research communications
E)-2-[3-(tert-butyl)-2-hydroxybenzylidene]-N-cyclohexylhydrazine-1-carbothioamide
of (aDepartment of Chemistry, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh, and bSchool of Chemical Sciences, Universiti Sains Malaysia, Penang 11800 USM, Malaysia
*Correspondence e-mail: arafath.usm@gmail.com, farook@usm.my
In the title compound, C18H27N3OS, the cyclohexane ring has a chair conformation. The azomethine C=N double bond has an E configuration. The nearly planar hydrazinecarbothioamide moiety and substituted benzene ring are twisted by 31.13 (5)° relative to each other. The amide moiety and the cyclohexane ring are almost perpendicular to each other; a similar conformation was previously observed in reported structures. In the crystal, molecules are linked by N—H⋯S hydrogen bonds, forming inversion dimers with an R22(8) ring motif.
CCDC reference: 1435681
1. Chemical context
The thiosemicarbazone Schiff base is comprised of two soft Lewis bases – the sulfur and nitrogen coordinating sites as well as a hard et al., 2009). Such are of special interest because of their specific coordinating ability to some metal ions (Arion et al., 2001; Leovac & Češljević, 2002; Chandra & Sangeetika, 2004; Singh et al., 2000; Gerbeleu et al., 2008; Mohamed et al., 2009). Several reports have highlighted the importance of the chelate metal complexes of thiosemicarbazone for medicinal applications, particularly against cancer (Paterson & Donnelly, 2011; Ziessel, 2001; Salam et al., 2012; Arafath et al., 2017a). Thus thiosemicarbazones with ONS coordinating sites are important in coordination chemistry because of their strong bonding ability to transition metal ions as well as because of their pharmaceutical uses (Rayati et al., 2007; Alomar et al., 2009; Vieites et al., 2009).
– the oxygen atom (Mohamed2. Structural commentary
The title compound exhibits an E configuration with respect to the azomethine C=N double bond. The overall conformation of the title compound can be described by five torsion angles, τ1 [C1—C6—C7=N1; 11.80 (16)°] between the benzylidine ring and the azomethine double bond, τ2 [C7=N1—N2—C8; −170.08 (10)°] between the azomethine double bond and the hydrazine moiety, τ3 [N1—N2—C8—N3; 12.50 (15)°] between the hydrazine moiety and the carbothio group, τ4 [N2—C8—N3—C9; −176.16 (10)°] between the carbothio and amide groups and τ5 [C8—N3—C9—C10; 78.28 (13)°] between the amide group and the cyclohexane ring. In the previously reported related structure (E)-2-(5-chloro-2-hydroxybenzylidene)-N-cyclohexylhydrazine-1-carbothioamide (OBOLOJ; Arafath, et al. 2017b), values of τ1, τ2, τ3 and τ4 are −4.6 (3), −176.04 (17), −5.5 (3) and 176.67 (17)°, respectively]. The amide group and the cyclohexane ring are almost perpendicular to each other, with a τ5 torsion angle of −83.7 (2)°, possibly as a result of repulsion between the adjacent sulfur atom and the cyclohexane ring. In the molecule, the hydroxy group acts as both a hydrogen-bond acceptor and hydrogen-bond donor for the adjacent methyl and hydrazine groups, forming three intramolecular hydrogen bonds with an S(6) ring motif (Table 1, Fig. 1).
3. Supramolecular features
In the crystal, the molecules are linked into inversion dimers via N—H⋯S hydrogen bond, forming an R22(8) ring motif (Fig. 2, Table 1).
4. Database survey
A search of the Cambridge Structural Database (CSD Version 5.39, last update February 2018; Groom et al., 2016) using (E)-2-benzylidene-N-cyclohexylhydrazine-1-carbothioamide as a reference moiety resulted in six structures containing the cyclohexlhydrazinecarbothioamide moiety with different substituents. They include (E)-2-X-N-cyclohexylhydrazine-1-carbothioamide, where X = 4-aminobenzylidene (BEVNAR; Koo et al., 1981), 5-bromo-2-hydroxy-3-methoxybenzylidene (LAQCIR; Jacob & Kurup, 2012), anthracen-9-ylmethylene (NALCOD; Basheer, Willis et al., 2016), 5-chloro-2-hydroxybenzylidene (OBOLOJ; Arafath, et al. 2017b), 4-ethoxybenzylidene (XOYKAZ; Bhat et al., 2015) and (2-hydroxynaphthalen-1-yl)methylene (BEFZIY; Basheer, Bhuvanesh et al., 2016). In these six compounds, the torsion angles between benzylidene ring and the hydrazinecarbothioamide moiety range from 4.70 to 36.40°. In comparison, torsion angle τ5 has values close to 90° for all compounds Table 2).
|
5. Synthesis and crystallization
3-(tert-Butyl)-2-hydroxybenzaldehyde (0.89 g, 5.00 mmol) was dissolved in 20.0 mL of methanol. Glacial acetic acid (0.20 mL) was added, and the mixture was refluxed for 30 minutes. N-Cyclohexylhydrazinecarbothioamide (0.87 g, 5.00 mmol) in 20.0 mL methanol was then added dropwise with stirring to the aldehyde solution. The resulting colourless solution was refluxed for 4 h with stirring. The colourless precipitate that formed was filtered off and washed with 5.0 mL ethanol and 5.0 mL n-hexane. The recovered product was dissolved in acetone for recrystallization. Colourless single crystals suitable for X-ray diffraction was obtained on slow evaporation of the solvent (m.p. 502–503 K, yield 98%). Analysis calculated for C18H27N3OS (FW: 333.49 g mol−1); C, 64.77; H, 8.10; N, 12.60; found: C, 64.73; H, 8.10; N, 12.65%. 1H NMR (500 MHz, DMSO-d6, Me4Si ppm): δ 11.23 (s, 1.0, N—NH), δ 10.23 (s, 1.0, OH), δ 8.27 (s, 1.0, HC=N), δ 8.09 (d, J = 8.00 Hz, 1.0, SC=NH), δ 7.26–6.87 (multiplet, 2.96, aromatic-H), δ 1.39 [s, 9.0, Ph—C(CH3)3], δ 1.88–1.15 (multiplet, 11.0, cyclohexyl-H). 13C NMR (DMSO-d6, Me4Si ppm): δ 176.05 (C=S), δ 155.31 (C=N), δ 146.32–119.03 (C-aromatic), δ 29.40 (CH3), δ 53.04–24.85 (C-cyclohexyl). IR (KBr pellets υmax/cm−1): 3383 υ(N—NH), 3106 υ(OH), 2929 and 2854 υ(CH, cyclohexyl), 1598 υ(C=N), 1536 υ(C=C, aromatic), 1299 υ (C-H, sp3, bend), 1258 υ(C=S).
6. Refinement
Crystal data, data collection and structure . C-bound H atoms were positioned geometrically [C—H = 0.95–0.99 Å] and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C). All N- and O-bound H atoms were located from a difference-Fourier map and freely refined.
details are summarized in Table 3Supporting information
CCDC reference: 1435681
https://doi.org/10.1107/S2056989018013129/ld2145sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018013129/ld2145Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018013129/ld2145Isup3.cml
Data collection: APEX2 (Bruker, 2012); cell
SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELX2013 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELX2013 (Sheldrick, 2015) and PLATON (Spek, 2009).C18H27N3OS | F(000) = 720 |
Mr = 333.48 | Dx = 1.216 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 13.4168 (6) Å | Cell parameters from 9744 reflections |
b = 6.6070 (3) Å | θ = 2.4–32.8° |
c = 20.5831 (9) Å | µ = 0.19 mm−1 |
β = 93.032 (1)° | T = 100 K |
V = 1822.03 (14) Å3 | Block, colourless |
Z = 4 | 0.57 × 0.30 × 0.29 mm |
Bruker APEXII DUO CCD area-detector diffractometer | 4195 independent reflections |
Radiation source: fine-focus sealed tube | 3819 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.031 |
φ and ω scans | θmax = 27.5°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2012 | h = −17→17 |
Tmin = 0.774, Tmax = 0.879 | k = −8→8 |
39751 measured reflections | l = −25→26 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.032 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.086 | w = 1/[σ2(Fo2) + (0.0422P)2 + 0.8449P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.002 |
4195 reflections | Δρmax = 0.38 e Å−3 |
223 parameters | Δρmin = −0.22 e Å−3 |
Experimental. The following wavelength and cell were deduced by SADABS from the direction cosines etc. They are given here for emergency use only: CELL 0.71104 13.523 6.653 20.749 89.939 93.047 89.965 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 1.02419 (2) | −0.15365 (4) | 0.40715 (2) | 0.01701 (8) | |
O1 | 0.65801 (6) | 0.39888 (12) | 0.39017 (4) | 0.02153 (18) | |
N1 | 0.84612 (7) | 0.31101 (14) | 0.42569 (4) | 0.01542 (18) | |
N2 | 0.92566 (7) | 0.17823 (14) | 0.43545 (5) | 0.01565 (19) | |
N3 | 0.88665 (7) | 0.04928 (14) | 0.33416 (4) | 0.01665 (19) | |
C1 | 0.67407 (8) | 0.57899 (16) | 0.42115 (5) | 0.0155 (2) | |
C2 | 0.59978 (8) | 0.72977 (17) | 0.41452 (5) | 0.0164 (2) | |
C3 | 0.61893 (8) | 0.91139 (17) | 0.44745 (5) | 0.0189 (2) | |
H3A | 0.5707 | 1.0165 | 0.4433 | 0.023* | |
C4 | 0.70586 (8) | 0.94540 (17) | 0.48615 (5) | 0.0190 (2) | |
H4A | 0.7155 | 1.0707 | 0.5082 | 0.023* | |
C5 | 0.77763 (8) | 0.79630 (16) | 0.49220 (5) | 0.0164 (2) | |
H5A | 0.8366 | 0.8182 | 0.5189 | 0.020* | |
C6 | 0.76359 (8) | 0.61241 (16) | 0.45906 (5) | 0.0145 (2) | |
C7 | 0.84439 (8) | 0.46494 (16) | 0.46392 (5) | 0.0151 (2) | |
H7A | 0.8971 | 0.4829 | 0.4961 | 0.018* | |
C8 | 0.93944 (8) | 0.03134 (16) | 0.39073 (5) | 0.0148 (2) | |
C9 | 0.88503 (8) | −0.09682 (16) | 0.28052 (5) | 0.0145 (2) | |
H9A | 0.9545 | −0.1468 | 0.2754 | 0.017* | |
C10 | 0.81847 (8) | −0.27750 (17) | 0.29436 (5) | 0.0185 (2) | |
H10A | 0.7505 | −0.2291 | 0.3028 | 0.022* | |
H10B | 0.8454 | −0.3488 | 0.3338 | 0.022* | |
C11 | 0.81297 (9) | −0.42424 (17) | 0.23685 (6) | 0.0213 (2) | |
H11A | 0.8797 | −0.4841 | 0.2316 | 0.026* | |
H11B | 0.7663 | −0.5356 | 0.2459 | 0.026* | |
C12 | 0.77785 (9) | −0.31813 (17) | 0.17386 (6) | 0.0206 (2) | |
H12A | 0.7080 | −0.2728 | 0.1771 | 0.025* | |
H12B | 0.7798 | −0.4147 | 0.1372 | 0.025* | |
C13 | 0.84377 (9) | −0.13575 (17) | 0.16058 (5) | 0.0200 (2) | |
H13A | 0.8166 | −0.0644 | 0.1212 | 0.024* | |
H13B | 0.9119 | −0.1831 | 0.1521 | 0.024* | |
C14 | 0.84919 (8) | 0.01120 (16) | 0.21804 (5) | 0.0175 (2) | |
H14A | 0.8956 | 0.1230 | 0.2090 | 0.021* | |
H14B | 0.7824 | 0.0703 | 0.2236 | 0.021* | |
C15 | 0.50170 (8) | 0.69323 (18) | 0.37398 (6) | 0.0212 (2) | |
C16 | 0.44095 (10) | 0.5302 (2) | 0.40747 (7) | 0.0339 (3) | |
H16A | 0.4784 | 0.4028 | 0.4090 | 0.051* | |
H16B | 0.3771 | 0.5102 | 0.3829 | 0.051* | |
H16C | 0.4285 | 0.5737 | 0.4518 | 0.051* | |
C17 | 0.52133 (10) | 0.6286 (2) | 0.30399 (6) | 0.0300 (3) | |
H17A | 0.5615 | 0.7323 | 0.2835 | 0.045* | |
H17B | 0.4576 | 0.6128 | 0.2790 | 0.045* | |
H17C | 0.5574 | 0.4997 | 0.3048 | 0.045* | |
C18 | 0.43846 (10) | 0.8868 (2) | 0.36863 (6) | 0.0290 (3) | |
H18A | 0.4767 | 0.9941 | 0.3484 | 0.043* | |
H18B | 0.4211 | 0.9298 | 0.4122 | 0.043* | |
H18C | 0.3773 | 0.8600 | 0.3419 | 0.043* | |
H1N2 | 0.9483 (11) | 0.161 (2) | 0.4737 (7) | 0.020 (3)* | |
H1O1 | 0.7098 (14) | 0.330 (3) | 0.3961 (9) | 0.043 (5)* | |
H1N3 | 0.8464 (11) | 0.149 (2) | 0.3316 (7) | 0.025 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.01723 (14) | 0.01842 (14) | 0.01519 (14) | 0.00573 (10) | −0.00098 (10) | −0.00137 (9) |
O1 | 0.0196 (4) | 0.0160 (4) | 0.0282 (4) | 0.0037 (3) | −0.0070 (3) | −0.0059 (3) |
N1 | 0.0151 (4) | 0.0153 (4) | 0.0158 (4) | 0.0025 (3) | 0.0001 (3) | 0.0010 (3) |
N2 | 0.0162 (4) | 0.0168 (4) | 0.0135 (4) | 0.0049 (3) | −0.0025 (3) | −0.0005 (3) |
N3 | 0.0192 (4) | 0.0151 (4) | 0.0153 (4) | 0.0045 (4) | −0.0023 (3) | −0.0021 (3) |
C1 | 0.0177 (5) | 0.0139 (5) | 0.0152 (5) | −0.0003 (4) | 0.0017 (4) | −0.0002 (4) |
C2 | 0.0156 (5) | 0.0185 (5) | 0.0152 (5) | 0.0019 (4) | 0.0023 (4) | 0.0021 (4) |
C3 | 0.0197 (5) | 0.0166 (5) | 0.0207 (5) | 0.0041 (4) | 0.0048 (4) | 0.0012 (4) |
C4 | 0.0231 (5) | 0.0148 (5) | 0.0195 (5) | −0.0004 (4) | 0.0045 (4) | −0.0025 (4) |
C5 | 0.0172 (5) | 0.0172 (5) | 0.0151 (5) | −0.0022 (4) | 0.0026 (4) | −0.0005 (4) |
C6 | 0.0161 (5) | 0.0144 (5) | 0.0132 (5) | 0.0009 (4) | 0.0026 (4) | 0.0014 (4) |
C7 | 0.0150 (5) | 0.0160 (5) | 0.0142 (5) | −0.0001 (4) | 0.0002 (4) | 0.0012 (4) |
C8 | 0.0140 (5) | 0.0146 (5) | 0.0158 (5) | −0.0007 (4) | 0.0015 (4) | −0.0002 (4) |
C9 | 0.0155 (5) | 0.0144 (5) | 0.0137 (5) | 0.0009 (4) | 0.0002 (4) | −0.0016 (4) |
C10 | 0.0205 (5) | 0.0180 (5) | 0.0170 (5) | −0.0018 (4) | 0.0006 (4) | 0.0023 (4) |
C11 | 0.0251 (6) | 0.0153 (5) | 0.0233 (6) | −0.0024 (4) | −0.0012 (4) | −0.0005 (4) |
C12 | 0.0228 (5) | 0.0203 (5) | 0.0183 (5) | −0.0030 (4) | −0.0020 (4) | −0.0033 (4) |
C13 | 0.0242 (6) | 0.0218 (5) | 0.0140 (5) | −0.0031 (4) | 0.0006 (4) | −0.0012 (4) |
C14 | 0.0215 (5) | 0.0153 (5) | 0.0156 (5) | −0.0016 (4) | −0.0005 (4) | 0.0010 (4) |
C15 | 0.0168 (5) | 0.0252 (6) | 0.0211 (6) | 0.0049 (4) | −0.0022 (4) | −0.0007 (4) |
C16 | 0.0194 (6) | 0.0392 (7) | 0.0422 (8) | −0.0066 (5) | −0.0058 (5) | 0.0052 (6) |
C17 | 0.0263 (6) | 0.0391 (7) | 0.0237 (6) | 0.0126 (5) | −0.0071 (5) | −0.0079 (5) |
C18 | 0.0237 (6) | 0.0352 (7) | 0.0274 (6) | 0.0138 (5) | −0.0035 (5) | −0.0036 (5) |
S1—C8 | 1.6912 (11) | C10—H10A | 0.9900 |
O1—C1 | 1.3619 (13) | C10—H10B | 0.9900 |
O1—H1O1 | 0.836 (19) | C11—C12 | 1.5264 (16) |
N1—C7 | 1.2867 (14) | C11—H11A | 0.9900 |
N1—N2 | 1.3879 (12) | C11—H11B | 0.9900 |
N2—C8 | 1.3571 (14) | C12—C13 | 1.5279 (16) |
N2—H1N2 | 0.836 (15) | C12—H12A | 0.9900 |
N3—C8 | 1.3357 (14) | C12—H12B | 0.9900 |
N3—C9 | 1.4659 (13) | C13—C14 | 1.5290 (15) |
N3—H1N3 | 0.854 (16) | C13—H13A | 0.9900 |
C1—C2 | 1.4107 (15) | C13—H13B | 0.9900 |
C1—C6 | 1.4145 (15) | C14—H14A | 0.9900 |
C2—C3 | 1.3953 (16) | C14—H14B | 0.9900 |
C2—C15 | 1.5394 (15) | C15—C18 | 1.5354 (16) |
C3—C4 | 1.3953 (16) | C15—C16 | 1.5359 (18) |
C3—H3A | 0.9500 | C15—C17 | 1.5384 (17) |
C4—C5 | 1.3786 (15) | C16—H16A | 0.9800 |
C4—H4A | 0.9500 | C16—H16B | 0.9800 |
C5—C6 | 1.4012 (15) | C16—H16C | 0.9800 |
C5—H5A | 0.9500 | C17—H17A | 0.9800 |
C6—C7 | 1.4571 (14) | C17—H17B | 0.9800 |
C7—H7A | 0.9500 | C17—H17C | 0.9800 |
C9—C14 | 1.5260 (14) | C18—H18A | 0.9800 |
C9—C10 | 1.5265 (15) | C18—H18B | 0.9800 |
C9—H9A | 1.0000 | C18—H18C | 0.9800 |
C10—C11 | 1.5288 (16) | ||
C1—O1—H1O1 | 107.5 (12) | C10—C11—H11A | 109.3 |
C7—N1—N2 | 116.72 (9) | C12—C11—H11B | 109.3 |
C8—N2—N1 | 119.02 (9) | C10—C11—H11B | 109.3 |
C8—N2—H1N2 | 119.2 (10) | H11A—C11—H11B | 108.0 |
N1—N2—H1N2 | 117.3 (10) | C11—C12—C13 | 111.02 (9) |
C8—N3—C9 | 125.75 (9) | C11—C12—H12A | 109.4 |
C8—N3—H1N3 | 115.2 (10) | C13—C12—H12A | 109.4 |
C9—N3—H1N3 | 118.7 (10) | C11—C12—H12B | 109.4 |
O1—C1—C2 | 118.57 (9) | C13—C12—H12B | 109.4 |
O1—C1—C6 | 120.22 (9) | H12A—C12—H12B | 108.0 |
C2—C1—C6 | 121.21 (10) | C12—C13—C14 | 111.51 (9) |
C3—C2—C1 | 116.69 (10) | C12—C13—H13A | 109.3 |
C3—C2—C15 | 121.90 (10) | C14—C13—H13A | 109.3 |
C1—C2—C15 | 121.40 (10) | C12—C13—H13B | 109.3 |
C2—C3—C4 | 122.87 (10) | C14—C13—H13B | 109.3 |
C2—C3—H3A | 118.6 | H13A—C13—H13B | 108.0 |
C4—C3—H3A | 118.6 | C9—C14—C13 | 110.78 (9) |
C5—C4—C3 | 119.68 (10) | C9—C14—H14A | 109.5 |
C5—C4—H4A | 120.2 | C13—C14—H14A | 109.5 |
C3—C4—H4A | 120.2 | C9—C14—H14B | 109.5 |
C4—C5—C6 | 120.02 (10) | C13—C14—H14B | 109.5 |
C4—C5—H5A | 120.0 | H14A—C14—H14B | 108.1 |
C6—C5—H5A | 120.0 | C18—C15—C16 | 108.16 (10) |
C5—C6—C1 | 119.49 (10) | C18—C15—C17 | 106.58 (10) |
C5—C6—C7 | 117.78 (9) | C16—C15—C17 | 110.30 (11) |
C1—C6—C7 | 122.71 (10) | C18—C15—C2 | 111.19 (10) |
N1—C7—C6 | 121.60 (9) | C16—C15—C2 | 108.99 (9) |
N1—C7—H7A | 119.2 | C17—C15—C2 | 111.55 (9) |
C6—C7—H7A | 119.2 | C15—C16—H16A | 109.5 |
N3—C8—N2 | 116.29 (9) | C15—C16—H16B | 109.5 |
N3—C8—S1 | 123.94 (8) | H16A—C16—H16B | 109.5 |
N2—C8—S1 | 119.70 (8) | C15—C16—H16C | 109.5 |
N3—C9—C14 | 108.55 (9) | H16A—C16—H16C | 109.5 |
N3—C9—C10 | 111.09 (9) | H16B—C16—H16C | 109.5 |
C14—C9—C10 | 111.20 (9) | C15—C17—H17A | 109.5 |
N3—C9—H9A | 108.6 | C15—C17—H17B | 109.5 |
C14—C9—H9A | 108.6 | H17A—C17—H17B | 109.5 |
C10—C9—H9A | 108.6 | C15—C17—H17C | 109.5 |
C9—C10—C11 | 110.87 (9) | H17A—C17—H17C | 109.5 |
C9—C10—H10A | 109.5 | H17B—C17—H17C | 109.5 |
C11—C10—H10A | 109.5 | C15—C18—H18A | 109.5 |
C9—C10—H10B | 109.5 | C15—C18—H18B | 109.5 |
C11—C10—H10B | 109.5 | H18A—C18—H18B | 109.5 |
H10A—C10—H10B | 108.1 | C15—C18—H18C | 109.5 |
C12—C11—C10 | 111.50 (9) | H18A—C18—H18C | 109.5 |
C12—C11—H11A | 109.3 | H18B—C18—H18C | 109.5 |
C7—N1—N2—C8 | −170.08 (10) | C9—N3—C8—S1 | 6.94 (16) |
O1—C1—C2—C3 | 179.54 (10) | N1—N2—C8—N3 | 12.50 (15) |
C6—C1—C2—C3 | −0.44 (15) | N1—N2—C8—S1 | −170.46 (8) |
O1—C1—C2—C15 | 0.70 (15) | C8—N3—C9—C14 | −159.15 (10) |
C6—C1—C2—C15 | −179.27 (10) | C8—N3—C9—C10 | 78.28 (13) |
C1—C2—C3—C4 | −0.95 (16) | N3—C9—C10—C11 | 177.21 (9) |
C15—C2—C3—C4 | 177.88 (10) | C14—C9—C10—C11 | 56.19 (12) |
C2—C3—C4—C5 | 0.87 (17) | C9—C10—C11—C12 | −55.62 (12) |
C3—C4—C5—C6 | 0.64 (16) | C10—C11—C12—C13 | 55.03 (13) |
C4—C5—C6—C1 | −1.98 (16) | C11—C12—C13—C14 | −55.10 (13) |
C4—C5—C6—C7 | 176.29 (10) | N3—C9—C14—C13 | −178.71 (9) |
O1—C1—C6—C5 | −178.09 (9) | C10—C9—C14—C13 | −56.20 (12) |
C2—C1—C6—C5 | 1.89 (16) | C12—C13—C14—C9 | 55.70 (12) |
O1—C1—C6—C7 | 3.74 (16) | C3—C2—C15—C18 | 7.08 (15) |
C2—C1—C6—C7 | −176.29 (10) | C1—C2—C15—C18 | −174.15 (10) |
N2—N1—C7—C6 | −178.82 (9) | C3—C2—C15—C16 | −112.06 (12) |
C5—C6—C7—N1 | −166.41 (10) | C1—C2—C15—C16 | 66.72 (14) |
C1—C6—C7—N1 | 11.80 (16) | C3—C2—C15—C17 | 125.90 (12) |
C9—N3—C8—N2 | −176.16 (10) | C1—C2—C15—C17 | −55.32 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O1···N1 | 0.834 (19) | 1.901 (19) | 2.6545 (12) | 149.6 (19) |
C16—H16A···O1 | 0.98 | 2.46 | 3.0774 (16) | 121 |
C17—H17C···O1 | 0.98 | 2.26 | 2.9101 (15) | 123 |
N2—H1N2···S1i | 0.833 (14) | 2.459 (14) | 3.2779 (11) | 165.6 (13) |
Symmetry code: (i) −x+2, −y, −z+1. |
Dihedral is the dihedral angle between the mean planes of the benzylidene ring and the hydrazinecarbothioamide moiety. τ5 is the C8—N3—C9—C10 torsion angle. |
Compound | Dihedral | τ5 |
Title compound | 31.13 (5) | 78.32 |
BEVNAR | 28.50 | 94.47 |
LAQCIR | 16.64 | 86.22 |
NALKOD | 22.00, 36.40 | 79.01, 79.19 |
OBOLOJ | 6.92 | 83.70 |
XOYKAZ | 12.72 | 85.82 |
BEFZIY | 4.70 | 83.42 |
Funding information
This research was supported financially by the RU grant 1001/PKIMIA/811269 from Universiti Sains Malaysia. The authors wish to thank Universiti Sains Malaysia and The World Academy of Science for (USM–TWAS) fellowship to MdAA. HCK would like to thank the Malaysian Government for MyBrain15 scholarship.
References
Alomar, K., Khan, M. A., Allain, M. & Bouet, G. (2009). Polyhedron, 28, 1273–1280. Web of Science CSD CrossRef CAS Google Scholar
Arafath, M. A., Adam, F. & Razali, M. R. (2017b). IUCrData, 2, x161997. Google Scholar
Arafath, M. A., Adam, F., Razali, M. R., Hassan, L. E. A., Ahamed, M. B. K. & Majid, A. M. S. (2017a). J. Mol. Struct. 1130, 791–798. CrossRef Google Scholar
Arion, V., Revenco, M., Gradinaru, J., Simonov, Y., Kravtsov, V., Gerbeleu, N., Saint-Aman, E. & Adams, F. (2001). Rev. Inorg. Chem. 21, 1–42. CrossRef Google Scholar
Basheer, S. M., Bhuvanesh, N. S. P. & Sreekanth, A. (2016). J. Fluor. Chem. 191, 129–142. CrossRef Google Scholar
Basheer, S. M., Willis, A. C., Pace, R. J. & Sreekanth, A. (2016). Polyhedron, 109, 7–18. CrossRef Google Scholar
Bhat, M. A., Al-Dhfyan, A., Khan, A. A., Al-Harbi, N., Manogaran, P. S., Alanazi, A. M., Fun, H.-K. & Al-Omar, M. A. (2015). Bioorg. Med. Chem. Lett. 25, 83–87. CrossRef Google Scholar
Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison. Wisconsin, USA. Google Scholar
Chandra, S. & Sangeetika, X. (2004). Spectrochim. Acta A, 60, 147–153. CrossRef Google Scholar
Gerbeleu, N. V., Arion, V. B. & Burgess, J. P. (2008). Template synthesis of macrocyclic compounds. John Wiley & Sons. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Jacob, J. M. & Kurup, M. R. P. (2012). Acta Cryst. E68, o836–o837. CSD CrossRef CAS IUCr Journals Google Scholar
Koo, C. H., Kim, C. H. & Park, Y. J. (1981). J. Korean Chem. Soc. 25, 343–350. Google Scholar
Leovac, V. & Češljević, V. (2002). Coordination Chemistry of Isothiosemicarbazide and Its Derivatives. Novi Sad Serbia: Faculty of Science. Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mohamed, G. G., Omar, M. & Ibrahim, A. A. (2009). Eur. J. Med. Chem. 44, 4801–4812. CrossRef Google Scholar
Paterson, B. M. & Donnelly, P. S. (2011). Chem. Soc. Rev. 40, 3005–3018. Web of Science CrossRef CAS PubMed Google Scholar
Rayati, S., Sadeghzadeh, N. & Khavasi, H. R. (2007). Inorg. Chem. Commun. 10, 1545–1548. Web of Science CrossRef CAS Google Scholar
Salam, M., Affan, M., Ahmad, F. B. & Arafath, M. A. (2012). J. Coord. Chem. 65, 1999–2007. CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Singh, N. K., Srivastava, A., Sodhi, A. & Ranjan, P. (2000). Transit. Met. Chem. 25, 133–140. CrossRef Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vieites, M., Otero, L., Santos, D., Olea-Azar, C., Norambuena, E., Aguirre, G., Cerecetto, H., González, M., Kemmerling, U., Morello, A., Diego Maya, J. & Gambino, D. (2009). J. Inorg. Biochem. 103, 411–418. CrossRef Google Scholar
Ziessel, R. (2001). Coord. Chem. Rev. 216–217, 195–223. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.