research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal Structure of (E)-2-(3,3,3-tri­fluoro­prop-1-en-1-yl)aniline

CROSSMARK_Color_square_no_text.svg

aDivision of Natural Sciences, Osaka Kyoiku University, Kashiwara, Osaka 582-8582, Japan, bFaculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka 573-0101, Japan, and cInstitute for Materials Chemistry and Engineering, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
*Correspondence e-mail: ktani@cc.osaka-kyoiku.ac.jp

Edited by H. Ishida, Okayama University, Japan (Received 13 July 2018; accepted 10 September 2018; online 18 September 2018)

The mol­ecule of the title compound, C9H8F3N, adopts an E configuration with respect to the C=C double bond. The dihedral angle between the benzene ring and the prop-1-enyl group is 25.4 (3)°. In the crystal, mol­ecules are linked via pairs of N—H⋯F hydrogen bonds into inversion dimers with an R22(16) ring motif. The dimers are linked by C—H⋯N hydrogen bonds, forming a ribbon structure along the b-axis direction. The ribbons are linked by N—H⋯π and C—H⋯π inter­actions, generating a three-dimensional network.

1. Chemical context

Fluorescein, rhodamine etc. are water-soluble fluorescent reagents. Their derivatives exhibit strong fluorescence in aqueous solution and so can be utilized as ion-probes and in bio-imaging (Aron et al., 2016[Aron, A. T., Loehr, M. O., Bogena, J. & Chang, C. J. (2016). J. Am. Chem. Soc. 138, 14338-14346.]; Li et al., 2016[Li, D., Li, C.-Y., Li, Y.-F., Li, Z. & Xu, F. (2016). Anal. Chim. Acta, 934, 218-225.]). However, complicated procedures are required to obtain them. It is therefore desirable to develop a new fluorescent reagent with a simple structure that can be obtained by a short-step synthetic process. The title compound has a quite simple structure and is a small mol­ecule, consisting of aniline and 3,3,3-tri­fluoro­prop-1-enyl units, which emits strong fluorescence not only in organic solvents but also in an aqueous medium (H2O/DMSO, 90:10, v/v). Since aniline derivatives with 2,4-bis­(3,3,3-tri­fluoro­prop-1-en­yl) have been used as fluoro­genic substrates for dipepeptidyl peptidase-4 (Ogawa et al., 2017[Ogawa, F., Takeda, M., Miyanaga, K., Tani, K., Yamazawa, R., Ito, K., Tarui, A., Sato, A. & Omote, M. (2017). Beilstein J. Org. Chem. 13, 2690-2697.]), the title compound can be treated as a simple but essential component in emitting fluorescence. Hence, it is important to study the relationship between the fluorescent properties and the mol­ecular structure of the title compound. We report here its mol­ecular and crystal structure.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The mol­ecule adopts an E configuration with respect to the C=C double bond. The dihedral angle between the benzene ring and the prop-1-enyl group is 25.4 (3)°. The C5—C10—C11—C12 and C9—C10—C11—C12 torsion angles are −158.9 (3) and 24.6 (4)°, respectively. The bond lengths and angles in the title compound are normal and agree with those in other tri­fluoro­propenylaniline compounds (Shimizu et al., 2009[Shimizu, M., Takeda, Y., Higashi, M. & Hiyama, T. (2009). Angew. Chem. Int. Ed. 48, 3653-3656.]; Lin et al., 2014[Lin, Q.-Y., Xu, X.-H. & Qing, F.-L. (2014). J. Org. Chem. 79, 10434-10446.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, two mol­ecules are associated through a pair of inter­molecular N—H⋯F hydrogen bonds (Table 1[link]), forming a centrosymmetric dimer with an R22(16) ring motif (Fig. 2[link]). The dimers are further linked by C—H⋯N hydrogen bonds (Table 1[link]), forming a ribbon with a C(6) chain motif along the b-axis direction. The ribbons are linked by N—H⋯π and C—H⋯π inter­actions (Table 1[link]), generating a three-dimensional network.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C5–C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯F2i 0.90 (3) 2.46 (4) 3.352 (3) 169 (3)
C12—H12⋯N4ii 0.95 2.56 3.432 (4) 152
N4—H4BCg1iii 0.88 (3) 2.59 (4) 3.315 (2) 140 (3)
C9—H9⋯Cg1iv 0.95 2.73 3.480 (3) 136
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x, y-1, z; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A packing diagram of the title compound, viewed along the b axis. The N—H⋯F and C—H⋯N hydrogen bonds and N—H⋯π and C—H⋯π inter­actions are shown as dashed lines.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.39; May 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave 16 hits for 2-(3,3,3-tri­fluoro­prop-1-en-1-yl)aza­benzene derivatives, and gave 18 and 45 hits for (E)-3,3,3-tri­fluoro­prop-1-enyl and 2-amino­phenyl-1-enyl fragments, respectively. Of these structures, those that resemble the title compound are 4-[2-(3,3,3-tri­fluoro­prop-1-en-1-yl)phen­yl]morpholine (Lin et al., 2014[Lin, Q.-Y., Xu, X.-H. & Qing, F.-L. (2014). J. Org. Chem. 79, 10434-10446.]), N-acetyl-N-{2-[(Z)-2-chloro-3,3,3-tri­fluoro­prop-1-en­yl]phen­yl}acetamide (Niu et al., 2009[Niu, J.-J., Li, Z.-G. & Xu, J.-W. (2009). Acta Cryst. E65, o1305.]) and (E,E)-1,4-di­piperidino-2,5-bis­(3,3,3-tri­fluoro­prop-1-en­yl)benzene (Shim­izu et al., 2009[Shimizu, M., Takeda, Y., Higashi, M. & Hiyama, T. (2009). Angew. Chem. Int. Ed. 48, 3653-3656.]).

5. Synthesis and crystallization

The title compound was prepared by a modification of a reported procedure (Omote et al., 2013[Omote, M., Tanaka, M., Tanaka, M., Ikeda, A., Tarui, A., Sato, K. & Ando, A. (2013). J. Org. Chem. 78, 6196-6201.]). In a glove box purged with argon gas, iodo­aniline (1.0 mmol), (2-methyl­all­yl)palladium(II) chloride dimer (0.1mmol), CuF2 (2.0 mmol) and 2,2′-bipyridyl (2.0 mmol) were placed in a flask. To the flask were added anhydrous DMF (6.0 ml) and (E)-trimethyl-(3,3,3-tri­fluoro­prop-1-en­yl)silane (2.0 mmol), and the mixture was stirred at 353 K. After the reaction mixture had been stirred for 4 h, it was poured into ice–water. The mixture was extracted with CH2Cl2, and the organic layer was dried over anhydrous MgSO4. After the solid had been filtered off, the solvent was removed in vacuo, and the residue was purified by silica gel column chromatography to give the product in 68% yield. Colourless single crystals were obtained by recrystallization from an ethyl acetate–hexane (1:10, v/v) solution (m.p. 321–322 K). 1H NMR (CDCl3) δ: 3.81 (2H, s), 6.13 (1H, qd, J = 15.9, 6.5 Hz), 6.72 (1H, dd, J = 8.2, 0.9 Hz), 6.80 (1H, dt, J = 7.5, 0.9 Hz), 7.18 (1H, dt, J = 7.8, 1.4 Hz), 7.24 (1H, qd, J = 15.9, 2.1 Hz), 7.29 (1H, dd, J = 7.8, 1.4 Hz). 13C NMR (CDCl3) δ: 116.6 (q, J = 33.4 Hz), 116.8, 119.2, 119.4, 123.6 (q, J = 269.0 Hz), 127.9, 130.9, 133.3 (q, J = 6.8 Hz), 144.8. 19F NMR (CDCl3) δ: 12.07 (3F, dd, J = 6.5, 2.2 Hz). MS m/z 187 (M+), HRMS calculated for C9H8F3N 187.1617 (M+), found 187.0603.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The amino H atoms were located in a difference Fourier map and refined freely. The C-bound H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C). One outlier ([\overline{5}]11) was omitted in the last cycle of refinement.

Table 2
Experimental details

Crystal data
Chemical formula C9H8F3N
Mr 187.16
Crystal system, space group Monoclinic, P21/c
Temperature (K) 123
a, b, c (Å) 7.3925 (4), 6.2777 (3), 18.6065 (9)
β (°) 96.243 (7)
V3) 858.37 (8)
Z 4
Radiation type Cu Kα
μ (mm−1) 1.16
Crystal size (mm) 0.40 × 0.26 × 0.08
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.543, 0.912
No. of measured, independent and observed [F2 > 2.0σ(F2)] reflections 4753, 1566, 1178
Rint 0.049
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.175, 1.03
No. of reflections 1566
No. of parameters 126
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.49, −0.39
Computer programs: RAPID-AUTO (Rigaku, 2006[Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]), SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and CrystalStructure (Rigaku, 2016[Rigaku (2016). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]).

Supporting information


Computing details top

Data collection: RAPID-AUTO (Rigaku, 2006); cell refinement: RAPID-AUTO (Rigaku, 2006); data reduction: RAPID-AUTO (Rigaku, 2006); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: CrystalStructure (Rigaku, 2016).

(E)-2-(3,3,3-trifluoroprop-1-en-1-yl)aniline top
Crystal data top
C9H8F3NF(000) = 384.00
Mr = 187.16Dx = 1.448 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54187 Å
a = 7.3925 (4) ÅCell parameters from 4006 reflections
b = 6.2777 (3) Åθ = 4.8–68.2°
c = 18.6065 (9) ŵ = 1.16 mm1
β = 96.243 (7)°T = 123 K
V = 858.37 (8) Å3Platelet, colourless
Z = 40.40 × 0.26 × 0.08 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1178 reflections with F2 > 2.0σ(F2)
Detector resolution: 10.000 pixels mm-1Rint = 0.049
ω scansθmax = 68.2°, θmin = 4.8°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 88
Tmin = 0.543, Tmax = 0.912k = 67
4753 measured reflectionsl = 2222
1566 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.175H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.1029P)2 + 0.1188P]
where P = (Fo2 + 2Fc2)/3
1566 reflections(Δ/σ)max < 0.001
126 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.39 e Å3
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.2762 (3)0.0078 (3)0.52691 (8)0.0597 (7)
F20.3860 (2)0.3171 (3)0.51696 (8)0.0569 (6)
F30.0979 (2)0.2730 (4)0.50888 (9)0.0661 (7)
N40.3895 (3)0.4055 (4)0.31939 (13)0.0343 (6)
C50.3078 (3)0.2521 (4)0.27331 (13)0.0272 (6)
C60.2853 (3)0.2886 (4)0.19799 (12)0.0293 (6)
H60.32890.41710.17910.035*
C70.2009 (3)0.1398 (4)0.15202 (13)0.0311 (6)
H70.18630.16700.10150.037*
C80.1362 (4)0.0502 (4)0.17775 (12)0.0311 (6)
H80.07880.15280.14530.037*
C90.1567 (3)0.0871 (4)0.25119 (12)0.0276 (6)
H90.11230.21640.26910.033*
C100.2413 (3)0.0608 (4)0.30004 (11)0.0220 (6)
C110.2527 (3)0.0253 (4)0.37877 (12)0.0276 (6)
H110.26510.14750.40900.033*
C120.2471 (3)0.1615 (4)0.41076 (12)0.0310 (6)
H120.24100.28560.38140.037*
C130.2497 (4)0.1887 (4)0.48945 (13)0.0346 (7)
H4A0.448 (4)0.362 (6)0.3618 (18)0.070 (11)*
H4B0.448 (5)0.497 (5)0.2944 (18)0.067 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.1045 (18)0.0494 (12)0.0245 (8)0.0050 (11)0.0032 (10)0.0071 (8)
F20.0673 (13)0.0635 (13)0.0370 (10)0.0222 (10)0.0073 (9)0.0154 (8)
F30.0571 (12)0.1073 (17)0.0329 (9)0.0274 (11)0.0002 (8)0.0251 (10)
N40.0379 (14)0.0297 (13)0.0346 (13)0.0050 (11)0.0003 (11)0.0022 (11)
C50.0267 (13)0.0255 (13)0.0292 (13)0.0036 (11)0.0021 (10)0.0008 (11)
C60.0319 (14)0.0290 (14)0.0271 (13)0.0045 (12)0.0035 (10)0.0050 (11)
C70.0310 (14)0.0389 (16)0.0236 (12)0.0041 (12)0.0035 (10)0.0037 (11)
C80.0332 (15)0.0355 (15)0.0239 (13)0.0023 (12)0.0000 (11)0.0043 (11)
C90.0295 (13)0.0276 (14)0.0254 (12)0.0026 (12)0.0009 (10)0.0004 (11)
C100.0211 (13)0.0241 (13)0.0201 (11)0.0020 (10)0.0010 (9)0.0007 (10)
C110.0295 (15)0.0293 (14)0.0232 (12)0.0010 (11)0.0008 (10)0.0024 (10)
C120.0388 (15)0.0315 (15)0.0218 (12)0.0012 (12)0.0008 (11)0.0002 (11)
C130.0400 (16)0.0373 (16)0.0254 (13)0.0004 (13)0.0013 (11)0.0035 (11)
Geometric parameters (Å, º) top
F1—C131.336 (3)C7—H70.9500
F2—C131.348 (3)C8—C91.378 (3)
F3—C131.326 (3)C8—H80.9500
N4—C51.383 (3)C9—C101.398 (3)
N4—H4A0.90 (3)C9—H90.9500
N4—H4B0.88 (3)C10—C111.475 (3)
C5—C101.409 (3)C11—C121.318 (3)
C5—C61.412 (3)C11—H110.9500
C6—C71.371 (3)C12—C131.472 (3)
C6—H60.9500C12—H120.9500
C7—C81.389 (4)
C5—N4—H4A118 (2)C10—C9—H9119.1
C5—N4—H4B109 (2)C9—C10—C5119.0 (2)
H4A—N4—H4B116 (3)C9—C10—C11121.2 (2)
N4—C5—C10121.3 (2)C5—C10—C11119.7 (2)
N4—C5—C6119.9 (2)C12—C11—C10125.6 (2)
C10—C5—C6118.7 (2)C12—C11—H11117.2
C7—C6—C5120.3 (2)C10—C11—H11117.2
C7—C6—H6119.8C11—C12—C13123.7 (2)
C5—C6—H6119.8C11—C12—H12118.1
C6—C7—C8121.4 (2)C13—C12—H12118.1
C6—C7—H7119.3F3—C13—F1106.1 (2)
C8—C7—H7119.3F3—C13—F2106.1 (2)
C9—C8—C7118.7 (2)F1—C13—F2104.4 (2)
C9—C8—H8120.6F3—C13—C12113.4 (2)
C7—C8—H8120.6F1—C13—C12113.9 (2)
C8—C9—C10121.8 (2)F2—C13—C12112.1 (2)
C8—C9—H9119.1
N4—C5—C6—C7178.5 (2)N4—C5—C10—C112.2 (4)
C10—C5—C6—C70.3 (4)C6—C5—C10—C11176.1 (2)
C5—C6—C7—C80.3 (4)C9—C10—C11—C1224.6 (4)
C6—C7—C8—C90.5 (4)C5—C10—C11—C12158.9 (3)
C7—C8—C9—C100.3 (4)C10—C11—C12—C13176.8 (2)
C8—C9—C10—C50.2 (4)C11—C12—C13—F3115.4 (3)
C8—C9—C10—C11176.3 (2)C11—C12—C13—F16.2 (4)
N4—C5—C10—C9178.7 (2)C11—C12—C13—F2124.5 (3)
C6—C5—C10—C90.5 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C5–C10 ring.
D—H···AD—HH···AD···AD—H···A
N4—H4A···F2i0.90 (3)2.46 (4)3.352 (3)169 (3)
C12—H12···N4ii0.952.563.432 (4)152
N4—H4B···Cg1iii0.88 (3)2.59 (4)3.315 (2)140 (3)
C9—H9···Cg1iv0.952.733.480 (3)136
Symmetry codes: (i) x+1, y, z+1; (ii) x, y1, z; (iii) x+1, y+1/2, z+1/2; (iv) x, y1/2, z+1/2.
 

Funding information

Funding for this research was provided by: the Cooperative Research Program of Network Joint Reserarch Center for Materials and Devices (Institute for Materials Chemistry and Engineering, Kyushu University) (No. 20181296).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAron, A. T., Loehr, M. O., Bogena, J. & Chang, C. J. (2016). J. Am. Chem. Soc. 138, 14338–14346.  CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLi, D., Li, C.-Y., Li, Y.-F., Li, Z. & Xu, F. (2016). Anal. Chim. Acta, 934, 218–225.  CrossRef Google Scholar
First citationLin, Q.-Y., Xu, X.-H. & Qing, F.-L. (2014). J. Org. Chem. 79, 10434–10446.  CrossRef Google Scholar
First citationNiu, J.-J., Li, Z.-G. & Xu, J.-W. (2009). Acta Cryst. E65, o1305.  CrossRef IUCr Journals Google Scholar
First citationOgawa, F., Takeda, M., Miyanaga, K., Tani, K., Yamazawa, R., Ito, K., Tarui, A., Sato, A. & Omote, M. (2017). Beilstein J. Org. Chem. 13, 2690–2697.  CrossRef Google Scholar
First citationOmote, M., Tanaka, M., Tanaka, M., Ikeda, A., Tarui, A., Sato, K. & Ando, A. (2013). J. Org. Chem. 78, 6196–6201.  CrossRef Google Scholar
First citationRigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2016). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShimizu, M., Takeda, Y., Higashi, M. & Hiyama, T. (2009). Angew. Chem. Int. Ed. 48, 3653–3656.  CrossRef Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds