research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (E)-3-[(2,6-di­methyl­phen­yl)diazen­yl]-7-methyl-1H-indazole

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
*Correspondence e-mail: akitsu@rs.kagu.tus.ac.jp

Edited by E. V. Boldyreva, Russian Academy of Sciences, Russia (Received 11 July 2018; accepted 4 September 2018; online 14 September 2018)

The title azo compound, C16H16N4, was synthesized from 2,6-di­methyl­aniline. The diazenyl group adopts a trans (E) conformation, with an N=N bond length of 1.265 (4) Å. The pyrazole ring is approximately planar. In the crystal, zigzag chains along the b-axis direction with a C(3) is graph-set motif are formed by N—H⋯N hydrogen bonds involving the pyrazole moiety.

1. Chemical context

Azo­benzene derivatives are known to be photochromic com­pounds and numerous studies have been reported (Aritake et al., 2011[Aritake, Y., Takanashi, T., Yamazaki, A. & AKitsu, T. (2011). Polyhedron, 30, 886-894.]; Bobrovsky et al., 2016[Bobrovsky, A., Shibaev, V., Cigl, M., Hamplová, V., Pociecha, D. & Bubnov, A. (2016). J. Polym. Sci. Part A Polym. Chem. 54, 2962-2970.]; Li et al., 2017[Li, S., Feng, Y., Long, P., Qin, C. & Feng, W. (2017). J. Mater. Chem. C, 5, 5068-5075.]). As an example of this, our group has reported the crystal structures of several azo­benzene derivatives (Moriwaki & Akitsu, 2015[Moriwaki, R. & Akitsu, T. (2015). Acta Cryst. E71, o886-o887.]; Moriwaki et al., 2017[Moriwaki, R., Yagi, S., Haraguchi, T. & Akitsu, T. (2017). IUCrData, 2, x170979.]).

[Scheme 1]

Pyrazole is an aromatic compound comprising a five-membered ring with two adjacent N atoms. Pyrazole derivatives are biologically active and have attracted attention for the synthesis of new medicinal products (Ansari et al., 2017[Ansari, A., Ali, A., Asif, M. & Shamsuzzaman (2017). New J. Chem. 41, 16-41.]).

Here we report the crystal structure of (E)-3-[(2,6-di­methyl­phen­yl)diazen­yl]-7-methyl-1H-indazole, which has an azo­benzene moiety and a pyrazole moiety (Fig. 1[link]).

[Figure 1]
Figure 1
The structure of the title compound shown with 50% probability displacement ellipsoids.

2. Structural commentary

The mol­ecular structure of the title compound is composed of a benzene ring linked to an indazole unit by an N=N bond. In the azo­benzene moiety, the azo N=N double bond adopts an E configuration, with an N=N bond length of 1.265 (4) Å and a corresponding C9—N3—N4—C15 torsion angle of 0.7 (4)°.

The mol­ecule is practically flat with a maximum deviation of 0.142 (5) Å (for atom C7) from the mean plane passing through the non-H atoms. The pyrazole ring (N3/N4/C15/C10/C9) is approximately planar with an r.m.s. deviation of 0.0026 Å. The C—C bond lengths of the pyrazole ring are 1.404 (6) and 1.428 (5) Å, the C—N bond lengths are 1.322 (5) and 1.359 (5) Å and the N—N bond length is 1.351 (4) Å, in good agreement with values reported previously for 7-methyl-1H-indazole [1.400 (4), 1.422 (4), 1.320 (4), 1.366 (3) and 1.356 (3) Å, respectively; Foces-Foces, 2005[Foces-Foces, C. (2005). Acta Cryst. E61, o337-o339.]]

3. Supra­molecular features

In the crystal, mol­ecules are helically connected along the b-axis direction by N—H⋯N hydrogen bonds (Table 1[link] and Fig. 2[link]). As a result, chiral crystals of achiral mol­ecules are generated. The angles between the planes of neighbouring mol­ecules in the hydrogen-bonded chains is 82.6 (2)°. Many examples of such achiral mol­ecules forming chiral crystals have been reported, but the prediction of chiral crystallization is still not possible (Koshima & Matsuura, 1998[Koshima, H. & Matsuura, T. (1998). J. Synth. Org. Chem. Jpn, 56, 466-477.]; Matsuura & Koshima, 2005[Matsuura, T. & Koshima, H. (2005). J. Photochem. Photobiol. C, 6, 7-24.]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C9–C14 and C9–C10/C15/N3–N4 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3n⋯N4i 0.88 2.06 2.851 (5) 149
C16ii—H16ciiCg1 0.98 2.84 3.544 129
C16ii—H16ciiCg3 0.98 2.93 3.832 154
Symmetry codes: (i) −x + 1, y + [{1\over 2}], −z; (ii) x, y − 1, z.
[Figure 2]
Figure 2
A view of the N—H⋯N hydrogen bonds (blue dashed lines) present in the crystal lattice of the title compound.

In addition, weak supra­molecular inter­actions, such as the C16—H16cCg1 (2.844 Å) and C16—H16cCg3 (2.929 Å) C—H⋯π hydrogen bonds, are also found (Table 1[link] and Fig. 3[link]).

[Figure 3]
Figure 3
A view of the various C—H⋯π inter­actions (blue dashed lines) present in the crystal lattice of the title compound.

4. Database survey

A similar compound, i.e. 7-methyl-1H-indazole (CCDC refcode 263698; Foces-Foces, 2005[Foces-Foces, C. (2005). Acta Cryst. E61, o337-o339.]), has already been reported and shows a structure comparable with that of the title compound. However, surveys of the Cambridge Structural Database (CSD, Version 5.38; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the title compound revealed no hits. To our knowledge, this is the first crystal structure reported for indazole-type azo dyes.

5. Synthesis and crystallization

A mixture of 2,6-di­methyl­aniline (0.4847 g, 4.000 mmol), concentrated hydro­chloric acid (37%, 1 ml) and water was heated and completely dissolved. The mixture was cooled in an ice bath and NaNO2 (0.2967 g, 4.300 mmol) in 4.5 ml water was added. The reaction mixture was stirred at 273 K for 30 min and then salicyl­aldehyde (0.4885 g, 4.000 mmol) in 10 ml of a 10% NaOH aqueous solution was added dropwise and allowed to stir for an additional 1 h. The obtained orange precipitate was filtered off, washed with water and dried in a desiccator for several days (yield 0.2650 g, 26.06%). This crude orange compound was recrystallized by slow evaporation from acetone to give orange prismatic single crystals. IR (KBr, cm−1): 746 (s), 1147 (s), 1162 (s), 1425 (m), 2923 (s), 3136 (br). 1H NMR (300 MHz, DMSO): δ 2.36 (s, 6H), 2.56 (s, 3H), 7.18–7.23 (m, 5H), 8.02 (d, 1H)

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were located in difference Fourier maps. C-bound H atoms were constrained using a riding model [C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms, and C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms]. N-bound H atoms were constrained using a riding model [N—H = 0.88 Å and Uiso(H) = 1.2Ueq(N)].

Table 2
Experimental details

Crystal data
Chemical formula C16H16N4
Mr 264.33
Crystal system, space group Monoclinic, P21
Temperature (K) 173
a, b, c (Å) 11.052 (8), 4.565 (4), 13.541 (10)
β (°) 97.997 (11)
V3) 676.5 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.30 × 0.12 × 0.09
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.323, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 3767, 2682, 2055
Rint 0.053
(sin θ/λ)max−1) 0.655
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.180, 1.01
No. of reflections 2682
No. of parameters 184
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.28, −0.34
Absolute structure Flack x determined using 636 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]
Absolute structure parameter −10.0 (10)
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

(E)-3-[(2,6-Dimethylphenyl)diazenyl]-7-methyl-1H-indazole top
Crystal data top
C16H16N4F(000) = 280
Mr = 264.33Dx = 1.297 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 11.052 (8) ÅCell parameters from 1267 reflections
b = 4.565 (4) Åθ = 2.6–26.0°
c = 13.541 (10) ŵ = 0.08 mm1
β = 97.997 (11)°T = 173 K
V = 676.5 (9) Å3Prism, orange
Z = 20.30 × 0.12 × 0.09 mm
Data collection top
Bruker APEXII CCD
diffractometer
2682 independent reflections
Radiation source: fine-focus sealed tube2055 reflections with I > 2σ(I)
Detector resolution: 8.3333 pixels mm-1Rint = 0.053
φ and ω scansθmax = 27.7°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1114
Tmin = 0.323, Tmax = 0.746k = 55
3767 measured reflectionsl = 1715
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067H-atom parameters constrained
wR(F2) = 0.180 w = 1/[σ2(Fo2) + (0.0993P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2682 reflectionsΔρmax = 0.28 e Å3
184 parametersΔρmin = 0.34 e Å3
1 restraintAbsolute structure: Flack x determined using 636 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 10.0 (10)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N30.4743 (3)0.9544 (8)0.0970 (2)0.0333 (8)
H3n0.43451.0670.05070.04*
N10.7288 (3)0.3286 (8)0.2528 (2)0.0334 (8)
N40.5704 (3)0.7839 (8)0.0832 (2)0.0334 (8)
N20.7017 (3)0.4534 (8)0.1693 (2)0.0342 (8)
C100.5295 (3)0.7301 (9)0.2424 (3)0.0302 (9)
C150.6037 (3)0.6474 (9)0.1687 (3)0.0298 (8)
C90.4468 (3)0.9302 (9)0.1914 (3)0.0318 (9)
C10.8281 (3)0.1267 (9)0.2607 (3)0.0327 (9)
C140.3515 (3)1.0650 (10)0.2343 (3)0.0371 (10)
C110.5210 (3)0.6599 (10)0.3412 (3)0.0374 (10)
H110.57590.52530.37740.045*
C60.8553 (3)0.0120 (9)0.3576 (3)0.0359 (10)
C20.8945 (3)0.0392 (10)0.1838 (3)0.0374 (10)
C50.9517 (4)0.1836 (10)0.3778 (3)0.0432 (10)
H50.97220.25860.44340.052*
C130.3463 (4)0.9899 (10)0.3307 (3)0.0423 (11)
H130.28391.0730.36340.051*
C30.9897 (4)0.1594 (11)0.2094 (4)0.0450 (11)
H31.03670.22050.15950.054*
C80.7839 (3)0.0999 (11)0.4390 (3)0.0423 (11)
H8a0.80960.01920.49840.063*
H8b0.69660.06930.41670.063*
H8c0.79880.30730.4550.063*
C41.0178 (4)0.2699 (11)0.3043 (4)0.0503 (12)
H41.08290.4060.31890.06*
C120.4300 (4)0.7932 (11)0.3843 (3)0.0470 (12)
H120.4230.75230.45210.056*
C70.8686 (4)0.1420 (12)0.0775 (3)0.0467 (11)
H7a0.88690.35160.07440.07*
H7b0.78230.10850.05220.07*
H7c0.91980.03290.03670.07*
C160.2633 (4)1.2688 (12)0.1738 (4)0.0497 (12)
H16a0.19831.32350.21270.075*
H16b0.22751.17040.11230.075*
H16c0.30671.44530.15710.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N30.0304 (16)0.0403 (19)0.0275 (16)0.0049 (15)0.0023 (12)0.0025 (15)
N10.0317 (16)0.036 (2)0.0316 (17)0.0040 (15)0.0026 (12)0.0015 (16)
N40.0327 (16)0.0404 (19)0.0264 (16)0.0015 (15)0.0014 (11)0.0010 (15)
N20.0321 (16)0.041 (2)0.0294 (17)0.0021 (15)0.0036 (12)0.0001 (16)
C100.0258 (17)0.033 (2)0.0308 (19)0.0040 (15)0.0022 (13)0.0006 (16)
C150.0321 (18)0.033 (2)0.0246 (18)0.0035 (17)0.0039 (13)0.0007 (16)
C90.0298 (18)0.033 (2)0.032 (2)0.0044 (16)0.0030 (14)0.0029 (18)
C10.0253 (18)0.033 (2)0.040 (2)0.0062 (17)0.0044 (14)0.0061 (19)
C140.0299 (19)0.036 (2)0.046 (2)0.0031 (17)0.0067 (16)0.0062 (19)
C110.038 (2)0.044 (3)0.030 (2)0.0034 (19)0.0046 (15)0.0007 (19)
C60.0288 (19)0.038 (2)0.040 (2)0.0060 (18)0.0002 (15)0.0015 (19)
C20.033 (2)0.039 (2)0.041 (2)0.0055 (18)0.0074 (16)0.0062 (19)
C50.034 (2)0.045 (3)0.049 (3)0.002 (2)0.0040 (17)0.002 (2)
C130.037 (2)0.045 (3)0.047 (2)0.002 (2)0.0119 (18)0.010 (2)
C30.033 (2)0.048 (3)0.055 (3)0.0017 (19)0.0086 (18)0.010 (2)
C80.034 (2)0.057 (3)0.034 (2)0.002 (2)0.0004 (15)0.002 (2)
C40.036 (2)0.051 (3)0.063 (3)0.006 (2)0.0011 (19)0.002 (2)
C120.054 (3)0.056 (3)0.034 (2)0.002 (2)0.0164 (19)0.002 (2)
C70.043 (2)0.059 (3)0.040 (2)0.002 (2)0.0139 (17)0.005 (2)
C160.039 (2)0.047 (3)0.063 (3)0.007 (2)0.0066 (19)0.002 (3)
Geometric parameters (Å, º) top
N3—N41.351 (4)C2—C31.396 (6)
N3—C91.359 (5)C2—C71.503 (6)
N3—H3n0.88C5—C41.371 (6)
N1—N21.265 (4)C5—H50.95
N1—C11.426 (5)C13—C121.415 (6)
N4—C151.322 (5)C13—H130.95
N2—C151.399 (5)C3—C41.375 (7)
C10—C111.391 (5)C3—H30.95
C10—C91.404 (6)C8—H8a0.98
C10—C151.428 (5)C8—H8b0.98
C9—C141.412 (5)C8—H8c0.98
C1—C61.406 (6)C4—H40.95
C1—C21.413 (5)C12—H120.95
C14—C131.358 (6)C7—H7a0.98
C14—C161.505 (6)C7—H7b0.98
C11—C121.374 (6)C7—H7c0.98
C11—H110.95C16—H16a0.98
C6—C51.388 (5)C16—H16b0.98
C6—C81.496 (6)C16—H16c0.98
N4—N3—C9111.5 (3)C6—C5—H5119.5
N4—N3—H3n124.2C14—C13—C12122.8 (4)
C9—N3—H3n124.2C14—C13—H13118.6
N2—N1—C1116.2 (3)C12—C13—H13118.6
C15—N4—N3106.2 (3)C4—C3—C2122.4 (4)
N1—N2—C15112.1 (3)C4—C3—H3118.8
C11—C10—C9119.8 (4)C2—C3—H3118.8
C11—C10—C15137.1 (4)C6—C8—H8a109.5
C9—C10—C15103.1 (3)C6—C8—H8b109.5
N4—C15—N2115.1 (3)H8a—C8—H8b109.5
N4—C15—C10111.8 (3)C6—C8—H8c109.5
N2—C15—C10133.1 (4)H8a—C8—H8c109.5
N3—C9—C10107.5 (3)H8b—C8—H8c109.5
N3—C9—C14129.0 (4)C5—C4—C3119.9 (4)
C10—C9—C14123.5 (4)C5—C4—H4120.0
C6—C1—C2121.1 (4)C3—C4—H4120.0
C6—C1—N1111.9 (3)C11—C12—C13121.8 (4)
C2—C1—N1127.0 (4)C11—C12—H12119.1
C13—C14—C9114.8 (4)C13—C12—H12119.1
C13—C14—C16124.6 (4)C2—C7—H7a109.5
C9—C14—C16120.6 (4)C2—C7—H7b109.5
C12—C11—C10117.2 (4)H7a—C7—H7b109.5
C12—C11—H11121.4C2—C7—H7c109.5
C10—C11—H11121.4H7a—C7—H7c109.5
C5—C6—C1118.8 (4)H7b—C7—H7c109.5
C5—C6—C8119.8 (4)C14—C16—H16a109.5
C1—C6—C8121.4 (4)C14—C16—H16b109.5
C3—C2—C1116.8 (4)H16a—C16—H16b109.5
C3—C2—C7118.5 (3)C14—C16—H16c109.5
C1—C2—C7124.6 (4)H16a—C16—H16c109.5
C4—C5—C6120.9 (4)H16b—C16—H16c109.5
C4—C5—H5119.5
C9—N3—N4—C150.7 (4)C10—C9—C14—C16177.7 (4)
C1—N1—N2—C15179.8 (3)C9—C10—C11—C120.1 (6)
N3—N4—C15—N2178.8 (3)C15—C10—C11—C12178.5 (5)
N3—N4—C15—C100.7 (4)C2—C1—C6—C52.0 (6)
N1—N2—C15—N4179.6 (3)N1—C1—C6—C5178.7 (3)
N1—N2—C15—C100.2 (6)C2—C1—C6—C8178.9 (4)
C11—C10—C15—N4179.2 (4)N1—C1—C6—C80.4 (5)
C9—C10—C15—N40.5 (4)C6—C1—C2—C31.6 (6)
C11—C10—C15—N20.2 (8)N1—C1—C2—C3179.2 (3)
C9—C10—C15—N2178.9 (4)C6—C1—C2—C7177.6 (4)
N4—N3—C9—C100.4 (4)N1—C1—C2—C71.6 (7)
N4—N3—C9—C14178.1 (4)C1—C6—C5—C41.6 (6)
C11—C10—C9—N3179.0 (4)C8—C6—C5—C4179.3 (4)
C15—C10—C9—N30.0 (4)C9—C14—C13—C120.3 (6)
C11—C10—C9—C141.2 (6)C16—C14—C13—C12178.9 (4)
C15—C10—C9—C14177.8 (4)C1—C2—C3—C40.8 (7)
N2—N1—C1—C6176.8 (3)C7—C2—C3—C4178.5 (4)
N2—N1—C1—C23.9 (6)C6—C5—C4—C30.8 (7)
N3—C9—C14—C13178.3 (4)C2—C3—C4—C50.5 (7)
C10—C9—C14—C131.0 (6)C10—C11—C12—C131.2 (6)
N3—C9—C14—C160.3 (7)C14—C13—C12—C111.4 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3n···N4i0.882.062.851 (5)149
C16ii—H16cii···Cg10.982.843.544129
C16ii—H16cii···Cg20.982.933.832154
Symmetry codes: (i) x+1, y+1/2, z; (ii) x, y1, z.
Hydrogen-bond geometry (Å, °). top
Cg1 and Cg2 are the centroids of the C9–C14 and C9–C10/C15/N3–N4 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N3—H3n···N4i0.882.062.851 (5)149
C16ii—H16cii···Cg10.982.843.544129
C16ii—H16cii···Cg30.982.933.832154
Symmetry codes: (i) -x+1, y+1/2, -z; (ii) x, y-1, z.
 

References

First citationAnsari, A., Ali, A., Asif, M. & Shamsuzzaman (2017). New J. Chem. 41, 16–41.  Google Scholar
First citationAritake, Y., Takanashi, T., Yamazaki, A. & AKitsu, T. (2011). Polyhedron, 30, 886–894.  Web of Science CrossRef Google Scholar
First citationBobrovsky, A., Shibaev, V., Cigl, M., Hamplová, V., Pociecha, D. & Bubnov, A. (2016). J. Polym. Sci. Part A Polym. Chem. 54, 2962–2970.  Web of Science CrossRef Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFoces-Foces, C. (2005). Acta Cryst. E61, o337–o339.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKoshima, H. & Matsuura, T. (1998). J. Synth. Org. Chem. Jpn, 56, 466–477.  Web of Science CrossRef Google Scholar
First citationLi, S., Feng, Y., Long, P., Qin, C. & Feng, W. (2017). J. Mater. Chem. C, 5, 5068–5075.  Web of Science CrossRef Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMatsuura, T. & Koshima, H. (2005). J. Photochem. Photobiol. C, 6, 7–24.  Web of Science CrossRef Google Scholar
First citationMoriwaki, R. & Akitsu, T. (2015). Acta Cryst. E71, o886–o887.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMoriwaki, R., Yagi, S., Haraguchi, T. & Akitsu, T. (2017). IUCrData, 2, x170979.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds