research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Template or ligand? Different structural behaviours of aromatic amines in combination with zinco­phosphite networks

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, and bSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk

Edited by A. M. Chippindale, University of Reading, England (Received 7 August 2018; accepted 30 August 2018; online 11 September 2018)

The solution-mediated syntheses and crystal structures of catena-poly[bis­(2-amino-3-hy­droxy­pyridinium) [zinc-di-μ-phospho­nato] dihydrate], {(C5H7N2O)[Zn(HPO3)2]·2H2O}n, (I), and poly[(benzene-1,2-di­amine)(μ5-phospho­nato)zinc], [Zn(HPO3)(C6H8N2)]n, (II) are described. The extended structure of (I) features [010] anionic chains of vertex-sharing ZnO4 tetra­hedra and HPO3 pseudopyramids; these chains are characterized by disorder over major [occupancy 0.7962 (13)] and minor [0.2038 (13)] components, which can be superimposed on each other by a nominal translational shift. The 2-amino-3-hy­droxy­pyridinium cations and water mol­ecules of crystallization inter­act with the ZnPO chains by way of numerous O—H⋯O and N—H⋯O hydrogen bonds. The structure of (II) features a direct Zn—N bond to the neutral 1,2-di­amino­benzene species as part of ZnO3N tetra­hedra as well as HPO3 pseudopyramids. The Zn- and P-centred groupings are linked through their O-atom vertices into infinite (010) sheets and the structure is consolidated by N—H⋯O hydrogen bonds and N—H⋯π inter­actions. The crystal of (I) chosen for data collection was found to be an inversion twin in a 0.56 (2):0.44 (2) domain ratio.

1. Chemical context

Organically templated zinc phosphites (ZnPOs) are a well-established family of organic/inorganic open frameworks (e.g. Harrison et al., 2001[Harrison, W. T. A., Phillips, M. L. F., Stanchfield, J. & Nenoff, T. M. (2001). Inorg. Chem. 40, 895-899.]; Dong et al., 2015[Dong, Z.-J., Yan, Y., Zhang, W.-Q., Wang, Y. & Li, J.-Y. (2015). Chem. Res. Chin. Univ. 31, 498-502.]; Huang et al., 2017[Huang, H.-L., Lin, H.-Y., Chen, P.-S., Lee, J.-J., Kung, H.-C. & Wang, S.-L. (2017). Dalton Trans. 46, 364-368.]). The stated motivations for studying these phases include their potential applications in catalysis, separation and as `functional materials' (Wang et al., 2003[Wang, Y., Yu, J., Li, Y., Du, Y., Xu, R. & Ye, L. (2003). J. Solid State Chem. 170, 303-307.]). Important features of their crystal structures include the nature of the polyhedral building units [ZnO4, ZnO3(H2O), ZnO3N, HPO3] and their connectivity, which defines the Zn:P ratio; for example, ZnO4 and HPO3 units sharing all their vertices as Zn—O—P bonds will lead to an anionic [Zn3(HPO3)4]n2n framework (a 3:4 Zn:P ratio), the charge of which must be balanced by the organic templating cation (e.g. Katinaitė & Harrison, 2017[Katinaitė, J. & Harrison, W. T. A. (2017). Acta Cryst. E73, 759-762.]). If, however, one of the P—O vertices is `terminal' (a formal P=O double bond that does not link to zinc), then a [Zn(HPO3)2]n2n stoichiometry (1:2 Zn:P ratio) arises (e.g. Halime et al., 2011[Halime, I., Bezgour, A., Fahim, M., Dusek, M., Fejfarova, K., Lachkar, M. & El Bali, B. (2011). J. Chem. Crystallogr. 41, 223-229.]). A combination of HPO3 (all vertices bonding) and HPO3 (one terminal vertex) units leads to a [Zn2(HPO3)3]n2n framework (2:3 Zn:P ratio) (Lin et al., 2004a[Lin, Z.-E., Zhang, J., Zheng, S.-T. & Yang, G.-Y. (2004a). Solid State Sci. 6, 371-376.]). Another important structural feature of these phases is the `dual character' of the organic species: most commonly it is a protonated organic amine, which inter­acts with the ZnPO framework via N—H⋯O hydrogen bonds (e.g. Harrison & McNamee, 2010[Harrison, W. T. A. & McNamee, P. M. (2010). J. Chem. Res. (S), 34, 641-642.]). However, direct Zn—N bonds are also possible (e.g. Fan et al., 2005[Fan, J., Slebodnick, C., Troya, D., Angel, R. & Hanson, B. E. (2005). Inorg. Chem. 44, 2719-2727.]), in which case the (unprotonated) organic species could be said to be acting as a ligand, although its steric bulk means that it does exert a `templating effect' on the extended structure. This has an important effect on the zinc-to-phospho­rus ratio; for example, a combination of ZnO3N and HPO3 (all vertices bonding) units leads to a neutral [Zn(HPO3)]n (1:1 Zn:P ratio) network (e.g. Lin et al., 2004b[Lin, Z.-E., Zhang, J., Zheng, S.-T. & Yang, G.-Y. (2004b). Microporous Mesoporous Mater. 68, 65-70.]). The complex structure of {(C4H12N2)[Zn5(HPO3)6(C4H10N2)]}n (Harrison, 2006[Harrison, W. T. A. (2006). Acta Cryst. C62, m156-m158.]) is notable for featuring the same organic species acting as a protonated template and a ligand in the same structure.

[Scheme 1]

As part of our ongoing studies in this area we now describe the syntheses and structures of (C5H7N2O)[Zn(HPO3)2]·2H2O, (I)[link], and [Zn(HPO3)(C6H8N2)], (II)[link], where C5H7N2O+ is the 2-amino-3-hy­droxy­pyridinium cation and C6H8N2 is neutral 1,2-di­amino­benzene (also known as o-phenyl­enedi­amine).

2. Structural commentary

Compound (I)[link] features unusual disorder of the zincophos­phite component of the structure, in a 0.7962 (13):0.2038 (13) ratio for the major and minor components, respectively. The major component features two zinc atoms (Zn1 and Zn2), four phospho­rus atoms (P1–P4) and 12 oxygen atoms (O1–O12), the latter being parts of pseudo-pyramidal HPO32− hydrogenphosphite anions (Fig. 1[link]). Both zinc ions adopt typical tetra­hedral coordination geometries to four nearby O atoms (which all bridge to an adjacent P atom) with mean Zn—O separations of 1.939 and 1.937 Å for Zn1 and Zn2, respectively. The ranges of O—Zn—O bond angles for Zn1 [101.6 (3)–126.2 (3)] and Zn2 [102.1 (3)–125.8 (3)°] seem to indicate a high degree of distortion from a regular tetra­hedral geometry for these polyhedra, but these data should be approached with caution because of the disorder of the ZnPO framework (vide infra). The P atoms in (I)[link] all display their expected tetra­hedral geometries to three O atoms (two of which bridge to Zn atoms and one is `terminal', hence the 1:2 Zn:P stoichiometry) and one H atom. As usual (Harrison, 2011[Harrison, W. T. A. (2011). Crystals, 1, 236-243.]) the H atom attached to the P atom does not show any propensity to form hydrogen bonds. The mean P—O separation for the terminal vertices (1.510 Å) is slightly shorter than the corresponding value for the bridging O atoms (1.538 Å), although there is some overlap of individual values. The O—P—O bond angles in (I)[link] are clustered in the narrow range of 111.0 (4)–113.8 (4)° (mean = 112.5°) and are comparable to those in related structures (e.g. Dong et al., 2015[Dong, Z.-J., Yan, Y., Zhang, W.-Q., Wang, Y. & Li, J.-Y. (2015). Chem. Res. Chin. Univ. 31, 498-502.]). For the oxygen atoms (O1–O12) associated with the major disorder component, the mean Zn—O—P angle is 129.6° (Table 1[link]); four of these O atoms (O3, O6, O9 and O12) are parts of the terminal P=O vertices. The geometrical data for the minor disorder component of the chain (atoms Zn11, Zn12, P11–P14, O21–O28) are broadly similar to those of the major component, although their precision is about four to five times lower.

Table 1
Selected geometric parameters (Å, °) for (I)[link]

Zn1—O1 1.922 (6) P1—O1 1.556 (6)
Zn1—O4 1.923 (6) P2—O6 1.494 (7)
Zn1—O11 1.953 (6) P2—O4 1.533 (6)
Zn1—O8i 1.958 (6) P2—O5 1.543 (7)
Zn2—O7 1.909 (7) P3—O9 1.522 (8)
Zn2—O5 1.938 (6) P3—O8 1.537 (7)
Zn2—O10 1.950 (7) P3—O7 1.559 (6)
Zn2—O2ii 1.951 (7) P4—O10 1.516 (6)
P1—O3 1.499 (7) P4—O12 1.523 (7)
P1—O2 1.534 (7) P4—O11 1.524 (7)
       
P1—O1—Zn1 137.6 (4) P3—O7—Zn2 137.6 (4)
P1—O2—Zn2i 117.7 (4) P3—O8—Zn1ii 118.4 (4)
P2—O4—Zn1 139.0 (4) P4—O10—Zn2 140.5 (4)
P2—O5—Zn2 123.5 (4) P4—O11—Zn1 122.8 (4)
Symmetry codes: (i) x, y-1, z; (ii) x, y+1, z.
[Figure 1]
Figure 1
The asymmetric unit of (I)[link] showing the major disorder component only and expanded to show the complete zinc coordination polyhedra (50% displacement ellipsoids). Symmetry codes: (i) x, y  − 1, z; (ii) x, y + 1, z.

A striking feature of the disorder as modelled here is that atoms O1, O4, O7 and O10 are common to both major and minor components (i.e. they were modelled with full occupancies). These atoms are involved in the most distorted bond angles [e.g. O1—Zn1—O4 = 126.2 (3)°] and their mean Uiso value of 0.0191 is notably higher than the corresponding value of 0.0146 Å2 for the major-disorder O atoms. This may indicate that there are actually separate, adjacent, sites for the major and minor components for these O atoms but they cannot be resolved from the present data.

The polyhedral connectivity in (I)[link] leads to [010] infinite anionic four-ring [Zn(HPO3)2]n2n chains of strictly alternating vertex-sharing ZnO4 and HPO3 groups with only translational symmetry building up the chains. Fig. 2[link] shows a fragment of a chain including both disorder components in which it may be seen that one can be superimposed on the other by means of a simple translation of approximately b/2. Each disorder component of the chain has four crystallographically unique water mol­ecules of crystallization associated with it (O1w–O4w and O11w–O14w for the major and minor disorder components, respectively) and all of them form two O—H⋯O hydrogen bonds to their adjacent chains.

[Figure 2]
Figure 2
View of a fragment of a [010] zincophosphite chain in (I)[link] showing the major (red bonds) and minor (blue bonds) disorder components with selected atoms labelled. Note that O1, O4, O7 and O10 are common to both components.

The structure of (I)[link] is completed by four unique, ordered, charge-balancing C5H7N2O+ cations, with each one protonated at its pyridine N atom rather than the amine group as always appears to be the case with this species (e.g. Stilinović & Kaitner, 2011[Stilinović, V. & Kaitner, B. (2011). Cryst. Growth Des. 11, 4110-4119.]). Each cation in (I)[link] features an intra­molecular N—H⋯O hydrogen bond (Table 2[link]) from the 2-amino group to the adjacent 3-hy­droxy moiety, generating an S(5) ring in each case. In the extended structure, each cation forms numerous N—H⋯O and O—H⋯O hydrogen bonds with chain and water O atoms from both disorder components acting as acceptors. The situation for the N1 cation is illus­trated in Figs. 3[link] and 4[link] for the major and minor disorder components of the chain, respectively. A view down [010] of the packing for (I)[link] (Fig. 5[link]) shows the anionic chains inter­spersed by the organic cations, which themselves form wavy (001) sheets.

Table 2
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1Wiii 0.95 2.60 3.539 (13) 169
N1—H1N⋯O9 0.88 1.73 2.595 (10) 168
N2—H2N⋯O16iv 0.85 2.31 3.060 (10) 147
N2—H3N⋯O8 0.87 2.10 2.926 (9) 157
O13—H1O⋯O6iv 0.96 1.58 2.488 (9) 156
C8—H8⋯O3Wiv 0.95 2.55 3.225 (13) 128
C9—H9⋯O4Wv 0.95 2.61 3.562 (12) 178
C10—H10⋯O3iii 0.95 2.54 3.486 (14) 171
N3—H4N⋯O2W 0.88 1.93 2.771 (10) 160
N4—H5N⋯O15iv 0.86 2.22 2.959 (10) 144
N4—H6N⋯O11 0.94 2.01 2.853 (9) 148
O14—H2O⋯O3Wiv 0.94 1.78 2.656 (9) 154
C14—H14⋯O3Wvi 0.95 2.54 3.490 (12) 175
C15—H15⋯O9vi 0.95 2.50 3.442 (14) 172
N5—H7N⋯O1W 0.88 1.91 2.756 (9) 162
N6—H8N⋯O13vii 0.91 2.19 3.019 (9) 151
N6—H9N⋯O5 0.91 1.97 2.824 (10) 156
O15—H3O⋯O12vii 0.95 1.57 2.474 (9) 157
C18—H18⋯O4Wvii 0.95 2.47 3.134 (12) 127
C20—H20⋯O2Wvi 0.95 2.59 3.508 (13) 163
N7—H10N⋯O3 0.88 1.73 2.595 (10) 169
N8—H11N⋯O14viii 0.91 2.30 3.090 (9) 145
N8—H12N⋯O2 0.85 2.21 3.012 (9) 157
O16—H4O⋯O4Wvii 0.92 1.72 2.611 (10) 161
O1W—H1W⋯O10 0.72 2.13 2.787 (9) 152
O1W—H2W⋯O3 0.80 1.94 2.732 (8) 171
O2W—H3W⋯O4 0.84 2.04 2.785 (9) 147
O2W—H4W⋯O9 0.89 1.83 2.711 (9) 168
O3W—H5W⋯O6ii 0.91 1.79 2.694 (9) 177
O3W—H6W⋯O7 0.84 1.96 2.797 (9) 180
O4W—H7W⋯O12 0.93 1.77 2.694 (9) 172
O4W—H8W⋯O1ii 0.80 2.03 2.760 (9) 150
O11W—H11W⋯O22ii 0.82 1.90 2.72 (4) 178
O11W—H12W⋯O7 0.78 1.87 2.66 (4) 178
O12W—H13W⋯O1 0.80 1.84 2.65 (3) 179
O12W—H14W⋯O21i 0.83 1.98 2.81 (3) 179
O13W—H15W⋯O4 0.80 1.88 2.68 (3) 178
O13W—H16W⋯O23 0.83 1.91 2.74 (4) 177
O14W—H17W⋯O10 0.82 1.92 2.73 (4) 176
O14W—H18W⋯O27i 0.80 1.92 2.72 (4) 176
Symmetry codes: (i) x, y-1, z; (ii) x, y+1, z; (iii) x-1, y, z; (iv) [x-{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (v) x-1, y-1, z; (vi) x+1, y, z; (vii) [x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (viii) [x+{\script{1\over 2}}, -y, z+{\script{1\over 2}}].
[Figure 3]
Figure 3
Detail of (I)[link] showing the hydrogen-bonding inter­actions of the N1 cation with the major disorder component of the ZnPO chain.
[Figure 4]
Figure 4
Detail of (I)[link] showing the hydrogen-bonding inter­actions of the N1 cation with the minor disorder component of the ZnPO chain.
[Figure 5]
Figure 5
The unit-cell packing in (I)[link] viewed down [010] with H atoms omitted for clarity.

The structure of (II)[link] consists of ZnO3N tetra­hedra and HPO3 pseudo pyramids as well as neutral 1,2-di­amino­benzene mol­ecules (Table 3[link], Fig. 6[link]). The Zn—N bond, which is notably longer than the Zn—O vertices (mean = 1.935 Å) arises from a direct bond to the organic species, which could be said to be acting as a ligand rather than a (protonated) templating agent. The Zn- and P-centred polyhedra are linked by O atoms (mean Zn—O—P angle = 133.0°) and there are no terminal O atoms. This `3+3' bonding mode naturally leads to the 1:1 Zn:P stoichiometry in (II)[link].

Table 3
Selected geometric parameters (Å, °) for (II)[link]

Zn1—O3i 1.918 (2) P1—O3 1.501 (2)
Zn1—O2ii 1.9425 (17) P1—O1 1.529 (3)
Zn1—O1 1.9445 (16) P1—O2 1.5299 (19)
Zn1—N1 2.056 (3)    
       
P1—O1—Zn1 123.02 (15) P1—O3—Zn1iv 155.43 (13)
P1—O2—Zn1iii 120.64 (10)    
Symmetry codes: (i) [-x+{\script{1\over 2}}, y, z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y, z]; (iii) [x-{\script{1\over 2}}, -y, z]; (iv) [-x+{\script{1\over 2}}, y, z-{\script{1\over 2}}].
[Figure 6]
Figure 6
Fragment of the structure of (II)[link] with hydrogen bonds indicated by double-dashed lines (50% displacement ellipsoids). Symmetry codes: (i) [{1\over 2}] − x, y, [{1\over 2}] + z; (ii) [{1\over 2}] + x, −y, z; (iii) [{1\over 2}] − x, y, z − [{1\over 2}]; (iv) x + 1, y, z.

The extended structure of (II)[link] contains (010) sheets of strictly alternating Zn- and P-centred polyhedra incorporating very contorted six-ring windows (Fig. 7[link]). The pendant organic mol­ecules protrude either side of the sheets (Fig. 8[link]). The structure of (II)[link] is consolidated by N—H⋯O hydrogen bonds, which are absolutely typical in this family of phases (Huang et al., 2017[Huang, H.-L., Lin, H.-Y., Chen, P.-S., Lee, J.-J., Kung, H.-C. & Wang, S.-L. (2017). Dalton Trans. 46, 364-368.]) and less common N—H⋯π inter­actions (Table 4[link]). All of these bonds are intra-sheet inter­actions and no directional inter-sheet inter­actions beyond normal van der Waals contacts could be identified, the shortest of these being H3⋯H4 (2.67 Å).

Table 4
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2v 0.85 (3) 2.15 (4) 2.966 (3) 161 (3)
N1—H2N⋯O1iv 0.80 (3) 2.22 (4) 3.011 (4) 171 (3)
N2—H4N⋯O1iv 0.79 (4) 2.21 (4) 2.998 (4) 174 (4)
N2—H3NCgiv 0.82 (4) 2.80 (4) 3.400 (3) 132 (3)
Symmetry codes: (iv) [-x+{\script{1\over 2}}, y, z-{\script{1\over 2}}]; (v) x+1, y, z.
[Figure 7]
Figure 7
A six-ring window in (II)[link] constructed from ZnO3N and HPO3 building units. Symmetry codes: (i) [{1\over 2}] − x, y, [{1\over 2}] + z; (ii) [{1\over 2}] + x, −y, z; (iii) [{1\over 2}] − x, y, z  − [{1\over 2}]; (iv) −x, −y, z − [{1\over 2}]; (v) x − [{1\over 2}], −y, z.
[Figure 8]
Figure 8
The unit-cell packing for (II)[link] viewed down [100] with H atoms omitted for clarity.

3. Database survey

So far as we are aware, no zincophosphites with either of the organic species described here have been reported previously. It may be noted that the C6H7N2O+ cation in (I)[link] has been reported as a counter-ion with simple, discrete MCl42− anions where M = Co (Koval'chukova et al., 2008[Koval'chukova, O. V., Palkina, K. K., Strashnova, S. B. & Zaitsev, B. E. (2008). Russ. J. Inorg. Chem. 53, 1227-1232.]) and Cu (Halvorson et al., 1990[Halvorson, K. E., Patterson, C. & Willett, R. D. (1990). Acta Cryst. B46, 508-519.]) and with polymeric two-dimensional copper/bromide networks (Place et al., 1998[Place, H., Scott, B., Long, G. S. & Willett, R. D. (1998). Inorg. Chim. Acta, 279, 1-6.]). A structure containing Zn—N bonds related to (II)[link] featuring the isomeric 1,4-di­amino­benzene species has been described (Kirkpatrick & Harrison, 2004[Kirkpatrick, A. & Harrison, W. T. A. (2004). Solid State Sci. 6, 593-598.]). In this compound, the di­amine bonds to zinc atoms from both its N atoms and acts as a `pillar' linking ZnPO sheets into a three-dimensional framework. A survey of of the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]: updated to April 2018) for zinc phosphite frameworks with a directly bonded ligand/template (i.e. those containing a N—Zn—O—P—H fragment) revealed 21 matches.

4. Synthesis and crystallization

Compound (I)[link] was prepared from 1.00 g ZnO, 2.00 g H3PO3 and 1.35 g 2-amino-3-hy­droxy­pyridine. These components were added to a PTFE bottle containing 20 ml of water and shaken well, to result in an off-white slurry. The bottle was sealed and placed in an oven at 353 K for 48 h and then removed to cool to room temperature. Product recovery by vacuum filtration yielded a mass of pale-brown laths of (I)[link].

To prepare (II)[link], 1.00 g zinc acetate, 0.74 g H3PO3, 0.99 g 1,2-di­amino­benzene and 20 ml of water were placed in a PTFE bottle and shaken well, to result in a brown slurry. The bottle was sealed and placed in an oven at 353 K for 48 h and then removed to cool to room temperature. Product recovery by vacuum filtration yielded a few colourless blocks of (II)[link] accompanied by unidentified dark-brown sludge.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. The structure of (I)[link] proved to be difficult to solve and refine. The systematic absences pointed to space group P21/n but no chemically reasonable models could be established in this centrosymmetric space group. Lower symmetry space groups were then tried and a plausible model in Pn was developed, as the complex nature of the disorder of the chain became apparent. In the early stages of the refinement, site occupancies were freely varied to establish which atoms belonged to which disorder component; the occupancies for O1, O4, O7 and O10 barely varied from unity and were fixed as fully occupied. When the disorder model was becoming clear, constrained refinements of site occupancies for the major and minor disorder components (including their associated water mol­ecules of crystallization) led to refined values of 0.7962 (13):0.2038 (13). The structure of (II)[link] was solved and refined without difficulty.

Table 5
Experimental details

  (I) (II)
Crystal data
Chemical formula (C5H7N2O)[Zn(HPO3)2]·2H2O [Zn(HPO3)(C6H8N2)]
Mr 483.61 253.49
Crystal system, space group Monoclinic, Pn Orthorhombic, Pca21
Temperature (K) 100 173
a, b, c (Å) 10.5172 (3), 7.4210 (2), 23.5592 (5) 8.0419 (2), 13.5008 (4), 8.1307 (2)
α, β, γ (°) 90, 93.861 (2), 90 90, 90, 90
V3) 1834.58 (8) 882.77 (4)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 1.57 2.94
Crystal size (mm) 0.20 × 0.05 × 0.04 0.27 × 0.10 × 0.02
 
Data collection
Diffractometer Rigaku XtaLAB AFC12 (RCD3): Kappa single CCD Rigaku XtaLAB P200 HPC
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2017[Rigaku OD (2017). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2017[Rigaku OD (2017). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.653, 1.000 0.731, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 30281, 8399, 7166 11004, 2038, 1952
Rint 0.070 0.044
(sin θ/λ)max−1) 0.649 0.685
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.121, 1.05 0.022, 0.051, 1.04
No. of reflections 8399 2038
No. of parameters 561 131
No. of restraints 116 1
H-atom treatment H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.73, −0.93 0.71, −0.27
Absolute structure Refined as an inversion twin. Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) parameter
Absolute structure parameter 0.44 (2) 0.016 (14)
Computer programs: CrysAlis PRO (Rigaku OD, 2017[Rigaku OD (2017). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.]), CrysAlis PRO (Rigaku, 2017[Rigaku OD (2017). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

For (I)[link], the H atoms associated with the P atoms were located in difference maps, relocated to idealized positions (P—H = 1.32 Å) and refined as riding atoms. The N- and O-bound H atoms of the cations were located in difference maps and refined as riding atoms in their as-found relative positions. Most of the water H atoms were located in difference maps and refined in a similar fashion; the remainder were placed geometrically to form reasonable hydrogen bonds and refined as riding atoms. The C-bound H atoms were placed geometrically (C—H = 0.95 Å) and refined as riding atoms. In every case, the constraint Uiso(H) = 1.2Ueq(carrier) was applied. The crystal of (I)[link] chosen for data collection was found to be an inversion twin in a 0.56 (2):0.44 (2) domain ratio.

For (II)[link], the phosphite H atom was located in a difference map, relocated to an idealized position (P—H = 1.32 Å) and refined as a riding atom. The N-bound H atoms were located in difference maps and their positions were freely refined. The C-bound H atoms were placed geometrically (C—H = 0.95 Å) and refined as riding atoms. The constraint Uiso(H) = 1.2Ueq(carrier) was applied to all H atoms.

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2017) for (I); CrysAlis PRO (Rigaku, 2017) for (II). Cell refinement: CrysAlis PRO (Rigaku OD, 2017) for (I); CrysAlis PRO (Rigaku, 2017) for (II). Data reduction: CrysAlis PRO (Rigaku OD, 2017) for (I); CrysAlis PRO (Rigaku, 2017) for (II). For both structures, program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

catena-Poly[bis(2-amino-3-hydroxypyridinium) [zinc-di-µ-phosphonato] dihydrate] (I) top
Crystal data top
(C5H7N2O)[Zn(HPO3)2]·2H2OF(000) = 992
Mr = 483.61Dx = 1.751 Mg m3
Monoclinic, PnMo Kα radiation, λ = 0.71073 Å
a = 10.5172 (3) ÅCell parameters from 11223 reflections
b = 7.4210 (2) Åθ = 3.4–30.0°
c = 23.5592 (5) ŵ = 1.57 mm1
β = 93.861 (2)°T = 100 K
V = 1834.58 (8) Å3Lath, pale brown
Z = 40.20 × 0.05 × 0.04 mm
Data collection top
Rigaku XtaLAB AFC12 (RCD3): Kappa single CCD
diffractometer
7166 reflections with I > 2σ(I)
ω scansRint = 0.070
Absorption correction: gaussian
(CrysAlis PRO; Rigaku OD, 2017)
θmax = 27.5°, θmin = 2.9°
Tmin = 0.653, Tmax = 1.000h = 1313
30281 measured reflectionsk = 99
8399 independent reflectionsl = 3030
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.0553P)2 + 0.7374P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
8399 reflectionsΔρmax = 0.73 e Å3
561 parametersΔρmin = 0.93 e Å3
116 restraintsAbsolute structure: Refined as an inversion twin.
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.44 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.29788 (9)0.12391 (12)0.47099 (5)0.0097 (2)0.7962 (13)
Zn20.39776 (9)0.63750 (12)0.52509 (5)0.0107 (2)0.7962 (13)
P10.5742 (2)0.0631 (3)0.49814 (11)0.0100 (5)0.7962 (13)
H1P0.63450.17060.46430.012*0.7962 (13)
P20.2957 (2)0.3226 (3)0.59341 (11)0.0117 (5)0.7962 (13)
H2P0.20570.43510.60740.014*0.7962 (13)
P30.1214 (2)0.8237 (3)0.50040 (10)0.0096 (5)0.7962 (13)
H3P0.06350.93290.53460.012*0.7962 (13)
P40.4029 (3)0.4338 (3)0.40242 (11)0.0121 (5)0.7962 (13)
H4P0.49490.32040.39160.015*0.7962 (13)
O10.4630 (6)0.0229 (7)0.4606 (3)0.0187 (12)
O20.5283 (7)0.1830 (8)0.5457 (3)0.0130 (15)0.7962 (13)
O30.6701 (7)0.0742 (9)0.5199 (3)0.0128 (14)0.7962 (13)
O40.2409 (6)0.2209 (7)0.5406 (3)0.0166 (12)
O50.4101 (6)0.4405 (8)0.5792 (3)0.0141 (15)0.7962 (13)
O60.3238 (8)0.2047 (9)0.6441 (3)0.0173 (15)0.7962 (13)
O70.2333 (6)0.7341 (7)0.5368 (3)0.0195 (12)
O80.1677 (7)0.9409 (8)0.4521 (3)0.0108 (14)0.7962 (13)
O90.0226 (7)0.6864 (10)0.4784 (3)0.0187 (16)0.7962 (13)
O100.4529 (6)0.5428 (7)0.4536 (3)0.0215 (13)
O110.2885 (7)0.3175 (8)0.4147 (3)0.0122 (14)0.7962 (13)
O120.3790 (8)0.5469 (9)0.3488 (3)0.0180 (16)0.7962 (13)
C10.0430 (9)0.7452 (9)0.3345 (4)0.0127 (15)
C20.1081 (8)0.7173 (10)0.2791 (3)0.0153 (16)
C30.2282 (10)0.6467 (10)0.2765 (4)0.0197 (18)
H30.27300.62910.24050.024*
C40.2865 (9)0.5996 (12)0.3264 (4)0.0209 (19)
H40.37120.55410.32470.025*
C50.2178 (11)0.6210 (10)0.3778 (5)0.023 (2)
H50.25300.58460.41210.028*
N10.1006 (7)0.6937 (8)0.3792 (3)0.0155 (14)
H1N0.05950.70760.41270.019*
N20.0727 (7)0.8217 (9)0.3387 (3)0.0192 (15)
H2N0.11030.84360.30850.023*
H3N0.11720.83270.37130.023*
O130.0441 (6)0.7701 (8)0.2354 (3)0.0205 (13)
H1O0.10110.74770.20250.025*
C60.0411 (8)0.2483 (9)0.3353 (4)0.0132 (15)
C70.1160 (8)0.2107 (10)0.2836 (4)0.0154 (16)
C80.2329 (10)0.1395 (10)0.2858 (5)0.0214 (19)
H80.28320.11630.25160.026*
C90.2817 (9)0.0987 (12)0.3391 (4)0.0219 (19)
H90.36470.04950.34110.026*
C100.2057 (10)0.1323 (9)0.3877 (5)0.020 (2)
H100.23480.10360.42390.023*
N30.0902 (7)0.2056 (8)0.3837 (3)0.0147 (14)
H4N0.04390.22680.41550.018*
N40.0743 (7)0.3240 (9)0.3337 (3)0.0176 (15)
H5N0.10260.35030.30140.021*
H6N0.11960.32710.36960.021*
O140.0615 (6)0.2569 (8)0.2359 (3)0.0187 (13)
H2O0.10660.24870.20020.022*
C110.7386 (9)0.5063 (9)0.6604 (3)0.0132 (15)
C120.8096 (8)0.5368 (10)0.7127 (4)0.0137 (15)
C130.9285 (10)0.6141 (10)0.7120 (5)0.0193 (18)
H130.97640.63870.74670.023*
C140.9794 (10)0.6566 (12)0.6599 (4)0.024 (2)
H141.06160.70960.65980.029*
C150.9143 (10)0.6237 (9)0.6116 (5)0.021 (2)
H150.95090.64870.57670.025*
N50.7913 (7)0.5519 (8)0.6112 (3)0.0153 (14)
H7N0.74710.53610.57860.018*
N60.6241 (7)0.4317 (10)0.6582 (3)0.0175 (15)
H8N0.59040.39440.69100.021*
H9N0.57210.42400.62610.021*
O150.7456 (6)0.4867 (8)0.7589 (3)0.0200 (13)
H3O0.80410.50360.79110.024*
C160.7461 (8)0.0065 (9)0.6661 (4)0.0127 (15)
C170.8178 (8)0.0341 (10)0.7183 (4)0.0149 (16)
C180.9372 (9)0.1088 (10)0.7185 (4)0.0189 (18)
H180.98570.12770.75350.023*
C190.9884 (10)0.1580 (12)0.6663 (5)0.024 (2)
H191.07120.20920.66630.029*
C200.9206 (10)0.1322 (9)0.6180 (5)0.0185 (19)
H200.95530.16270.58300.022*
N70.7986 (7)0.0608 (8)0.6178 (3)0.0179 (15)
H10N0.75350.05020.58510.021*
N80.6313 (7)0.0675 (9)0.6625 (3)0.0161 (14)
H11N0.59740.09780.69590.019*
H12N0.58580.07790.63140.019*
O160.7579 (6)0.0175 (8)0.7652 (3)0.0193 (13)
H4O0.80950.00320.79820.023*
Zn110.3031 (7)0.6147 (5)0.4721 (3)0.0135 (10)*0.2038 (13)
Zn120.4040 (7)0.1296 (5)0.5270 (3)0.0187 (12)*0.2038 (13)
P110.1234 (12)0.3165 (13)0.4996 (5)0.016 (2)*0.2038 (13)
H11P0.06000.42180.53300.019*0.2038 (13)
P120.5783 (12)0.4298 (14)0.4968 (6)0.016 (2)*0.2038 (13)
H12P0.63490.32140.46200.020*0.2038 (13)
P130.4039 (13)0.9269 (15)0.4043 (6)0.019 (2)*0.2038 (13)
H13P0.49270.81300.38990.022*0.2038 (13)
P140.2970 (12)0.8186 (14)0.5952 (6)0.018 (2)*0.2038 (13)
H14P0.21280.93960.60950.021*0.2038 (13)
O210.675 (2)0.558 (3)0.5173 (10)0.006 (5)*0.2038 (13)
O220.024 (3)0.171 (4)0.4733 (14)0.032 (8)*0.2038 (13)
O230.318 (3)0.712 (3)0.6457 (13)0.016 (6)*0.2038 (13)
O240.298 (3)0.815 (4)0.4172 (13)0.021 (6)*0.2038 (13)
O250.416 (3)0.935 (4)0.5815 (13)0.022 (7)*0.2038 (13)
O260.535 (3)0.311 (4)0.5443 (14)0.025 (7)*0.2038 (13)
O270.375 (3)1.048 (4)0.3498 (15)0.026 (7)*0.2038 (13)
O280.170 (3)0.437 (3)0.4515 (12)0.013 (6)*0.2038 (13)
O1W0.6860 (7)0.4392 (8)0.5070 (3)0.0134 (14)0.7962 (13)
H1W0.64060.49000.48890.016*0.7962 (13)
H2W0.67470.33430.51270.016*0.7962 (13)
O2W0.0054 (7)0.3238 (9)0.4897 (3)0.0155 (15)0.7962 (13)
H3W0.05640.26130.51030.019*0.7962 (13)
H4W0.02270.44120.48730.019*0.7962 (13)
O3W0.2802 (7)0.8476 (9)0.6495 (3)0.0145 (15)0.7962 (13)
H5W0.29590.96750.64650.017*0.7962 (13)
H6W0.26570.81380.61590.017*0.7962 (13)
O4W0.4104 (7)0.9072 (10)0.3501 (3)0.0186 (16)0.7962 (13)
H7W0.40550.78250.34750.022*0.7962 (13)
H8W0.43760.97030.37580.022*0.7962 (13)
O11W0.001 (3)0.811 (4)0.4927 (14)0.032 (8)*0.2038 (13)
H11W0.00640.92020.48710.038*0.2038 (13)
H12W0.06880.78890.50630.038*0.2038 (13)
O12W0.688 (3)0.064 (3)0.5100 (11)0.016 (6)*0.2038 (13)
H13W0.61930.03670.49550.019*0.2038 (13)
H14W0.68290.17550.51240.019*0.2038 (13)
O13W0.280 (3)0.347 (4)0.6471 (12)0.012 (6)*0.2038 (13)
H15W0.26630.30980.61530.014*0.2038 (13)
H16W0.28900.45850.64690.014*0.2038 (13)
O14W0.410 (3)0.411 (5)0.3459 (15)0.031 (7)*0.2038 (13)
H17W0.41930.45210.37790.037*0.2038 (13)
H18W0.39560.30430.34700.037*0.2038 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0089 (5)0.0115 (4)0.0084 (4)0.0025 (3)0.0025 (3)0.0013 (3)
Zn20.0104 (5)0.0119 (4)0.0096 (5)0.0026 (3)0.0019 (3)0.0012 (3)
P10.0089 (10)0.0114 (10)0.0095 (9)0.0009 (7)0.0006 (7)0.0006 (7)
P20.0133 (11)0.0133 (10)0.0080 (9)0.0032 (8)0.0013 (7)0.0002 (7)
P30.0087 (10)0.0119 (9)0.0080 (9)0.0009 (7)0.0016 (7)0.0009 (7)
P40.0134 (11)0.0139 (10)0.0088 (9)0.0032 (8)0.0012 (8)0.0009 (7)
O10.014 (3)0.024 (3)0.018 (3)0.001 (2)0.002 (2)0.003 (2)
O20.019 (3)0.013 (3)0.006 (3)0.006 (2)0.004 (2)0.0006 (19)
O30.015 (3)0.013 (3)0.010 (3)0.003 (2)0.004 (2)0.004 (2)
O40.015 (3)0.017 (2)0.017 (3)0.001 (2)0.000 (2)0.005 (2)
O50.009 (3)0.015 (3)0.018 (3)0.004 (2)0.002 (2)0.005 (2)
O60.023 (3)0.019 (3)0.009 (3)0.009 (3)0.005 (2)0.005 (2)
O70.018 (3)0.027 (3)0.013 (3)0.005 (2)0.001 (2)0.000 (2)
O80.010 (3)0.013 (3)0.008 (2)0.006 (2)0.003 (2)0.0034 (19)
O90.019 (3)0.020 (3)0.016 (3)0.009 (3)0.005 (2)0.000 (2)
O100.021 (3)0.031 (3)0.013 (3)0.009 (2)0.002 (2)0.007 (2)
O110.012 (3)0.015 (3)0.009 (3)0.004 (2)0.005 (2)0.0054 (19)
O120.026 (4)0.017 (3)0.010 (3)0.005 (3)0.007 (2)0.004 (2)
C10.015 (4)0.009 (3)0.014 (3)0.001 (3)0.002 (3)0.004 (3)
C20.021 (4)0.010 (3)0.014 (4)0.000 (3)0.002 (3)0.001 (3)
C30.019 (4)0.017 (4)0.022 (4)0.003 (3)0.002 (3)0.005 (3)
C40.012 (4)0.017 (4)0.034 (5)0.001 (3)0.002 (3)0.001 (3)
C50.024 (5)0.015 (4)0.032 (5)0.003 (3)0.014 (4)0.002 (3)
N10.018 (3)0.015 (3)0.012 (3)0.004 (3)0.001 (3)0.001 (2)
N20.018 (4)0.023 (3)0.017 (3)0.004 (3)0.005 (3)0.000 (3)
O130.026 (3)0.024 (3)0.012 (3)0.001 (2)0.005 (2)0.002 (2)
C60.009 (4)0.014 (3)0.016 (4)0.001 (3)0.005 (3)0.001 (3)
C70.020 (4)0.012 (3)0.014 (4)0.000 (3)0.001 (3)0.001 (3)
C80.019 (4)0.020 (4)0.025 (4)0.002 (3)0.006 (3)0.006 (3)
C90.017 (5)0.015 (3)0.035 (5)0.002 (3)0.008 (4)0.001 (3)
C100.017 (4)0.017 (4)0.025 (4)0.001 (3)0.001 (3)0.007 (3)
N30.014 (3)0.014 (3)0.016 (3)0.004 (2)0.001 (3)0.005 (2)
N40.017 (4)0.022 (3)0.014 (3)0.001 (3)0.003 (3)0.000 (3)
O140.021 (3)0.023 (3)0.014 (3)0.001 (2)0.005 (2)0.004 (2)
C110.018 (4)0.010 (3)0.012 (4)0.003 (3)0.006 (3)0.003 (3)
C120.012 (4)0.016 (4)0.014 (4)0.008 (3)0.004 (3)0.000 (3)
C130.016 (4)0.013 (4)0.029 (5)0.004 (3)0.001 (3)0.008 (3)
C140.017 (5)0.014 (4)0.043 (5)0.005 (3)0.010 (4)0.004 (4)
C150.021 (4)0.013 (4)0.031 (5)0.001 (3)0.016 (4)0.001 (3)
N50.019 (3)0.018 (3)0.010 (3)0.001 (3)0.008 (3)0.002 (2)
N60.012 (3)0.026 (3)0.015 (3)0.004 (3)0.005 (3)0.001 (3)
O150.023 (3)0.023 (3)0.014 (3)0.002 (2)0.003 (2)0.003 (2)
C160.012 (4)0.011 (3)0.017 (4)0.003 (3)0.007 (3)0.003 (3)
C170.011 (4)0.017 (4)0.017 (4)0.006 (3)0.001 (3)0.002 (3)
C180.017 (4)0.014 (4)0.025 (4)0.001 (3)0.002 (3)0.005 (3)
C190.014 (4)0.017 (4)0.042 (5)0.004 (3)0.003 (3)0.004 (4)
C200.015 (4)0.016 (4)0.025 (4)0.001 (3)0.011 (3)0.005 (3)
N70.016 (3)0.022 (3)0.016 (3)0.001 (3)0.004 (3)0.005 (3)
N80.014 (3)0.020 (3)0.014 (3)0.008 (3)0.002 (3)0.003 (3)
O160.021 (3)0.024 (3)0.013 (3)0.000 (2)0.004 (2)0.004 (2)
O1W0.014 (3)0.010 (3)0.015 (3)0.000 (2)0.004 (2)0.001 (2)
O2W0.014 (3)0.017 (3)0.016 (3)0.000 (2)0.003 (2)0.001 (2)
O3W0.017 (3)0.015 (3)0.011 (3)0.004 (2)0.004 (2)0.001 (2)
O4W0.027 (4)0.016 (3)0.012 (3)0.000 (3)0.006 (2)0.003 (2)
Geometric parameters (Å, º) top
Zn1—O11.922 (6)C11—N61.322 (11)
Zn1—O41.923 (6)C11—N51.360 (11)
Zn1—O111.953 (6)C11—C121.415 (11)
Zn1—O8i1.958 (6)C12—O151.369 (10)
Zn2—O71.909 (7)C12—C131.378 (13)
Zn2—O51.938 (6)C13—C141.406 (15)
Zn2—O101.950 (7)C13—H130.9500
Zn2—O2ii1.951 (7)C14—C151.311 (15)
P1—O31.499 (7)C14—H140.9500
P1—O21.534 (7)C15—N51.399 (13)
P1—O11.556 (6)C15—H150.9500
P1—H1P1.3200N5—H7N0.8800
P2—O61.494 (7)N6—H8N0.9143
P2—O41.533 (6)N6—H9N0.9058
P2—O51.543 (7)O15—H3O0.9530
P2—H2P1.3200C16—N81.324 (11)
P3—O91.522 (8)C16—N71.360 (11)
P3—O81.537 (7)C16—C171.412 (11)
P3—O71.559 (6)C17—O161.363 (10)
P3—H3P1.3200C17—C181.373 (13)
P4—O101.516 (6)C18—C191.423 (15)
P4—O121.523 (7)C18—H180.9500
P4—O111.524 (7)C19—C201.317 (15)
P4—H4P1.3200C19—H190.9500
O1—P13i1.594 (14)C20—N71.388 (12)
O1—Zn121.895 (10)C20—H200.9500
O2—Zn2i1.951 (7)N7—H10N0.8800
O4—P111.674 (12)N8—H11N0.9147
O4—Zn121.891 (9)N8—H12N0.8500
O7—P141.615 (13)O16—H4O0.9249
O7—Zn111.950 (9)Zn11—O281.96 (3)
O8—Zn1ii1.958 (6)Zn11—O241.97 (3)
O10—Zn111.746 (9)Zn12—O25i1.93 (3)
O10—P121.816 (13)Zn12—O261.94 (3)
C1—N11.306 (11)P11—O281.55 (3)
C1—N21.341 (12)P11—O221.60 (3)
C1—C21.449 (11)P11—H11P1.3200
C2—O131.326 (10)P12—O211.45 (3)
C2—C31.365 (13)P12—O261.52 (3)
C3—C41.406 (14)P12—H12P1.3200
C3—H30.9500P13—O241.44 (3)
C4—C51.377 (15)P13—O271.58 (3)
C4—H40.9500P13—O1ii1.594 (14)
C5—N11.345 (13)P13—H13P1.3200
C5—H50.9500P14—O231.43 (3)
N1—H1N0.8800P14—O251.58 (3)
N2—H2N0.8530P14—H14P1.3200
N2—H3N0.8749O25—Zn12ii1.93 (3)
O13—H1O0.9625O1W—H1W0.7246
C6—N31.322 (11)O1W—H2W0.8001
C6—N41.340 (11)O2W—H3W0.8384
C6—C71.434 (11)O2W—H4W0.8930
C7—O141.340 (10)O3W—H5W0.9093
C7—C81.342 (13)O3W—H6W0.8355
C8—C91.421 (14)O4W—H7W0.9286
C8—H80.9500O4W—H8W0.8023
C9—C101.373 (14)O11W—H11W0.8200
C9—H90.9500O11W—H12W0.7846
C10—N31.339 (12)O12W—H13W0.8024
C10—H100.9500O12W—H14W0.8329
N3—H4N0.8800O13W—H15W0.8035
N4—H5N0.8578O13W—H16W0.8307
N4—H6N0.9428O14W—H17W0.8153
O14—H2O0.9391O14W—H18W0.8034
O1—Zn1—O4126.2 (3)N6—C11—N5119.6 (8)
O1—Zn1—O11101.8 (3)N6—C11—C12121.7 (8)
O4—Zn1—O11107.4 (3)N5—C11—C12118.7 (8)
O1—Zn1—O8i108.9 (3)O15—C12—C13128.2 (8)
O4—Zn1—O8i101.6 (3)O15—C12—C11112.9 (7)
O11—Zn1—O8i110.7 (3)C13—C12—C11118.8 (8)
O7—Zn2—O5102.1 (3)C12—C13—C14120.2 (10)
O7—Zn2—O10125.8 (3)C12—C13—H13119.9
O5—Zn2—O10106.6 (3)C14—C13—H13119.9
O7—Zn2—O2ii109.7 (3)C15—C14—C13120.6 (10)
O5—Zn2—O2ii109.7 (3)C15—C14—H14119.7
O10—Zn2—O2ii102.5 (3)C13—C14—H14119.7
O3—P1—O2112.4 (4)C14—C15—N5120.3 (10)
O3—P1—O1112.2 (3)C14—C15—H15119.9
O2—P1—O1113.1 (4)N5—C15—H15119.9
O3—P1—H1P106.1C11—N5—C15121.3 (8)
O2—P1—H1P106.1C11—N5—H7N119.3
O1—P1—H1P106.1C15—N5—H7N119.3
O6—P2—O4113.8 (4)C11—N6—H8N119.9
O6—P2—O5113.0 (4)C11—N6—H9N123.8
O4—P2—O5111.0 (4)H8N—N6—H9N116.0
O6—P2—H2P106.1C12—O15—H3O105.8
O4—P2—H2P106.1N8—C16—N7119.2 (8)
O5—P2—H2P106.1N8—C16—C17123.2 (8)
O9—P3—O8111.7 (4)N7—C16—C17117.6 (8)
O9—P3—O7112.0 (4)O16—C17—C18125.7 (8)
O8—P3—O7112.5 (4)O16—C17—C16114.6 (7)
O9—P3—H3P106.7C18—C17—C16119.8 (9)
O8—P3—H3P106.7C17—C18—C19120.0 (9)
O7—P3—H3P106.7C17—C18—H18120.0
O10—P4—O12113.2 (4)C19—C18—H18120.0
O10—P4—O11112.8 (4)C20—C19—C18119.7 (9)
O12—P4—O11112.4 (4)C20—C19—H19120.1
O10—P4—H4P105.9C18—C19—H19120.1
O12—P4—H4P105.9C19—C20—N7120.3 (10)
O11—P4—H4P105.9C19—C20—H20119.8
P13i—O1—Zn12138.0 (7)N7—C20—H20119.8
P1—O1—Zn1137.6 (4)C16—N7—C20122.5 (8)
P1—O2—Zn2i117.7 (4)C16—N7—H10N118.7
P11—O4—Zn12134.2 (6)C20—N7—H10N118.7
P2—O4—Zn1139.0 (4)C16—N8—H11N116.9
P2—O5—Zn2123.5 (4)C16—N8—H12N123.5
P3—O7—Zn2137.6 (4)H11N—N8—H12N119.3
P14—O7—Zn11133.3 (7)C17—O16—H4O111.9
P3—O8—Zn1ii118.4 (4)O10—Zn11—O7136.7 (5)
Zn11—O10—P12129.3 (6)O10—Zn11—O28111.9 (9)
P4—O10—Zn2140.5 (4)O7—Zn11—O28101.5 (9)
P4—O11—Zn1122.8 (4)O10—Zn11—O2493.0 (9)
N1—C1—N2122.2 (8)O7—Zn11—O24100.1 (9)
N1—C1—C2117.9 (8)O28—Zn11—O24110.8 (12)
N2—C1—C2119.9 (8)O4—Zn12—O1129.8 (5)
O13—C2—C3126.6 (8)O4—Zn12—O25i100.1 (10)
O13—C2—C1115.0 (8)O1—Zn12—O25i103.1 (9)
C3—C2—C1118.3 (9)O4—Zn12—O26110.7 (10)
C2—C3—C4120.8 (9)O1—Zn12—O26101.3 (10)
C2—C3—H3119.6O25i—Zn12—O26111.2 (13)
C4—C3—H3119.6O28—P11—O22109.6 (17)
C5—C4—C3118.3 (9)O28—P11—O4114.1 (13)
C5—C4—H4120.9O22—P11—O4112.0 (13)
C3—C4—H4120.9O28—P11—H11P106.9
N1—C5—C4119.6 (10)O22—P11—H11P106.9
N1—C5—H5120.2O4—P11—H11P106.9
C4—C5—H5120.2O21—P12—O26112.1 (17)
C1—N1—C5124.9 (8)O21—P12—O10110.4 (11)
C1—N1—H1N117.5O26—P12—O10115.9 (14)
C5—N1—H1N117.5O21—P12—H12P105.9
C1—N2—H2N119.2O26—P12—H12P105.9
C1—N2—H3N122.2O10—P12—H12P105.9
H2N—N2—H3N117.7O24—P13—O27112.8 (19)
C2—O13—H1O104.7O24—P13—O1ii110.3 (14)
N3—C6—N4122.1 (8)O27—P13—O1ii117.8 (13)
N3—C6—C7117.6 (8)O24—P13—H13P104.9
N4—C6—C7120.3 (8)O27—P13—H13P104.9
O14—C7—C8125.4 (8)O1ii—P13—H13P104.9
O14—C7—C6114.9 (8)O23—P14—O25113.0 (18)
C8—C7—C6119.7 (9)O23—P14—O7121.7 (13)
C7—C8—C9120.4 (9)O25—P14—O7109.3 (13)
C7—C8—H8119.8O23—P14—H14P103.5
C9—C8—H8119.8O25—P14—H14P103.5
C10—C9—C8118.2 (9)O7—P14—H14P103.5
C10—C9—H9120.9P13—O24—Zn11125.8 (18)
C8—C9—H9120.9P14—O25—Zn12ii122.0 (18)
N3—C10—C9119.7 (10)P12—O26—Zn12119.5 (19)
N3—C10—H10120.1P11—O28—Zn11117.6 (16)
C9—C10—H10120.1H1W—O1W—H2W120.3
C6—N3—C10124.5 (8)H3W—O2W—H4W116.8
C6—N3—H4N117.8H5W—O3W—H6W104.0
C10—N3—H4N117.8H7W—O4W—H8W130.4
C6—N4—H5N119.3H11W—O11W—H12W101.5
C6—N4—H6N112.9H13W—O12W—H14W102.7
H5N—N4—H6N127.3H15W—O13W—H16W110.6
C7—O14—H2O121.0H17W—O14W—H18W110.6
O3—P1—O1—Zn190.4 (6)O15—C12—C13—C14180.0 (8)
O2—P1—O1—Zn138.1 (6)C11—C12—C13—C141.9 (12)
O3—P1—O2—Zn2i177.4 (4)C12—C13—C14—C150.1 (13)
O1—P1—O2—Zn2i49.0 (5)C13—C14—C15—N52.4 (13)
O6—P2—O4—Zn199.7 (6)N6—C11—N5—C15177.1 (7)
O5—P2—O4—Zn129.0 (7)C12—C11—N5—C151.6 (11)
O6—P2—O5—Zn2168.7 (5)C14—C15—N5—C113.3 (12)
O4—P2—O5—Zn262.1 (6)N8—C16—C17—O161.6 (11)
O9—P3—O7—Zn292.4 (6)N7—C16—C17—O16177.8 (6)
O8—P3—O7—Zn234.5 (7)N8—C16—C17—C18178.8 (7)
O9—P3—O8—Zn1ii178.8 (4)N7—C16—C17—C181.8 (11)
O7—P3—O8—Zn1ii51.8 (5)O16—C17—C18—C19179.6 (8)
O12—P4—O10—Zn2107.1 (6)C16—C17—C18—C190.0 (12)
O11—P4—O10—Zn221.9 (7)C17—C18—C19—C200.3 (13)
O10—P4—O11—Zn162.7 (6)C18—C19—C20—N71.3 (13)
O12—P4—O11—Zn1167.8 (4)N8—C16—N7—C20177.1 (7)
N1—C1—C2—O13179.1 (6)C17—C16—N7—C203.4 (11)
N2—C1—C2—O130.8 (11)C19—C20—N7—C163.3 (12)
N1—C1—C2—C33.0 (11)P12—O10—Zn11—O742.2 (9)
N2—C1—C2—C3177.1 (7)P12—O10—Zn11—O2895.7 (10)
O13—C2—C3—C4178.6 (8)P12—O10—Zn11—O24150.4 (10)
C1—C2—C3—C41.0 (12)P11—O4—Zn12—O130.3 (9)
C2—C3—C4—C52.1 (13)P11—O4—Zn12—O25i146.9 (11)
C3—C4—C5—N13.2 (13)P11—O4—Zn12—O2695.7 (12)
N2—C1—N1—C5178.1 (7)P13i—O1—Zn12—O420.5 (11)
C2—C1—N1—C52.0 (12)P13i—O1—Zn12—O25i94.9 (12)
C4—C5—N1—C11.2 (12)P13i—O1—Zn12—O26149.9 (12)
N3—C6—C7—O14180.0 (6)Zn12—O4—P11—O2834.9 (15)
N4—C6—C7—O140.1 (11)Zn12—O4—P11—O2290.5 (16)
N3—C6—C7—C81.9 (12)Zn11—O10—P12—O2199.3 (13)
N4—C6—C7—C8178.2 (7)Zn11—O10—P12—O2629.5 (16)
O14—C7—C8—C9178.9 (8)Zn11—O7—P14—O2389.2 (17)
C6—C7—C8—C91.0 (12)Zn11—O7—P14—O2545.3 (15)
C7—C8—C9—C100.7 (13)O27—P13—O24—Zn11168.1 (19)
C8—C9—C10—N31.6 (13)O1ii—P13—O24—Zn1158 (2)
N4—C6—N3—C10179.0 (7)O23—P14—O25—Zn12ii165.9 (18)
C7—C6—N3—C101.1 (12)O7—P14—O25—Zn12ii55 (2)
C9—C10—N3—C60.7 (13)O21—P12—O26—Zn12179.3 (17)
N6—C11—C12—O151.9 (11)O10—P12—O26—Zn1251 (2)
N5—C11—C12—O15179.4 (6)O22—P11—O28—Zn11175.2 (17)
N6—C11—C12—C13179.6 (7)O4—P11—O28—Zn1148.6 (18)
N5—C11—C12—C131.0 (11)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1Wiii0.952.603.539 (13)169
N1—H1N···O90.881.732.595 (10)168
N2—H2N···O16iv0.852.313.060 (10)147
N2—H3N···O80.872.102.926 (9)157
O13—H1O···O6iv0.961.582.488 (9)156
C8—H8···O3Wiv0.952.553.225 (13)128
C9—H9···O4Wv0.952.613.562 (12)178
C10—H10···O3iii0.952.543.486 (14)171
N3—H4N···O2W0.881.932.771 (10)160
N4—H5N···O15iv0.862.222.959 (10)144
N4—H6N···O110.942.012.853 (9)148
O14—H2O···O3Wiv0.941.782.656 (9)154
C14—H14···O3Wvi0.952.543.490 (12)175
C15—H15···O9vi0.952.503.442 (14)172
N5—H7N···O1W0.881.912.756 (9)162
N6—H8N···O13vii0.912.193.019 (9)151
N6—H9N···O50.911.972.824 (10)156
O15—H3O···O12vii0.951.572.474 (9)157
C18—H18···O4Wvii0.952.473.134 (12)127
C20—H20···O2Wvi0.952.593.508 (13)163
N7—H10N···O30.881.732.595 (10)169
N8—H11N···O14viii0.912.303.090 (9)145
N8—H12N···O20.852.213.012 (9)157
O16—H4O···O4Wvii0.921.722.611 (10)161
O1W—H1W···O100.722.132.787 (9)152
O1W—H2W···O30.801.942.732 (8)171
O2W—H3W···O40.842.042.785 (9)147
O2W—H4W···O90.891.832.711 (9)168
O3W—H5W···O6ii0.911.792.694 (9)177
O3W—H6W···O70.841.962.797 (9)180
O4W—H7W···O120.931.772.694 (9)172
O4W—H8W···O1ii0.802.032.760 (9)150
O11W—H11W···O22ii0.821.902.72 (4)178
O11W—H12W···O70.781.872.66 (4)178
O12W—H13W···O10.801.842.65 (3)179
O12W—H14W···O21i0.831.982.81 (3)179
O13W—H15W···O40.801.882.68 (3)178
O13W—H16W···O230.831.912.74 (4)177
O14W—H17W···O100.821.922.73 (4)176
O14W—H18W···O27i0.801.922.72 (4)176
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x1, y, z; (iv) x1/2, y+1, z1/2; (v) x1, y1, z; (vi) x+1, y, z; (vii) x+1/2, y+1, z+1/2; (viii) x+1/2, y, z+1/2.
Poly[(benzene-1,2-diamine)(µ5-phosphonato)zinc] (II) top
Crystal data top
[Zn(HPO3)(C6H8N2)]Dx = 1.907 Mg m3
Mr = 253.49Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21Cell parameters from 8070 reflections
a = 8.0419 (2) Åθ = 2.9–28.8°
b = 13.5008 (4) ŵ = 2.94 mm1
c = 8.1307 (2) ÅT = 173 K
V = 882.77 (4) Å3Plate, colourless
Z = 40.27 × 0.10 × 0.02 mm
F(000) = 512
Data collection top
Rigaku XtaLAB P200 HPC
diffractometer
2038 independent reflections
Radiation source: rotating_anode, Rigaku FR-X1952 reflections with I > 2σ(I)
Rigaku Osmic Confocal Optical System monochromatorRint = 0.044
ω scansθmax = 29.2°, θmin = 3.0°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2017)
h = 1010
Tmin = 0.731, Tmax = 1.000k = 1716
11004 measured reflectionsl = 1010
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.022 w = 1/[σ2(Fo2) + (0.0292P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.051(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.71 e Å3
2038 reflectionsΔρmin = 0.27 e Å3
131 parametersAbsolute structure: Flack (1983) parameter
1 restraintAbsolute structure parameter: 0.016 (14)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.34696 (3)0.06830 (2)0.34354 (5)0.01300 (11)
P10.00036 (8)0.12113 (5)0.21567 (10)0.01250 (16)
H10.04000.21270.17530.015*
O10.1265 (2)0.12693 (13)0.3561 (3)0.0175 (4)
O20.1583 (2)0.06927 (12)0.2738 (3)0.0164 (5)
O30.0745 (3)0.07310 (14)0.0661 (3)0.0229 (5)
C10.5193 (3)0.2527 (2)0.2485 (4)0.0149 (6)
C20.4078 (3)0.3236 (2)0.1875 (4)0.0181 (6)
C30.4181 (4)0.4194 (2)0.2496 (4)0.0235 (7)
H30.34260.46810.21060.028*
C40.5345 (4)0.4458 (2)0.3662 (5)0.0269 (7)
H40.53860.51190.40590.032*
C50.6460 (4)0.3756 (3)0.4257 (4)0.0263 (8)
H50.72640.39310.50620.032*
C60.6374 (3)0.2797 (2)0.3651 (5)0.0202 (7)
H60.71380.23140.40410.024*
N10.5069 (3)0.14987 (17)0.2000 (4)0.0155 (5)
H1N0.601 (4)0.121 (2)0.199 (5)0.019*
H2N0.465 (4)0.139 (2)0.113 (4)0.019*
N20.2847 (3)0.2972 (2)0.0758 (4)0.0261 (7)
H3N0.230 (5)0.343 (3)0.039 (5)0.031*
H4N0.311 (4)0.250 (3)0.025 (5)0.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01069 (16)0.01757 (17)0.01076 (17)0.00001 (9)0.00039 (16)0.00114 (16)
P10.0106 (3)0.0163 (3)0.0105 (4)0.0005 (2)0.0004 (3)0.0012 (3)
O10.0137 (8)0.0240 (9)0.0148 (11)0.0020 (6)0.0017 (10)0.0028 (11)
O20.0092 (11)0.0186 (12)0.0214 (13)0.0005 (6)0.0007 (7)0.0033 (8)
O30.0256 (13)0.0302 (13)0.0130 (12)0.0011 (8)0.0044 (9)0.0023 (8)
C10.0144 (13)0.0176 (13)0.0127 (14)0.0031 (10)0.0054 (11)0.0018 (10)
C20.0158 (13)0.0225 (14)0.0160 (15)0.0001 (11)0.0036 (12)0.0032 (11)
C30.0272 (18)0.0223 (14)0.0210 (17)0.0020 (12)0.0048 (14)0.0039 (11)
C40.0350 (15)0.0215 (14)0.024 (2)0.0052 (12)0.0038 (16)0.0063 (14)
C50.0244 (16)0.0315 (19)0.0230 (19)0.0061 (13)0.0028 (12)0.0056 (14)
C60.0168 (13)0.0249 (14)0.019 (2)0.0000 (10)0.0000 (12)0.0007 (14)
N10.0140 (11)0.0197 (11)0.0128 (14)0.0028 (9)0.0015 (10)0.0001 (11)
N20.0288 (19)0.0244 (13)0.0250 (16)0.0087 (11)0.0079 (14)0.0021 (12)
Geometric parameters (Å, º) top
Zn1—O3i1.918 (2)C2—N21.389 (4)
Zn1—O2ii1.9425 (17)C2—C31.390 (4)
Zn1—O11.9445 (16)C3—C41.379 (5)
Zn1—N12.056 (3)C3—H30.9500
P1—O31.501 (2)C4—C51.391 (5)
P1—O11.529 (3)C4—H40.9500
P1—O21.5299 (19)C5—C61.388 (5)
P1—H11.3200C5—H50.9500
O2—Zn1iii1.9424 (17)C6—H60.9500
O3—Zn1iv1.918 (2)N1—H1N0.85 (3)
C1—C61.390 (4)N1—H2N0.80 (3)
C1—C21.402 (4)N2—H3N0.82 (4)
C1—N11.447 (4)N2—H4N0.79 (4)
O3i—Zn1—O2ii108.36 (9)C4—C3—C2122.0 (3)
O3i—Zn1—O1103.71 (10)C4—C3—H3119.0
O2ii—Zn1—O1112.63 (7)C2—C3—H3119.0
O3i—Zn1—N1108.15 (11)C3—C4—C5120.1 (3)
O2ii—Zn1—N1111.10 (10)C3—C4—H4120.0
O1—Zn1—N1112.46 (9)C5—C4—H4120.0
O3—P1—O1111.30 (12)C6—C5—C4118.7 (3)
O3—P1—O2112.56 (12)C6—C5—H5120.7
O1—P1—O2110.24 (13)C4—C5—H5120.7
O3—P1—H1107.5C5—C6—C1121.3 (3)
O1—P1—H1107.5C5—C6—H6119.3
O2—P1—H1107.5C1—C6—H6119.3
P1—O1—Zn1123.02 (15)C1—N1—Zn1113.73 (19)
P1—O2—Zn1iii120.64 (10)C1—N1—H1N112 (2)
P1—O3—Zn1iv155.43 (13)Zn1—N1—H1N109 (2)
C6—C1—C2120.0 (3)C1—N1—H2N117 (2)
C6—C1—N1118.9 (2)Zn1—N1—H2N98 (2)
C2—C1—N1121.0 (2)H1N—N1—H2N106 (3)
N2—C2—C3121.2 (3)C2—N2—H3N115 (2)
N2—C2—C1120.8 (3)C2—N2—H4N111 (2)
C3—C2—C1117.9 (3)H3N—N2—H4N124 (3)
O3—P1—O1—Zn14.93 (18)N2—C2—C3—C4177.0 (3)
O2—P1—O1—Zn1120.71 (14)C1—C2—C3—C40.8 (5)
O3—P1—O2—Zn1iii61.4 (2)C2—C3—C4—C50.2 (5)
O1—P1—O2—Zn1iii63.54 (18)C3—C4—C5—C60.2 (5)
O1—P1—O3—Zn1iv114.0 (4)C4—C5—C6—C10.7 (5)
O2—P1—O3—Zn1iv121.6 (3)C2—C1—C6—C51.2 (5)
C6—C1—C2—N2177.5 (3)N1—C1—C6—C5174.8 (3)
N1—C1—C2—N21.5 (4)C6—C1—N1—Zn189.0 (3)
C6—C1—C2—C31.2 (4)C2—C1—N1—Zn187.0 (3)
N1—C1—C2—C3174.7 (3)
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+1/2, y, z; (iii) x1/2, y, z; (iv) x+1/2, y, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2v0.85 (3)2.15 (4)2.966 (3)161 (3)
N1—H2N···O1iv0.80 (3)2.22 (4)3.011 (4)171 (3)
N2—H4N···O1iv0.79 (4)2.21 (4)2.998 (4)174 (4)
N2—H3N···Cgiv0.82 (4)2.80 (4)3.400 (3)132 (3)
Symmetry codes: (iv) x+1/2, y, z1/2; (v) x+1, y, z.
 

Acknowledgements

We thank the EPSRC National Crystallography Service (University of Southampton) for the X-ray data collection for (I)[link].

References

First citationDong, Z.-J., Yan, Y., Zhang, W.-Q., Wang, Y. & Li, J.-Y. (2015). Chem. Res. Chin. Univ. 31, 498–502.  Web of Science CrossRef CAS Google Scholar
First citationFan, J., Slebodnick, C., Troya, D., Angel, R. & Hanson, B. E. (2005). Inorg. Chem. 44, 2719–2727.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHalime, I., Bezgour, A., Fahim, M., Dusek, M., Fejfarova, K., Lachkar, M. & El Bali, B. (2011). J. Chem. Crystallogr. 41, 223–229.  Web of Science CrossRef Google Scholar
First citationHalvorson, K. E., Patterson, C. & Willett, R. D. (1990). Acta Cryst. B46, 508–519.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarrison, W. T. A. (2006). Acta Cryst. C62, m156–m158.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHarrison, W. T. A. (2011). Crystals, 1, 236–243.  Web of Science CrossRef Google Scholar
First citationHarrison, W. T. A. & McNamee, P. M. (2010). J. Chem. Res. (S), 34, 641–642.  Web of Science CrossRef CAS Google Scholar
First citationHarrison, W. T. A., Phillips, M. L. F., Stanchfield, J. & Nenoff, T. M. (2001). Inorg. Chem. 40, 895–899.  Web of Science CSD CrossRef CAS Google Scholar
First citationHuang, H.-L., Lin, H.-Y., Chen, P.-S., Lee, J.-J., Kung, H.-C. & Wang, S.-L. (2017). Dalton Trans. 46, 364–368.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKatinaitė, J. & Harrison, W. T. A. (2017). Acta Cryst. E73, 759–762.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKirkpatrick, A. & Harrison, W. T. A. (2004). Solid State Sci. 6, 593–598.  CSD CrossRef CAS Google Scholar
First citationKoval'chukova, O. V., Palkina, K. K., Strashnova, S. B. & Zaitsev, B. E. (2008). Russ. J. Inorg. Chem. 53, 1227–1232.  Google Scholar
First citationLin, Z.-E., Zhang, J., Zheng, S.-T. & Yang, G.-Y. (2004a). Solid State Sci. 6, 371–376.  Web of Science CrossRef Google Scholar
First citationLin, Z.-E., Zhang, J., Zheng, S.-T. & Yang, G.-Y. (2004b). Microporous Mesoporous Mater. 68, 65–70.  Web of Science CrossRef Google Scholar
First citationPlace, H., Scott, B., Long, G. S. & Willett, R. D. (1998). Inorg. Chim. Acta, 279, 1–6.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku OD (2017). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStilinović, V. & Kaitner, B. (2011). Cryst. Growth Des. 11, 4110–4119.  Google Scholar
First citationWang, Y., Yu, J., Li, Y., Du, Y., Xu, R. & Ye, L. (2003). J. Solid State Chem. 170, 303–307.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds