research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (E)-2-[3-(tert-but­yl)-2-hy­dr­oxy­benzyl­­idene]-N-cyclo­hexyl­hydrazine-1-carbo­thio­amide

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh, and bSchool of Chemical Sciences, Universiti Sains Malaysia, Penang 11800 USM, Malaysia
*Correspondence e-mail: arafath.usm@gmail.com, farook@usm.my

Edited by S. V. Lindeman, Marquette University, USA (Received 16 August 2018; accepted 16 September 2018; online 21 September 2018)

In the title compound, C18H27N3OS, the cyclo­hexane ring has a chair conformation. The azomethine C=N double bond has an E configuration. The nearly planar hydrazinecarbo­thio­amide moiety and substituted benzene ring are twisted by 31.13 (5)° relative to each other. The amide moiety and the cyclo­hexane ring are almost perpendicular to each other; a similar conformation was previously observed in reported structures. In the crystal, mol­ecules are linked by N—H⋯S hydrogen bonds, forming inversion dimers with an R22(8) ring motif.

1. Chemical context

The thio­semicarbazone Schiff base is comprised of two soft Lewis bases – the sulfur and nitro­gen coordinating sites as well as a hard Lewis base – the oxygen atom (Mohamed et al., 2009[Mohamed, G. G., Omar, M. & Ibrahim, A. A. (2009). Eur. J. Med. Chem. 44, 4801-4812.]). Such Schiff bases are of special inter­est because of their specific coordinating ability to some metal ions (Arion et al., 2001[Arion, V., Revenco, M., Gradinaru, J., Simonov, Y., Kravtsov, V., Gerbeleu, N., Saint-Aman, E. & Adams, F. (2001). Rev. Inorg. Chem. 21, 1-42.]; Leovac & Češljević, 2002[Leovac, V. & Češljević, V. (2002). Coordination Chemistry of Isothiosemicarbazide and Its Derivatives. Novi Sad Serbia: Faculty of Science.]; Chandra & Sangeetika, 2004[Chandra, S. & Sangeetika, X. (2004). Spectrochim. Acta A, 60, 147-153.]; Singh et al., 2000[Singh, N. K., Srivastava, A., Sodhi, A. & Ranjan, P. (2000). Transit. Met. Chem. 25, 133-140.]; Gerbeleu et al., 2008[Gerbeleu, N. V., Arion, V. B. & Burgess, J. P. (2008). Template synthesis of macrocyclic compounds. John Wiley & Sons.]; Mohamed et al., 2009[Mohamed, G. G., Omar, M. & Ibrahim, A. A. (2009). Eur. J. Med. Chem. 44, 4801-4812.]). Several reports have highlighted the importance of the chelate metal complexes of thio­semicarbazone Schiff bases for medicinal applications, particularly against cancer (Paterson & Donnelly, 2011[Paterson, B. M. & Donnelly, P. S. (2011). Chem. Soc. Rev. 40, 3005-3018.]; Ziessel, 2001[Ziessel, R. (2001). Coord. Chem. Rev. 216-217, 195-223.]; Salam et al., 2012[Salam, M., Affan, M., Ahmad, F. B. & Arafath, M. A. (2012). J. Coord. Chem. 65, 1999-2007.]; Arafath et al., 2017a[Arafath, M. A., Adam, F., Razali, M. R., Hassan, L. E. A., Ahamed, M. B. K. & Majid, A. M. S. (2017a). J. Mol. Struct. 1130, 791-798.]). Thus thio­semicarbazones with ONS coordinating sites are important in coordination chemistry because of their strong bonding ability to transition metal ions as well as because of their pharmaceutical uses (Rayati et al., 2007[Rayati, S., Sadeghzadeh, N. & Khavasi, H. R. (2007). Inorg. Chem. Commun. 10, 1545-1548.]; Alomar et al., 2009[Alomar, K., Khan, M. A., Allain, M. & Bouet, G. (2009). Polyhedron, 28, 1273-1280.]; Vieites et al., 2009[Vieites, M., Otero, L., Santos, D., Olea-Azar, C., Norambuena, E., Aguirre, G., Cerecetto, H., González, M., Kemmerling, U., Morello, A., Diego Maya, J. & Gambino, D. (2009). J. Inorg. Biochem. 103, 411-418.]).

[Scheme 1]

2. Structural commentary

The title compound exhibits an E configuration with respect to the azomethine C=N double bond. The overall conformation of the title compound can be described by five torsion angles, τ1 [C1—C6—C7=N1; 11.80 (16)°] between the benzyl­idine ring and the azomethine double bond, τ2 [C7=N1—N2—C8; −170.08 (10)°] between the azomethine double bond and the hydrazine moiety, τ3 [N1—N2—C8—N3; 12.50 (15)°] between the hydrazine moiety and the carbo­thio group, τ4 [N2—C8—N3—C9; −176.16 (10)°] between the carbo­thio and amide groups and τ5 [C8—N3—C9—C10; 78.28 (13)°] between the amide group and the cyclo­hexane ring. In the previously reported related structure (E)-2-(5-chloro-2-hy­droxy­benzyl­idene)-N-cyclo­hexyl­hydrazine-1-carbo­thio­amide (OBOLOJ; Arafath, et al. 2017b[Arafath, M. A., Adam, F. & Razali, M. R. (2017b). IUCrData, 2, x161997.]), values of τ1, τ2, τ3 and τ4 are −4.6 (3), −176.04 (17), −5.5 (3) and 176.67 (17)°, respectively]. The amide group and the cyclo­hexane ring are almost perpendic­ular to each other, with a τ5 torsion angle of −83.7 (2)°, possibly as a result of repulsion between the adjacent sulfur atom and the cyclo­hexane ring. In the mol­ecule, the hy­droxy group acts as both a hydrogen-bond acceptor and hydrogen-bond donor for the adjacent methyl and hydrazine groups, forming three intra­molecular hydrogen bonds with an S(6) ring motif (Table 1[link], Fig. 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯N1 0.834 (19) 1.901 (19) 2.6545 (12) 149.6 (19)
C16—H16A⋯O1 0.98 2.46 3.0774 (16) 121
C17—H17C⋯O1 0.98 2.26 2.9101 (15) 123
N2—H1N2⋯S1i 0.833 (14) 2.459 (14) 3.2779 (11) 165.6 (13)
Symmetry code: (i) -x+2, -y, -z+1.
[Figure 1]
Figure 1
The mol­ecular structure with the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

3. Supra­molecular features

In the crystal, the mol­ecules are linked into inversion dimers via N—H⋯S hydrogen bond, forming an R22(8) ring motif (Fig. 2[link], Table 1[link]).

[Figure 2]
Figure 2
A view of a centrosymmetric dimer of C18H27N3OS with N2—-H1N2⋯S1 hydrogen bonds shown as cyan dotted lines. Hydrogen atoms not involved in with these inter­actions are omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (CSD Version 5.39, last update February 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using (E)-2-benzyl­idene-N-cyclo­hexyl­hydrazine-1-carbo­thio­amide as a reference moiety resulted in six structures containing the cyclo­hexlhydrazinecarbo­thio­amide moiety with different substituents. They include (E)-2-X-N-cyclo­hexyl­hydrazine-1-carbo­thio­amide, where X = 4-amino­benzyl­idene (BEVNAR; Koo et al., 1981[Koo, C. H., Kim, C. H. & Park, Y. J. (1981). J. Korean Chem. Soc. 25, 343-350.]), 5-bromo-2-hy­droxy-3-meth­oxy­benzyl­idene (LAQCIR; Jacob & Kurup, 2012[Jacob, J. M. & Kurup, M. R. P. (2012). Acta Cryst. E68, o836-o837.]), anthracen-9-yl­methyl­ene (NALCOD; Basheer, Willis et al., 2016[Basheer, S. M., Willis, A. C., Pace, R. J. & Sreekanth, A. (2016). Polyhedron, 109, 7-18.]), 5-chloro-2-hy­droxy­benzyl­idene (OBOLOJ; Arafath, et al. 2017b[Arafath, M. A., Adam, F. & Razali, M. R. (2017b). IUCrData, 2, x161997.]), 4-eth­oxy­benzyl­idene (XOYKAZ; Bhat et al., 2015[Bhat, M. A., Al-Dhfyan, A., Khan, A. A., Al-Harbi, N., Manogaran, P. S., Alanazi, A. M., Fun, H.-K. & Al-Omar, M. A. (2015). Bioorg. Med. Chem. Lett. 25, 83-87.]) and (2-hydroxynaphthalen-1-yl)methyl­ene (BEFZIY; Basheer, Bhuvanesh et al., 2016[Basheer, S. M., Bhuvanesh, N. S. P. & Sreekanth, A. (2016). J. Fluor. Chem. 191, 129-142.]). In these six compounds, the torsion angles between benzyl­idene ring and the hydrazinecarbo­thio­amide moiety range from 4.70 to 36.40°. In comparison, torsion angle τ5 has values close to 90° for all compounds Table 2[link]).

Table 2
Selected dihedral and torsion angles (°)

Dihedral is the dihedral angle between the mean planes of the benzyl­idene ring and the hydrazinecarbo­thio­amide moiety. τ5 is the C8—N3—C9—C10 torsion angle.

Compound Dihedral τ5
Title compound 31.13 (5) 78.32
BEVNAR 28.50 94.47
LAQCIR 16.64 86.22
NALKOD 22.00, 36.40 79.01, 79.19
OBOLOJ 6.92 83.70
XOYKAZ 12.72 85.82
BEFZIY 4.70 83.42

5. Synthesis and crystallization

3-(tert-But­yl)-2-hy­droxy­benzaldehyde (0.89 g, 5.00 mmol) was dissolved in 20.0 mL of methanol. Glacial acetic acid (0.20 mL) was added, and the mixture was refluxed for 30 minutes. N-Cyclo­hexyl­hydrazinecarbo­thio­amide (0.87 g, 5.00 mmol) in 20.0 mL methanol was then added dropwise with stirring to the aldehyde solution. The resulting colourless solution was refluxed for 4 h with stirring. The colourless precipitate that formed was filtered off and washed with 5.0 mL ethanol and 5.0 mL n-hexane. The recovered product was dissolved in acetone for recrystallization. Colourless single crystals suitable for X-ray diffraction was obtained on slow evaporation of the solvent (m.p. 502–503 K, yield 98%). Analysis calculated for C18H27N3OS (FW: 333.49 g mol−1); C, 64.77; H, 8.10; N, 12.60; found: C, 64.73; H, 8.10; N, 12.65%. 1H NMR (500 MHz, DMSO-d6, Me4Si ppm): δ 11.23 (s, 1.0, N—NH), δ 10.23 (s, 1.0, OH), δ 8.27 (s, 1.0, HC=N), δ 8.09 (d, J = 8.00 Hz, 1.0, SC=NH), δ 7.26–6.87 (multiplet, 2.96, aromatic-H), δ 1.39 [s, 9.0, Ph—C(CH3)3], δ 1.88–1.15 (multiplet, 11.0, cyclo­hexyl-H). 13C NMR (DMSO-d6, Me4Si ppm): δ 176.05 (C=S), δ 155.31 (C=N), δ 146.32–119.03 (C-aromatic), δ 29.40 (CH3), δ 53.04–24.85 (C-cyclo­hex­yl). IR (KBr pellets υmax/cm−1): 3383 υ(N—NH), 3106 υ(OH), 2929 and 2854 υ(CH, cyclo­hex­yl), 1598 υ(C=N), 1536 υ(C=C, aromatic), 1299 υ (C-H, sp3, bend), 1258 υ(C=S).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. C-bound H atoms were positioned geometrically [C—H = 0.95–0.99 Å] and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C). All N- and O-bound H atoms were located from a difference-Fourier map and freely refined.

Table 3
Experimental details

Crystal data
Chemical formula C18H27N3OS
Mr 333.48
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 13.4168 (6), 6.6070 (3), 20.5831 (9)
β (°) 93.032 (1)
V3) 1822.03 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.19
Crystal size (mm) 0.57 × 0.30 × 0.29
 
Data collection
Diffractometer Bruker APEXII DUO CCD area-detector diffractometer
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison. Wisconsin, USA.]
Tmin, Tmax 0.774, 0.879
No. of measured, independent and observed [I > 2σ(I)] reflections 39751, 4195, 3819
Rint 0.031
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.086, 1.04
No. of reflections 4195
No. of parameters 223
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.38, −0.22
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison. Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]), SHELX2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELX2013 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELX2013 (Sheldrick, 2015) and PLATON (Spek, 2009).

(E)-2-[3-(tert-Butyl)-2-hydroxybenzylidene]-N-cyclohexylhydrazine-1-carbothioamide top
Crystal data top
C18H27N3OSF(000) = 720
Mr = 333.48Dx = 1.216 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.4168 (6) ÅCell parameters from 9744 reflections
b = 6.6070 (3) Åθ = 2.4–32.8°
c = 20.5831 (9) ŵ = 0.19 mm1
β = 93.032 (1)°T = 100 K
V = 1822.03 (14) Å3Block, colourless
Z = 40.57 × 0.30 × 0.29 mm
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
4195 independent reflections
Radiation source: fine-focus sealed tube3819 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
φ and ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2012
h = 1717
Tmin = 0.774, Tmax = 0.879k = 88
39751 measured reflectionsl = 2526
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0422P)2 + 0.8449P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.002
4195 reflectionsΔρmax = 0.38 e Å3
223 parametersΔρmin = 0.22 e Å3
Special details top

Experimental. The following wavelength and cell were deduced by SADABS from the direction cosines etc. They are given here for emergency use only: CELL 0.71104 13.523 6.653 20.749 89.939 93.047 89.965

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.02419 (2)0.15365 (4)0.40715 (2)0.01701 (8)
O10.65801 (6)0.39888 (12)0.39017 (4)0.02153 (18)
N10.84612 (7)0.31101 (14)0.42569 (4)0.01542 (18)
N20.92566 (7)0.17823 (14)0.43545 (5)0.01565 (19)
N30.88665 (7)0.04928 (14)0.33416 (4)0.01665 (19)
C10.67407 (8)0.57899 (16)0.42115 (5)0.0155 (2)
C20.59978 (8)0.72977 (17)0.41452 (5)0.0164 (2)
C30.61893 (8)0.91139 (17)0.44745 (5)0.0189 (2)
H3A0.57071.01650.44330.023*
C40.70586 (8)0.94540 (17)0.48615 (5)0.0190 (2)
H4A0.71551.07070.50820.023*
C50.77763 (8)0.79630 (16)0.49220 (5)0.0164 (2)
H5A0.83660.81820.51890.020*
C60.76359 (8)0.61241 (16)0.45906 (5)0.0145 (2)
C70.84439 (8)0.46494 (16)0.46392 (5)0.0151 (2)
H7A0.89710.48290.49610.018*
C80.93944 (8)0.03134 (16)0.39073 (5)0.0148 (2)
C90.88503 (8)0.09682 (16)0.28052 (5)0.0145 (2)
H9A0.95450.14680.27540.017*
C100.81847 (8)0.27750 (17)0.29436 (5)0.0185 (2)
H10A0.75050.22910.30280.022*
H10B0.84540.34880.33380.022*
C110.81297 (9)0.42424 (17)0.23685 (6)0.0213 (2)
H11A0.87970.48410.23160.026*
H11B0.76630.53560.24590.026*
C120.77785 (9)0.31813 (17)0.17386 (6)0.0206 (2)
H12A0.70800.27280.17710.025*
H12B0.77980.41470.13720.025*
C130.84377 (9)0.13575 (17)0.16058 (5)0.0200 (2)
H13A0.81660.06440.12120.024*
H13B0.91190.18310.15210.024*
C140.84919 (8)0.01120 (16)0.21804 (5)0.0175 (2)
H14A0.89560.12300.20900.021*
H14B0.78240.07030.22360.021*
C150.50170 (8)0.69323 (18)0.37398 (6)0.0212 (2)
C160.44095 (10)0.5302 (2)0.40747 (7)0.0339 (3)
H16A0.47840.40280.40900.051*
H16B0.37710.51020.38290.051*
H16C0.42850.57370.45180.051*
C170.52133 (10)0.6286 (2)0.30399 (6)0.0300 (3)
H17A0.56150.73230.28350.045*
H17B0.45760.61280.27900.045*
H17C0.55740.49970.30480.045*
C180.43846 (10)0.8868 (2)0.36863 (6)0.0290 (3)
H18A0.47670.99410.34840.043*
H18B0.42110.92980.41220.043*
H18C0.37730.86000.34190.043*
H1N20.9483 (11)0.161 (2)0.4737 (7)0.020 (3)*
H1O10.7098 (14)0.330 (3)0.3961 (9)0.043 (5)*
H1N30.8464 (11)0.149 (2)0.3316 (7)0.025 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01723 (14)0.01842 (14)0.01519 (14)0.00573 (10)0.00098 (10)0.00137 (9)
O10.0196 (4)0.0160 (4)0.0282 (4)0.0037 (3)0.0070 (3)0.0059 (3)
N10.0151 (4)0.0153 (4)0.0158 (4)0.0025 (3)0.0001 (3)0.0010 (3)
N20.0162 (4)0.0168 (4)0.0135 (4)0.0049 (3)0.0025 (3)0.0005 (3)
N30.0192 (4)0.0151 (4)0.0153 (4)0.0045 (4)0.0023 (3)0.0021 (3)
C10.0177 (5)0.0139 (5)0.0152 (5)0.0003 (4)0.0017 (4)0.0002 (4)
C20.0156 (5)0.0185 (5)0.0152 (5)0.0019 (4)0.0023 (4)0.0021 (4)
C30.0197 (5)0.0166 (5)0.0207 (5)0.0041 (4)0.0048 (4)0.0012 (4)
C40.0231 (5)0.0148 (5)0.0195 (5)0.0004 (4)0.0045 (4)0.0025 (4)
C50.0172 (5)0.0172 (5)0.0151 (5)0.0022 (4)0.0026 (4)0.0005 (4)
C60.0161 (5)0.0144 (5)0.0132 (5)0.0009 (4)0.0026 (4)0.0014 (4)
C70.0150 (5)0.0160 (5)0.0142 (5)0.0001 (4)0.0002 (4)0.0012 (4)
C80.0140 (5)0.0146 (5)0.0158 (5)0.0007 (4)0.0015 (4)0.0002 (4)
C90.0155 (5)0.0144 (5)0.0137 (5)0.0009 (4)0.0002 (4)0.0016 (4)
C100.0205 (5)0.0180 (5)0.0170 (5)0.0018 (4)0.0006 (4)0.0023 (4)
C110.0251 (6)0.0153 (5)0.0233 (6)0.0024 (4)0.0012 (4)0.0005 (4)
C120.0228 (5)0.0203 (5)0.0183 (5)0.0030 (4)0.0020 (4)0.0033 (4)
C130.0242 (6)0.0218 (5)0.0140 (5)0.0031 (4)0.0006 (4)0.0012 (4)
C140.0215 (5)0.0153 (5)0.0156 (5)0.0016 (4)0.0005 (4)0.0010 (4)
C150.0168 (5)0.0252 (6)0.0211 (6)0.0049 (4)0.0022 (4)0.0007 (4)
C160.0194 (6)0.0392 (7)0.0422 (8)0.0066 (5)0.0058 (5)0.0052 (6)
C170.0263 (6)0.0391 (7)0.0237 (6)0.0126 (5)0.0071 (5)0.0079 (5)
C180.0237 (6)0.0352 (7)0.0274 (6)0.0138 (5)0.0035 (5)0.0036 (5)
Geometric parameters (Å, º) top
S1—C81.6912 (11)C10—H10A0.9900
O1—C11.3619 (13)C10—H10B0.9900
O1—H1O10.836 (19)C11—C121.5264 (16)
N1—C71.2867 (14)C11—H11A0.9900
N1—N21.3879 (12)C11—H11B0.9900
N2—C81.3571 (14)C12—C131.5279 (16)
N2—H1N20.836 (15)C12—H12A0.9900
N3—C81.3357 (14)C12—H12B0.9900
N3—C91.4659 (13)C13—C141.5290 (15)
N3—H1N30.854 (16)C13—H13A0.9900
C1—C21.4107 (15)C13—H13B0.9900
C1—C61.4145 (15)C14—H14A0.9900
C2—C31.3953 (16)C14—H14B0.9900
C2—C151.5394 (15)C15—C181.5354 (16)
C3—C41.3953 (16)C15—C161.5359 (18)
C3—H3A0.9500C15—C171.5384 (17)
C4—C51.3786 (15)C16—H16A0.9800
C4—H4A0.9500C16—H16B0.9800
C5—C61.4012 (15)C16—H16C0.9800
C5—H5A0.9500C17—H17A0.9800
C6—C71.4571 (14)C17—H17B0.9800
C7—H7A0.9500C17—H17C0.9800
C9—C141.5260 (14)C18—H18A0.9800
C9—C101.5265 (15)C18—H18B0.9800
C9—H9A1.0000C18—H18C0.9800
C10—C111.5288 (16)
C1—O1—H1O1107.5 (12)C10—C11—H11A109.3
C7—N1—N2116.72 (9)C12—C11—H11B109.3
C8—N2—N1119.02 (9)C10—C11—H11B109.3
C8—N2—H1N2119.2 (10)H11A—C11—H11B108.0
N1—N2—H1N2117.3 (10)C11—C12—C13111.02 (9)
C8—N3—C9125.75 (9)C11—C12—H12A109.4
C8—N3—H1N3115.2 (10)C13—C12—H12A109.4
C9—N3—H1N3118.7 (10)C11—C12—H12B109.4
O1—C1—C2118.57 (9)C13—C12—H12B109.4
O1—C1—C6120.22 (9)H12A—C12—H12B108.0
C2—C1—C6121.21 (10)C12—C13—C14111.51 (9)
C3—C2—C1116.69 (10)C12—C13—H13A109.3
C3—C2—C15121.90 (10)C14—C13—H13A109.3
C1—C2—C15121.40 (10)C12—C13—H13B109.3
C2—C3—C4122.87 (10)C14—C13—H13B109.3
C2—C3—H3A118.6H13A—C13—H13B108.0
C4—C3—H3A118.6C9—C14—C13110.78 (9)
C5—C4—C3119.68 (10)C9—C14—H14A109.5
C5—C4—H4A120.2C13—C14—H14A109.5
C3—C4—H4A120.2C9—C14—H14B109.5
C4—C5—C6120.02 (10)C13—C14—H14B109.5
C4—C5—H5A120.0H14A—C14—H14B108.1
C6—C5—H5A120.0C18—C15—C16108.16 (10)
C5—C6—C1119.49 (10)C18—C15—C17106.58 (10)
C5—C6—C7117.78 (9)C16—C15—C17110.30 (11)
C1—C6—C7122.71 (10)C18—C15—C2111.19 (10)
N1—C7—C6121.60 (9)C16—C15—C2108.99 (9)
N1—C7—H7A119.2C17—C15—C2111.55 (9)
C6—C7—H7A119.2C15—C16—H16A109.5
N3—C8—N2116.29 (9)C15—C16—H16B109.5
N3—C8—S1123.94 (8)H16A—C16—H16B109.5
N2—C8—S1119.70 (8)C15—C16—H16C109.5
N3—C9—C14108.55 (9)H16A—C16—H16C109.5
N3—C9—C10111.09 (9)H16B—C16—H16C109.5
C14—C9—C10111.20 (9)C15—C17—H17A109.5
N3—C9—H9A108.6C15—C17—H17B109.5
C14—C9—H9A108.6H17A—C17—H17B109.5
C10—C9—H9A108.6C15—C17—H17C109.5
C9—C10—C11110.87 (9)H17A—C17—H17C109.5
C9—C10—H10A109.5H17B—C17—H17C109.5
C11—C10—H10A109.5C15—C18—H18A109.5
C9—C10—H10B109.5C15—C18—H18B109.5
C11—C10—H10B109.5H18A—C18—H18B109.5
H10A—C10—H10B108.1C15—C18—H18C109.5
C12—C11—C10111.50 (9)H18A—C18—H18C109.5
C12—C11—H11A109.3H18B—C18—H18C109.5
C7—N1—N2—C8170.08 (10)C9—N3—C8—S16.94 (16)
O1—C1—C2—C3179.54 (10)N1—N2—C8—N312.50 (15)
C6—C1—C2—C30.44 (15)N1—N2—C8—S1170.46 (8)
O1—C1—C2—C150.70 (15)C8—N3—C9—C14159.15 (10)
C6—C1—C2—C15179.27 (10)C8—N3—C9—C1078.28 (13)
C1—C2—C3—C40.95 (16)N3—C9—C10—C11177.21 (9)
C15—C2—C3—C4177.88 (10)C14—C9—C10—C1156.19 (12)
C2—C3—C4—C50.87 (17)C9—C10—C11—C1255.62 (12)
C3—C4—C5—C60.64 (16)C10—C11—C12—C1355.03 (13)
C4—C5—C6—C11.98 (16)C11—C12—C13—C1455.10 (13)
C4—C5—C6—C7176.29 (10)N3—C9—C14—C13178.71 (9)
O1—C1—C6—C5178.09 (9)C10—C9—C14—C1356.20 (12)
C2—C1—C6—C51.89 (16)C12—C13—C14—C955.70 (12)
O1—C1—C6—C73.74 (16)C3—C2—C15—C187.08 (15)
C2—C1—C6—C7176.29 (10)C1—C2—C15—C18174.15 (10)
N2—N1—C7—C6178.82 (9)C3—C2—C15—C16112.06 (12)
C5—C6—C7—N1166.41 (10)C1—C2—C15—C1666.72 (14)
C1—C6—C7—N111.80 (16)C3—C2—C15—C17125.90 (12)
C9—N3—C8—N2176.16 (10)C1—C2—C15—C1755.32 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···N10.834 (19)1.901 (19)2.6545 (12)149.6 (19)
C16—H16A···O10.982.463.0774 (16)121
C17—H17C···O10.982.262.9101 (15)123
N2—H1N2···S1i0.833 (14)2.459 (14)3.2779 (11)165.6 (13)
Symmetry code: (i) x+2, y, z+1.
Selected dihedral and torsion angles (°) top
Dihedral is the dihedral angle between the mean planes of the benzylidene ring and the hydrazinecarbothioamide moiety. τ5 is the C8—N3—C9—C10 torsion angle.
CompoundDihedralτ5
Title compound31.13 (5)78.32
BEVNAR28.5094.47
LAQCIR16.6486.22
NALKOD22.00, 36.4079.01, 79.19
OBOLOJ6.9283.70
XOYKAZ12.7285.82
BEFZIY4.7083.42
 

Funding information

This research was supported financially by the RU grant 1001/PKIMIA/811269 from Universiti Sains Malaysia. The authors wish to thank Universiti Sains Malaysia and The World Academy of Science for (USM–TWAS) fellowship to MdAA. HCK would like to thank the Malaysian Government for MyBrain15 scholarship.

References

First citationAlomar, K., Khan, M. A., Allain, M. & Bouet, G. (2009). Polyhedron, 28, 1273–1280.  Web of Science CSD CrossRef CAS Google Scholar
First citationArafath, M. A., Adam, F. & Razali, M. R. (2017b). IUCrData, 2, x161997.  Google Scholar
First citationArafath, M. A., Adam, F., Razali, M. R., Hassan, L. E. A., Ahamed, M. B. K. & Majid, A. M. S. (2017a). J. Mol. Struct. 1130, 791–798.  CrossRef Google Scholar
First citationArion, V., Revenco, M., Gradinaru, J., Simonov, Y., Kravtsov, V., Gerbeleu, N., Saint-Aman, E. & Adams, F. (2001). Rev. Inorg. Chem. 21, 1–42.  CrossRef Google Scholar
First citationBasheer, S. M., Bhuvanesh, N. S. P. & Sreekanth, A. (2016). J. Fluor. Chem. 191, 129–142.  CrossRef Google Scholar
First citationBasheer, S. M., Willis, A. C., Pace, R. J. & Sreekanth, A. (2016). Polyhedron, 109, 7–18.  CrossRef Google Scholar
First citationBhat, M. A., Al-Dhfyan, A., Khan, A. A., Al-Harbi, N., Manogaran, P. S., Alanazi, A. M., Fun, H.-K. & Al-Omar, M. A. (2015). Bioorg. Med. Chem. Lett. 25, 83–87.  CrossRef Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison. Wisconsin, USA.  Google Scholar
First citationChandra, S. & Sangeetika, X. (2004). Spectrochim. Acta A, 60, 147–153.  CrossRef Google Scholar
First citationGerbeleu, N. V., Arion, V. B. & Burgess, J. P. (2008). Template synthesis of macrocyclic compounds. John Wiley & Sons.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJacob, J. M. & Kurup, M. R. P. (2012). Acta Cryst. E68, o836–o837.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationKoo, C. H., Kim, C. H. & Park, Y. J. (1981). J. Korean Chem. Soc. 25, 343–350.  Google Scholar
First citationLeovac, V. & Češljević, V. (2002). Coordination Chemistry of Isothiosemicarbazide and Its Derivatives. Novi Sad Serbia: Faculty of Science.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMohamed, G. G., Omar, M. & Ibrahim, A. A. (2009). Eur. J. Med. Chem. 44, 4801–4812.  CrossRef Google Scholar
First citationPaterson, B. M. & Donnelly, P. S. (2011). Chem. Soc. Rev. 40, 3005–3018.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRayati, S., Sadeghzadeh, N. & Khavasi, H. R. (2007). Inorg. Chem. Commun. 10, 1545–1548.  Web of Science CrossRef CAS Google Scholar
First citationSalam, M., Affan, M., Ahmad, F. B. & Arafath, M. A. (2012). J. Coord. Chem. 65, 1999–2007.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, N. K., Srivastava, A., Sodhi, A. & Ranjan, P. (2000). Transit. Met. Chem. 25, 133–140.  CrossRef Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVieites, M., Otero, L., Santos, D., Olea-Azar, C., Norambuena, E., Aguirre, G., Cerecetto, H., González, M., Kemmerling, U., Morello, A., Diego Maya, J. & Gambino, D. (2009). J. Inorg. Biochem. 103, 411–418.  CrossRef Google Scholar
First citationZiessel, R. (2001). Coord. Chem. Rev. 216–217, 195–223.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds