1—O2 | 112.56 (12) | C6—C5—H5 | 120.7 |
O1—P1—O2 | 110.24 (13) | C4—C5—H5 | 120.7 |
O3—P1—H1 | 107.5 | C5—C6—C1 | 121.3 (3) |
O1—P1—H1 | 107.5 | C5—C6—H6 | 119.3 |
O2—P1—H1 | 107.5 | C1—C6—H6 | 119.3 |
P1—O1—Zn1 | 123.02 (15) | C1—N1—Zn1 | 113.73 (19) |
P1—O2—Zn1iii | 120.64 (10) | C1—N1—H1N | 112 (2) |
P1—O3—Zn1iv | 155.43 (13) | Zn1—N1—H1N | 109 (2) |
C6—C1—C2 | 120.0 (3) | C1—N1—H2N | 117 (2) |
C6—C1—N1 | 118.9 (2) | Zn1—N1—H2N | 98 (2) |
C2—C1—N1 | 121.0 (2) | H1N—N1—H2N | 106 (3) |
N2—C2—C3 | 121.2 (3) | C2—N2—H3N | 115 (2) |
N2—C2—C1 | 120.8 (3) | C2—N2—H4N | 111 (2) |
C3—C2—C1 | 117.9 (3) | H3N—N2—H4N | 124 (3) |
O3—P1—O1—Zn1 | −4.93 (18) | N2—C2—C3—C4 | 177.0 (3) |
O2—P1—O1—Zn1 | 120.71 (14) | C1—C2—C3—C4 | 0.8 (5) |
O3—P1—O2—Zn1iii | 61.4 (2) | C2—C3—C4—C5 | −0.2 (5) |
O1—P1—O2—Zn1iii | −63.54 (18) | C3—C4—C5—C6 | 0.2 (5) |
O1—P1—O3—Zn1iv | −114.0 (4) | C4—C5—C6—C1 | −0.7 (5) |
O2—P1—O3—Zn1iv | 121.6 (3) | C2—C1—C6—C5 | 1.2 (5) |
C6—C1—C2—N2 | −177.5 (3) | N1—C1—C6—C5 | −174.8 (3) |
N1—C1—C2—N2 | −1.5 (4) | C6—C1—N1—Zn1 | 89.0 (3) |
C6—C1—C2—C3 | −1.2 (4) | C2—C1—N1—Zn1 | −87.0 (3) |
N1—C1—C2—C3 | 174.7 (3) |
Symmetry codes: (i) −x+1/2, y, z+1/2; (ii) x+1/2, −y, z; (iii) x−1/2, −y, z; (iv) −x+1/2, y, z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O2v | 0.85 (3) | 2.15 (4) | 2.966 (3) | 161 (3) |
N1—H2N···O1iv | 0.80 (3) | 2.22 (4) | 3.011 (4) | 171 (3) |
N2—H4N···O1iv | 0.79 (4) | 2.21 (4) | 2.998 (4) | 174 (4) |
N2—H3N···Cgiv | 0.82 (4) | 2.80 (4) | 3.400 (3) | 132 (3) |
Symmetry codes: (iv) −x+1/2, y, z−1/2; (v) x+1, y, z. |
Acknowledgements
We thank the EPSRC National Crystallography Service (University of Southampton) for the X-ray data collection for (I).
References
Dong, Z.-J., Yan, Y., Zhang, W.-Q., Wang, Y. & Li, J.-Y. (2015). Chem. Res. Chin. Univ. 31, 498–502. Web of Science CrossRef CAS Google Scholar
Fan, J., Slebodnick, C., Troya, D., Angel, R. & Hanson, B. E. (2005). Inorg. Chem. 44, 2719–2727. Web of Science CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Halime, I., Bezgour, A., Fahim, M., Dusek, M., Fejfarova, K., Lachkar, M. & El Bali, B. (2011). J. Chem. Crystallogr. 41, 223–229. Web of Science CrossRef Google Scholar
Halvorson, K. E., Patterson, C. & Willett, R. D. (1990). Acta Cryst. B46, 508–519. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Harrison, W. T. A. (2006). Acta Cryst. C62, m156–m158. Web of Science CrossRef CAS IUCr Journals Google Scholar
Harrison, W. T. A. (2011). Crystals, 1, 236–243. Web of Science CrossRef Google Scholar
Harrison, W. T. A. & McNamee, P. M. (2010). J. Chem. Res. (S), 34, 641–642. Web of Science CrossRef CAS Google Scholar
Harrison, W. T. A., Phillips, M. L. F., Stanchfield, J. & Nenoff, T. M. (2001). Inorg. Chem. 40, 895–899. Web of Science CSD CrossRef CAS Google Scholar
Huang, H.-L., Lin, H.-Y., Chen, P.-S., Lee, J.-J., Kung, H.-C. & Wang, S.-L. (2017). Dalton Trans. 46, 364–368. Web of Science CrossRef CAS PubMed Google Scholar
Katinaitė, J. & Harrison, W. T. A. (2017). Acta Cryst. E73, 759–762. Web of Science CrossRef IUCr Journals Google Scholar
Kirkpatrick, A. & Harrison, W. T. A. (2004). Solid State Sci. 6, 593–598. CSD CrossRef CAS Google Scholar
Koval'chukova, O. V., Palkina, K. K., Strashnova, S. B. & Zaitsev, B. E. (2008). Russ. J. Inorg. Chem. 53, 1227–1232. Google Scholar
Lin, Z.-E., Zhang, J., Zheng, S.-T. & Yang, G.-Y. (2004a). Solid State Sci. 6, 371–376. Web of Science CrossRef Google Scholar
Lin, Z.-E., Zhang, J., Zheng, S.-T. & Yang, G.-Y. (2004b). Microporous Mesoporous Mater. 68, 65–70. Web of Science CrossRef Google Scholar
Place, H., Scott, B., Long, G. S. & Willett, R. D. (1998). Inorg. Chim. Acta, 279, 1–6. Web of Science CSD CrossRef CAS Google Scholar
Rigaku OD (2017). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stilinović, V. & Kaitner, B. (2011). Cryst. Growth Des. 11, 4110–4119. Google Scholar
Wang, Y., Yu, J., Li, Y., Du, Y., Xu, R. & Ye, L. (2003). J. Solid State Chem. 170, 303–307. Web of Science CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.