research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures, DFT studies and UV–visible absorption spectra of two anthracenyl chalcone derivatives

CROSSMARK_Color_square_no_text.svg

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: suhanaarshad@usm.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 14 August 2018; accepted 15 September 2018; online 28 September 2018)

The crystal structures of (E)-1-(anthracen-9-yl)-3-(3H-indol-2-yl)prop-2-en-1-one, C25H17NO, and (E)-1-(anthracen-9-yl)-3-[4-(di­methyl­amino)­naphthalen-1-yl]prop-2-en-1-one, C29H23NO, are reported. In each case the anthracene ring system and pendant ring system are almost perpendicular to each other [dihedral angles = 75.57 (7)° and 70.26 (10)°, respectively]. In the extended structures, weak N—H⋯O, C—H⋯O and C—H⋯π inter­actions influence the centrosymmetric crystal packing. Density functional theory calculations were carried out using a 6–311 G++(d,p) basis set and the calculated structures are in good agreement with the crystal structures. The compounds were also characterized by UV–Vis absorption spectroscopy and the smallest (HOMO–LUMO) energy gaps of 2.89 and 2.54 eV indicate the enhanced non-linear responses (inter­molecular charge transfers) of these systems.

1. Chemical context

Organic mol­ecules are used extensively in many NLO applications such as electro-optic modulation, THz wave generation and optical power limiting (He et al., 2008[He, S. G., Tan, L. S., Zheng, Q. & Prasad, P. N. (2008). Chem. Rev. 108, 1245-1330.]). These properties originate from their inherent large mol­ecular hyperpolarizabilities arising from delocalized π-electrons along the length of the mol­ecule. Various design strategies have been established to make new organic mol­ecules with larger polarizabilities such as asymmetric DπA, symmetric DπD, AπA etc (D = donor, A = acceptor). π-Conjugated mol­ecular materials with fused rings are the focus of considerable inter­est in the emerging area of organic electronics, since the combination of good charge-carrier mobility and high stability might lead to potential optoelectronic applications (Wu et al., 2010[Wu, W., Liu, Y. & Zhu, D. (2010). Chem. Soc. Rev. 39, 1489-1502.]). A chalcone mol­ecule with a π-conjugated system provides a large charge-transfer axis with appropriate substituent groups on the two terminal aromatic rings (D'Silva et al., 2011[D'silva, E. D., Podagatlapalli, G. K., Rao, S. V., Rao, D. N. & Dharmaprakash, S. M. (2011). Cryst. Growth Des. 11, 5326-5369.]).

[Scheme 1]

Previously, we have reported several anthracenyl chalcone derivatives with various substituent groups (Zainuri et al., 2018a[Zainuri, D. A., Razak, I. A. & Arshad, S. (2018a). Acta Cryst. E74, 492-496.],b[Zainuri, D. A., Razak, I. A. & Arshad, S. (2018b). Acta Cryst. E74, 650-655.],c[Zainuri, D. A., Razak, I. A. & Arshad, S. (2018c). Acta Cryst. E74, 780-785.],d[Zainuri, D. A., Razak, I. A. & Arshad, S. (2018d). Acta Cryst. E74, 1087-1092.]) and as part of our ongoing studies of such systems, we now describe the syntheses, crystal structures, UV–visible spectroscopy and theoretical calculations on a combination of an anthracene fused-ring system (strong electron donor) and the substituents indoline (I)[link] and N,N-di­methyl­naphthalen-1-amine (II)[link], which act as a strong electron donor at the terminal ring derivatives, establishing a DπD system.

2. Structural commentary

The mol­ecular structures of (I)[link] and (II)[link] are shown in Fig. 1[link]a: both crystallize in centrosymmetric space groups [P[\overline{1}] for (I)[link] and P21/c for (II)]. Each compound is made up of an anthracene ring system with the substituents indoline and N,N-di­methyl­naphthalen-1-amine for (I)[link] and (II)[link], respectively. The geometry-optimized structures are shown in Fig. 1[link]b. Selected calculated (Frisch et al., 2009[Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, V., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. C., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V.G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). Gaussian 09, Revision A.1. Gaussian, Inc., Wallingford CT, USA.]) structure parameters such as bond lengths, bond angles and torsion angles are listed in Table S1 in the supporting information from which it can be seen that the calculated parameters are in good agreement with the results obtained from the single-crystal refinements.

[Figure 1]
Figure 1
(a) The mol­ecular structure of compounds (I)[link] and (II)[link] and (b) the structures optimized at the DFT/B3LYP 6–311++G(d,p) level of theory.

The enone moiety (O1/C15–C17) in (I)[link] and (II)[link] adopts an s-trans configuration with respect to the C15=O1 and C16=C17 bonds (Table S1). Both compounds (I)[link] and (II)[link] are twisted at the C14—C15 bond with C1—C14—C15—C16 torsion angles of −109.5 (2)° (experimental), −91.1° (DFT) and 96.4 (3)° (experimental), 96.0° (DFT), respectively. The bulkiness of the anthracene ring system gives rise to a highly twisted structure for both compounds (Zainuri et al., 2018a[Zainuri, D. A., Razak, I. A. & Arshad, S. (2018a). Acta Cryst. E74, 492-496.],b[Zainuri, D. A., Razak, I. A. & Arshad, S. (2018b). Acta Cryst. E74, 650-655.],c[Zainuri, D. A., Razak, I. A. & Arshad, S. (2018c). Acta Cryst. E74, 780-785.],d[Zainuri, D. A., Razak, I. A. & Arshad, S. (2018d). Acta Cryst. E74, 1087-1092.]). The atoms about the C17—C18 bonds are found to be nearly planar in (I)[link] with the experimental and theoretical C16—C17—C18—C19 torsion angles being 180.0 (2) and 180.0°, respectively. In (II)[link], the corresponding experimental and theoretical torsion angles are 17.4 (3) and 18.7°, respectively, showing that the mol­ecule is slightly twisted at the C17—C18 bond. It appears that the torsion-angle differences observed in (I)[link] and (II)[link] are due to the effect of the substituent group: in (I)[link], the N—H grouping forms an inter­molecular N—H⋯O hydrogen bond, which locks the enone moiety and indoline ring into a near planar conformation.

Additionally, the enone moiety for (I)[link] [O1/C15–C17, maximum deviation of 0.031 (18) Å at O1] forms dihedral angles of 72.9 (3) and 2.9 (3)° with the anthracene ring system [C1-C14, maximum deviation of 0.034 (3) Å at C5] and indoline moiety [N1/C18–C25, maximum deviation of 0.004 (3) Å at C25], respectively. In (II)[link], the enone moiety [O1/C15–C17, maximum deviation of 0.067 (3) Å at O1] forms dihedral angles of 81.3 (3) and 18.7 (3)° with the anthracene ring system [C1–C14, maximum deviation of 0.035 (6) Å at C5] and naphthalene ring system [C18–C27, maximum deviation of 0.061 (3) Å at C19], respectively. Furthermore, the dihedral angles between the anthracene ring system and the indoline ring in (I)[link] and naphthalene ring system in (II)[link] are 75.57 (7) and 70.26 (10)°, respectively. The large dihedral angle may indicate the diminishing electronic effect between the anthracene groups through the enone bridge (Jung et al., 2008[Jung, Y., , Son, K., Oh, Y. E. & Noh, D. (2008). Polyhedron, 27, 861-867.]).

3. Supra­molecular features

The crystal packing of (I)[link] show that the mol­ecules are connected into centrosymmetric dimers via pairwise N—H⋯O hydrogen bonds (Table 1[link]), forming R22(14) loops (Fig. 2[link]a). These dimers are further linked into infinite sheets stacked along the bc plane. The weak C10—H10⋯Cg1 and C22—H22⋯Cg2 inter­actions also help to establish the packing. Overall, these links generate a three-dimensional supra­molecular network.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg1 and Cg2 are the centroids of the C20–C25 and C1–C6 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.99 (3) 2.03 (3) 2.885 (3) 143 (3)
C10—H10ACg1ii 0.93 2.91 3.735 (3) 142
C22—H22ACg2iii 0.93 2.75 3.643 (3) 160
Symmetry codes: (i) -x, -y, -z+1; (ii) x, y, z+1; (iii) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
Packing diagram showing (a) weak N—HO and C—Hπ inter­actions in (I)[link] and (b) weak C—HO and ππ inter­actions in (II)[link].

In (II)[link], weak C25—H25⋯O1 bonds (Table 2[link]) connect the mol­ecules into chains propagating along the a-axis direction (Fig. 2[link]b). A weak ππ inter­action (symmetry operation: −x, 1 − y, 1 − z) with a centroid–centroid distance of 3.9432 (16) Å between C22–C27 rings is also observed. Together these inter­actions generate a two-dimensional supra­molecular network propagating in the ab plane.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C25—H25A⋯O1i 0.93 2.42 3.203 (3) 142
Symmetry code: (i) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

4. Frontier mol­ecular orbital (FMO) and UV–vis absorption analysis

For background to FMO analysis, which provides insight into electronic as well as optical properties of organic compounds, see: Ebenezar et al. (2013[Ebenezar, J. D., Ramalingam, S., Raja, C. R. & Helan, V. (2013). J. Theo. Comput. Sci. 1, 1-13.]). In this study, the FMO analysis showed that the HOMO is mainly concentrated on the anthracene moiety for both compounds (see supporting information). Conversely, the LUMOs are mainly concentrated on the enone bridge and also their substituents [the indoline moiety in (I)[link] and N,N-di­methyl­naphthalen-1-amine in (II)]. The HOMO–LUMO energy gap represents the lowest energy for inter­molecular charge transfer (ICT) where the EHOMO and ELUMO energies of the studied mol­ecules were calculated using the B3LYP/6-311G++(d,p) basis set. The calculated energy gaps (Fig. S1) are 3.16 eV in (I)[link] and 3.19 eV in (II)[link]. These inter­molecular charge transfers result mainly from ππ* excitation.

The experimental UV–vis spectrum (Fig. 3[link]) showed an absorption maximum at 392 nm (I)[link] and 411 nm (II)[link], which is in excellent agreement with the computed values of 396 nm (I)[link] and 408 nm (II)[link] in the gas phase. The observed absorption maxima of compound (I)[link] and (II)[link] can also be correlated with the HOMO–LUMO band gap. The experimental energy band gaps in (I)[link] and (II)[link] are estimated to be 2.89 eV and 2.54 eV, respectively, through a linear extrapolation of the low-energy side of the absorption maximum (see Fig. 3[link]). These optical band-gap values indicate the potential suitability of this type of compound for optoelectronic applications (Tejkiran et al., 2016[Tejkiran, P. J., Teja, M. S. B., Kumar, P. S. S., Sankar, P., Philip, R., Naveen, S., Lokanath, N. K. & Rao, G. N. (2016). J. Photochemistry Photobiology A: Chemistry, 324, 233-39.]). It may also be noted that these band gaps are comparable with inorganic materials used in optoelectronic device applications (Sathish et al., 2015[Sathish, S., Shekar, B. C., Kannan, S. C., Sengodan, R., Dinesh, K. P. B. & Ranjithkumar, R. (2015). Int. J. Polym. Anal. Charact. 20, 29-41.]).

[Figure 3]
Figure 3
The UV–vis absorption spectra of compounds (I)[link] and (II)[link]. For the extrapolation lines, see text.

5. Database survey

A survey of Cambridge Structural Database (CSD, Version 5.39, last update Nov 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed fused-ring substituted chalcones similar to the title compound. There are four compounds that have an anthracene-ketone substit­uent on the chalcone: 9-anthryl styryl ketone and 9,10-anthryl bis­(styryl ketone) were reported by Harlow et al. (1975[Harlow, R. L., Loghry, R. A., Williams, H. J. & Simonsen, S. H. (1975). Acta Cryst. B31, 1344-1350.]), (2E)-1-(anthracen-9-yl)-3-[4-(propan-2-yl)phen­yl]prop-2-en-1-one was described by Girisha et al. (2016[Girisha, M., Yathirajan, H. S., Jasinski, J. P. & Glidewell, C. (2016). Acta Cryst. E72, 1153-1158.]), while (E)-1-(anthracen-9-yl)-3-(2-chloro-6-fluoro­phen­yl)prop-2-en-1-one was reported by Abdullah et al. (2016[Abdullah, A. A., Hassan, N. H. H., Arshad, S., Khalib, N. C. & Razak, I. A. (2016). Acta Cryst. E72, 648-651.]). Zainuri et al. (2018[Zainuri, D. A., Razak, I. A. & Arshad, S. (2018a). Acta Cryst. E74, 492-496.]) reported a structure with two anthrancene substituents on a chalcone, viz. (E)-1,3-bis­(anthracen-9-yl)prop-2-en-1-one. Others related compounds include 1-(anthracen-9-yl)-2-methyl­prop-2-en-1-one (Agrahari et al., 2015[Agrahari, A., Wagers, P. O., Schildcrout, S. M., Masnovi, J. & Youngs, W. J. (2015). Acta Cryst. E71, 357-359.]) and 9-anthroylacetone (Cicogna et al., 2004[Cicogna, F., Ingrosso, G., Lodato, F., Marchetti, F. & Zandomeneghi, M. (2004). Tetrahedron, 60, 11959-11968.]).

6. Synthesis and crystallization

9-Acetyl­anthrancene (0.5 mmol) was dissolved in methanol (20 ml) over about 10–15 min. Then, indoline-2-carbaldehyde (0.5 mmol) and 4-(di­methyl­amino)-1-naphthaldehyde (0.5 mmol) for compound (I)[link] and (II)[link], respectively, were added and the solutions were stirred for another 10–15 mins. Then, the solutions were dissolved in the presence of NaOH and stirred for another 4 h until the precipitates formed, at which point the reaction mixtures were poured into cold water (50 ml) and stirred for 10 min. The precipitated solids were filtered, dried and recrystallized from acetone solution to get the corresponding chalcones in the form of brown plates in each case.

7. Refinement

Crystal data collection and structure refinement details are summarized in Table 3[link]. The hydrogen atom bounded to the nitro­gen [N—H=0.86 Å in (I)] and carbon [C—H = 0.93 Å in (I)[link] and 0.93 and 0.96 Å in (II)] atoms were positioned geometrically and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C, N). A rotating group model was applied to the methyl groups.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C25H17NO C29H23NO
Mr 347.39 401.48
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/c
Temperature (K) 296 296
a, b, c (Å) 8.542 (2), 9.500 (3), 11.521 (3) 12.6997 (7), 11.8029 (7), 18.3997 (9)
α, β, γ (°) 100.315 (6), 98.456 (6), 103.336 (6) 90, 127.901 (3), 90
V3) 877.5 (4) 2176.3 (2)
Z 2 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.08 0.07
Crystal size (mm) 0.33 × 0.14 × 0.07 0.62 × 0.54 × 0.23
 
Data collection
Diffractometer Bruker SMART APEXII Duo CCD Bruker SMART APEXII Duo CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.891, 0.964 0.655, 0.946
No. of measured, independent and observed [I > 2σ(I)] reflections 23662, 4086, 1878 81111, 6334, 3215
Rint 0.079 0.073
(sin θ/λ)max−1) 0.654 0.705
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.177, 1.01 0.075, 0.222, 0.97
No. of reflections 4086 6334
No. of parameters 248 282
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.19, −0.16 0.34, −0.22
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2009) for (I). For both structures, cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

(E)-1-(Anthracen-9-yl)-3-(3H-indol-2-yl)prop-2-en-1-one (I) top
Crystal data top
C25H17NOZ = 2
Mr = 347.39F(000) = 364
Triclinic, P1Dx = 1.315 Mg m3
a = 8.542 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.500 (3) ÅCell parameters from 1617 reflections
c = 11.521 (3) Åθ = 2.5–19.3°
α = 100.315 (6)°µ = 0.08 mm1
β = 98.456 (6)°T = 296 K
γ = 103.336 (6)°Plate, brown
V = 877.5 (4) Å30.33 × 0.14 × 0.07 mm
Data collection top
Bruker SMART APEXII Duo CCD
diffractometer
1878 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.079
φ and ω scansθmax = 27.7°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.891, Tmax = 0.964k = 1212
23662 measured reflectionsl = 1515
4086 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.061H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.177 w = 1/[σ2(Fo2) + (0.0757P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
4086 reflectionsΔρmax = 0.19 e Å3
248 parametersΔρmin = 0.16 e Å3
0 restraints
Special details top

Experimental. The following wavelength and cell were deduced by SADABS from the direction cosines etc. They are given here for emergency use only: CELL 0.71103 8.587 9.545 11.572 100.259 98.429 103.381

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1118 (2)0.3227 (2)0.46075 (17)0.0521 (5)
H1A0.029 (4)0.225 (3)0.440 (3)0.120 (11)*
O10.1474 (2)0.08316 (18)0.69408 (16)0.0727 (6)
C10.5129 (3)0.0493 (2)0.8102 (2)0.0464 (6)
C20.5257 (3)0.0546 (3)0.7111 (2)0.0638 (7)
H2A0.43920.08970.64520.077*
C30.6616 (4)0.1046 (3)0.7097 (3)0.0748 (8)
H3A0.66750.17240.64240.090*
C40.7930 (3)0.0563 (3)0.8075 (3)0.0738 (8)
H4A0.88470.09330.80600.089*
C50.7867 (3)0.0448 (3)0.9049 (3)0.0643 (7)
H5A0.87500.07750.96960.077*
C60.6482 (3)0.1010 (3)0.9093 (2)0.0500 (6)
C70.6383 (3)0.2053 (3)1.0069 (2)0.0585 (7)
H7A0.72700.23941.07130.070*
C80.5036 (3)0.2610 (2)1.0133 (2)0.0507 (6)
C90.4962 (3)0.3661 (3)1.1128 (2)0.0661 (7)
H9A0.58630.40261.17600.079*
C100.3595 (4)0.4164 (3)1.1192 (2)0.0740 (8)
H10A0.35730.48731.18560.089*
C110.2231 (4)0.3603 (3)1.0251 (2)0.0670 (7)
H11A0.12910.39271.03050.080*
C120.2252 (3)0.2595 (3)0.9262 (2)0.0542 (6)
H12A0.13300.22450.86470.065*
C130.3654 (3)0.2069 (2)0.91520 (19)0.0456 (6)
C140.3744 (3)0.1041 (2)0.81509 (19)0.0450 (6)
C150.2306 (3)0.0455 (3)0.7113 (2)0.0511 (6)
C160.1929 (3)0.1394 (3)0.6318 (2)0.0578 (7)
H16A0.09740.10180.57340.069*
C170.2810 (3)0.2731 (3)0.6344 (2)0.0512 (6)
H17A0.37500.31120.69430.061*
C180.2472 (3)0.3663 (3)0.5544 (2)0.0496 (6)
C190.3340 (3)0.5069 (3)0.5521 (2)0.0552 (7)
H19A0.42980.56250.60570.066*
C200.2550 (3)0.5523 (3)0.4566 (2)0.0518 (6)
C210.2817 (3)0.6796 (3)0.4082 (2)0.0659 (8)
H21A0.37260.75950.44230.079*
C220.1735 (4)0.6848 (3)0.3112 (3)0.0679 (8)
H22A0.19040.76920.27950.081*
C230.0375 (4)0.5655 (3)0.2584 (2)0.0733 (8)
H23A0.03410.57210.19170.088*
C240.0059 (3)0.4386 (3)0.3016 (2)0.0592 (7)
H24A0.08480.35910.26590.071*
C250.1152 (3)0.4350 (3)0.4005 (2)0.0500 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0520 (12)0.0517 (13)0.0477 (12)0.0149 (10)0.0024 (10)0.0073 (10)
O10.0678 (12)0.0495 (11)0.0815 (13)0.0003 (9)0.0138 (10)0.0080 (9)
C10.0471 (14)0.0451 (13)0.0460 (14)0.0126 (11)0.0020 (11)0.0126 (11)
C20.0585 (17)0.0599 (16)0.0684 (18)0.0203 (13)0.0026 (14)0.0043 (14)
C30.080 (2)0.0659 (18)0.080 (2)0.0282 (16)0.0186 (18)0.0053 (15)
C40.0623 (19)0.0707 (19)0.099 (2)0.0304 (15)0.0174 (18)0.0289 (18)
C50.0483 (16)0.0729 (18)0.075 (2)0.0183 (13)0.0031 (14)0.0303 (16)
C60.0478 (14)0.0496 (14)0.0516 (15)0.0127 (11)0.0006 (12)0.0165 (12)
C70.0502 (15)0.0668 (17)0.0497 (16)0.0084 (12)0.0084 (12)0.0147 (13)
C80.0534 (15)0.0484 (14)0.0424 (14)0.0075 (11)0.0014 (12)0.0066 (11)
C90.0693 (19)0.0733 (18)0.0418 (16)0.0098 (15)0.0038 (13)0.0009 (13)
C100.096 (2)0.0666 (18)0.0500 (17)0.0184 (16)0.0105 (17)0.0047 (14)
C110.0762 (19)0.0655 (17)0.0626 (18)0.0295 (14)0.0132 (15)0.0089 (15)
C120.0552 (15)0.0560 (15)0.0477 (15)0.0168 (12)0.0032 (12)0.0098 (12)
C130.0511 (14)0.0417 (13)0.0409 (13)0.0114 (11)0.0009 (11)0.0092 (11)
C140.0472 (14)0.0405 (13)0.0410 (14)0.0094 (10)0.0038 (11)0.0061 (11)
C150.0528 (15)0.0464 (15)0.0492 (15)0.0140 (12)0.0008 (12)0.0055 (12)
C160.0595 (16)0.0549 (16)0.0466 (15)0.0095 (13)0.0127 (12)0.0057 (12)
C170.0494 (14)0.0595 (16)0.0372 (13)0.0127 (12)0.0057 (11)0.0054 (11)
C180.0474 (14)0.0586 (16)0.0384 (13)0.0149 (11)0.0006 (11)0.0055 (12)
C190.0507 (15)0.0568 (16)0.0472 (15)0.0039 (12)0.0043 (12)0.0014 (12)
C200.0602 (15)0.0535 (15)0.0409 (14)0.0165 (12)0.0084 (12)0.0081 (12)
C210.0749 (19)0.0565 (17)0.0635 (18)0.0122 (13)0.0173 (15)0.0099 (14)
C220.089 (2)0.0629 (18)0.0635 (18)0.0300 (16)0.0211 (17)0.0262 (15)
C230.083 (2)0.090 (2)0.0588 (18)0.0460 (18)0.0058 (16)0.0216 (17)
C240.0608 (16)0.0623 (17)0.0525 (16)0.0232 (13)0.0049 (13)0.0113 (13)
C250.0566 (15)0.0505 (14)0.0469 (14)0.0231 (12)0.0088 (12)0.0104 (12)
Geometric parameters (Å, º) top
N1—C251.370 (3)C11—C121.356 (3)
N1—C181.387 (3)C11—H11A0.9300
N1—H1A0.99 (3)C12—C131.414 (3)
O1—C151.229 (3)C12—H12A0.9300
C1—C141.403 (3)C13—C141.395 (3)
C1—C21.405 (3)C14—C151.504 (3)
C1—C61.425 (3)C15—C161.441 (3)
C2—C31.353 (3)C16—C171.311 (3)
C2—H2A0.9300C16—H16A0.9300
C3—C41.395 (4)C17—C181.431 (3)
C3—H3A0.9300C17—H17A0.9300
C4—C51.357 (4)C18—C191.377 (3)
C4—H4A0.9300C19—C201.392 (3)
C5—C61.409 (3)C19—H19A0.9300
C5—H5A0.9300C20—C211.406 (3)
C6—C71.386 (3)C20—C251.410 (3)
C7—C81.380 (3)C21—C221.357 (4)
C7—H7A0.9300C21—H21A0.9300
C8—C91.398 (3)C22—C231.394 (4)
C8—C131.433 (3)C22—H22A0.9300
C9—C101.366 (4)C23—C241.370 (4)
C9—H9A0.9300C23—H23A0.9300
C10—C111.397 (4)C24—C251.374 (3)
C10—H10A0.9300C24—H24A0.9300
C25—N1—C18108.5 (2)C14—C13—C12123.3 (2)
C25—N1—H1A126.2 (18)C14—C13—C8118.9 (2)
C18—N1—H1A125.3 (18)C12—C13—C8117.7 (2)
C14—C1—C2123.0 (2)C13—C14—C1121.6 (2)
C14—C1—C6119.2 (2)C13—C14—C15119.8 (2)
C2—C1—C6117.8 (2)C1—C14—C15118.6 (2)
C3—C2—C1121.2 (3)O1—C15—C16120.5 (2)
C3—C2—H2A119.4O1—C15—C14119.5 (2)
C1—C2—H2A119.4C16—C15—C14120.0 (2)
C2—C3—C4121.1 (3)C17—C16—C15125.9 (2)
C2—C3—H3A119.5C17—C16—H16A117.0
C4—C3—H3A119.5C15—C16—H16A117.0
C5—C4—C3119.8 (3)C16—C17—C18126.6 (2)
C5—C4—H4A120.1C16—C17—H17A116.7
C3—C4—H4A120.1C18—C17—H17A116.7
C4—C5—C6120.9 (3)C19—C18—N1107.9 (2)
C4—C5—H5A119.5C19—C18—C17129.5 (2)
C6—C5—H5A119.5N1—C18—C17122.6 (2)
C7—C6—C5122.4 (2)C18—C19—C20108.9 (2)
C7—C6—C1118.4 (2)C18—C19—H19A125.5
C5—C6—C1119.2 (2)C20—C19—H19A125.5
C8—C7—C6123.3 (2)C19—C20—C21136.1 (2)
C8—C7—H7A118.3C19—C20—C25106.4 (2)
C6—C7—H7A118.3C21—C20—C25117.5 (2)
C7—C8—C9122.3 (2)C22—C21—C20119.4 (2)
C7—C8—C13118.6 (2)C22—C21—H21A120.3
C9—C8—C13119.1 (2)C20—C21—H21A120.3
C10—C9—C8121.5 (2)C21—C22—C23121.0 (3)
C10—C9—H9A119.3C21—C22—H22A119.5
C8—C9—H9A119.3C23—C22—H22A119.5
C9—C10—C11119.4 (2)C24—C23—C22122.1 (3)
C9—C10—H10A120.3C24—C23—H23A119.0
C11—C10—H10A120.3C22—C23—H23A119.0
C12—C11—C10121.2 (3)C23—C24—C25116.5 (2)
C12—C11—H11A119.4C23—C24—H24A121.8
C10—C11—H11A119.4C25—C24—H24A121.8
C11—C12—C13121.1 (2)N1—C25—C24128.1 (2)
C11—C12—H12A119.5N1—C25—C20108.3 (2)
C13—C12—H12A119.5C24—C25—C20123.6 (2)
C14—C1—C2—C3179.9 (2)C6—C1—C14—C130.6 (3)
C6—C1—C2—C30.2 (4)C2—C1—C14—C152.0 (3)
C1—C2—C3—C40.9 (4)C6—C1—C14—C15178.34 (19)
C2—C3—C4—C51.4 (4)C13—C14—C15—O1108.1 (3)
C3—C4—C5—C60.6 (4)C1—C14—C15—O169.6 (3)
C4—C5—C6—C7179.4 (2)C13—C14—C15—C1672.7 (3)
C4—C5—C6—C10.5 (4)C1—C14—C15—C16109.5 (2)
C14—C1—C6—C70.7 (3)O1—C15—C16—C17173.4 (2)
C2—C1—C6—C7179.0 (2)C14—C15—C16—C175.7 (4)
C14—C1—C6—C5179.36 (19)C15—C16—C17—C18178.5 (2)
C2—C1—C6—C51.0 (3)C25—N1—C18—C190.3 (3)
C5—C6—C7—C8179.6 (2)C25—N1—C18—C17179.3 (2)
C1—C6—C7—C80.4 (4)C16—C17—C18—C19180.0 (2)
C6—C7—C8—C9179.9 (2)C16—C17—C18—N10.5 (4)
C6—C7—C8—C131.1 (4)N1—C18—C19—C200.5 (3)
C7—C8—C9—C10177.8 (2)C17—C18—C19—C20179.0 (2)
C13—C8—C9—C101.0 (4)C18—C19—C20—C21179.9 (3)
C8—C9—C10—C110.9 (4)C18—C19—C20—C250.6 (3)
C9—C10—C11—C121.6 (4)C19—C20—C21—C22179.4 (3)
C10—C11—C12—C130.4 (4)C25—C20—C21—C220.1 (3)
C11—C12—C13—C14179.6 (2)C20—C21—C22—C230.6 (4)
C11—C12—C13—C81.4 (3)C21—C22—C23—C240.4 (4)
C7—C8—C13—C142.3 (3)C22—C23—C24—C250.3 (4)
C9—C8—C13—C14178.8 (2)C18—N1—C25—C24179.5 (2)
C7—C8—C13—C12176.7 (2)C18—N1—C25—C200.1 (2)
C9—C8—C13—C122.1 (3)C23—C24—C25—N1180.0 (2)
C12—C13—C14—C1176.9 (2)C23—C24—C25—C200.7 (4)
C8—C13—C14—C12.1 (3)C19—C20—C25—N10.4 (3)
C12—C13—C14—C150.8 (3)C21—C20—C25—N1180.0 (2)
C8—C13—C14—C15179.82 (19)C19—C20—C25—C24179.8 (2)
C2—C1—C14—C13179.7 (2)C21—C20—C25—C240.5 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C20–C25 and C1–C6 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.99 (3)2.03 (3)2.885 (3)143 (3)
C10—H10A···Cg1ii0.932.913.735 (3)142
C22—H22A···Cg2iii0.932.753.643 (3)160
Symmetry codes: (i) x, y, z+1; (ii) x, y, z+1; (iii) x+1, y+1, z+1.
\ (E)-1-(Anthracen-9-yl)-3-[4-(dimethylamino)naphthalen-1-yl]prop-\ 2-en-1-one (II) top
Crystal data top
C29H23NOF(000) = 848
Mr = 401.48Dx = 1.225 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.6997 (7) ÅCell parameters from 9967 reflections
b = 11.8029 (7) Åθ = 2.2–29.9°
c = 18.3997 (9) ŵ = 0.07 mm1
β = 127.901 (3)°T = 296 K
V = 2176.3 (2) Å3Plate, brown
Z = 40.62 × 0.54 × 0.23 mm
Data collection top
Bruker SMART APEXII Duo CCD
diffractometer
3215 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.073
φ and ω scansθmax = 30.1°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1717
Tmin = 0.655, Tmax = 0.946k = 1616
81111 measured reflectionsl = 2525
6334 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.075H-atom parameters constrained
wR(F2) = 0.222 w = 1/[σ2(Fo2) + (0.0755P)2 + 1.058P]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
6334 reflectionsΔρmax = 0.34 e Å3
282 parametersΔρmin = 0.22 e Å3
0 restraints
Special details top

Experimental. The following wavelength and cell were deduced by SADABS from the direction cosines etc. They are given here for emergency use only: CELL 0.71076 11.771 12.680 14.543 95.498 90.095 89.819

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5794 (2)0.2280 (3)0.80943 (14)0.1541 (13)
N10.0318 (3)0.71428 (17)0.69994 (17)0.0861 (7)
C10.4513 (2)0.2362 (3)0.59917 (16)0.0774 (8)
C20.5320 (3)0.3315 (3)0.6204 (2)0.0970 (9)
H2A0.56180.37610.67140.116*
C30.5668 (4)0.3584 (4)0.5640 (3)0.1309 (15)
H3A0.61900.42180.57640.157*
C40.5215 (6)0.2874 (6)0.4864 (4)0.159 (2)
H4A0.54580.30500.44920.191*
C50.4470 (5)0.1985 (6)0.4668 (3)0.153 (2)
H5A0.42100.15380.41670.184*
C60.4051 (4)0.1687 (4)0.5191 (2)0.1047 (11)
C70.3230 (4)0.0754 (4)0.4982 (3)0.1251 (14)
H7A0.29480.03170.44710.150*
C80.2820 (4)0.0451 (3)0.5488 (3)0.1166 (12)
C90.1921 (5)0.0521 (4)0.5233 (4)0.1556 (18)
H9A0.15950.09600.47150.187*
C100.1600 (7)0.0736 (4)0.5786 (6)0.190 (3)
H10A0.10360.13460.56350.228*
C110.2035 (6)0.0129 (4)0.6559 (5)0.177 (2)
H11A0.17580.03220.69070.212*
C120.2862 (4)0.0742 (3)0.6806 (3)0.1244 (13)
H12A0.31740.11380.73410.149*
C130.3288 (3)0.1091 (3)0.6275 (2)0.0890 (8)
C140.4125 (2)0.2016 (2)0.65222 (16)0.0701 (6)
C150.4711 (2)0.2598 (3)0.74177 (17)0.0832 (8)
C160.4021 (2)0.3514 (2)0.74860 (15)0.0717 (7)
H16A0.44970.39570.80160.086*
C170.27397 (19)0.37585 (18)0.68314 (14)0.0551 (5)
H17A0.23020.33330.62940.066*
C180.19498 (18)0.46181 (16)0.68650 (13)0.0509 (4)
C190.2555 (2)0.5478 (2)0.75005 (17)0.0700 (6)
H19A0.34820.55070.79090.084*
C200.1823 (3)0.6310 (2)0.75520 (19)0.0786 (7)
H20A0.22730.68720.79980.094*
C210.0457 (2)0.63188 (17)0.69611 (17)0.0637 (6)
C220.0224 (2)0.54867 (16)0.62504 (14)0.0519 (5)
C230.1629 (2)0.5519 (2)0.55500 (16)0.0655 (6)
H23A0.21220.61040.55480.079*
C240.2264 (2)0.4717 (2)0.48864 (16)0.0726 (6)
H24A0.31830.47620.44310.087*
C250.1553 (2)0.3828 (2)0.48809 (15)0.0674 (6)
H25A0.20020.32630.44370.081*
C260.01990 (19)0.37794 (17)0.55242 (13)0.0545 (5)
H26A0.02630.31830.55070.065*
C270.05179 (18)0.46122 (15)0.62158 (12)0.0463 (4)
C280.0349 (5)0.8198 (3)0.7467 (3)0.1426 (17)
H28A0.02970.87380.73600.214*
H28B0.07950.84910.72340.214*
H28C0.09920.80610.81170.214*
C290.1074 (3)0.6725 (3)0.7296 (2)0.0987 (9)
H29A0.17470.72680.71400.148*
H29B0.04840.66120.79510.148*
H29C0.14910.60190.69940.148*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0952 (15)0.257 (3)0.0676 (12)0.0978 (19)0.0283 (12)0.0303 (16)
N10.1280 (18)0.0587 (12)0.1233 (18)0.0009 (12)0.1033 (17)0.0095 (12)
C10.0679 (14)0.107 (2)0.0650 (14)0.0458 (14)0.0448 (12)0.0316 (14)
C20.0718 (16)0.124 (3)0.100 (2)0.0296 (17)0.0552 (16)0.0380 (19)
C30.102 (2)0.168 (4)0.144 (3)0.037 (2)0.087 (3)0.067 (3)
C40.172 (5)0.236 (7)0.128 (4)0.054 (4)0.121 (4)0.061 (4)
C50.173 (5)0.224 (6)0.106 (3)0.065 (4)0.108 (3)0.035 (4)
C60.110 (2)0.141 (3)0.0816 (19)0.057 (2)0.0677 (19)0.027 (2)
C70.128 (3)0.133 (3)0.096 (2)0.044 (3)0.060 (2)0.014 (2)
C80.124 (3)0.097 (3)0.139 (3)0.035 (2)0.086 (3)0.002 (2)
C90.166 (4)0.105 (3)0.202 (5)0.011 (3)0.116 (4)0.036 (3)
C100.231 (6)0.102 (3)0.322 (9)0.001 (4)0.212 (7)0.029 (5)
C110.249 (6)0.101 (3)0.295 (7)0.013 (4)0.225 (6)0.017 (4)
C120.154 (3)0.090 (2)0.187 (4)0.023 (2)0.133 (3)0.030 (2)
C130.0925 (19)0.0826 (19)0.103 (2)0.0389 (16)0.0656 (17)0.0218 (16)
C140.0639 (13)0.0826 (16)0.0683 (14)0.0342 (12)0.0428 (12)0.0220 (12)
C150.0605 (13)0.130 (2)0.0573 (13)0.0352 (14)0.0351 (12)0.0242 (14)
C160.0559 (12)0.1080 (19)0.0481 (11)0.0097 (12)0.0304 (10)0.0009 (12)
C170.0516 (10)0.0662 (13)0.0515 (10)0.0004 (9)0.0338 (9)0.0006 (9)
C180.0519 (10)0.0542 (11)0.0537 (10)0.0068 (8)0.0360 (9)0.0040 (9)
C190.0597 (12)0.0789 (15)0.0775 (14)0.0222 (11)0.0453 (12)0.0239 (12)
C200.0923 (18)0.0701 (15)0.0977 (18)0.0313 (13)0.0706 (16)0.0365 (13)
C210.0864 (15)0.0485 (11)0.0868 (15)0.0081 (10)0.0686 (14)0.0084 (11)
C220.0627 (11)0.0454 (10)0.0638 (11)0.0018 (9)0.0471 (10)0.0066 (9)
C230.0664 (13)0.0663 (14)0.0737 (14)0.0190 (11)0.0480 (12)0.0162 (12)
C240.0526 (12)0.0906 (17)0.0614 (13)0.0106 (12)0.0283 (11)0.0114 (13)
C250.0574 (12)0.0724 (15)0.0569 (12)0.0064 (11)0.0273 (10)0.0045 (10)
C260.0534 (11)0.0522 (11)0.0524 (11)0.0007 (9)0.0297 (9)0.0019 (9)
C270.0507 (10)0.0427 (10)0.0513 (10)0.0028 (8)0.0343 (9)0.0018 (8)
C280.216 (4)0.072 (2)0.238 (5)0.027 (2)0.189 (4)0.049 (3)
C290.114 (2)0.106 (2)0.122 (2)0.0084 (18)0.096 (2)0.0032 (19)
Geometric parameters (Å, º) top
O1—C151.215 (3)C14—C151.494 (4)
N1—C211.416 (3)C15—C161.446 (3)
N1—C291.452 (3)C16—C171.331 (3)
N1—C281.454 (4)C16—H16A0.9300
C1—C141.398 (3)C17—C181.454 (3)
C1—C21.407 (4)C17—H17A0.9300
C1—C61.445 (4)C18—C191.373 (3)
C2—C31.391 (5)C18—C271.437 (3)
C2—H2A0.9300C19—C201.395 (3)
C3—C41.436 (7)C19—H19A0.9300
C3—H3A0.9300C20—C211.369 (3)
C4—C51.306 (7)C20—H20A0.9300
C4—H4A0.9300C21—C221.426 (3)
C5—C61.399 (5)C22—C231.422 (3)
C5—H5A0.9300C22—C271.425 (3)
C6—C71.399 (5)C23—C241.352 (3)
C7—C81.363 (5)C23—H23A0.9300
C7—H7A0.9300C24—C251.389 (3)
C8—C131.403 (5)C24—H24A0.9300
C8—C91.478 (6)C25—C261.364 (3)
C9—C101.331 (7)C25—H25A0.9300
C9—H9A0.9300C26—C271.411 (3)
C10—C111.369 (8)C26—H26A0.9300
C10—H10A0.9300C28—H28A0.9600
C11—C121.334 (6)C28—H28B0.9600
C11—H11A0.9300C28—H28C0.9600
C12—C131.437 (4)C29—H29A0.9600
C12—H12A0.9300C29—H29B0.9600
C13—C141.390 (4)C29—H29C0.9600
C21—N1—C29115.2 (2)C17—C16—C15123.6 (2)
C21—N1—C28116.6 (2)C17—C16—H16A118.2
C29—N1—C28110.3 (2)C15—C16—H16A118.2
C14—C1—C2123.4 (3)C16—C17—C18127.2 (2)
C14—C1—C6117.1 (3)C16—C17—H17A116.4
C2—C1—C6119.6 (3)C18—C17—H17A116.4
C3—C2—C1119.1 (4)C19—C18—C27118.18 (18)
C3—C2—H2A120.4C19—C18—C17120.80 (18)
C1—C2—H2A120.4C27—C18—C17120.99 (17)
C2—C3—C4119.5 (4)C18—C19—C20122.0 (2)
C2—C3—H3A120.3C18—C19—H19A119.0
C4—C3—H3A120.3C20—C19—H19A119.0
C5—C4—C3121.5 (4)C21—C20—C19121.6 (2)
C5—C4—H4A119.3C21—C20—H20A119.2
C3—C4—H4A119.3C19—C20—H20A119.2
C4—C5—C6122.0 (5)C20—C21—N1123.1 (2)
C4—C5—H5A119.0C20—C21—C22118.84 (19)
C6—C5—H5A119.0N1—C21—C22118.0 (2)
C5—C6—C7122.9 (4)C23—C22—C27118.38 (19)
C5—C6—C1118.4 (4)C23—C22—C21121.96 (19)
C7—C6—C1118.7 (3)C27—C22—C21119.63 (18)
C8—C7—C6123.6 (4)C24—C23—C22121.3 (2)
C8—C7—H7A118.2C24—C23—H23A119.3
C6—C7—H7A118.2C22—C23—H23A119.3
C7—C8—C13117.8 (4)C23—C24—C25120.4 (2)
C7—C8—C9122.2 (5)C23—C24—H24A119.8
C13—C8—C9120.0 (4)C25—C24—H24A119.8
C10—C9—C8116.5 (5)C26—C25—C24120.3 (2)
C10—C9—H9A121.8C26—C25—H25A119.9
C8—C9—H9A121.8C24—C25—H25A119.9
C9—C10—C11125.2 (6)C25—C26—C27121.62 (19)
C9—C10—H10A117.4C25—C26—H26A119.2
C11—C10—H10A117.4C27—C26—H26A119.2
C12—C11—C10119.2 (5)C26—C27—C22117.82 (17)
C12—C11—H11A120.4C26—C27—C18122.62 (17)
C10—C11—H11A120.4C22—C27—C18119.55 (17)
C11—C12—C13122.4 (5)N1—C28—H28A109.5
C11—C12—H12A118.8N1—C28—H28B109.5
C13—C12—H12A118.8H28A—C28—H28B109.5
C14—C13—C8121.0 (3)N1—C28—H28C109.5
C14—C13—C12122.3 (3)H28A—C28—H28C109.5
C8—C13—C12116.8 (4)H28B—C28—H28C109.5
C13—C14—C1121.8 (3)N1—C29—H29A109.5
C13—C14—C15119.0 (2)N1—C29—H29B109.5
C1—C14—C15119.0 (3)H29A—C29—H29B109.5
O1—C15—C16120.4 (3)N1—C29—H29C109.5
O1—C15—C14118.2 (2)H29A—C29—H29C109.5
C16—C15—C14121.42 (19)H29B—C29—H29C109.5
C14—C1—C2—C3179.2 (2)C13—C14—C15—C1688.5 (3)
C6—C1—C2—C30.6 (4)C1—C14—C15—C1696.4 (3)
C1—C2—C3—C41.0 (5)O1—C15—C16—C17166.2 (3)
C2—C3—C4—C50.7 (7)C14—C15—C16—C1713.8 (4)
C3—C4—C5—C61.2 (8)C15—C16—C17—C18176.2 (2)
C4—C5—C6—C7178.6 (5)C16—C17—C18—C1917.4 (3)
C4—C5—C6—C12.7 (7)C16—C17—C18—C27164.6 (2)
C14—C1—C6—C5177.4 (3)C27—C18—C19—C202.4 (3)
C2—C1—C6—C52.4 (4)C17—C18—C19—C20179.6 (2)
C14—C1—C6—C71.4 (4)C18—C19—C20—C210.8 (4)
C2—C1—C6—C7178.9 (3)C19—C20—C21—N1179.4 (2)
C5—C6—C7—C8179.6 (4)C19—C20—C21—C223.0 (4)
C1—C6—C7—C81.0 (5)C29—N1—C21—C20111.2 (3)
C6—C7—C8—C132.1 (5)C28—N1—C21—C2020.5 (4)
C6—C7—C8—C9178.2 (4)C29—N1—C21—C2271.1 (3)
C7—C8—C9—C10179.6 (5)C28—N1—C21—C22157.1 (3)
C13—C8—C9—C100.1 (7)C20—C21—C22—C23172.8 (2)
C8—C9—C10—C110.1 (9)N1—C21—C22—C235.0 (3)
C9—C10—C11—C121.0 (10)C20—C21—C22—C275.2 (3)
C10—C11—C12—C131.8 (7)N1—C21—C22—C27177.07 (18)
C7—C8—C13—C141.0 (4)C27—C22—C23—C242.8 (3)
C9—C8—C13—C14179.4 (3)C21—C22—C23—C24179.2 (2)
C7—C8—C13—C12178.9 (3)C22—C23—C24—C250.8 (3)
C9—C8—C13—C120.8 (5)C23—C24—C25—C262.6 (4)
C11—C12—C13—C14178.5 (4)C24—C25—C26—C270.7 (3)
C11—C12—C13—C81.7 (5)C25—C26—C27—C222.9 (3)
C8—C13—C14—C11.4 (4)C25—C26—C27—C18176.00 (19)
C12—C13—C14—C1178.8 (2)C23—C22—C27—C264.5 (3)
C8—C13—C14—C15173.7 (2)C21—C22—C27—C26177.48 (17)
C12—C13—C14—C156.2 (4)C23—C22—C27—C18174.38 (17)
C2—C1—C14—C13177.8 (2)C21—C22—C27—C183.6 (3)
C6—C1—C14—C132.5 (3)C19—C18—C27—C26178.72 (19)
C2—C1—C14—C157.2 (3)C17—C18—C27—C260.7 (3)
C6—C1—C14—C15172.5 (2)C19—C18—C27—C220.1 (3)
C13—C14—C15—O191.5 (3)C17—C18—C27—C22178.11 (17)
C1—C14—C15—O183.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C25—H25A···O1i0.932.423.203 (3)142
Symmetry code: (i) x1, y+1/2, z1/2.
 

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for the research facilities.

Funding information

The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for the research facilities and the Fundamental Research Grant Scheme (FRGS) No. 203/PFIZIK/6711606 and for Short Term Grant Scheme (304/PFIZIK/6313336) to conduct this work. DAZ thank to Malaysian Government for the My Brain15 scholarship.

References

First citationAbdullah, A. A., Hassan, N. H. H., Arshad, S., Khalib, N. C. & Razak, I. A. (2016). Acta Cryst. E72, 648–651.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAgrahari, A., Wagers, P. O., Schildcrout, S. M., Masnovi, J. & Youngs, W. J. (2015). Acta Cryst. E71, 357–359.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCicogna, F., Ingrosso, G., Lodato, F., Marchetti, F. & Zandomeneghi, M. (2004). Tetrahedron, 60, 11959–11968.  Web of Science CSD CrossRef CAS Google Scholar
First citationD'silva, E. D., Podagatlapalli, G. K., Rao, S. V., Rao, D. N. & Dharmaprakash, S. M. (2011). Cryst. Growth Des. 11, 5326–5369.  Google Scholar
First citationEbenezar, J. D., Ramalingam, S., Raja, C. R. & Helan, V. (2013). J. Theo. Comput. Sci. 1, 1–13.  Google Scholar
First citationFrisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, V., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. C., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V.G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). Gaussian 09, Revision A.1. Gaussian, Inc., Wallingford CT, USA.  Google Scholar
First citationGirisha, M., Yathirajan, H. S., Jasinski, J. P. & Glidewell, C. (2016). Acta Cryst. E72, 1153–1158.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarlow, R. L., Loghry, R. A., Williams, H. J. & Simonsen, S. H. (1975). Acta Cryst. B31, 1344–1350.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationHe, S. G., Tan, L. S., Zheng, Q. & Prasad, P. N. (2008). Chem. Rev. 108, 1245–1330.  CrossRef PubMed Google Scholar
First citationJung, Y., , Son, K., Oh, Y. E. & Noh, D. (2008). Polyhedron, 27, 861–867.  Google Scholar
First citationSathish, S., Shekar, B. C., Kannan, S. C., Sengodan, R., Dinesh, K. P. B. & Ranjithkumar, R. (2015). Int. J. Polym. Anal. Charact. 20, 29–41.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTejkiran, P. J., Teja, M. S. B., Kumar, P. S. S., Sankar, P., Philip, R., Naveen, S., Lokanath, N. K. & Rao, G. N. (2016). J. Photochemistry Photobiology A: Chemistry, 324, 233–39.  Google Scholar
First citationWu, W., Liu, Y. & Zhu, D. (2010). Chem. Soc. Rev. 39, 1489–1502.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZainuri, D. A., Razak, I. A. & Arshad, S. (2018a). Acta Cryst. E74, 492–496.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZainuri, D. A., Razak, I. A. & Arshad, S. (2018b). Acta Cryst. E74, 650–655.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZainuri, D. A., Razak, I. A. & Arshad, S. (2018c). Acta Cryst. E74, 780–785.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZainuri, D. A., Razak, I. A. & Arshad, S. (2018d). Acta Cryst. E74, 1087–1092.  CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds