research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Encapsulated di­chloro­ethane-mediated inter­locked supra­molecular polymeric assembly of A1/A2-di­hydroxy-oct­yl­oxy pillar[5]arene 1,2-di­chloro­ethane monosolvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Kuwait University, PO Box 5969, Safat 13060, Kuwait
*Correspondence e-mail: t.alazemi@ku.edu.kw

Edited by D. Chopra, Indian Institute of Science Education and Research Bhopal, India (Received 13 August 2018; accepted 20 September 2018; online 25 September 2018)

Crystals of 1-(1,4-dihy­droxy)-2,3,4,5-(1,4-dioct­yloxy)-pillar[5]arene, C99H158O10·C2H4Cl2, were grown from a 1,2-dicholoro­ethane/n-hexane solvent system. In the crystal, the encapsulated 1,2-di­chloro­ethane solvent is stabilized by C—H⋯π inter­actions and mediates the formation of an inter­locked supra­molecular polymer via C—H⋯Cl inter­actions.

1. Chemical context

Supra­molecular polymers constructed by reversible non-covalent inter­actions such as hydrogen bonds, metal–ligand inter­actions, host–guest inter­actions, ππ inter­actions and van der Waals forces have gained considerable inter­est for their intriguing properties of recycling and responsiveness to external stimuli (Raghupathi et al., 2014[Raghupathi, K. R., Guo, J., Munkhbat, O., Rangadurai, P. & Thayumanavan, S. (2014). Acc. Chem. Res. 47, 2200-2211.]; Takashima et al., 2017[Takashima, Y., Yonekura, K., Koyanagi, K., Iwaso, K., Nakahata, M., Yamaguchi, H. & Harada, A. (2017). Macromolecules, 50, 4144-4150.]). Pillararenes are unique three-dimensional macrocyclic compounds which possess symmetric rigid structures and are easy to functionalize with various substituents (Ogoshi et al., 2008[Ogoshi, T., Kanai, S., Fujinami, S., Yamagishi, T. A. & Nakamoto, Y. (2008). J. Am. Chem. Soc. 130, 5022-5023.]; Al-Azemi et al., 2017[Al-Azemi, T. F., Vinodh, M., Alipour, F. H. & Mohamod, A. A. (2017). J. Org. Chem. 82, 10945-10952.]). They exhibit outstanding abilities to selectively bind different kinds of guest mol­ecules and thus are excellent host mol­ecules for guest encapsulation and mol­ecular recognition. Their unique structural features also enable them to exhibit inter­esting self-assembling characteristics, which make them potential candidates for use in fabricating functional materials in supra­molecular systems and nanotechnology. The construction of pillararene-based supra­molecular assemblies is very inter­esting because it raises the possibility of using these macrocycles for many important functional materials, which include enzyme models, field-effect transistors, gas sensors or photovoltaic cells (Han et al., 2015[Han, J., Hou, X., Ke, C., Zhang, H., Strutt, N. L., Stern, C. L. & Stoddart, J. F. (2015). Org. Lett. 17, 3260-3263.]; Pan & Xue, 2013[Pan, M. & Xue, M. (2013). Eur. J. Org. Chem. pp. 4787-4793.]; Hu et al., 2016[Hu, W. B., Hu, W. J., Zhao, X. L., Liu, Y. A., Li, J. S., Jiang, B. & Wen, K. (2016). J. Org. Chem. 81, 3877-3881.]; Zhang et al., 2018[Zhang, H., Liu, Z. & Zhao, Y. (2018). Chem. Soc. Rev. 47, 5491-5528.]).

Supra­molecular motifs such as hydrogen bonding or host–guest inter­actions can be employed to promote the self-assembly of pillararene analogues. The introduction of appropriate peripheral functionalization at the macrocycle will give rise to numerous features that also allow their organization at a supra­molecular level (Xue et al., 2012[Xue, M., Yang, Y., Chi, X., Zhang, Z. & Huang, F. (2012). Acc. Chem. Res. 45, 1294-1308.]). The characteristics of the encapsulated guest mol­ecules can also be utilized to tune the supra­molecular nature of these macromolecules. The present work discusses the crystal structure of a pillararene system, Pil-OctOH·C2H4Cl2, which possesses two hy­droxy groups at the macrocyclic periphery. The remaining apical sites on the pillararene are functionalized with long n-oct­yloxy substituents. The role of the guest mol­ecule in the formation of an inter­locked supra­molecular polymer via various supra­molecular inter­actions is also described.

[Scheme 1]

2. Structural commentary

Fig. 1[link] shows the structure of the title A1/A2-dihy­droxy-oct­yloxy-pillar[5]arene (Pil-OctOH). The asymmetric unit contains half of the mol­ecule and the whole structure is generated by twofold rotation symmetry (symmetry operation: −x + 1, y, −z + [{1\over 2}]). The 1,2 di­chloro­ethane solvent is encapsulated within the pillararene cavity. The basic pillar[5]arene macrocycle is a penta­gon with an average corner-to-centroid distance of 4.99 Å. As a result of the presence of eight linear n-oct­yloxy chains at its apical positions, this novel pillararene could be considered to be a long cylindrical-shaped functional mol­ecule where the long tail ends are hydro­phobic in nature. Additionally, the presence of hy­droxy groups at two apical positions provides a hydro­philic pocket in the vicinity of the pillararene macrocycle. The hydroxyl groups are observed to be engaged in intra­molecular hydrogen bonds with the oxygen atoms of the adjacent oct­yl­oxy moieties via O—H⋯O inter­actions (Fig. 1[link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O1 0.85 (2) 1.93 (2) 2.754 (2) 165 (2)
C34i—H34Bi⋯Cl1 0.98 2.90 3.782 (3) 151
Symmetry code: (i) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z].
[Figure 1]
Figure 1
Displacement ellipsoid representation (30% probability) of Pil-OctOH·C2H4Cl2. Hydrogen atoms are omitted for clarity except for those of the hy­droxy groups. Blue dotted lines indicate intra­molecular hydrogen bonds between the hy­droxy groups and the oxygen atoms of adjacent oct­yloxy moieties. [Symmetry code: (i) −x + 1, y, −z + [{1\over 2}].]

3. Supra­molecular features

In the title macrocyclic compound, the encapsulated 1,2-di­chloro­ethane solvent is stabilized inside the cavity by C—H⋯π inter­actions with the pillararene aromatic ring (Table 2[link]). Inter­estingly, the guest 1,2-di­chloro­ethane facilitates the formation of a supra­molecular inter­locked network through efficient C—H⋯Cl inter­actions (Fig. 2[link] and Table 1[link]), which form chains along the b-axis direction. Additional stabilization of these chains is attained by dimer formation via weak C—H⋯C inter­actions between pillararene octyl chains (Fig. 2[link] and Table 2[link]). Although the A1/A2 dihy­droxy groups on the pillararene rim play no part in the formation of the supra­molecular assembly, their small size provides an opening which enables access to the encapsulated guest mol­ecule. The pillararene mol­ecule in each chain inter­acts with neighboring pillararenes of adjacent chains by C—H⋯C and C—H⋯π inter­actions, as given in Fig. 3[link] and Table 2[link].

Table 2
Summary of weak inter­actions (Å, °)

Cg1–Cg4 are the centroids of the C15–C17/C15i–C17i, C1–C6, C8–C13 and C1i–C6i rings, respectively.

D—H⋯A H⋯A DA D—H⋯A
C51A—H51BCg1 2.77 3.700 (8) 156
C51A—H51ACg2 3.04 3.850 (9) 140
C51B—H51DCg3 2.71 3.565 (7) 144
C51B—H51CCg4 3.11 4.086 (7) 169
C29ii—H29Bii⋯C33 3.18 4.136 (3) 163
C35iv—H35BivCg3 3.13 4.080 (2) 161
C37iv—H37AivCg3 3.36 4.260 (2) 153
C40v—H40Av⋯C7 2.85 3.686 (2) 143
Symmetry codes: (i) −x + 1, y, −z + [{1\over 2}]; (ii) −x + [{3\over 2}], −y + [{3\over 2}], −z; (iv) −x + 1, −y + 2, −z + 1; (v) −x + 1, y, −z + [{3\over 2}].
[Figure 2]
Figure 2
Supra­molecular propagation of Pil-OctOH moieties as one-dimensional chains mediated by di­chloro­ethane mol­ecules via C—H⋯Cl and C—H⋯ C inter­actions. C—H⋯Cl inter­actions are represented in blue and C—H⋯C inter­actions in purple. [Symmetry codes: (i) −x + 1, y, −z + [{1\over 2}]; (ii) −x + [{3\over 2}], −y + [{3\over 2}], −z; (iii) x − [{1\over 2}], −y + [{3\over 2}], z + [{1\over 2}].]
[Figure 3]
Figure 3
Adjacent pillararene fragments are connected by weak C—H⋯C and C—H⋯π inter­actions in the crystal. Those inter­actions that are involved in supra­molecular pillararene chain formation are omitted for clarity. Cg3 is the centroid of the C8–C13 ring. [Symmetry codes: (iv) −x + 1, −y + 2, −z + 1; (v) −x + 1, y, −z + [{3\over 2}].]

4. Synthesis and crystallization

The synthesis of 1-(1,4-dihy­droxy)-2,3,4,5 (1,4-dioct­yloxy)-pillar[5]arene (Pil-OctOH) has been reported earlier (Al-Azemi et al., 2018[Al-Azemi, T. F., Mohamod, A. A., Vinodh, M. & Alipour, F. H. (2018). Org. Chem. Front. 5, 10-18.]). Good quality single crystals of this compound were obtained by dissolving the pillararene (25 mg) in 1,2-di­chloro­ethane (0.5 mL) in a small vial and allowing solvent diffusion by keeping this solution in a larger vial containing n-hexane (5 ml). Within three days, crystals of the title compound of a suitable size for diffraction analysis had formed.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The OH hydrogen atoms were located in the electron density map. All other hydrogen atoms were placed at calculated positions and refined using a riding model with C—H = 0.95–0.99 Å and Uiso(H) = 1.2 or 1.5Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula C99H158O10·C2H4Cl2
Mr 1607.20
Crystal system, space group Monoclinic, C2/c
Temperature (K) 150
a, b, c (Å) 31.4629 (12), 20.2692 (7), 15.3703 (11)
β (°) 91.275 (6)
V3) 9799.7 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.12
Crystal size (mm) 0.21 × 0.13 × 0.09
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.774, 0.989
No. of measured, independent and observed [I > 2σ(I)] reflections 42520, 9959, 7023
Rint 0.032
(sin θ/λ)max−1) 0.624
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.137, 1.08
No. of reflections 9959
No. of parameters 528
No. of restraints 24
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.39, −0.43
Computer programs: CrystalClear-SM Expert (Rigaku, 2009[Rigaku (2009). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]), CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]), Il Milione (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]), SHELXL2017/1 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), ShelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Supporting information


Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2009); cell refinement: CrystalClear-SM Expert (Rigaku, 2009); data reduction: CrystalStructure (Rigaku, 2010); program(s) used to solve structure: Il Milione (Burla et al., 2007); program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015), ShelXle (Hübschle et al., 2011); molecular graphics: Mercury (Macrae et al., 2006).

1-(1,4-Dihydroxy)-2,3,4,5-(1,4-dioctyloxy)pillar[5]arene 1,2-dichloroethane solvent top
Crystal data top
C99H158O10·C2H4Cl2F(000) = 3528
Mr = 1607.20Dx = 1.089 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71075 Å
a = 31.4629 (12) ÅCell parameters from 11636 reflections
b = 20.2692 (7) Åθ = 3.1–26.3°
c = 15.3703 (11) ŵ = 0.12 mm1
β = 91.275 (6)°T = 150 K
V = 9799.7 (9) Å3Block, colorless
Z = 40.21 × 0.13 × 0.09 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
7023 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.032
ω scansθmax = 26.3°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 3739
Tmin = 0.774, Tmax = 0.989k = 2524
42520 measured reflectionsl = 1919
9959 independent reflections
Refinement top
Refinement on F224 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.137 w = 1/[σ2(Fo2) + (0.064P)2 + 2.8339P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
9959 reflectionsΔρmax = 0.39 e Å3
528 parametersΔρmin = 0.43 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.52608 (3)0.62986 (5)0.52918 (7)0.0395 (3)
Cl10.55186 (2)0.76990 (4)0.16233 (5)0.0952 (2)
C51A0.5073 (3)0.7445 (4)0.2239 (6)0.125 (2)0.464 (7)
H51A0.4841050.7595120.1840990.150*0.464 (7)
H51B0.5087870.6963740.2138500.150*0.464 (7)
C51B0.51449 (18)0.7915 (3)0.2421 (5)0.123 (2)0.536 (7)
H51C0.5275340.7699010.2938840.148*0.536 (7)
H51D0.5213540.8388500.2498970.148*0.536 (7)
O20.64483 (3)0.77669 (5)0.35101 (7)0.0433 (3)
O30.51552 (3)0.87675 (5)0.51444 (7)0.0392 (3)
O40.58340 (3)0.98033 (5)0.21357 (7)0.0407 (3)
O50.47324 (4)0.55783 (7)0.42002 (8)0.0535 (3)
H50.4914 (7)0.5732 (14)0.4563 (15)0.127 (11)*
C10.57574 (4)0.63729 (7)0.41632 (10)0.0342 (3)
C20.55453 (4)0.66856 (7)0.48322 (10)0.0340 (3)
C30.56248 (4)0.73431 (7)0.50300 (10)0.0344 (3)
H30.5471510.7549500.5480680.041*
C40.59246 (4)0.77054 (7)0.45812 (10)0.0331 (3)
C50.61468 (4)0.73893 (7)0.39254 (10)0.0353 (3)
C60.60609 (4)0.67346 (7)0.37175 (10)0.0360 (3)
H60.6211830.6529170.3262620.043*
C70.59975 (5)0.84281 (7)0.47991 (10)0.0363 (3)
H7A0.5921120.8507300.5411690.044*
H7B0.6303130.8531760.4742160.044*
C80.57387 (4)0.88849 (7)0.42128 (10)0.0330 (3)
C90.53189 (4)0.90490 (7)0.44047 (10)0.0334 (3)
C100.50904 (5)0.94760 (7)0.38618 (10)0.0335 (3)
H100.4809140.9596670.4007990.040*
C110.52661 (4)0.97304 (7)0.31073 (10)0.0324 (3)
C120.56792 (4)0.95468 (7)0.29032 (10)0.0329 (3)
C130.59133 (4)0.91376 (7)0.34602 (10)0.0344 (3)
H130.6197780.9028900.3323390.041*
C140.5000001.01589 (10)0.2500000.0336 (5)
H14A0.5188061.0445430.2156440.040*0.5
H14B0.4811941.0445440.2843560.040*0.5
C150.48802 (5)0.56267 (7)0.33650 (10)0.0363 (3)
C160.53117 (5)0.56392 (7)0.31800 (10)0.0348 (3)
C170.54243 (5)0.56370 (7)0.23073 (10)0.0372 (3)
H170.5716880.5642750.2167270.045*
C180.56560 (5)0.56684 (7)0.38916 (10)0.0378 (4)
H18A0.5560690.5417800.4404510.045*
H18B0.5917250.5455720.3679300.045*
C190.49696 (5)0.66342 (7)0.58421 (10)0.0384 (3)
H19A0.4785000.6931430.5489500.046*
H19B0.5128470.6903970.6276670.046*
C200.47014 (5)0.61268 (8)0.62986 (11)0.0410 (4)
H20A0.4887710.5833580.6653360.049*
H20B0.4548480.5852430.5860330.049*
C210.43810 (5)0.64623 (7)0.68835 (10)0.0387 (4)
H21A0.4168870.6698690.6514360.046*
H21B0.4531350.6793990.7249390.046*
C220.41490 (5)0.59824 (8)0.74739 (11)0.0410 (4)
H22A0.4001500.5647820.7107830.049*
H22B0.4361110.5749490.7846940.049*
C230.38255 (5)0.63133 (8)0.80523 (10)0.0408 (4)
H23A0.3586280.6479360.7684610.049*
H23B0.3960560.6697110.8345280.049*
C240.36519 (5)0.58494 (8)0.87401 (11)0.0440 (4)
H24A0.3533250.5452780.8447750.053*
H24B0.3889350.5704460.9127940.053*
C250.33098 (6)0.61590 (10)0.92887 (12)0.0547 (5)
H25A0.3062860.6273590.8907910.066*
H25B0.3421200.6573110.9548210.066*
C260.31624 (6)0.57082 (11)1.00130 (12)0.0643 (6)
H26A0.3404990.5594811.0395000.077*
H26B0.3041110.5304470.9759610.077*
H26C0.2945990.5934941.0351030.077*
C270.67085 (5)0.74467 (9)0.28883 (11)0.0453 (4)
H27A0.6529620.7265340.2407130.054*
H27B0.6867200.7078650.3167010.054*
C280.70150 (5)0.79524 (9)0.25407 (12)0.0503 (4)
H28A0.7172270.8159970.3033910.060*
H28B0.6852630.8302390.2230850.060*
C290.73314 (5)0.76452 (10)0.19214 (12)0.0519 (5)
H29A0.7508410.7321110.2247160.062*
H29B0.7172110.7403140.1459440.062*
C300.76207 (5)0.81448 (10)0.14993 (14)0.0607 (5)
H30A0.7767930.8402350.1962880.073*
H30B0.7443540.8455580.1151340.073*
C310.79542 (5)0.78446 (11)0.09109 (13)0.0595 (5)
H31A0.8150370.7568820.1268380.071*
H31B0.7810350.7553100.0479590.071*
C320.82113 (6)0.83584 (11)0.04310 (14)0.0687 (6)
H32A0.8345540.8658750.0864390.082*
H32B0.8014500.8624800.0062550.082*
C330.85581 (6)0.80769 (12)0.01432 (13)0.0695 (6)
H33A0.8767840.7835200.0225590.083*
H33B0.8429050.7759040.0560650.083*
C340.87843 (7)0.86123 (14)0.06413 (18)0.0942 (9)
H34A0.8589740.8798930.1083060.113*
H34B0.9032320.8423780.0925210.113*
H34C0.8877280.8960670.0237910.113*
C350.47133 (5)0.88783 (8)0.52980 (10)0.0373 (3)
H35A0.4540980.8739540.4783200.045*
H35B0.4662220.9353900.5398730.045*
C360.45850 (5)0.84864 (8)0.60853 (10)0.0409 (4)
H36A0.4789140.8572140.6571670.049*
H36B0.4594930.8009580.5947900.049*
C370.41377 (5)0.86709 (8)0.63631 (11)0.0420 (4)
H37A0.4133540.9146170.6511200.050*
H37B0.3938780.8603060.5863030.050*
C380.39779 (5)0.82805 (8)0.71365 (11)0.0427 (4)
H38A0.3936280.7815090.6958720.051*
H38B0.4197900.8289020.7607080.051*
C390.35635 (5)0.85437 (8)0.74903 (11)0.0444 (4)
H39A0.3614830.8990630.7730120.053*
H39B0.3354500.8586170.7002470.053*
C400.33716 (5)0.81172 (8)0.81929 (10)0.0399 (4)
H40A0.3597490.8002690.8625590.048*
H40B0.3268950.7700910.7924830.048*
C410.30058 (5)0.84390 (9)0.86639 (12)0.0497 (4)
H41A0.3108960.8850390.8944240.060*
H41B0.2781090.8560380.8232110.060*
C420.28144 (6)0.79983 (11)0.93509 (13)0.0605 (5)
H42A0.3036960.7863160.9770140.073*
H42B0.2690150.7606400.9071950.073*
H42C0.2592660.8240900.9654150.073*
C430.62086 (5)0.95076 (8)0.18009 (11)0.0402 (4)
H43A0.6171290.9023590.1758230.048*
H43B0.6454830.9598650.2194820.048*
C440.62861 (5)0.97944 (8)0.09101 (11)0.0419 (4)
H44A0.6314731.0279530.0957630.050*
H44B0.6038910.9698410.0520820.050*
C450.66860 (5)0.95097 (9)0.05176 (11)0.0459 (4)
H45A0.6646560.9028820.0437220.055*
H45B0.6926670.9574180.0934790.055*
C460.68018 (5)0.98138 (9)0.03522 (11)0.0445 (4)
H46A0.6560300.9755890.0769110.053*
H46B0.6847811.0293310.0271890.053*
C470.71981 (5)0.95118 (9)0.07369 (11)0.0445 (4)
H47A0.7146390.9035850.0837780.053*
H47B0.7435320.9551250.0305970.053*
C480.73333 (5)0.98252 (9)0.15878 (11)0.0479 (4)
H48A0.7098400.9778840.2022760.058*
H48B0.7380951.0302540.1490180.058*
C490.77328 (5)0.95275 (10)0.19575 (12)0.0526 (4)
H49A0.7966530.9565950.1518460.063*
H49B0.7683370.9051980.2066670.063*
C500.78709 (7)0.98497 (12)0.27952 (13)0.0736 (6)
H50A0.7647570.9793960.3243800.088*
H50B0.8133780.9642450.2989100.088*
H50C0.7920621.0321120.2694210.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0483 (6)0.0309 (6)0.0401 (6)0.0049 (4)0.0156 (5)0.0032 (5)
Cl10.0912 (4)0.0950 (5)0.1005 (5)0.0188 (3)0.0283 (4)0.0261 (4)
C51A0.138 (5)0.078 (4)0.163 (6)0.007 (4)0.076 (4)0.020 (4)
C51B0.133 (5)0.076 (4)0.164 (5)0.035 (3)0.068 (4)0.037 (4)
O20.0369 (6)0.0438 (6)0.0497 (7)0.0064 (4)0.0110 (5)0.0078 (5)
O30.0412 (6)0.0429 (6)0.0337 (6)0.0041 (4)0.0065 (4)0.0063 (5)
O40.0408 (6)0.0406 (6)0.0410 (6)0.0016 (4)0.0100 (5)0.0117 (5)
O50.0490 (7)0.0694 (9)0.0427 (7)0.0088 (6)0.0145 (6)0.0071 (6)
C10.0340 (7)0.0327 (8)0.0359 (8)0.0015 (6)0.0029 (6)0.0063 (6)
C20.0352 (8)0.0335 (8)0.0335 (8)0.0037 (6)0.0037 (6)0.0079 (6)
C30.0372 (8)0.0351 (8)0.0309 (8)0.0017 (6)0.0020 (6)0.0049 (6)
C40.0327 (7)0.0343 (8)0.0321 (8)0.0029 (6)0.0050 (6)0.0077 (6)
C50.0307 (7)0.0389 (9)0.0364 (9)0.0029 (6)0.0012 (6)0.0104 (7)
C60.0342 (7)0.0385 (9)0.0355 (9)0.0019 (6)0.0042 (6)0.0053 (7)
C70.0369 (8)0.0377 (8)0.0341 (8)0.0090 (6)0.0030 (6)0.0038 (7)
C80.0360 (8)0.0297 (8)0.0332 (8)0.0093 (6)0.0034 (6)0.0009 (6)
C90.0409 (8)0.0290 (8)0.0303 (8)0.0088 (6)0.0030 (6)0.0016 (6)
C100.0366 (7)0.0289 (8)0.0351 (8)0.0040 (6)0.0038 (6)0.0032 (6)
C110.0388 (8)0.0239 (7)0.0344 (8)0.0052 (5)0.0005 (6)0.0026 (6)
C120.0365 (8)0.0293 (8)0.0329 (8)0.0083 (6)0.0031 (6)0.0027 (6)
C130.0331 (7)0.0325 (8)0.0378 (9)0.0066 (6)0.0008 (6)0.0024 (6)
C140.0387 (11)0.0260 (10)0.0363 (12)0.0000.0047 (9)0.000
C150.0422 (8)0.0298 (8)0.0374 (9)0.0028 (6)0.0132 (6)0.0027 (6)
C160.0401 (8)0.0230 (7)0.0416 (9)0.0008 (6)0.0082 (6)0.0019 (6)
C170.0349 (8)0.0315 (8)0.0456 (10)0.0035 (6)0.0114 (6)0.0046 (7)
C180.0408 (8)0.0315 (8)0.0415 (9)0.0028 (6)0.0075 (7)0.0046 (7)
C190.0472 (9)0.0322 (8)0.0363 (9)0.0031 (6)0.0106 (7)0.0005 (7)
C200.0501 (9)0.0333 (8)0.0402 (9)0.0041 (7)0.0138 (7)0.0022 (7)
C210.0466 (9)0.0314 (8)0.0385 (9)0.0034 (6)0.0088 (7)0.0015 (7)
C220.0463 (9)0.0355 (9)0.0418 (9)0.0043 (6)0.0121 (7)0.0004 (7)
C230.0440 (9)0.0409 (9)0.0380 (9)0.0034 (7)0.0092 (7)0.0015 (7)
C240.0461 (9)0.0485 (10)0.0379 (9)0.0108 (7)0.0096 (7)0.0024 (7)
C250.0503 (10)0.0733 (13)0.0409 (10)0.0048 (9)0.0123 (8)0.0020 (9)
C260.0587 (11)0.0906 (16)0.0444 (11)0.0184 (10)0.0169 (9)0.0040 (10)
C270.0373 (8)0.0530 (10)0.0460 (10)0.0031 (7)0.0104 (7)0.0058 (8)
C280.0367 (8)0.0550 (11)0.0595 (12)0.0036 (7)0.0092 (7)0.0170 (9)
C290.0385 (9)0.0698 (13)0.0477 (11)0.0090 (8)0.0064 (7)0.0096 (9)
C300.0396 (9)0.0731 (13)0.0700 (14)0.0017 (8)0.0155 (9)0.0266 (11)
C310.0412 (9)0.0900 (15)0.0475 (11)0.0105 (9)0.0049 (8)0.0104 (10)
C320.0406 (10)0.0929 (16)0.0732 (14)0.0043 (9)0.0163 (9)0.0312 (12)
C330.0476 (11)0.1114 (18)0.0497 (12)0.0160 (11)0.0077 (9)0.0067 (12)
C340.0600 (13)0.125 (2)0.099 (2)0.0011 (13)0.0372 (13)0.0313 (17)
C350.0415 (8)0.0339 (8)0.0366 (9)0.0028 (6)0.0074 (6)0.0028 (7)
C360.0473 (9)0.0374 (9)0.0385 (9)0.0047 (7)0.0096 (7)0.0006 (7)
C370.0486 (9)0.0350 (9)0.0428 (10)0.0019 (7)0.0111 (7)0.0003 (7)
C380.0445 (9)0.0442 (10)0.0397 (9)0.0008 (7)0.0079 (7)0.0026 (7)
C390.0488 (9)0.0417 (9)0.0432 (10)0.0013 (7)0.0111 (7)0.0010 (7)
C400.0376 (8)0.0474 (9)0.0350 (9)0.0037 (7)0.0020 (6)0.0005 (7)
C410.0451 (9)0.0561 (11)0.0484 (11)0.0038 (8)0.0107 (7)0.0011 (8)
C420.0487 (10)0.0798 (14)0.0538 (12)0.0054 (9)0.0149 (8)0.0059 (10)
C430.0346 (8)0.0426 (9)0.0436 (10)0.0011 (6)0.0062 (6)0.0086 (7)
C440.0400 (8)0.0434 (9)0.0427 (10)0.0030 (7)0.0065 (7)0.0094 (7)
C450.0396 (8)0.0524 (10)0.0458 (10)0.0008 (7)0.0071 (7)0.0111 (8)
C460.0416 (9)0.0476 (10)0.0446 (10)0.0028 (7)0.0071 (7)0.0076 (8)
C470.0386 (8)0.0490 (10)0.0462 (10)0.0042 (7)0.0065 (7)0.0041 (8)
C480.0458 (9)0.0543 (11)0.0441 (10)0.0056 (7)0.0076 (7)0.0013 (8)
C490.0509 (10)0.0589 (11)0.0484 (11)0.0075 (8)0.0107 (8)0.0092 (9)
C500.0720 (13)0.1006 (18)0.0492 (12)0.0119 (12)0.0220 (10)0.0087 (12)
Geometric parameters (Å, º) top
O1—C21.3942 (16)C27—C281.513 (2)
O1—C191.4323 (17)C27—H27A0.9900
Cl1—C51B1.772 (5)C27—H27B0.9900
Cl1—C51A1.785 (5)C28—C291.525 (2)
C51A—C51Ai0.932 (11)C28—H28A0.9900
C51A—H51A0.9900C28—H28B0.9900
C51A—H51B0.9900C29—C301.517 (2)
C51B—C51Bi0.949 (9)C29—H29A0.9900
C51B—H51C0.9900C29—H29B0.9900
C51B—H51D0.9900C30—C311.527 (3)
O2—C51.3857 (17)C30—H30A0.9900
O2—C271.4280 (19)C30—H30B0.9900
O3—C91.3817 (17)C31—C321.520 (2)
O3—C351.4332 (17)C31—H31A0.9900
O4—C121.3873 (17)C31—H31B0.9900
O4—C431.4282 (18)C32—C331.529 (3)
O5—C151.3786 (19)C32—H32A0.9900
O5—H50.847 (10)C32—H32B0.9900
C1—C21.391 (2)C33—C341.515 (3)
C1—C61.3955 (19)C33—H33A0.9900
C1—C181.520 (2)C33—H33B0.9900
C2—C31.388 (2)C34—H34A0.9800
C3—C41.3905 (19)C34—H34B0.9800
C3—H30.9500C34—H34C0.9800
C4—C51.395 (2)C35—C361.510 (2)
C4—C71.519 (2)C35—H35A0.9900
C5—C61.390 (2)C35—H35B0.9900
C6—H60.9500C36—C371.526 (2)
C7—C81.517 (2)C36—H36A0.9900
C7—H7A0.9900C36—H36B0.9900
C7—H7B0.9900C37—C381.523 (2)
C8—C131.389 (2)C37—H37A0.9900
C8—C91.400 (2)C37—H37B0.9900
C9—C101.391 (2)C38—C391.521 (2)
C10—C111.395 (2)C38—H38A0.9900
C10—H100.9500C38—H38B0.9900
C11—C121.395 (2)C39—C401.519 (2)
C11—C141.5139 (18)C39—H39A0.9900
C12—C131.391 (2)C39—H39B0.9900
C13—H130.9500C40—C411.520 (2)
C14—H14A0.9900C40—H40A0.9900
C14—H14B0.9900C40—H40B0.9900
C15—C161.394 (2)C41—C421.518 (2)
C15—C17i1.394 (2)C41—H41A0.9900
C16—C171.395 (2)C41—H41B0.9900
C16—C181.523 (2)C42—H42A0.9800
C17—H170.9500C42—H42B0.9800
C18—H18A0.9900C42—H42C0.9800
C18—H18B0.9900C43—C441.512 (2)
C19—C201.5128 (19)C43—H43A0.9900
C19—H19A0.9900C43—H43B0.9900
C19—H19B0.9900C44—C451.521 (2)
C20—C211.526 (2)C44—H44A0.9900
C20—H20A0.9900C44—H44B0.9900
C20—H20B0.9900C45—C461.524 (2)
C21—C221.527 (2)C45—H45A0.9900
C21—H21A0.9900C45—H45B0.9900
C21—H21B0.9900C46—C471.520 (2)
C22—C231.522 (2)C46—H46A0.9900
C22—H22A0.9900C46—H46B0.9900
C22—H22B0.9900C47—C481.523 (2)
C23—C241.525 (2)C47—H47A0.9900
C23—H23A0.9900C47—H47B0.9900
C23—H23B0.9900C48—C491.516 (2)
C24—C251.518 (2)C48—H48A0.9900
C24—H24A0.9900C48—H48B0.9900
C24—H24B0.9900C49—C501.516 (3)
C25—C261.521 (3)C49—H49A0.9900
C25—H25A0.9900C49—H49B0.9900
C25—H25B0.9900C50—H50A0.9800
C26—H26A0.9800C50—H50B0.9800
C26—H26B0.9800C50—H50C0.9800
C26—H26C0.9800
C2—O1—C19117.27 (11)C29—C28—H28A109.2
C51Ai—C51A—Cl1149.8 (14)C27—C28—H28B109.2
C51Ai—C51A—H51A99.2C29—C28—H28B109.2
Cl1—C51A—H51A99.2H28A—C28—H28B107.9
C51Ai—C51A—H51B99.2C30—C29—C28113.61 (16)
Cl1—C51A—H51B99.2C30—C29—H29A108.8
H51A—C51A—H51B104.0C28—C29—H29A108.8
C51Bi—C51B—Cl1146.5 (11)C30—C29—H29B108.8
C51Bi—C51B—H51C100.2C28—C29—H29B108.8
Cl1—C51B—H51C100.2H29A—C29—H29B107.7
C51Bi—C51B—H51D100.2C29—C30—C31114.46 (17)
Cl1—C51B—H51D100.2C29—C30—H30A108.6
H51C—C51B—H51D104.2C31—C30—H30A108.6
C5—O2—C27117.77 (12)C29—C30—H30B108.6
C9—O3—C35116.85 (12)C31—C30—H30B108.6
C12—O4—C43117.21 (11)H30A—C30—H30B107.6
C15—O5—H5111 (2)C32—C31—C30113.23 (18)
C2—C1—C6117.92 (14)C32—C31—H31A108.9
C2—C1—C18122.00 (13)C30—C31—H31A108.9
C6—C1—C18120.04 (13)C32—C31—H31B108.9
C3—C2—C1120.80 (13)C30—C31—H31B108.9
C3—C2—O1122.95 (13)H31A—C31—H31B107.7
C1—C2—O1116.24 (13)C31—C32—C33114.76 (19)
C2—C3—C4121.29 (14)C31—C32—H32A108.6
C2—C3—H3119.4C33—C32—H32A108.6
C4—C3—H3119.4C31—C32—H32B108.6
C3—C4—C5118.17 (13)C33—C32—H32B108.6
C3—C4—C7120.05 (14)H32A—C32—H32B107.6
C5—C4—C7121.77 (13)C34—C33—C32111.9 (2)
O2—C5—C6123.57 (14)C34—C33—H33A109.2
O2—C5—C4116.00 (13)C32—C33—H33A109.2
C6—C5—C4120.43 (13)C34—C33—H33B109.2
C5—C6—C1121.35 (14)C32—C33—H33B109.2
C5—C6—H6119.3H33A—C33—H33B107.9
C1—C6—H6119.3C33—C34—H34A109.5
C8—C7—C4112.41 (12)C33—C34—H34B109.5
C8—C7—H7A109.1H34A—C34—H34B109.5
C4—C7—H7A109.1C33—C34—H34C109.5
C8—C7—H7B109.1H34A—C34—H34C109.5
C4—C7—H7B109.1H34B—C34—H34C109.5
H7A—C7—H7B107.9O3—C35—C36109.10 (13)
C13—C8—C9118.69 (14)O3—C35—H35A109.9
C13—C8—C7120.19 (13)C36—C35—H35A109.9
C9—C8—C7121.10 (13)O3—C35—H35B109.9
O3—C9—C10123.59 (13)C36—C35—H35B109.9
O3—C9—C8116.49 (13)H35A—C35—H35B108.3
C10—C9—C8119.92 (13)C35—C36—C37111.09 (13)
C9—C10—C11121.32 (13)C35—C36—H36A109.4
C9—C10—H10119.3C37—C36—H36A109.4
C11—C10—H10119.3C35—C36—H36B109.4
C10—C11—C12118.49 (13)C37—C36—H36B109.4
C10—C11—C14120.06 (12)H36A—C36—H36B108.0
C12—C11—C14121.32 (12)C38—C37—C36114.43 (14)
O4—C12—C13123.76 (13)C38—C37—H37A108.7
O4—C12—C11115.97 (13)C36—C37—H37A108.7
C13—C12—C11120.26 (13)C38—C37—H37B108.7
C8—C13—C12121.24 (13)C36—C37—H37B108.7
C8—C13—H13119.4H37A—C37—H37B107.6
C12—C13—H13119.4C39—C38—C37113.42 (14)
C11—C14—C11i109.98 (16)C39—C38—H38A108.9
C11—C14—H14A109.7C37—C38—H38A108.9
C11i—C14—H14A109.7C39—C38—H38B108.9
C11—C14—H14B109.7C37—C38—H38B108.9
C11i—C14—H14B109.7H38A—C38—H38B107.7
H14A—C14—H14B108.2C40—C39—C38114.34 (14)
O5—C15—C16122.80 (15)C40—C39—H39A108.7
O5—C15—C17i116.80 (13)C38—C39—H39A108.7
C16—C15—C17i120.35 (14)C40—C39—H39B108.7
C15—C16—C17117.74 (14)C38—C39—H39B108.7
C15—C16—C18122.32 (14)H39A—C39—H39B107.6
C17—C16—C18119.93 (13)C39—C40—C41114.30 (14)
C15i—C17—C16121.87 (13)C39—C40—H40A108.7
C15i—C17—H17119.1C41—C40—H40A108.7
C16—C17—H17119.1C39—C40—H40B108.7
C1—C18—C16112.06 (12)C41—C40—H40B108.7
C1—C18—H18A109.2H40A—C40—H40B107.6
C16—C18—H18A109.2C42—C41—C40113.27 (15)
C1—C18—H18B109.2C42—C41—H41A108.9
C16—C18—H18B109.2C40—C41—H41A108.9
H18A—C18—H18B107.9C42—C41—H41B108.9
O1—C19—C20108.77 (12)C40—C41—H41B108.9
O1—C19—H19A109.9H41A—C41—H41B107.7
C20—C19—H19A109.9C41—C42—H42A109.5
O1—C19—H19B109.9C41—C42—H42B109.5
C20—C19—H19B109.9H42A—C42—H42B109.5
H19A—C19—H19B108.3C41—C42—H42C109.5
C19—C20—C21110.68 (12)H42A—C42—H42C109.5
C19—C20—H20A109.5H42B—C42—H42C109.5
C21—C20—H20A109.5O4—C43—C44108.42 (12)
C19—C20—H20B109.5O4—C43—H43A110.0
C21—C20—H20B109.5C44—C43—H43A110.0
H20A—C20—H20B108.1O4—C43—H43B110.0
C20—C21—C22113.40 (12)C44—C43—H43B110.0
C20—C21—H21A108.9H43A—C43—H43B108.4
C22—C21—H21A108.9C43—C44—C45111.40 (13)
C20—C21—H21B108.9C43—C44—H44A109.3
C22—C21—H21B108.9C45—C44—H44A109.3
H21A—C21—H21B107.7C43—C44—H44B109.3
C23—C22—C21113.65 (13)C45—C44—H44B109.3
C23—C22—H22A108.8H44A—C44—H44B108.0
C21—C22—H22A108.8C44—C45—C46114.25 (14)
C23—C22—H22B108.8C44—C45—H45A108.7
C21—C22—H22B108.8C46—C45—H45A108.7
H22A—C22—H22B107.7C44—C45—H45B108.7
C22—C23—C24112.81 (13)C46—C45—H45B108.7
C22—C23—H23A109.0H45A—C45—H45B107.6
C24—C23—H23A109.0C47—C46—C45113.11 (14)
C22—C23—H23B109.0C47—C46—H46A109.0
C24—C23—H23B109.0C45—C46—H46A109.0
H23A—C23—H23B107.8C47—C46—H46B109.0
C25—C24—C23113.55 (15)C45—C46—H46B109.0
C25—C24—H24A108.9H46A—C46—H46B107.8
C23—C24—H24A108.9C46—C47—C48114.40 (14)
C25—C24—H24B108.9C46—C47—H47A108.7
C23—C24—H24B108.9C48—C47—H47A108.7
H24A—C24—H24B107.7C46—C47—H47B108.7
C24—C25—C26112.95 (17)C48—C47—H47B108.7
C24—C25—H25A109.0H47A—C47—H47B107.6
C26—C25—H25A109.0C49—C48—C47113.93 (15)
C24—C25—H25B109.0C49—C48—H48A108.8
C26—C25—H25B109.0C47—C48—H48A108.8
H25A—C25—H25B107.8C49—C48—H48B108.8
C25—C26—H26A109.5C47—C48—H48B108.8
C25—C26—H26B109.5H48A—C48—H48B107.7
H26A—C26—H26B109.5C50—C49—C48113.74 (17)
C25—C26—H26C109.5C50—C49—H49A108.8
H26A—C26—H26C109.5C48—C49—H49A108.8
H26B—C26—H26C109.5C50—C49—H49B108.8
O2—C27—C28107.93 (14)C48—C49—H49B108.8
O2—C27—H27A110.1H49A—C49—H49B107.7
C28—C27—H27A110.1C49—C50—H50A109.5
O2—C27—H27B110.1C49—C50—H50B109.5
C28—C27—H27B110.1H50A—C50—H50B109.5
H27A—C27—H27B108.4C49—C50—H50C109.5
C27—C28—C29111.95 (15)H50A—C50—H50C109.5
C27—C28—H28A109.2H50B—C50—H50C109.5
C6—C1—C2—C31.9 (2)O4—C12—C13—C8178.75 (13)
C18—C1—C2—C3175.80 (14)C11—C12—C13—C82.2 (2)
C6—C1—C2—O1176.77 (12)C10—C11—C14—C11i83.32 (12)
C18—C1—C2—O15.5 (2)C12—C11—C14—C11i92.57 (13)
C19—O1—C2—C315.2 (2)O5—C15—C16—C17175.06 (13)
C19—O1—C2—C1166.12 (13)C17i—C15—C16—C172.36 (19)
C1—C2—C3—C41.4 (2)O5—C15—C16—C186.2 (2)
O1—C2—C3—C4177.16 (13)C17i—C15—C16—C18176.41 (13)
C2—C3—C4—C50.3 (2)C15—C16—C17—C15i0.37 (19)
C2—C3—C4—C7178.65 (13)C18—C16—C17—C15i178.43 (13)
C27—O2—C5—C65.6 (2)C2—C1—C18—C1690.31 (17)
C27—O2—C5—C4174.64 (13)C6—C1—C18—C1687.37 (16)
C3—C4—C5—O2178.67 (12)C15—C16—C18—C187.07 (17)
C7—C4—C5—O22.4 (2)C17—C16—C18—C191.68 (16)
C3—C4—C5—C61.5 (2)C2—O1—C19—C20178.21 (12)
C7—C4—C5—C6177.41 (13)O1—C19—C20—C21179.15 (13)
O2—C5—C6—C1179.18 (13)C19—C20—C21—C22170.72 (14)
C4—C5—C6—C11.0 (2)C20—C21—C22—C23179.39 (14)
C2—C1—C6—C50.7 (2)C21—C22—C23—C24170.36 (14)
C18—C1—C6—C5177.07 (13)C22—C23—C24—C25176.61 (14)
C3—C4—C7—C894.67 (16)C23—C24—C25—C26175.88 (14)
C5—C4—C7—C884.26 (17)C5—O2—C27—C28178.92 (13)
C4—C7—C8—C1392.92 (16)O2—C27—C28—C29175.51 (14)
C4—C7—C8—C985.65 (17)C27—C28—C29—C30175.15 (15)
C35—O3—C9—C106.3 (2)C28—C29—C30—C31177.17 (16)
C35—O3—C9—C8173.83 (12)C29—C30—C31—C32174.53 (16)
C13—C8—C9—O3177.87 (12)C30—C31—C32—C33178.18 (17)
C7—C8—C9—O30.7 (2)C31—C32—C33—C34176.70 (19)
C13—C8—C9—C102.2 (2)C9—O3—C35—C36175.07 (12)
C7—C8—C9—C10179.17 (13)O3—C35—C36—C37170.97 (12)
O3—C9—C10—C11177.94 (13)C35—C36—C37—C38178.06 (13)
C8—C9—C10—C112.2 (2)C36—C37—C38—C39170.93 (14)
C9—C10—C11—C120.1 (2)C37—C38—C39—C40173.32 (14)
C9—C10—C11—C14176.09 (13)C38—C39—C40—C41169.14 (14)
C43—O4—C12—C1315.6 (2)C39—C40—C41—C42178.94 (15)
C43—O4—C12—C11165.35 (12)C12—O4—C43—C44172.32 (12)
C10—C11—C12—O4178.63 (12)O4—C43—C44—C45179.04 (13)
C14—C11—C12—O42.7 (2)C43—C44—C45—C46175.75 (14)
C10—C11—C12—C132.2 (2)C44—C45—C46—C47178.99 (14)
C14—C11—C12—C13178.20 (13)C45—C46—C47—C48177.51 (14)
C9—C8—C13—C120.1 (2)C46—C47—C48—C49179.06 (14)
C7—C8—C13—C12178.69 (13)C47—C48—C49—C50178.88 (15)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O10.85 (2)1.93 (2)2.754 (2)165 (2)
C34ii—H34Bii···Cl10.982.903.782 (3)151
Symmetry code: (ii) x+3/2, y+3/2, z.
Summary of weak interactions (Å, °) top
Cg1–Cg4 are the centroids of the C15–C17/C15i–C17i, C1–C6, C8–C13 and C1i–C6i rings, respectively.
D—H···AH···AD···AD—H···A
C51A—H51B···Cg12.773.700 (8)156
C51A—H51A···Cg23.043.850 (9)140
C51B—H51D···Cg32.713.565 (7)144
C51B—H51C···Cg43.114.086 (7)169
C29ii—H29Bii···C333.184.136 (3)163
C35iv—H35Biv···Cg33.134.080 (2)161
C37iv—H37Aiv···Cg33.364.260 (2)153
C40v—H40Av···C72.853.686 (2)143
Symmetry codes: (i) -x + 1, y, -z + 1/2; (ii) -x + 3/2, -y + 3/2, -z; (iv) -x + 1, -y + 2, -z + 1; (v) -x + 1, y, -z + 3/2.
 

Funding information

The support of the Kuwait University (research grant No. SC 03/16) and the facilities of RSPU through grant Nos. GS 03/08 (Rigaku RAPID II, Japan), GS 01/03 (NMR-Bruker DPX Avance 600, Germany and GC MS Thermo Scientific, Germany) are gratefully acknowledged.

References

First citationAl-Azemi, T. F., Mohamod, A. A., Vinodh, M. & Alipour, F. H. (2018). Org. Chem. Front. 5, 10–18.  Google Scholar
First citationAl-Azemi, T. F., Vinodh, M., Alipour, F. H. & Mohamod, A. A. (2017). J. Org. Chem. 82, 10945–10952.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHan, J., Hou, X., Ke, C., Zhang, H., Strutt, N. L., Stern, C. L. & Stoddart, J. F. (2015). Org. Lett. 17, 3260–3263.  Web of Science CrossRef Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHu, W. B., Hu, W. J., Zhao, X. L., Liu, Y. A., Li, J. S., Jiang, B. & Wen, K. (2016). J. Org. Chem. 81, 3877–3881.  Web of Science CrossRef Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOgoshi, T., Kanai, S., Fujinami, S., Yamagishi, T. A. & Nakamoto, Y. (2008). J. Am. Chem. Soc. 130, 5022–5023.  Web of Science CrossRef Google Scholar
First citationPan, M. & Xue, M. (2013). Eur. J. Org. Chem. pp. 4787–4793.  Web of Science CrossRef Google Scholar
First citationRaghupathi, K. R., Guo, J., Munkhbat, O., Rangadurai, P. & Thayumanavan, S. (2014). Acc. Chem. Res. 47, 2200–2211.  CrossRef Google Scholar
First citationRigaku (2009). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTakashima, Y., Yonekura, K., Koyanagi, K., Iwaso, K., Nakahata, M., Yamaguchi, H. & Harada, A. (2017). Macromolecules, 50, 4144–4150.  CrossRef Google Scholar
First citationXue, M., Yang, Y., Chi, X., Zhang, Z. & Huang, F. (2012). Acc. Chem. Res. 45, 1294–1308.  CrossRef Google Scholar
First citationZhang, H., Liu, Z. & Zhao, Y. (2018). Chem. Soc. Rev. 47, 5491–5528.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds