research communications
Crystal structures, DFT studies and UV–visible absorption spectra of two anthracenyl chalcone derivatives
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: suhanaarshad@usm.my
The crystal structures of (E)-1-(anthracen-9-yl)-3-(3H-indol-2-yl)prop-2-en-1-one, C25H17NO, and (E)-1-(anthracen-9-yl)-3-[4-(dimethylamino)naphthalen-1-yl]prop-2-en-1-one, C29H23NO, are reported. In each case the anthracene ring system and pendant ring system are almost perpendicular to each other [dihedral angles = 75.57 (7)° and 70.26 (10)°, respectively]. In the extended structures, weak N—H⋯O, C—H⋯O and C—H⋯π interactions influence the centrosymmetric crystal packing. Density functional theory calculations were carried out using a 6–311 G++(d,p) basis set and the calculated structures are in good agreement with the crystal structures. The compounds were also characterized by UV–Vis absorption spectroscopy and the smallest (HOMO–LUMO) energy gaps of 2.89 and 2.54 eV indicate the enhanced non-linear responses (intermolecular charge transfers) of these systems.
Keywords: crystal structure; anthracene; DFT; UV–Vis.
1. Chemical context
Organic molecules are used extensively in many NLO applications such as electro-optic modulation, THz wave generation and optical power limiting (He et al., 2008). These properties originate from their inherent large molecular hyperpolarizabilities arising from delocalized π-electrons along the length of the molecule. Various design strategies have been established to make new organic molecules with larger polarizabilities such as asymmetric D–π–A, symmetric D–π–D, A–π–A etc (D = donor, A = acceptor). π-Conjugated molecular materials with fused rings are the focus of considerable interest in the emerging area of organic electronics, since the combination of good charge-carrier mobility and high stability might lead to potential optoelectronic applications (Wu et al., 2010). A chalcone molecule with a π-conjugated system provides a large charge-transfer axis with appropriate substituent groups on the two terminal aromatic rings (D'Silva et al., 2011).
Previously, we have reported several anthracenyl chalcone derivatives with various substituent groups (Zainuri et al., 2018a,b,c,d) and as part of our ongoing studies of such systems, we now describe the syntheses, crystal structures, UV–visible spectroscopy and theoretical calculations on a combination of an anthracene fused-ring system (strong electron donor) and the substituents indoline (I) and N,N-dimethylnaphthalen-1-amine (II), which act as a strong at the terminal ring derivatives, establishing a D–π–D system.
2. Structural commentary
The molecular structures of (I) and (II) are shown in Fig. 1a: both crystallize in centrosymmetric space groups [P for (I) and P21/c for (II)]. Each compound is made up of an anthracene ring system with the substituents indoline and N,N-dimethylnaphthalen-1-amine for (I) and (II), respectively. The geometry-optimized structures are shown in Fig. 1b. Selected calculated (Frisch et al., 2009) structure parameters such as bond lengths, bond angles and torsion angles are listed in Table S1 in the supporting information from which it can be seen that the calculated parameters are in good agreement with the results obtained from the single-crystal refinements.
The enone moiety (O1/C15–C17) in (I) and (II) adopts an s-trans configuration with respect to the C15=O1 and C16=C17 bonds (Table S1). Both compounds (I) and (II) are twisted at the C14—C15 bond with C1—C14—C15—C16 torsion angles of −109.5 (2)° (experimental), −91.1° (DFT) and 96.4 (3)° (experimental), 96.0° (DFT), respectively. The bulkiness of the anthracene ring system gives rise to a highly twisted structure for both compounds (Zainuri et al., 2018a,b,c,d). The atoms about the C17—C18 bonds are found to be nearly planar in (I) with the experimental and theoretical C16—C17—C18—C19 torsion angles being 180.0 (2) and 180.0°, respectively. In (II), the corresponding experimental and theoretical torsion angles are 17.4 (3) and 18.7°, respectively, showing that the molecule is slightly twisted at the C17—C18 bond. It appears that the torsion-angle differences observed in (I) and (II) are due to the effect of the substituent group: in (I), the N—H grouping forms an intermolecular N—H⋯O hydrogen bond, which locks the enone moiety and indoline ring into a near planar conformation.
Additionally, the enone moiety for (I) [O1/C15–C17, maximum deviation of 0.031 (18) Å at O1] forms dihedral angles of 72.9 (3) and 2.9 (3)° with the anthracene ring system [C1-C14, maximum deviation of 0.034 (3) Å at C5] and indoline moiety [N1/C18–C25, maximum deviation of 0.004 (3) Å at C25], respectively. In (II), the enone moiety [O1/C15–C17, maximum deviation of 0.067 (3) Å at O1] forms dihedral angles of 81.3 (3) and 18.7 (3)° with the anthracene ring system [C1–C14, maximum deviation of 0.035 (6) Å at C5] and naphthalene ring system [C18–C27, maximum deviation of 0.061 (3) Å at C19], respectively. Furthermore, the dihedral angles between the anthracene ring system and the indoline ring in (I) and naphthalene ring system in (II) are 75.57 (7) and 70.26 (10)°, respectively. The large dihedral angle may indicate the diminishing electronic effect between the anthracene groups through the enone bridge (Jung et al., 2008).
3. Supramolecular features
The crystal packing of (I) show that the molecules are connected into centrosymmetric dimers via pairwise N—H⋯O hydrogen bonds (Table 1), forming R22(14) loops (Fig. 2a). These dimers are further linked into infinite sheets stacked along the bc plane. The weak C10—H10⋯Cg1 and C22—H22⋯Cg2 interactions also help to establish the packing. Overall, these links generate a three-dimensional supramolecular network.
In (II), weak C25—H25⋯O1 bonds (Table 2) connect the molecules into chains propagating along the a-axis direction (Fig. 2b). A weak π–π interaction (symmetry operation: −x, 1 − y, 1 − z) with a centroid–centroid distance of 3.9432 (16) Å between C22–C27 rings is also observed. Together these interactions generate a two-dimensional supramolecular network propagating in the ab plane.
4. Frontier molecular orbital (FMO) and UV–vis absorption analysis
For background to FMO analysis, which provides insight into electronic as well as optical properties of organic compounds, see: Ebenezar et al. (2013). In this study, the FMO analysis showed that the HOMO is mainly concentrated on the anthracene moiety for both compounds (see supporting information). Conversely, the LUMOs are mainly concentrated on the enone bridge and also their substituents [the indoline moiety in (I) and N,N-dimethylnaphthalen-1-amine in (II)]. The HOMO–LUMO energy gap represents the lowest energy for intermolecular charge transfer (ICT) where the EHOMO and ELUMO energies of the studied molecules were calculated using the B3LYP/6-311G++(d,p) basis set. The calculated energy gaps (Fig. S1) are 3.16 eV in (I) and 3.19 eV in (II). These intermolecular charge transfers result mainly from π–π* excitation.
The experimental UV–vis spectrum (Fig. 3) showed an absorption maximum at 392 nm (I) and 411 nm (II), which is in excellent agreement with the computed values of 396 nm (I) and 408 nm (II) in the gas phase. The observed absorption maxima of compound (I) and (II) can also be correlated with the HOMO–LUMO band gap. The experimental energy band gaps in (I) and (II) are estimated to be 2.89 eV and 2.54 eV, respectively, through a linear extrapolation of the low-energy side of the absorption maximum (see Fig. 3). These optical band-gap values indicate the potential suitability of this type of compound for optoelectronic applications (Tejkiran et al., 2016). It may also be noted that these band gaps are comparable with inorganic materials used in optoelectronic device applications (Sathish et al., 2015).
5. Database survey
A survey of Cambridge Structural Database (CSD, Version 5.39, last update Nov 2017; Groom et al., 2016) revealed fused-ring substituted similar to the title compound. There are four compounds that have an anthracene-ketone substituent on the chalcone: 9-anthryl styryl ketone and 9,10-anthryl bis(styryl ketone) were reported by Harlow et al. (1975), (2E)-1-(anthracen-9-yl)-3-[4-(propan-2-yl)phenyl]prop-2-en-1-one was described by Girisha et al. (2016), while (E)-1-(anthracen-9-yl)-3-(2-chloro-6-fluorophenyl)prop-2-en-1-one was reported by Abdullah et al. (2016). Zainuri et al. (2018) reported a structure with two anthrancene substituents on a chalcone, viz. (E)-1,3-bis(anthracen-9-yl)prop-2-en-1-one. Others related compounds include 1-(anthracen-9-yl)-2-methylprop-2-en-1-one (Agrahari et al., 2015) and 9-anthroylacetone (Cicogna et al., 2004).
6. Synthesis and crystallization
9-Acetylanthrancene (0.5 mmol) was dissolved in methanol (20 ml) over about 10–15 min. Then, indoline-2-carbaldehyde (0.5 mmol) and 4-(dimethylamino)-1-naphthaldehyde (0.5 mmol) for compound (I) and (II), respectively, were added and the solutions were stirred for another 10–15 mins. Then, the solutions were dissolved in the presence of NaOH and stirred for another 4 h until the precipitates formed, at which point the reaction mixtures were poured into cold water (50 ml) and stirred for 10 min. The precipitated solids were filtered, dried and recrystallized from acetone solution to get the corresponding in the form of brown plates in each case.
7. Refinement
Crystal data collection and structure . The hydrogen atom bounded to the nitrogen [N—H=0.86 Å in (I)] and carbon [C—H = 0.93 Å in (I) and 0.93 and 0.96 Å in (II)] atoms were positioned geometrically and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C, N). A rotating group model was applied to the methyl groups.
details are summarized in Table 3
|
Supporting information
https://doi.org/10.1107/S2056989018013087/hb7770sup1.cif
contains datablocks I, II, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018013087/hb7770Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989018013087/hb7770IIsup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018013087/hb7770Isup4.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989018013087/hb7770IIsup5.cml
Supplementary figures and table. DOI: https://doi.org/10.1107/S2056989018013087/hb7770sup6.pdf
Data collection: APEX2 (Bruker, 2009) for (I). For both structures, cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).C25H17NO | Z = 2 |
Mr = 347.39 | F(000) = 364 |
Triclinic, P1 | Dx = 1.315 Mg m−3 |
a = 8.542 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.500 (3) Å | Cell parameters from 1617 reflections |
c = 11.521 (3) Å | θ = 2.5–19.3° |
α = 100.315 (6)° | µ = 0.08 mm−1 |
β = 98.456 (6)° | T = 296 K |
γ = 103.336 (6)° | Plate, brown |
V = 877.5 (4) Å3 | 0.33 × 0.14 × 0.07 mm |
Bruker SMART APEXII Duo CCD diffractometer | 1878 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.079 |
φ and ω scans | θmax = 27.7°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −11→11 |
Tmin = 0.891, Tmax = 0.964 | k = −12→12 |
23662 measured reflections | l = −15→15 |
4086 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.061 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.177 | w = 1/[σ2(Fo2) + (0.0757P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max < 0.001 |
4086 reflections | Δρmax = 0.19 e Å−3 |
248 parameters | Δρmin = −0.16 e Å−3 |
0 restraints |
Experimental. The following wavelength and cell were deduced by SADABS from the direction cosines etc. They are given here for emergency use only: CELL 0.71103 8.587 9.545 11.572 100.259 98.429 103.381 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.1118 (2) | 0.3227 (2) | 0.46075 (17) | 0.0521 (5) | |
H1A | 0.029 (4) | 0.225 (3) | 0.440 (3) | 0.120 (11)* | |
O1 | 0.1474 (2) | −0.08316 (18) | 0.69408 (16) | 0.0727 (6) | |
C1 | 0.5129 (3) | 0.0493 (2) | 0.8102 (2) | 0.0464 (6) | |
C2 | 0.5257 (3) | −0.0546 (3) | 0.7111 (2) | 0.0638 (7) | |
H2A | 0.4392 | −0.0897 | 0.6452 | 0.077* | |
C3 | 0.6616 (4) | −0.1046 (3) | 0.7097 (3) | 0.0748 (8) | |
H3A | 0.6675 | −0.1724 | 0.6424 | 0.090* | |
C4 | 0.7930 (3) | −0.0563 (3) | 0.8075 (3) | 0.0738 (8) | |
H4A | 0.8847 | −0.0933 | 0.8060 | 0.089* | |
C5 | 0.7867 (3) | 0.0448 (3) | 0.9049 (3) | 0.0643 (7) | |
H5A | 0.8750 | 0.0775 | 0.9696 | 0.077* | |
C6 | 0.6482 (3) | 0.1010 (3) | 0.9093 (2) | 0.0500 (6) | |
C7 | 0.6383 (3) | 0.2053 (3) | 1.0069 (2) | 0.0585 (7) | |
H7A | 0.7270 | 0.2394 | 1.0713 | 0.070* | |
C8 | 0.5036 (3) | 0.2610 (2) | 1.0133 (2) | 0.0507 (6) | |
C9 | 0.4962 (3) | 0.3661 (3) | 1.1128 (2) | 0.0661 (7) | |
H9A | 0.5863 | 0.4026 | 1.1760 | 0.079* | |
C10 | 0.3595 (4) | 0.4164 (3) | 1.1192 (2) | 0.0740 (8) | |
H10A | 0.3573 | 0.4873 | 1.1856 | 0.089* | |
C11 | 0.2231 (4) | 0.3603 (3) | 1.0251 (2) | 0.0670 (7) | |
H11A | 0.1291 | 0.3927 | 1.0305 | 0.080* | |
C12 | 0.2252 (3) | 0.2595 (3) | 0.9262 (2) | 0.0542 (6) | |
H12A | 0.1330 | 0.2245 | 0.8647 | 0.065* | |
C13 | 0.3654 (3) | 0.2069 (2) | 0.91520 (19) | 0.0456 (6) | |
C14 | 0.3744 (3) | 0.1041 (2) | 0.81509 (19) | 0.0450 (6) | |
C15 | 0.2306 (3) | 0.0455 (3) | 0.7113 (2) | 0.0511 (6) | |
C16 | 0.1929 (3) | 0.1394 (3) | 0.6318 (2) | 0.0578 (7) | |
H16A | 0.0974 | 0.1018 | 0.5734 | 0.069* | |
C17 | 0.2810 (3) | 0.2731 (3) | 0.6344 (2) | 0.0512 (6) | |
H17A | 0.3750 | 0.3112 | 0.6943 | 0.061* | |
C18 | 0.2472 (3) | 0.3663 (3) | 0.5544 (2) | 0.0496 (6) | |
C19 | 0.3340 (3) | 0.5069 (3) | 0.5521 (2) | 0.0552 (7) | |
H19A | 0.4298 | 0.5625 | 0.6057 | 0.066* | |
C20 | 0.2550 (3) | 0.5523 (3) | 0.4566 (2) | 0.0518 (6) | |
C21 | 0.2817 (3) | 0.6796 (3) | 0.4082 (2) | 0.0659 (8) | |
H21A | 0.3726 | 0.7595 | 0.4423 | 0.079* | |
C22 | 0.1735 (4) | 0.6848 (3) | 0.3112 (3) | 0.0679 (8) | |
H22A | 0.1904 | 0.7692 | 0.2795 | 0.081* | |
C23 | 0.0375 (4) | 0.5655 (3) | 0.2584 (2) | 0.0733 (8) | |
H23A | −0.0341 | 0.5721 | 0.1917 | 0.088* | |
C24 | 0.0059 (3) | 0.4386 (3) | 0.3016 (2) | 0.0592 (7) | |
H24A | −0.0848 | 0.3591 | 0.2659 | 0.071* | |
C25 | 0.1152 (3) | 0.4350 (3) | 0.4005 (2) | 0.0500 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0520 (12) | 0.0517 (13) | 0.0477 (12) | 0.0149 (10) | −0.0024 (10) | 0.0073 (10) |
O1 | 0.0678 (12) | 0.0495 (11) | 0.0815 (13) | 0.0003 (9) | −0.0138 (10) | 0.0080 (9) |
C1 | 0.0471 (14) | 0.0451 (13) | 0.0460 (14) | 0.0126 (11) | 0.0020 (11) | 0.0126 (11) |
C2 | 0.0585 (17) | 0.0599 (16) | 0.0684 (18) | 0.0203 (13) | 0.0026 (14) | 0.0043 (14) |
C3 | 0.080 (2) | 0.0659 (18) | 0.080 (2) | 0.0282 (16) | 0.0186 (18) | 0.0053 (15) |
C4 | 0.0623 (19) | 0.0707 (19) | 0.099 (2) | 0.0304 (15) | 0.0174 (18) | 0.0289 (18) |
C5 | 0.0483 (16) | 0.0729 (18) | 0.075 (2) | 0.0183 (13) | 0.0031 (14) | 0.0303 (16) |
C6 | 0.0478 (14) | 0.0496 (14) | 0.0516 (15) | 0.0127 (11) | 0.0006 (12) | 0.0165 (12) |
C7 | 0.0502 (15) | 0.0668 (17) | 0.0497 (16) | 0.0084 (12) | −0.0084 (12) | 0.0147 (13) |
C8 | 0.0534 (15) | 0.0484 (14) | 0.0424 (14) | 0.0075 (11) | −0.0014 (12) | 0.0066 (11) |
C9 | 0.0693 (19) | 0.0733 (18) | 0.0418 (16) | 0.0098 (15) | −0.0038 (13) | 0.0009 (13) |
C10 | 0.096 (2) | 0.0666 (18) | 0.0500 (17) | 0.0184 (16) | 0.0105 (17) | −0.0047 (14) |
C11 | 0.0762 (19) | 0.0655 (17) | 0.0626 (18) | 0.0295 (14) | 0.0132 (15) | 0.0089 (15) |
C12 | 0.0552 (15) | 0.0560 (15) | 0.0477 (15) | 0.0168 (12) | −0.0032 (12) | 0.0098 (12) |
C13 | 0.0511 (14) | 0.0417 (13) | 0.0409 (13) | 0.0114 (11) | 0.0009 (11) | 0.0092 (11) |
C14 | 0.0472 (14) | 0.0405 (13) | 0.0410 (14) | 0.0094 (10) | −0.0038 (11) | 0.0061 (11) |
C15 | 0.0528 (15) | 0.0464 (15) | 0.0492 (15) | 0.0140 (12) | −0.0008 (12) | 0.0055 (12) |
C16 | 0.0595 (16) | 0.0549 (16) | 0.0466 (15) | 0.0095 (13) | −0.0127 (12) | 0.0057 (12) |
C17 | 0.0494 (14) | 0.0595 (16) | 0.0372 (13) | 0.0127 (12) | −0.0057 (11) | 0.0054 (11) |
C18 | 0.0474 (14) | 0.0586 (16) | 0.0384 (13) | 0.0149 (11) | −0.0006 (11) | 0.0055 (12) |
C19 | 0.0507 (15) | 0.0568 (16) | 0.0472 (15) | 0.0039 (12) | 0.0043 (12) | 0.0014 (12) |
C20 | 0.0602 (15) | 0.0535 (15) | 0.0409 (14) | 0.0165 (12) | 0.0084 (12) | 0.0081 (12) |
C21 | 0.0749 (19) | 0.0565 (17) | 0.0635 (18) | 0.0122 (13) | 0.0173 (15) | 0.0099 (14) |
C22 | 0.089 (2) | 0.0629 (18) | 0.0635 (18) | 0.0300 (16) | 0.0211 (17) | 0.0262 (15) |
C23 | 0.083 (2) | 0.090 (2) | 0.0588 (18) | 0.0460 (18) | 0.0058 (16) | 0.0216 (17) |
C24 | 0.0608 (16) | 0.0623 (17) | 0.0525 (16) | 0.0232 (13) | −0.0049 (13) | 0.0113 (13) |
C25 | 0.0566 (15) | 0.0505 (14) | 0.0469 (14) | 0.0231 (12) | 0.0088 (12) | 0.0104 (12) |
N1—C25 | 1.370 (3) | C11—C12 | 1.356 (3) |
N1—C18 | 1.387 (3) | C11—H11A | 0.9300 |
N1—H1A | 0.99 (3) | C12—C13 | 1.414 (3) |
O1—C15 | 1.229 (3) | C12—H12A | 0.9300 |
C1—C14 | 1.403 (3) | C13—C14 | 1.395 (3) |
C1—C2 | 1.405 (3) | C14—C15 | 1.504 (3) |
C1—C6 | 1.425 (3) | C15—C16 | 1.441 (3) |
C2—C3 | 1.353 (3) | C16—C17 | 1.311 (3) |
C2—H2A | 0.9300 | C16—H16A | 0.9300 |
C3—C4 | 1.395 (4) | C17—C18 | 1.431 (3) |
C3—H3A | 0.9300 | C17—H17A | 0.9300 |
C4—C5 | 1.357 (4) | C18—C19 | 1.377 (3) |
C4—H4A | 0.9300 | C19—C20 | 1.392 (3) |
C5—C6 | 1.409 (3) | C19—H19A | 0.9300 |
C5—H5A | 0.9300 | C20—C21 | 1.406 (3) |
C6—C7 | 1.386 (3) | C20—C25 | 1.410 (3) |
C7—C8 | 1.380 (3) | C21—C22 | 1.357 (4) |
C7—H7A | 0.9300 | C21—H21A | 0.9300 |
C8—C9 | 1.398 (3) | C22—C23 | 1.394 (4) |
C8—C13 | 1.433 (3) | C22—H22A | 0.9300 |
C9—C10 | 1.366 (4) | C23—C24 | 1.370 (4) |
C9—H9A | 0.9300 | C23—H23A | 0.9300 |
C10—C11 | 1.397 (4) | C24—C25 | 1.374 (3) |
C10—H10A | 0.9300 | C24—H24A | 0.9300 |
C25—N1—C18 | 108.5 (2) | C14—C13—C12 | 123.3 (2) |
C25—N1—H1A | 126.2 (18) | C14—C13—C8 | 118.9 (2) |
C18—N1—H1A | 125.3 (18) | C12—C13—C8 | 117.7 (2) |
C14—C1—C2 | 123.0 (2) | C13—C14—C1 | 121.6 (2) |
C14—C1—C6 | 119.2 (2) | C13—C14—C15 | 119.8 (2) |
C2—C1—C6 | 117.8 (2) | C1—C14—C15 | 118.6 (2) |
C3—C2—C1 | 121.2 (3) | O1—C15—C16 | 120.5 (2) |
C3—C2—H2A | 119.4 | O1—C15—C14 | 119.5 (2) |
C1—C2—H2A | 119.4 | C16—C15—C14 | 120.0 (2) |
C2—C3—C4 | 121.1 (3) | C17—C16—C15 | 125.9 (2) |
C2—C3—H3A | 119.5 | C17—C16—H16A | 117.0 |
C4—C3—H3A | 119.5 | C15—C16—H16A | 117.0 |
C5—C4—C3 | 119.8 (3) | C16—C17—C18 | 126.6 (2) |
C5—C4—H4A | 120.1 | C16—C17—H17A | 116.7 |
C3—C4—H4A | 120.1 | C18—C17—H17A | 116.7 |
C4—C5—C6 | 120.9 (3) | C19—C18—N1 | 107.9 (2) |
C4—C5—H5A | 119.5 | C19—C18—C17 | 129.5 (2) |
C6—C5—H5A | 119.5 | N1—C18—C17 | 122.6 (2) |
C7—C6—C5 | 122.4 (2) | C18—C19—C20 | 108.9 (2) |
C7—C6—C1 | 118.4 (2) | C18—C19—H19A | 125.5 |
C5—C6—C1 | 119.2 (2) | C20—C19—H19A | 125.5 |
C8—C7—C6 | 123.3 (2) | C19—C20—C21 | 136.1 (2) |
C8—C7—H7A | 118.3 | C19—C20—C25 | 106.4 (2) |
C6—C7—H7A | 118.3 | C21—C20—C25 | 117.5 (2) |
C7—C8—C9 | 122.3 (2) | C22—C21—C20 | 119.4 (2) |
C7—C8—C13 | 118.6 (2) | C22—C21—H21A | 120.3 |
C9—C8—C13 | 119.1 (2) | C20—C21—H21A | 120.3 |
C10—C9—C8 | 121.5 (2) | C21—C22—C23 | 121.0 (3) |
C10—C9—H9A | 119.3 | C21—C22—H22A | 119.5 |
C8—C9—H9A | 119.3 | C23—C22—H22A | 119.5 |
C9—C10—C11 | 119.4 (2) | C24—C23—C22 | 122.1 (3) |
C9—C10—H10A | 120.3 | C24—C23—H23A | 119.0 |
C11—C10—H10A | 120.3 | C22—C23—H23A | 119.0 |
C12—C11—C10 | 121.2 (3) | C23—C24—C25 | 116.5 (2) |
C12—C11—H11A | 119.4 | C23—C24—H24A | 121.8 |
C10—C11—H11A | 119.4 | C25—C24—H24A | 121.8 |
C11—C12—C13 | 121.1 (2) | N1—C25—C24 | 128.1 (2) |
C11—C12—H12A | 119.5 | N1—C25—C20 | 108.3 (2) |
C13—C12—H12A | 119.5 | C24—C25—C20 | 123.6 (2) |
C14—C1—C2—C3 | 179.9 (2) | C6—C1—C14—C13 | −0.6 (3) |
C6—C1—C2—C3 | 0.2 (4) | C2—C1—C14—C15 | 2.0 (3) |
C1—C2—C3—C4 | 0.9 (4) | C6—C1—C14—C15 | −178.34 (19) |
C2—C3—C4—C5 | −1.4 (4) | C13—C14—C15—O1 | −108.1 (3) |
C3—C4—C5—C6 | 0.6 (4) | C1—C14—C15—O1 | 69.6 (3) |
C4—C5—C6—C7 | −179.4 (2) | C13—C14—C15—C16 | 72.7 (3) |
C4—C5—C6—C1 | 0.5 (4) | C1—C14—C15—C16 | −109.5 (2) |
C14—C1—C6—C7 | −0.7 (3) | O1—C15—C16—C17 | −173.4 (2) |
C2—C1—C6—C7 | 179.0 (2) | C14—C15—C16—C17 | 5.7 (4) |
C14—C1—C6—C5 | 179.36 (19) | C15—C16—C17—C18 | 178.5 (2) |
C2—C1—C6—C5 | −1.0 (3) | C25—N1—C18—C19 | 0.3 (3) |
C5—C6—C7—C8 | −179.6 (2) | C25—N1—C18—C17 | −179.3 (2) |
C1—C6—C7—C8 | 0.4 (4) | C16—C17—C18—C19 | −180.0 (2) |
C6—C7—C8—C9 | 179.9 (2) | C16—C17—C18—N1 | −0.5 (4) |
C6—C7—C8—C13 | 1.1 (4) | N1—C18—C19—C20 | −0.5 (3) |
C7—C8—C9—C10 | −177.8 (2) | C17—C18—C19—C20 | 179.0 (2) |
C13—C8—C9—C10 | 1.0 (4) | C18—C19—C20—C21 | −179.9 (3) |
C8—C9—C10—C11 | 0.9 (4) | C18—C19—C20—C25 | 0.6 (3) |
C9—C10—C11—C12 | −1.6 (4) | C19—C20—C21—C22 | −179.4 (3) |
C10—C11—C12—C13 | 0.4 (4) | C25—C20—C21—C22 | 0.1 (3) |
C11—C12—C13—C14 | −179.6 (2) | C20—C21—C22—C23 | −0.6 (4) |
C11—C12—C13—C8 | 1.4 (3) | C21—C22—C23—C24 | 0.4 (4) |
C7—C8—C13—C14 | −2.3 (3) | C22—C23—C24—C25 | 0.3 (4) |
C9—C8—C13—C14 | 178.8 (2) | C18—N1—C25—C24 | 179.5 (2) |
C7—C8—C13—C12 | 176.7 (2) | C18—N1—C25—C20 | 0.1 (2) |
C9—C8—C13—C12 | −2.1 (3) | C23—C24—C25—N1 | 180.0 (2) |
C12—C13—C14—C1 | −176.9 (2) | C23—C24—C25—C20 | −0.7 (4) |
C8—C13—C14—C1 | 2.1 (3) | C19—C20—C25—N1 | −0.4 (3) |
C12—C13—C14—C15 | 0.8 (3) | C21—C20—C25—N1 | 180.0 (2) |
C8—C13—C14—C15 | 179.82 (19) | C19—C20—C25—C24 | −179.8 (2) |
C2—C1—C14—C13 | 179.7 (2) | C21—C20—C25—C24 | 0.5 (3) |
Cg1 and Cg2 are the centroids of the C20–C25 and C1–C6 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O1i | 0.99 (3) | 2.03 (3) | 2.885 (3) | 143 (3) |
C10—H10A···Cg1ii | 0.93 | 2.91 | 3.735 (3) | 142 |
C22—H22A···Cg2iii | 0.93 | 2.75 | 3.643 (3) | 160 |
Symmetry codes: (i) −x, −y, −z+1; (ii) x, y, z+1; (iii) −x+1, −y+1, −z+1. |
C29H23NO | F(000) = 848 |
Mr = 401.48 | Dx = 1.225 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 12.6997 (7) Å | Cell parameters from 9967 reflections |
b = 11.8029 (7) Å | θ = 2.2–29.9° |
c = 18.3997 (9) Å | µ = 0.07 mm−1 |
β = 127.901 (3)° | T = 296 K |
V = 2176.3 (2) Å3 | Plate, brown |
Z = 4 | 0.62 × 0.54 × 0.23 mm |
Bruker SMART APEXII Duo CCD diffractometer | 3215 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.073 |
φ and ω scans | θmax = 30.1°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −17→17 |
Tmin = 0.655, Tmax = 0.946 | k = −16→16 |
81111 measured reflections | l = −25→25 |
6334 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.075 | H-atom parameters constrained |
wR(F2) = 0.222 | w = 1/[σ2(Fo2) + (0.0755P)2 + 1.058P] where P = (Fo2 + 2Fc2)/3 |
S = 0.97 | (Δ/σ)max < 0.001 |
6334 reflections | Δρmax = 0.34 e Å−3 |
282 parameters | Δρmin = −0.22 e Å−3 |
0 restraints |
Experimental. The following wavelength and cell were deduced by SADABS from the direction cosines etc. They are given here for emergency use only: CELL 0.71076 11.771 12.680 14.543 95.498 90.095 89.819 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.5794 (2) | 0.2280 (3) | 0.80943 (14) | 0.1541 (13) | |
N1 | −0.0318 (3) | 0.71428 (17) | 0.69994 (17) | 0.0861 (7) | |
C1 | 0.4513 (2) | 0.2362 (3) | 0.59917 (16) | 0.0774 (8) | |
C2 | 0.5320 (3) | 0.3315 (3) | 0.6204 (2) | 0.0970 (9) | |
H2A | 0.5618 | 0.3761 | 0.6714 | 0.116* | |
C3 | 0.5668 (4) | 0.3584 (4) | 0.5640 (3) | 0.1309 (15) | |
H3A | 0.6190 | 0.4218 | 0.5764 | 0.157* | |
C4 | 0.5215 (6) | 0.2874 (6) | 0.4864 (4) | 0.159 (2) | |
H4A | 0.5458 | 0.3050 | 0.4492 | 0.191* | |
C5 | 0.4470 (5) | 0.1985 (6) | 0.4668 (3) | 0.153 (2) | |
H5A | 0.4210 | 0.1538 | 0.4167 | 0.184* | |
C6 | 0.4051 (4) | 0.1687 (4) | 0.5191 (2) | 0.1047 (11) | |
C7 | 0.3230 (4) | 0.0754 (4) | 0.4982 (3) | 0.1251 (14) | |
H7A | 0.2948 | 0.0317 | 0.4471 | 0.150* | |
C8 | 0.2820 (4) | 0.0451 (3) | 0.5488 (3) | 0.1166 (12) | |
C9 | 0.1921 (5) | −0.0521 (4) | 0.5233 (4) | 0.1556 (18) | |
H9A | 0.1595 | −0.0960 | 0.4715 | 0.187* | |
C10 | 0.1600 (7) | −0.0736 (4) | 0.5786 (6) | 0.190 (3) | |
H10A | 0.1036 | −0.1346 | 0.5635 | 0.228* | |
C11 | 0.2035 (6) | −0.0129 (4) | 0.6559 (5) | 0.177 (2) | |
H11A | 0.1758 | −0.0322 | 0.6907 | 0.212* | |
C12 | 0.2862 (4) | 0.0742 (3) | 0.6806 (3) | 0.1244 (13) | |
H12A | 0.3174 | 0.1138 | 0.7341 | 0.149* | |
C13 | 0.3288 (3) | 0.1091 (3) | 0.6275 (2) | 0.0890 (8) | |
C14 | 0.4125 (2) | 0.2016 (2) | 0.65222 (16) | 0.0701 (6) | |
C15 | 0.4711 (2) | 0.2598 (3) | 0.74177 (17) | 0.0832 (8) | |
C16 | 0.4021 (2) | 0.3514 (2) | 0.74860 (15) | 0.0717 (7) | |
H16A | 0.4497 | 0.3957 | 0.8016 | 0.086* | |
C17 | 0.27397 (19) | 0.37585 (18) | 0.68314 (14) | 0.0551 (5) | |
H17A | 0.2302 | 0.3333 | 0.6294 | 0.066* | |
C18 | 0.19498 (18) | 0.46181 (16) | 0.68650 (13) | 0.0509 (4) | |
C19 | 0.2555 (2) | 0.5478 (2) | 0.75005 (17) | 0.0700 (6) | |
H19A | 0.3482 | 0.5507 | 0.7909 | 0.084* | |
C20 | 0.1823 (3) | 0.6310 (2) | 0.75520 (19) | 0.0786 (7) | |
H20A | 0.2273 | 0.6872 | 0.7998 | 0.094* | |
C21 | 0.0457 (2) | 0.63188 (17) | 0.69611 (17) | 0.0637 (6) | |
C22 | −0.0224 (2) | 0.54867 (16) | 0.62504 (14) | 0.0519 (5) | |
C23 | −0.1629 (2) | 0.5519 (2) | 0.55500 (16) | 0.0655 (6) | |
H23A | −0.2122 | 0.6104 | 0.5548 | 0.079* | |
C24 | −0.2264 (2) | 0.4717 (2) | 0.48864 (16) | 0.0726 (6) | |
H24A | −0.3183 | 0.4762 | 0.4431 | 0.087* | |
C25 | −0.1553 (2) | 0.3828 (2) | 0.48809 (15) | 0.0674 (6) | |
H25A | −0.2002 | 0.3263 | 0.4437 | 0.081* | |
C26 | −0.01990 (19) | 0.37794 (17) | 0.55242 (13) | 0.0545 (5) | |
H26A | 0.0263 | 0.3183 | 0.5507 | 0.065* | |
C27 | 0.05179 (18) | 0.46122 (15) | 0.62158 (12) | 0.0463 (4) | |
C28 | 0.0349 (5) | 0.8198 (3) | 0.7467 (3) | 0.1426 (17) | |
H28A | −0.0297 | 0.8738 | 0.7360 | 0.214* | |
H28B | 0.0795 | 0.8491 | 0.7234 | 0.214* | |
H28C | 0.0992 | 0.8061 | 0.8117 | 0.214* | |
C29 | −0.1074 (3) | 0.6725 (3) | 0.7296 (2) | 0.0987 (9) | |
H29A | −0.1747 | 0.7268 | 0.7140 | 0.148* | |
H29B | −0.0484 | 0.6612 | 0.7951 | 0.148* | |
H29C | −0.1491 | 0.6019 | 0.6994 | 0.148* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0952 (15) | 0.257 (3) | 0.0676 (12) | 0.0978 (19) | 0.0283 (12) | 0.0303 (16) |
N1 | 0.1280 (18) | 0.0587 (12) | 0.1233 (18) | 0.0009 (12) | 0.1033 (17) | −0.0095 (12) |
C1 | 0.0679 (14) | 0.107 (2) | 0.0650 (14) | 0.0458 (14) | 0.0448 (12) | 0.0316 (14) |
C2 | 0.0718 (16) | 0.124 (3) | 0.100 (2) | 0.0296 (17) | 0.0552 (16) | 0.0380 (19) |
C3 | 0.102 (2) | 0.168 (4) | 0.144 (3) | 0.037 (2) | 0.087 (3) | 0.067 (3) |
C4 | 0.172 (5) | 0.236 (7) | 0.128 (4) | 0.054 (4) | 0.121 (4) | 0.061 (4) |
C5 | 0.173 (5) | 0.224 (6) | 0.106 (3) | 0.065 (4) | 0.108 (3) | 0.035 (4) |
C6 | 0.110 (2) | 0.141 (3) | 0.0816 (19) | 0.057 (2) | 0.0677 (19) | 0.027 (2) |
C7 | 0.128 (3) | 0.133 (3) | 0.096 (2) | 0.044 (3) | 0.060 (2) | −0.014 (2) |
C8 | 0.124 (3) | 0.097 (3) | 0.139 (3) | 0.035 (2) | 0.086 (3) | −0.002 (2) |
C9 | 0.166 (4) | 0.105 (3) | 0.202 (5) | 0.011 (3) | 0.116 (4) | −0.036 (3) |
C10 | 0.231 (6) | 0.102 (3) | 0.322 (9) | 0.001 (4) | 0.212 (7) | −0.029 (5) |
C11 | 0.249 (6) | 0.101 (3) | 0.295 (7) | 0.013 (4) | 0.225 (6) | 0.017 (4) |
C12 | 0.154 (3) | 0.090 (2) | 0.187 (4) | 0.023 (2) | 0.133 (3) | 0.030 (2) |
C13 | 0.0925 (19) | 0.0826 (19) | 0.103 (2) | 0.0389 (16) | 0.0656 (17) | 0.0218 (16) |
C14 | 0.0639 (13) | 0.0826 (16) | 0.0683 (14) | 0.0342 (12) | 0.0428 (12) | 0.0220 (12) |
C15 | 0.0605 (13) | 0.130 (2) | 0.0573 (13) | 0.0352 (14) | 0.0351 (12) | 0.0242 (14) |
C16 | 0.0559 (12) | 0.1080 (19) | 0.0481 (11) | 0.0097 (12) | 0.0304 (10) | 0.0009 (12) |
C17 | 0.0516 (10) | 0.0662 (13) | 0.0515 (10) | −0.0004 (9) | 0.0338 (9) | 0.0006 (9) |
C18 | 0.0519 (10) | 0.0542 (11) | 0.0537 (10) | −0.0068 (8) | 0.0360 (9) | −0.0040 (9) |
C19 | 0.0597 (12) | 0.0789 (15) | 0.0775 (14) | −0.0222 (11) | 0.0453 (12) | −0.0239 (12) |
C20 | 0.0923 (18) | 0.0701 (15) | 0.0977 (18) | −0.0313 (13) | 0.0706 (16) | −0.0365 (13) |
C21 | 0.0864 (15) | 0.0485 (11) | 0.0868 (15) | −0.0081 (10) | 0.0686 (14) | −0.0084 (11) |
C22 | 0.0627 (11) | 0.0454 (10) | 0.0638 (11) | 0.0018 (9) | 0.0471 (10) | 0.0066 (9) |
C23 | 0.0664 (13) | 0.0663 (14) | 0.0737 (14) | 0.0190 (11) | 0.0480 (12) | 0.0162 (12) |
C24 | 0.0526 (12) | 0.0906 (17) | 0.0614 (13) | 0.0106 (12) | 0.0283 (11) | 0.0114 (13) |
C25 | 0.0574 (12) | 0.0724 (15) | 0.0569 (12) | −0.0064 (11) | 0.0273 (10) | −0.0045 (10) |
C26 | 0.0534 (11) | 0.0522 (11) | 0.0524 (11) | 0.0007 (9) | 0.0297 (9) | −0.0019 (9) |
C27 | 0.0507 (10) | 0.0427 (10) | 0.0513 (10) | −0.0028 (8) | 0.0343 (9) | 0.0018 (8) |
C28 | 0.216 (4) | 0.072 (2) | 0.238 (5) | −0.027 (2) | 0.189 (4) | −0.049 (3) |
C29 | 0.114 (2) | 0.106 (2) | 0.122 (2) | 0.0084 (18) | 0.096 (2) | −0.0032 (19) |
O1—C15 | 1.215 (3) | C14—C15 | 1.494 (4) |
N1—C21 | 1.416 (3) | C15—C16 | 1.446 (3) |
N1—C29 | 1.452 (3) | C16—C17 | 1.331 (3) |
N1—C28 | 1.454 (4) | C16—H16A | 0.9300 |
C1—C14 | 1.398 (3) | C17—C18 | 1.454 (3) |
C1—C2 | 1.407 (4) | C17—H17A | 0.9300 |
C1—C6 | 1.445 (4) | C18—C19 | 1.373 (3) |
C2—C3 | 1.391 (5) | C18—C27 | 1.437 (3) |
C2—H2A | 0.9300 | C19—C20 | 1.395 (3) |
C3—C4 | 1.436 (7) | C19—H19A | 0.9300 |
C3—H3A | 0.9300 | C20—C21 | 1.369 (3) |
C4—C5 | 1.306 (7) | C20—H20A | 0.9300 |
C4—H4A | 0.9300 | C21—C22 | 1.426 (3) |
C5—C6 | 1.399 (5) | C22—C23 | 1.422 (3) |
C5—H5A | 0.9300 | C22—C27 | 1.425 (3) |
C6—C7 | 1.399 (5) | C23—C24 | 1.352 (3) |
C7—C8 | 1.363 (5) | C23—H23A | 0.9300 |
C7—H7A | 0.9300 | C24—C25 | 1.389 (3) |
C8—C13 | 1.403 (5) | C24—H24A | 0.9300 |
C8—C9 | 1.478 (6) | C25—C26 | 1.364 (3) |
C9—C10 | 1.331 (7) | C25—H25A | 0.9300 |
C9—H9A | 0.9300 | C26—C27 | 1.411 (3) |
C10—C11 | 1.369 (8) | C26—H26A | 0.9300 |
C10—H10A | 0.9300 | C28—H28A | 0.9600 |
C11—C12 | 1.334 (6) | C28—H28B | 0.9600 |
C11—H11A | 0.9300 | C28—H28C | 0.9600 |
C12—C13 | 1.437 (4) | C29—H29A | 0.9600 |
C12—H12A | 0.9300 | C29—H29B | 0.9600 |
C13—C14 | 1.390 (4) | C29—H29C | 0.9600 |
C21—N1—C29 | 115.2 (2) | C17—C16—C15 | 123.6 (2) |
C21—N1—C28 | 116.6 (2) | C17—C16—H16A | 118.2 |
C29—N1—C28 | 110.3 (2) | C15—C16—H16A | 118.2 |
C14—C1—C2 | 123.4 (3) | C16—C17—C18 | 127.2 (2) |
C14—C1—C6 | 117.1 (3) | C16—C17—H17A | 116.4 |
C2—C1—C6 | 119.6 (3) | C18—C17—H17A | 116.4 |
C3—C2—C1 | 119.1 (4) | C19—C18—C27 | 118.18 (18) |
C3—C2—H2A | 120.4 | C19—C18—C17 | 120.80 (18) |
C1—C2—H2A | 120.4 | C27—C18—C17 | 120.99 (17) |
C2—C3—C4 | 119.5 (4) | C18—C19—C20 | 122.0 (2) |
C2—C3—H3A | 120.3 | C18—C19—H19A | 119.0 |
C4—C3—H3A | 120.3 | C20—C19—H19A | 119.0 |
C5—C4—C3 | 121.5 (4) | C21—C20—C19 | 121.6 (2) |
C5—C4—H4A | 119.3 | C21—C20—H20A | 119.2 |
C3—C4—H4A | 119.3 | C19—C20—H20A | 119.2 |
C4—C5—C6 | 122.0 (5) | C20—C21—N1 | 123.1 (2) |
C4—C5—H5A | 119.0 | C20—C21—C22 | 118.84 (19) |
C6—C5—H5A | 119.0 | N1—C21—C22 | 118.0 (2) |
C5—C6—C7 | 122.9 (4) | C23—C22—C27 | 118.38 (19) |
C5—C6—C1 | 118.4 (4) | C23—C22—C21 | 121.96 (19) |
C7—C6—C1 | 118.7 (3) | C27—C22—C21 | 119.63 (18) |
C8—C7—C6 | 123.6 (4) | C24—C23—C22 | 121.3 (2) |
C8—C7—H7A | 118.2 | C24—C23—H23A | 119.3 |
C6—C7—H7A | 118.2 | C22—C23—H23A | 119.3 |
C7—C8—C13 | 117.8 (4) | C23—C24—C25 | 120.4 (2) |
C7—C8—C9 | 122.2 (5) | C23—C24—H24A | 119.8 |
C13—C8—C9 | 120.0 (4) | C25—C24—H24A | 119.8 |
C10—C9—C8 | 116.5 (5) | C26—C25—C24 | 120.3 (2) |
C10—C9—H9A | 121.8 | C26—C25—H25A | 119.9 |
C8—C9—H9A | 121.8 | C24—C25—H25A | 119.9 |
C9—C10—C11 | 125.2 (6) | C25—C26—C27 | 121.62 (19) |
C9—C10—H10A | 117.4 | C25—C26—H26A | 119.2 |
C11—C10—H10A | 117.4 | C27—C26—H26A | 119.2 |
C12—C11—C10 | 119.2 (5) | C26—C27—C22 | 117.82 (17) |
C12—C11—H11A | 120.4 | C26—C27—C18 | 122.62 (17) |
C10—C11—H11A | 120.4 | C22—C27—C18 | 119.55 (17) |
C11—C12—C13 | 122.4 (5) | N1—C28—H28A | 109.5 |
C11—C12—H12A | 118.8 | N1—C28—H28B | 109.5 |
C13—C12—H12A | 118.8 | H28A—C28—H28B | 109.5 |
C14—C13—C8 | 121.0 (3) | N1—C28—H28C | 109.5 |
C14—C13—C12 | 122.3 (3) | H28A—C28—H28C | 109.5 |
C8—C13—C12 | 116.8 (4) | H28B—C28—H28C | 109.5 |
C13—C14—C1 | 121.8 (3) | N1—C29—H29A | 109.5 |
C13—C14—C15 | 119.0 (2) | N1—C29—H29B | 109.5 |
C1—C14—C15 | 119.0 (3) | H29A—C29—H29B | 109.5 |
O1—C15—C16 | 120.4 (3) | N1—C29—H29C | 109.5 |
O1—C15—C14 | 118.2 (2) | H29A—C29—H29C | 109.5 |
C16—C15—C14 | 121.42 (19) | H29B—C29—H29C | 109.5 |
C14—C1—C2—C3 | 179.2 (2) | C13—C14—C15—C16 | −88.5 (3) |
C6—C1—C2—C3 | −0.6 (4) | C1—C14—C15—C16 | 96.4 (3) |
C1—C2—C3—C4 | −1.0 (5) | O1—C15—C16—C17 | −166.2 (3) |
C2—C3—C4—C5 | 0.7 (7) | C14—C15—C16—C17 | 13.8 (4) |
C3—C4—C5—C6 | 1.2 (8) | C15—C16—C17—C18 | 176.2 (2) |
C4—C5—C6—C7 | 178.6 (5) | C16—C17—C18—C19 | 17.4 (3) |
C4—C5—C6—C1 | −2.7 (7) | C16—C17—C18—C27 | −164.6 (2) |
C14—C1—C6—C5 | −177.4 (3) | C27—C18—C19—C20 | 2.4 (3) |
C2—C1—C6—C5 | 2.4 (4) | C17—C18—C19—C20 | −179.6 (2) |
C14—C1—C6—C7 | 1.4 (4) | C18—C19—C20—C21 | −0.8 (4) |
C2—C1—C6—C7 | −178.9 (3) | C19—C20—C21—N1 | 179.4 (2) |
C5—C6—C7—C8 | 179.6 (4) | C19—C20—C21—C22 | −3.0 (4) |
C1—C6—C7—C8 | 1.0 (5) | C29—N1—C21—C20 | −111.2 (3) |
C6—C7—C8—C13 | −2.1 (5) | C28—N1—C21—C20 | 20.5 (4) |
C6—C7—C8—C9 | 178.2 (4) | C29—N1—C21—C22 | 71.1 (3) |
C7—C8—C9—C10 | 179.6 (5) | C28—N1—C21—C22 | −157.1 (3) |
C13—C8—C9—C10 | −0.1 (7) | C20—C21—C22—C23 | −172.8 (2) |
C8—C9—C10—C11 | 0.1 (9) | N1—C21—C22—C23 | 5.0 (3) |
C9—C10—C11—C12 | −1.0 (10) | C20—C21—C22—C27 | 5.2 (3) |
C10—C11—C12—C13 | 1.8 (7) | N1—C21—C22—C27 | −177.07 (18) |
C7—C8—C13—C14 | 1.0 (4) | C27—C22—C23—C24 | 2.8 (3) |
C9—C8—C13—C14 | −179.4 (3) | C21—C22—C23—C24 | −179.2 (2) |
C7—C8—C13—C12 | −178.9 (3) | C22—C23—C24—C25 | 0.8 (3) |
C9—C8—C13—C12 | 0.8 (5) | C23—C24—C25—C26 | −2.6 (4) |
C11—C12—C13—C14 | 178.5 (4) | C24—C25—C26—C27 | 0.7 (3) |
C11—C12—C13—C8 | −1.7 (5) | C25—C26—C27—C22 | 2.9 (3) |
C8—C13—C14—C1 | 1.4 (4) | C25—C26—C27—C18 | −176.00 (19) |
C12—C13—C14—C1 | −178.8 (2) | C23—C22—C27—C26 | −4.5 (3) |
C8—C13—C14—C15 | −173.7 (2) | C21—C22—C27—C26 | 177.48 (17) |
C12—C13—C14—C15 | 6.2 (4) | C23—C22—C27—C18 | 174.38 (17) |
C2—C1—C14—C13 | 177.8 (2) | C21—C22—C27—C18 | −3.6 (3) |
C6—C1—C14—C13 | −2.5 (3) | C19—C18—C27—C26 | 178.72 (19) |
C2—C1—C14—C15 | −7.2 (3) | C17—C18—C27—C26 | 0.7 (3) |
C6—C1—C14—C15 | 172.5 (2) | C19—C18—C27—C22 | −0.1 (3) |
C13—C14—C15—O1 | 91.5 (3) | C17—C18—C27—C22 | −178.11 (17) |
C1—C14—C15—O1 | −83.6 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C25—H25A···O1i | 0.93 | 2.42 | 3.203 (3) | 142 |
Symmetry code: (i) x−1, −y+1/2, z−1/2. |
Acknowledgements
The authors thank Universiti Sains Malaysia (USM) for the research facilities.
Funding information
The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for the research facilities and the Fundamental Research Grant Scheme (FRGS) No. 203/PFIZIK/6711606 and for Short Term Grant Scheme (304/PFIZIK/6313336) to conduct this work. DAZ thank to Malaysian Government for the My Brain15 scholarship.
References
Abdullah, A. A., Hassan, N. H. H., Arshad, S., Khalib, N. C. & Razak, I. A. (2016). Acta Cryst. E72, 648–651. Web of Science CSD CrossRef IUCr Journals Google Scholar
Agrahari, A., Wagers, P. O., Schildcrout, S. M., Masnovi, J. & Youngs, W. J. (2015). Acta Cryst. E71, 357–359. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cicogna, F., Ingrosso, G., Lodato, F., Marchetti, F. & Zandomeneghi, M. (2004). Tetrahedron, 60, 11959–11968. Web of Science CSD CrossRef CAS Google Scholar
D'silva, E. D., Podagatlapalli, G. K., Rao, S. V., Rao, D. N. & Dharmaprakash, S. M. (2011). Cryst. Growth Des. 11, 5326–5369. Google Scholar
Ebenezar, J. D., Ramalingam, S., Raja, C. R. & Helan, V. (2013). J. Theo. Comput. Sci. 1, 1–13. Google Scholar
Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, V., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. C., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V.G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). Gaussian 09, Revision A.1. Gaussian, Inc., Wallingford CT, USA. Google Scholar
Girisha, M., Yathirajan, H. S., Jasinski, J. P. & Glidewell, C. (2016). Acta Cryst. E72, 1153–1158. Web of Science CSD CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Harlow, R. L., Loghry, R. A., Williams, H. J. & Simonsen, S. H. (1975). Acta Cryst. B31, 1344–1350. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
He, S. G., Tan, L. S., Zheng, Q. & Prasad, P. N. (2008). Chem. Rev. 108, 1245–1330. CrossRef PubMed Google Scholar
Jung, Y., , Son, K., Oh, Y. E. & Noh, D. (2008). Polyhedron, 27, 861–867. Google Scholar
Sathish, S., Shekar, B. C., Kannan, S. C., Sengodan, R., Dinesh, K. P. B. & Ranjithkumar, R. (2015). Int. J. Polym. Anal. Charact. 20, 29–41. CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tejkiran, P. J., Teja, M. S. B., Kumar, P. S. S., Sankar, P., Philip, R., Naveen, S., Lokanath, N. K. & Rao, G. N. (2016). J. Photochemistry Photobiology A: Chemistry, 324, 233–39. Google Scholar
Wu, W., Liu, Y. & Zhu, D. (2010). Chem. Soc. Rev. 39, 1489–1502. Web of Science CrossRef CAS PubMed Google Scholar
Zainuri, D. A., Razak, I. A. & Arshad, S. (2018a). Acta Cryst. E74, 492–496. Web of Science CrossRef IUCr Journals Google Scholar
Zainuri, D. A., Razak, I. A. & Arshad, S. (2018b). Acta Cryst. E74, 650–655. Web of Science CrossRef IUCr Journals Google Scholar
Zainuri, D. A., Razak, I. A. & Arshad, S. (2018c). Acta Cryst. E74, 780–785. Web of Science CrossRef IUCr Journals Google Scholar
Zainuri, D. A., Razak, I. A. & Arshad, S. (2018d). Acta Cryst. E74, 1087–1092. CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.