research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of two thia­zolidinone derivatives bearing a tri­chloro­methyl substituent at the 2-position

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, The Pennsylvania State University, Abington College, 1600 Woodland Road, Abington, Pennsylvania, 19001, USA, bDepartment of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA, and cDepartment of Chemistry, The Pennsylvania State University, Brandywine Campus, 25 Yearsley Mill Road, Media, Pennsylvania, 19063, USA
*Correspondence e-mail: auy3@psu.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 14 August 2018; accepted 18 September 2018; online 28 September 2018)

The title compounds 2-tri­chloro­methyl-3-phenyl-1,3-thia­zolidin-4-one (C10H8Cl3NOS), 1 and 3-(4-chloro­phen­yl)-2-tri­chloro­methyl-1,3-thia­zolidin-4-one (C10H7Cl4NOS) 2, are structurally related with one atom substitution difference in the para position of the benzene ring. In both structures, the thia­zolidinone ring adopts an envelope conformation with the S atom as the flap. The dihedral angles between the rings [48.72 (11) in 1 and 48.42 (9)° in 2] are very similar and the mol­ecules are almost superimposable. In both crystal structures, C—H⋯O `head-to-tail' inter­actions between the chiral carbon atoms and the thia­zolidinone oxygen atoms result in infinite monochiral chains along the direction of the shortest unit-cell parameter, namely a in 1 and b in 2. C—H⋯π inter­actions between the thia­zolidinone carbon atom at the 4-position and the phenyl ring of the neighboring enanti­omer also help to stabilize the packing in each case, although the crystals are not isostructural.

1. Chemical context

The title compounds 1 and 2 are unique structures containing a tri­chloro­methyl substituent at the 2-position of the thia­zolidinone ring. Their synthesis was first reported as two of only three known 2-alkyl thia­zolidin-4-one compounds (Tierney, 1989[Tierney, J. (1989). J. Heterocycl. Chem. 26, 997-1001.]; Issac et al., 1996[Issac, R., Tierney, J., Mascavage, L. M., Findeisen, A. & Kilburn, J. (1996). Heterocycl. Commun. 2, 227-232.]). Substituted thia­zolidin-4-one compounds are synthesized by reacting an in situ generated imine (Schiff base) with thio­glycolic acid and with a mechanism to remove the water byproduct (Surrey, 1947[Surrey, A. R. (1947). J. Am. Chem. Soc. 69, 2911-2912.]; Erlenmeyer & Oberlin, 1947[Erlenmeyer, H. & Oberlin, V. (1947). Helv. Chim. Acta, 30, 1329-1335.]). Therefore, when chloral is reacted with aryl­amines, the corresponding imine is formed, which, upon reacting with thio­glycolic acid, produces the desired 2-tri­chloro­methyl-3-aryl-thia­zolidin-4-one (Issac et al., 1996[Issac, R., Tierney, J., Mascavage, L. M., Findeisen, A. & Kilburn, J. (1996). Heterocycl. Commun. 2, 227-232.]). It is inter­esting to note, however, that the reaction of chloral with some alkyl amines results in an N-alkyl­formamide product when the initially formed aminol loses chloro­form instead of water (Mascavage et al., 2010[Mascavage, L. M., Tierney, J., Sonnett, P. E. & Dalton, D. R. (2010). Arkivoc. viii, 278-284.]). The loss of chloro­form appears to be more facile in electron-rich N-alkyl­amines that can stabilize the transition state and lower the energy of activation of the elimination step better than the less electron-rich N-aryl­amines. On the other hand, imine formation is favored with aryl­amines because of the lower pKa of the proton on the nitro­gen in the aminol, which facilitates the removal of water to give an imine. As part of our ongoing studies in this area, we now describe the crystal structures of 1 and 2.

[Scheme 1]

2. Structural commentary

Compounds 1 and 2 are structurally related with one atom substitution difference in the para position of the benzene ring; a hydrogen atom is substituted for a chlorine atom (Figs. 1[link] and 2[link]). Both contain a stereogenic centre at C1, which is arbitrarily assigned as having an R configuration in the asymmetric units of the centrosymmetric unit cells. In both structures, the thia­zolidinone ring adopts an envelope conformation with the S atom as the flap. The sulfur atom is displaced from the thia­zolidinone ring plane by 0.35 (2) Å in both structures. The dihedral angles between the thia­zolidinone and phenyl rings are 48.72 (11) in 1 and 48.42 (9)° in 2. The C1—N1 and C1—S1 bond lengths are 1.445 (2) Å and 1.816 (2) Å, respectively, for structure 1 and 1.4471 (18) Å and 1.8181 (16) Å, respectively, for structure 2. The N—C—S bond angle is found to be 106.52 (12)° in structure 1 and 106.23 (10)° in structure 2. Overall, the molecular structures of both are almost exactly superimposable (Fig. 3[link]). Bond length and angle values in the thia­zolidinone ring in both structures appear to be typical and match currently available data (Yennawar et al., 2015[Yennawar, H. P., Tierney, J., Hullihen, P. D. & Silverberg, L. J. (2015). Acta Cryst. E71, 264-267.]).

[Figure 1]
Figure 1
The mol­ecular structure of compound 1 with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of compound 2 with displacement ellipsoids drawn at the 50% probability level.
[Figure 3]
Figure 3
Superposition image for structures 1 and 2 showing similarity of conformation.

3. Supra­molecular features

Both extended structures exhibit C—H⋯O `head-to-tail' inter­molecular inter­actions between the chiral carbon atom C1 and the thia­zolidinone oxygen atom (Tables 1[link] and 2[link]; Figs. 4[link] and 5[link]) that result in infinite monochiral chains propagating along the shortest unit-cell dimension, namely a in 1 and b in 2; in both cases adjacent mol­ecules are related only by translational symmetry. The short H⋯O distances of 2.30 Å suggest that these inter­actions are relatively strong. Weak C—H⋯π inter­actions between the tetra­hedral, non-chiral carbon atom (C3) of the thia­zolidinone ring and the phenyl ring of the symmetry-related enanti­omer are also observed in both structures (Tables 1[link] and 2[link]). Despite the similar mol­ecular conformations and inter­molecular inter­actions, the crystals are not isostructural (1 is triclinic and 2 is monoclinic).

Table 1
Hydrogen-bond geometry (Å, °) for 1[link]

Cg2 is the centroid of the C5–C10 ring

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O1i 0.98 2.30 3.251 (2) 164
C3—H3ACg2ii 0.97 2.79 3.748 (2) 170
Symmetry codes: (i) x+1, y, z; (ii) -x, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °) for 2[link]

Cg2 is the centroid of the C5–C10 ring

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O1i 0.98 2.30 3.2643 (19) 168
C3—H3ACg2ii 0.97 2.85 3.797 (2) 166
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y+2, -z.
[Figure 4]
Figure 4
Crystal packing diagram for 1 with red dotted lines for C—H⋯O contacts.
[Figure 5]
Figure 5
Crystal packing diagram for 2 with red dotted lines for C—H⋯O contacts.

4. Database survey

To date, there have been no reported X-ray structures of substituted 2-tri­chloro­methyl-3-phenyl-1,3-thia­zolidin-4-ones or the unsubstituted parent compound. However, there are a number of studies for structures containing aromatic moieties at the 2- and 3-positions of the thia­zolidin-4-one ring (Kumar et al., 2016[Kumar, N. K., Kumar, C. N. S. S. P., Anudeep, S. R. V., Sharma, K. K., Rao, V. J. & Babu, N. J. (2016). Arkivoc. v, 32-49.]; Yennawar et al., 2014[Yennawar, H. P., Tierney, J. & Silverberg, L. J. (2014). Acta Cryst. E70, o847.]). In addition, there is a structural and conformational study of 3-cyclo­hexyl-2-phenyl-1,3-thia­zolidin-4-one (Cannon et al., 2013[Cannon, K., Mascavage, L., Kistler, K., Tierney, J., Yennawar, H. & Lagalante, A. (2013). Int. J. Chem. 5, 46-56.]).

5. Synthesis and crystallization

The two compounds were synthesized using previously reported procedures (Tierney, 1989[Tierney, J. (1989). J. Heterocycl. Chem. 26, 997-1001.]; Issac et al., 1996[Issac, R., Tierney, J., Mascavage, L. M., Findeisen, A. & Kilburn, J. (1996). Heterocycl. Commun. 2, 227-232.]).

2-Tri­chloro­methyl-3-phenyl-1,3-thia­zolidin-4-one (1): Yield 43%; m.p. 447–448 K; IR: 1687 cm−1; 1H NMR: δ 7.1–7.5 (m, 5H, aromatics), 5.72 (s, J = 1.6 Hz, 1H), 3.77–3.96 (dd, J = 1.6, 14.1 Hz, 2H); 13C NMR: δ 171.65 (C=O), 138.45 (N—Ar), 129.17, 127.98, 126.98, 103.18 (CC13), 77.69 (C2), 33.08 (C5). Analysis calculated for C10H8NOSC13: C, 40.40; H, 2.72; N, 4.72; Cl, 35.86. Found: C, 40.60, H, 2.74; N, 4.60; Cl, 35.44.

2-Tri­chloro­methyl-3-(4-chloro­phen­yl)-1,3-thia­zolidin-4-one (2): Yield 20%; mp 456–458 K; IR: 1685 cm−1; 1H NMR: δ 7.11–7.50 (m, 4H, aromatics), 6.04 (s, J = 1.2 Hz, 1H), 3.80–3.92 (dd, J = 1.2, 15.9 Hz, 2H); 13C NMR: δ 171.61 (C=O), 136.96 (N—Ar), 133.78 (C—CI), 129.46, 127.92, 103.06 (CCI3), 77.51 (C2), 32.65 (C5). Analysis calculated for C10H7NOSC14: C, 36.47; H, 2.13; N, 4.25. Found: C, 36.65; H, 2.12; N, 4.04.

Compound 1 was crystallized by vapor diffusion where the sample was dissolved in acetone and placed in a chamber containing hexa­nes. Compound 2 was crystallized by the same method using methyl­ene chloride as the solvent and a chamber containing hexa­nes.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The hydrogen atoms were placed in calculated positions with C—H = 0.93–0.98 Å and refined using a riding model with fixed isotropic displacement parameters: Uiso(H) = 1.5Ueq(C) for the methyl group and Uiso(H) = 1.2Ueq(C) for the remaining H atoms.

Table 3
Experimental details

  1 2
Crystal data
Chemical formula C10H8Cl3NOS C10H7Cl4NOS
Mr 296.58 331.03
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/n
Temperature (K) 298 298
a, b, c (Å) 6.1968 (13), 9.578 (2), 10.854 (2) 10.907 (2), 6.1686 (12), 19.885 (4)
α, β, γ (°) 103.135 (4), 91.319 (3), 99.239 (3) 90, 96.02 (3), 90
V3) 618.0 (2) 1330.5 (5)
Z 2 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.89 1.03
Crystal size (mm) 0.3 × 0.05 × 0.03 0.25 × 0.13 × 0.1
 
Data collection
Diffractometer Bruker SMART CCD area detector Bruker SMART CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; BRUKER, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.769, 0.9 0.868, 0.9
No. of measured, independent and observed [I > 2σ(I)] reflections 5921, 2977, 2634 12273, 3302, 2883
Rint 0.016 0.018
(sin θ/λ)max−1) 0.667 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.118, 1.01 0.036, 0.107, 1.00
No. of reflections 2977 3302
No. of parameters 145 154
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.53, −0.47 0.47, −0.25
Computer programs: SMART and SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), olex2.solve (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), SHELXS and SHELXL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

For both structures, data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001). Program(s) used to solve structure: olex2.solve (Bourhis et al., 2015) for (1); SHELXS (Sheldrick, 2008) for (2). For both structures, program(s) used to refine structure: SHELXL (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

2-Trichloromethyl-3-phenyl-1,3-thiazolidin-4-one (1) top
Crystal data top
C10H8Cl3NOSZ = 2
Mr = 296.58F(000) = 300
Triclinic, P1Dx = 1.594 Mg m3
a = 6.1968 (13) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.578 (2) ÅCell parameters from 3362 reflections
c = 10.854 (2) Åθ = 2.2–28.3°
α = 103.135 (4)°µ = 0.89 mm1
β = 91.319 (3)°T = 298 K
γ = 99.239 (3)°Needle, colorless
V = 618.0 (2) Å30.3 × 0.05 × 0.03 mm
Data collection top
Bruker SMART CCD area detector
diffractometer
2977 independent reflections
Radiation source: fine-focus sealed tube2634 reflections with I > 2σ(I)
Parallel,graphite monochromatorRint = 0.016
phi and ω scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 88
Tmin = 0.769, Tmax = 0.9k = 1212
5921 measured reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0658P)2 + 0.2774P]
where P = (Fo2 + 2Fc2)/3
2977 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.47 e Å3
Special details top

Experimental. The data collection nominally covered a full sphere of reciprocal space by a combination of 4 sets of ω scans each set at different φ and/or 2θ angles and each scan (20 s exposure) covering -0.300° degrees in ω. The crystal to detector distance was 5.82 cm.

(SADABS; Bruker, 2001) was used for absorption correction. R(int) was 0.0816 before and 0.0197 after correction. The Ratio of minimum to maximum transmission is 0.7686. The λ/2 correction factor is 0.0015.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.06476 (9)0.12635 (6)0.75819 (5)0.05390 (17)
Cl30.50432 (10)0.09734 (7)0.68826 (7)0.0654 (2)
Cl20.42957 (13)0.34274 (7)0.87998 (6)0.0692 (2)
S10.22368 (9)0.18205 (6)0.47724 (5)0.04902 (16)
O10.1907 (2)0.43408 (17)0.58501 (16)0.0491 (4)
N10.1467 (2)0.40320 (17)0.65276 (15)0.0367 (3)
C30.0461 (3)0.2263 (2)0.4763 (2)0.0469 (5)
H3A0.08780.23970.39370.056*
H3B0.15110.14830.49500.056*
C20.0430 (3)0.3648 (2)0.57597 (18)0.0377 (4)
C10.3059 (3)0.3068 (2)0.62984 (18)0.0369 (4)
H10.44980.36430.62440.044*
C50.1956 (3)0.5430 (2)0.73953 (18)0.0399 (4)
C100.0444 (4)0.5876 (3)0.8246 (2)0.0599 (6)
H100.08560.52570.82920.072*
C90.0893 (6)0.7262 (4)0.9031 (3)0.0798 (9)
H90.01330.75840.95920.096*
C80.2836 (6)0.8162 (3)0.8989 (3)0.0743 (8)
H80.31270.90860.95260.089*
C70.4339 (5)0.7705 (3)0.8162 (3)0.0609 (6)
H70.56600.83160.81450.073*
C60.3914 (4)0.6338 (2)0.7347 (2)0.0467 (4)
H60.49320.60330.67740.056*
C40.3226 (3)0.2231 (2)0.7350 (2)0.0420 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0461 (3)0.0603 (3)0.0560 (3)0.0005 (2)0.0048 (2)0.0215 (2)
Cl30.0508 (3)0.0625 (4)0.0953 (5)0.0280 (3)0.0029 (3)0.0312 (3)
Cl20.0806 (4)0.0620 (4)0.0589 (4)0.0015 (3)0.0314 (3)0.0126 (3)
S10.0514 (3)0.0515 (3)0.0447 (3)0.0196 (2)0.0057 (2)0.0045 (2)
O10.0336 (7)0.0512 (8)0.0644 (9)0.0133 (6)0.0008 (6)0.0138 (7)
N10.0307 (7)0.0353 (8)0.0443 (8)0.0086 (6)0.0001 (6)0.0076 (6)
C30.0442 (10)0.0450 (11)0.0498 (11)0.0091 (8)0.0080 (8)0.0072 (9)
C20.0317 (8)0.0383 (9)0.0448 (10)0.0058 (7)0.0017 (7)0.0133 (7)
C10.0302 (8)0.0369 (9)0.0450 (9)0.0079 (7)0.0021 (7)0.0108 (7)
C50.0437 (9)0.0370 (9)0.0399 (9)0.0102 (8)0.0011 (7)0.0091 (7)
C100.0561 (13)0.0633 (14)0.0547 (13)0.0111 (11)0.0109 (10)0.0010 (11)
C90.090 (2)0.080 (2)0.0598 (16)0.0294 (17)0.0101 (15)0.0135 (14)
C80.098 (2)0.0517 (14)0.0621 (16)0.0133 (15)0.0183 (15)0.0089 (12)
C70.0715 (15)0.0427 (12)0.0623 (14)0.0014 (11)0.0179 (12)0.0095 (10)
C60.0486 (11)0.0407 (10)0.0512 (11)0.0051 (8)0.0028 (9)0.0136 (9)
C40.0339 (8)0.0432 (10)0.0502 (11)0.0063 (7)0.0044 (7)0.0143 (8)
Geometric parameters (Å, º) top
Cl1—C41.767 (2)C1—C41.547 (3)
Cl3—C41.778 (2)C5—C101.379 (3)
Cl2—C41.766 (2)C5—C61.384 (3)
S1—C31.790 (2)C10—H100.9300
S1—C11.816 (2)C10—C91.386 (4)
O1—C21.208 (2)C9—H90.9300
N1—C21.374 (2)C9—C81.372 (5)
N1—C11.445 (2)C8—H80.9300
N1—C51.434 (2)C8—C71.362 (4)
C3—H3A0.9700C7—H70.9300
C3—H3B0.9700C7—C61.386 (3)
C3—C21.506 (3)C6—H60.9300
C1—H10.9800
C3—S1—C192.98 (9)C5—C10—H10120.5
C2—N1—C1117.34 (16)C5—C10—C9119.0 (3)
C2—N1—C5120.50 (15)C9—C10—H10120.5
C5—N1—C1121.60 (15)C10—C9—H9119.7
S1—C3—H3A110.2C8—C9—C10120.6 (3)
S1—C3—H3B110.2C8—C9—H9119.7
H3A—C3—H3B108.5C9—C8—H8119.9
C2—C3—S1107.58 (14)C7—C8—C9120.1 (2)
C2—C3—H3A110.2C7—C8—H8119.9
C2—C3—H3B110.2C8—C7—H7119.8
O1—C2—N1124.51 (18)C8—C7—C6120.5 (3)
O1—C2—C3123.05 (18)C6—C7—H7119.8
N1—C2—C3112.43 (16)C5—C6—C7119.2 (2)
S1—C1—H1108.8C5—C6—H6120.4
N1—C1—S1106.52 (12)C7—C6—H6120.4
N1—C1—H1108.8Cl1—C4—Cl3108.87 (11)
N1—C1—C4112.89 (16)Cl2—C4—Cl1108.94 (12)
C4—C1—S1110.96 (14)Cl2—C4—Cl3108.22 (10)
C4—C1—H1108.8C1—C4—Cl1111.51 (13)
C10—C5—N1119.72 (19)C1—C4—Cl3108.20 (14)
C10—C5—C6120.6 (2)C1—C4—Cl2111.02 (14)
C6—C5—N1119.70 (18)
S1—C3—C2—O1168.28 (16)C1—S1—C3—C215.36 (16)
S1—C3—C2—N110.8 (2)C1—N1—C2—O1179.29 (18)
S1—C1—C4—Cl164.40 (16)C1—N1—C2—C31.7 (2)
S1—C1—C4—Cl355.31 (15)C1—N1—C5—C10135.2 (2)
S1—C1—C4—Cl2173.93 (9)C1—N1—C5—C646.7 (3)
N1—C1—C4—Cl155.1 (2)C5—N1—C2—O19.2 (3)
N1—C1—C4—Cl3174.80 (12)C5—N1—C2—C3169.87 (17)
N1—C1—C4—Cl266.58 (18)C5—N1—C1—S1158.41 (14)
N1—C5—C10—C9176.5 (2)C5—N1—C1—C479.6 (2)
N1—C5—C6—C7177.9 (2)C5—C10—C9—C81.8 (5)
C3—S1—C1—N116.08 (14)C10—C5—C6—C70.2 (3)
C3—S1—C1—C4107.16 (14)C10—C9—C8—C70.7 (5)
C2—N1—C1—S113.0 (2)C9—C8—C7—C60.7 (4)
C2—N1—C1—C4108.99 (19)C8—C7—C6—C51.0 (4)
C2—N1—C5—C1053.6 (3)C6—C5—C10—C91.5 (4)
C2—N1—C5—C6124.5 (2)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C5–C10 ring
D—H···AD—HH···AD···AD—H···A
C1—H1···O1i0.982.303.251 (2)164
C3—H3A···Cg2ii0.972.793.748 (2)170
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z+1.
3-(4-Chlorophenyl)-2-trichloromethyl-1,3-thiazolidin-4-one (2) top
Crystal data top
C10H7Cl4NOSF(000) = 664
Mr = 331.03Dx = 1.653 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.907 (2) ÅCell parameters from 5450 reflections
b = 6.1686 (12) Åθ = 2.2–28.3°
c = 19.885 (4) ŵ = 1.03 mm1
β = 96.02 (3)°T = 298 K
V = 1330.5 (5) Å3Block, colorless
Z = 40.25 × 0.13 × 0.1 mm
Data collection top
Bruker SMART CCD area detector
diffractometer
3302 independent reflections
Radiation source: fine-focus sealed tube2883 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; BRUKER, 2001)
h = 1214
Tmin = 0.868, Tmax = 0.9k = 88
12273 measured reflectionsl = 2623
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.069P)2 + 0.2954P]
where P = (Fo2 + 2Fc2)/3
3302 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.25 e Å3
Special details top

Experimental. The data collection nominally covered a full sphere of reciprocal space by a combination of 4 sets of ω scans each set at different φ and/or 2θ angles and each scan (10 s exposure) covering -0.300° degrees in ω. The crystal to detector distance was 5.82 cm.

SADABS V2.05 (BRUKER, 2001) was used for absorption correction. R(int) was 0.0443 before and 0.0167 after correction. The Ratio of minimum to maximum transmission is 0.8678. The λ/2 correction factor is 0.0015.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.57569 (4)0.69974 (7)0.15220 (2)0.04596 (13)
Cl10.87252 (5)0.86052 (9)0.16992 (3)0.05996 (16)
Cl30.81425 (5)0.41241 (9)0.19023 (3)0.06369 (16)
Cl20.92398 (5)0.53959 (10)0.07182 (3)0.06652 (18)
Cl40.85656 (7)0.75038 (16)0.22386 (3)0.0903 (2)
N10.67812 (13)0.8295 (2)0.04570 (6)0.0375 (3)
C50.72089 (15)0.8111 (3)0.01992 (8)0.0379 (3)
C40.81846 (16)0.6202 (3)0.12933 (8)0.0407 (3)
C10.68725 (15)0.6485 (2)0.09226 (7)0.0356 (3)
H10.66400.51540.06720.043*
C20.61543 (16)1.0100 (3)0.06349 (8)0.0412 (3)
O10.60428 (13)1.17453 (19)0.03021 (7)0.0531 (3)
C80.80220 (18)0.7763 (4)0.14533 (9)0.0555 (5)
C60.68763 (17)0.6339 (3)0.05979 (8)0.0446 (4)
H60.63730.52730.04430.053*
C30.56058 (19)0.9806 (3)0.12923 (10)0.0507 (4)
H3A0.47431.02220.12400.061*
H3B0.60371.07040.16410.061*
C100.79363 (19)0.9722 (3)0.04301 (10)0.0555 (5)
H100.81581.09180.01600.067*
C90.8334 (2)0.9550 (4)0.10653 (11)0.0657 (6)
H90.88111.06420.12280.079*
C70.72899 (18)0.6145 (3)0.12273 (9)0.0518 (4)
H70.70790.49410.14960.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0473 (3)0.0496 (2)0.0431 (2)0.00669 (17)0.01474 (18)0.00091 (17)
Cl10.0493 (3)0.0606 (3)0.0695 (3)0.0120 (2)0.0035 (2)0.0186 (2)
Cl30.0798 (4)0.0595 (3)0.0508 (3)0.0090 (2)0.0024 (2)0.0189 (2)
Cl20.0631 (3)0.0876 (4)0.0511 (3)0.0291 (3)0.0168 (2)0.0008 (2)
Cl40.0881 (5)0.1389 (6)0.0497 (3)0.0127 (4)0.0347 (3)0.0164 (3)
N10.0477 (7)0.0317 (6)0.0336 (6)0.0006 (5)0.0070 (5)0.0000 (5)
C50.0417 (8)0.0386 (7)0.0338 (7)0.0018 (6)0.0058 (6)0.0037 (6)
C40.0480 (9)0.0404 (8)0.0346 (8)0.0026 (6)0.0082 (6)0.0001 (6)
C10.0449 (8)0.0315 (6)0.0307 (7)0.0035 (6)0.0063 (6)0.0016 (5)
C20.0457 (8)0.0349 (7)0.0419 (8)0.0017 (6)0.0005 (6)0.0047 (6)
O10.0675 (9)0.0331 (6)0.0581 (8)0.0029 (5)0.0030 (6)0.0019 (5)
C80.0502 (10)0.0796 (13)0.0390 (9)0.0082 (9)0.0155 (8)0.0131 (9)
C60.0533 (10)0.0455 (8)0.0360 (8)0.0065 (7)0.0098 (7)0.0006 (6)
C30.0551 (10)0.0501 (9)0.0477 (10)0.0101 (8)0.0087 (8)0.0055 (8)
C100.0612 (11)0.0503 (10)0.0567 (11)0.0161 (8)0.0139 (9)0.0015 (8)
C90.0635 (13)0.0725 (13)0.0650 (13)0.0143 (10)0.0256 (10)0.0165 (11)
C70.0578 (11)0.0627 (11)0.0359 (8)0.0008 (9)0.0090 (7)0.0040 (8)
Geometric parameters (Å, º) top
S1—C11.8181 (16)C2—O11.211 (2)
S1—C31.795 (2)C2—C31.505 (3)
Cl1—C41.7595 (17)C8—C91.368 (3)
Cl3—C41.7674 (17)C8—C71.382 (3)
Cl2—C41.7766 (17)C6—H60.9300
Cl4—C81.7349 (19)C6—C71.379 (2)
N1—C51.436 (2)C3—H3A0.9700
N1—C11.4471 (18)C3—H3B0.9700
N1—C21.372 (2)C10—H100.9300
C5—C61.377 (2)C10—C91.382 (3)
C5—C101.380 (2)C9—H90.9300
C4—C11.549 (2)C7—H70.9300
C1—H10.9800
C3—S1—C192.91 (8)C9—C8—Cl4119.59 (16)
C5—N1—C1120.90 (12)C9—C8—C7121.07 (17)
C2—N1—C5121.10 (13)C7—C8—Cl4119.33 (18)
C2—N1—C1117.64 (13)C5—C6—H6120.0
C6—C5—N1119.66 (14)C5—C6—C7119.99 (17)
C6—C5—C10120.42 (16)C7—C6—H6120.0
C10—C5—N1119.91 (15)S1—C3—H3A110.2
Cl1—C4—Cl3109.17 (9)S1—C3—H3B110.2
Cl1—C4—Cl2108.82 (10)C2—C3—S1107.67 (12)
Cl3—C4—Cl2107.64 (9)C2—C3—H3A110.2
C1—C4—Cl1111.83 (11)C2—C3—H3B110.2
C1—C4—Cl3108.57 (11)H3A—C3—H3B108.5
C1—C4—Cl2110.71 (11)C5—C10—H10120.2
S1—C1—H1108.9C5—C10—C9119.67 (19)
N1—C1—S1106.23 (10)C9—C10—H10120.2
N1—C1—C4112.92 (13)C8—C9—C10119.64 (18)
N1—C1—H1108.9C8—C9—H9120.2
C4—C1—S1110.85 (10)C10—C9—H9120.2
C4—C1—H1108.9C8—C7—H7120.4
N1—C2—C3112.34 (14)C6—C7—C8119.18 (19)
O1—C2—N1124.29 (16)C6—C7—H7120.4
O1—C2—C3123.36 (16)
Cl1—C4—C1—S165.17 (12)C1—S1—C3—C215.17 (13)
Cl1—C4—C1—N153.89 (15)C1—N1—C5—C647.7 (2)
Cl3—C4—C1—S155.34 (12)C1—N1—C5—C10133.18 (17)
Cl3—C4—C1—N1174.40 (10)C1—N1—C2—O1177.64 (15)
Cl2—C4—C1—S1173.30 (8)C1—N1—C2—C32.8 (2)
Cl2—C4—C1—N167.64 (14)C2—N1—C5—C6125.20 (17)
Cl4—C8—C9—C10177.79 (18)C2—N1—C5—C1054.0 (2)
Cl4—C8—C7—C6178.93 (15)C2—N1—C1—S113.99 (17)
N1—C5—C6—C7179.61 (16)C2—N1—C1—C4107.72 (16)
N1—C5—C10—C9179.26 (18)O1—C2—C3—S1169.53 (14)
N1—C2—C3—S110.00 (18)C6—C5—C10—C90.1 (3)
C5—N1—C1—S1159.12 (12)C3—S1—C1—N116.38 (12)
C5—N1—C1—C479.18 (17)C3—S1—C1—C4106.63 (12)
C5—N1—C2—O19.3 (3)C10—C5—C6—C71.2 (3)
C5—N1—C2—C3170.25 (14)C9—C8—C7—C60.4 (3)
C5—C6—C7—C81.0 (3)C7—C8—C9—C101.5 (3)
C5—C10—C9—C81.3 (3)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C5–C10 ring
D—H···AD—HH···AD···AD—H···A
C1—H1···O1i0.982.303.2643 (19)168
C3—H3A···Cg2ii0.972.853.797 (2)166
Symmetry codes: (i) x, y1, z; (ii) x+1, y+2, z.
 

Funding information

We acknowledge NSF funding (CHEM-0131112) for the X-ray diffractometer.

References

First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCannon, K., Mascavage, L., Kistler, K., Tierney, J., Yennawar, H. & Lagalante, A. (2013). Int. J. Chem. 5, 46–56.  CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationErlenmeyer, H. & Oberlin, V. (1947). Helv. Chim. Acta, 30, 1329–1335.  CrossRef PubMed Google Scholar
First citationIssac, R., Tierney, J., Mascavage, L. M., Findeisen, A. & Kilburn, J. (1996). Heterocycl. Commun. 2, 227–232.  CrossRef Google Scholar
First citationKumar, N. K., Kumar, C. N. S. S. P., Anudeep, S. R. V., Sharma, K. K., Rao, V. J. & Babu, N. J. (2016). Arkivoc. v, 32-49.  Google Scholar
First citationMascavage, L. M., Tierney, J., Sonnett, P. E. & Dalton, D. R. (2010). Arkivoc. viii, 278-284.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSurrey, A. R. (1947). J. Am. Chem. Soc. 69, 2911–2912.  CrossRef PubMed Google Scholar
First citationTierney, J. (1989). J. Heterocycl. Chem. 26, 997–1001.  CrossRef CAS Web of Science Google Scholar
First citationYennawar, H. P., Tierney, J., Hullihen, P. D. & Silverberg, L. J. (2015). Acta Cryst. E71, 264–267.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYennawar, H. P., Tierney, J. & Silverberg, L. J. (2014). Acta Cryst. E70, o847.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds