research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The crystal structure of bis­­{3,5-di­fluoro-2-[4-(2,4,6-tri­methyl­phen­yl)pyridin-2-yl]phen­yl}(picolinato)iridium(III) and its 4-tert-butyl­pyridin-2-yl analogue

CROSSMARK_Color_square_no_text.svg

aLawrence Livermore National Laboratory, Livermore, CA 94550, USA, and bDepartment of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
*Correspondence e-mail: vyoung@umn.edu

Edited by A. J. Lough, University of Toronto, Canada (Received 21 August 2018; accepted 3 September 2018; online 21 September 2018)

The crystal structures of bis­{3,5-di­fluoro-2-[4-(2,4,6-tri­methyl­phen­yl)pyridin-2-yl]phenyl-κ2N,C1}(picolinato-κ2N,O)iridium(III), [Ir(C20H16F2N)2(C6H4NO2)], 1, and bis­[2-(4-tert-butyl­pyridin-2-yl)-3,5-di­fluoro­phenyl-κ2N,C1](picolinato-κ2N,O)iridium(III), [Ir(C15H14F2N)2(C6H4NO2)], 2, are presented herein. These phospho­rescent cyclo­metallated iridium(III) compounds have been structurally investigated in order to better understand the nature of their blue-shifted emssions while maintaining high quantum yields. Compound 1 exhibits substantial twisting of the mesitylene rings out of the plane of the attached pyridine ring, with dihedral angles of 67.0 (1) and 78.7 (1)° between the best mean planes. For both compounds, the contribution of disordered solvent mol­ecule(s) was removed using the SQUEEZE [Spek (2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). Acta Cryst. C71, 9–18] routine in PLATON [Spek (2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). Acta Cryst. C71, 9–18]. These solvent mol­ecules are not considered in the given chemical formula and other crystal data.

1. Chemical context

Phospho­rescent cyclo­metallated iridium(III) compounds have been investigated for a variety of applications, including solar cells (Kim et al., 2016[Kim, H.-T., Seo, J. H., Ahn, J. H., Baek, M.-J., Um, H.-D., Lee, S., Roh, D.-H., Yum, J.-H., Shin, T. J., Seo, K. & Kwon, T.-H. (2016). ACS Energy Lett. 1, 991-999.]), sensors (Marín-Suárez et al., 2012[Marín-Suárez, M., Curchod, B. F. E., Tavernelli, I., Rothlisberger, U., Scopelliti, R., Jung, I., Di Censo, D., Grätzel, M., Fernández-Sánchez, J. F., Fernández-Gutiérrez, A., Nazeeruddin, M. K. & Baranoff, E. (2012). Chem. Mater. 24, 2330-2338.]), bioimaging (Zhang et al., 2015[Zhang, K. Y., Liu, H.-W., Tang, M.-C., Choi, A. W.-T., Zhu, N., Wei, X.-G., Lau, K.-C. & Lo, K. K.-W. (2015). Inorg. Chem. 54, 6582-6593.]), and scintillators (Bertrand et al., 2015[Bertrand, G. H. V., Hamel, M., Normand, S. & Sguerra, F. (2015). Nucl. Instrum. Methods Phys. Res. A, 776, 114-128.]). However, their most widespread use stems from their electro­phospho­rescence and research in this area has focused on their use in organic light-emitting diodes (OLED) (Choy et al., 2014[Choy, W. C. H., Chan, W. K. & Yuan, Y. (2014). Adv. Mater. 26, 5368-5399.]; Chi & Chou, 2010[Chi, Y. & Chou, P.-T. (2010). Chem. Soc. Rev. 39, 638-655.]; Fu et al., 2011[Fu, H., Cheng, Y.-M., Chou, P.-T. & Chi, Y. (2011). Mater. Today, 14, 472-479.]). The most widely studied blue-emitting iridium complex for this purpose is bis­[2-(4,6-di­fluoro­phen­yl)pyridinato]iridium(III) picolinate, or FIrpic (Baranoff & Curchod, 2015[Baranoff, E. & Curchod, B. F. E. (2015). Dalton Trans. 44, 8318-8329.]). As part of our synthesis program for plastic scintillators (Rupert et al., 2012[Rupert, B. L., Cherepy, N. J., Sturm, B. W., Sanner, R. D. & Payne, S. A. (2012). EPL, 97, article No. 22002.]; Cherepy et al., 2015[Cherepy, N. J., Sanner, R. D., Beck, P. R., Swanberg, E. L., Tillotson, T. M., Payne, S. A. & Hurlbut, C. R. (2015). Nucl. Instrum. Methods Phys. Res. A, 778, 126-132.]), we have prepared and structurally characterized several blue-emitting iridium complexes (Sanner et al., 2016[Sanner, R. D., Cherepy, N. J. & Young, V. G. Jr (2016). Inorg. Chim. Acta, 440, 165-171.]). A recent study by another group has examined the attachment of alkyl or aryl groups to the pyridine ring of the (di­fluoro­phen­yl)pyridinate ligand in FIrpic (Kozhevnikov et al., 2013[Kozhevnikov, V. N., Zheng, Y., Clough, M., Al-Attar, H. A., Griffiths, G. C., Abdullah, K., Raisys, S., Jankus, V., Bryce, M. R. & Monkman, A. P. (2013). Chem. Mater. 25, 2352-2358.]), resulting in enhanced quantum efficiency, while maintaining the sky-blue color of the parent complex. We have prepared and structurally characterized two of those complexes to examine the structural basis for their superior behavior. We report herein the crystal structures of bis­{3,5-di­fluoro-2-[4-(2,4,6-tri­methyl­phen­yl)pyridin-2-yl]phenyl-κ2N,C1}(picolinato-κ2N,O)iridium(III), 1, and bis­[2-(4-tert-butyl­pyridin-2-yl)-3,5-di­fluoro­phenyl-κ2N,C1](picolinato-κ2N,O)iridium(III), 2. The mol­ecular structure of 2 has been reported previously (Laskar et al., 2006[Laskar, I. R., Hsu, S.-F. & Chen, T.-M. (2006). Polyhedron, 25, 1167-1176.]), however, the structure reported below is a new polymorph.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of complexes 1 and 2 have been confirmed by X-ray crystallography and displacement ellipsoid diagrams are shown in Figs. 1[link] and 2[link]. Both complexes exhibit the same distorted octa­hedral geometry with two bidentate phenyl­pyridine ligands (coordinated through the pyridine N atom and a phenyl C atom) and one bidentate pyridine-2-carboxyl­ate ligand, also known as 2-picolinate (coordinated through the pyridine N atom and a carboxyl­ate O atom). The iridium-bound N atoms of the phenyl­pyridine ligands are trans to each other, while the phenyl C atoms bound to iridium are cis. The two ligated atoms in the picolinate ligand are then trans to the phenyl C atoms of the phenyl­pyridine ligand. The trans effect of the phenyl groups is most clearly seen when comparing Ir—N bond lengths. Thus, the Ir—N(picolinate) bond is on average 0.1 Å longer than the Ir—N(phenyl­pyridine) bond due to its trans disposition to the phenyl group. Although there is no such intra­molecular comparison available for the picolinate Ir—O bond (which is also trans to a phenyl group), we note that the Ir—O bond length in both these mol­ecules is 2.16 Å. This compares with the shorter value of 2.09 Å reported in the Cambridge Structural Database (CSD; Version 5.39, May 2018, with three updates; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for an Ir—O bond, again illustrating the trans effect of the phenyl group in these mol­ecules. The C—Ir—N `bite' angle for the phenyl­pyridine ligand averages 80.8 (4)° for these complexes, while the N—Ir—O angle for the picolinate ligand is somewhat smaller at 76.7 (2)°. The phenyl and pyridine rings in each phenyl­pyridine ligand are slightly twisted with respect to each other across the C—C bond linking the two rings. The dihedral angle between the best planes for the two rings is in the range 6–10° in these mol­ecules. A feature of special inter­est in 1 is the dihedral angle between the plane of the pyridine ring and that of the attached mesityl group, e.g. between the N1/C7–C11 ring and the C12–C17 ring. These values are 67.0 (1) and 78.7 (1)° for the two mesit­yl–phenyl­pyridine ligands in 1. The presence of two ortho-methyl groups on the mesitylene (e.g. C18 and C20) presumably causes this large twist of the mesityl ring out of the plane of the attached pyridine ring. This possibility has been proposed (Kozhevnikov et al., 2013[Kozhevnikov, V. N., Zheng, Y., Clough, M., Al-Attar, H. A., Griffiths, G. C., Abdullah, K., Raisys, S., Jankus, V., Bryce, M. R. & Monkman, A. P. (2013). Chem. Mater. 25, 2352-2358.]) as an explanation for the blue emission of 1 since it minimizes the π-conjugation between the mesityl and pyridine rings which would otherwise lead to red-shifted emission. Our results confirm the structural basis for this proposal.

[Figure 1]
Figure 1
The mol­ecular structure of 1, with the atom labeling and displacement ellipsoids drawn at the 50% probability level. H atoms have been removed for clarity.
[Figure 2]
Figure 2
The mol­ecular structure of 2, with the atom labeling and displacement ellipsoids drawn at the 50% probability level. H atoms have been removed for clarity.

3. Supra­molecular features

Neither complex forms any significant supra­molecular inter­actions with neighboring mol­ecules.

4. Database survey

The mol­ecular structure of 2 has been reported previously (Laskar et al., 2006[Laskar, I. R., Hsu, S.-F. & Chen, T.-M. (2006). Polyhedron, 25, 1167-1176.]; CSD refcode CEHGOM); however, the structure reported below is a new polymorph as a solvate. A search of the CSD (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) provided no additional crystal structures related to 1 or 2.

5. Synthesis and crystallization

The title compounds were prepared as described previously (Kozhevnikov et al., 2013[Kozhevnikov, V. N., Zheng, Y., Clough, M., Al-Attar, H. A., Griffiths, G. C., Abdullah, K., Raisys, S., Jankus, V., Bryce, M. R. & Monkman, A. P. (2013). Chem. Mater. 25, 2352-2358.]). Diffraction-quality crystals of 1 were obtained by slow evaporation using methanol as solvent, while 2 utilized a 1:2 (v/v) methyl ethyl ketone–hexane mixture as solvent.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. All H atoms were placed in calculated positions and refined as riding atoms; for aryl H atoms, C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C), and for methyl H atoms, C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C). Both specimens used for this study contained badly disordered solvent of crystallization. Specimens for compound 1 tended to lose solvent during mounting. The initial structure solution appeared to be either a methanol tris­olvate or a methanol/water disolvate, where all three mol­ecules were concatenated through hydrogen bonds to the O2 hydrogen-bond acceptor. Only one methanol solvent mol­ecule was clearly indicated, but it had considerable translational displacements toward a putative compositionally disordered methanol/water site. The last member of this chain was likely a methanol, but it was pathologically disordered. The SQUEEZE routine (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) from PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) was applied to this disordered solvent region since in least-squares no reasonable disorder model could be achieved. Void spaces centered at (0, 0, 0) and (0, 0.5, 0.5) totaling 727 Å3 were found to contain an electron count of 177. This electron count would correspond to approximately ten methanol mol­ecules per unit cell. The specimen for compound 2 did not appear to lose solvent during mounting. The initial structure solution found the expected compound and a region near an inversion center composed of unknown solvent. The peaks in the difference Fourier map did not provide any reasonable solvent mol­ecule (or mol­ecules) after numerous attempts. The SQUEEZE routine from PLATON was applied to this disordered solvent region. Void spaces centered at (0, 0, 0.5) and (0, 0.5, 0) totaling 954.7 Å3 were found to contain an electron count of 203. This electron count would correspond to approximately four methyl ethyl ketone or hexane mol­ecules per unit cell.

Table 1
Experimental details

  1 2
Crystal data
Chemical formula [Ir(C20H16F2N)2(C6H4NO2)] [Ir(C15H14F2N)2(C6H4NO2)]
Mr 930.98 806.84
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 100 100
a, b, c (Å) 15.1582 (12), 12.3530 (9), 24.2353 (17) 14.7519 (7), 14.4121 (7), 18.5425 (8)
β (°) 106.374 (3) 104.7761 (19)
V3) 4354.0 (6) 3811.9 (3)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 3.12 3.55
Crystal size (mm) 0.12 × 0.12 × 0.12 0.15 × 0.13 × 0.04
 
Data collection
Diffractometer Area Bruker PHOTON-II CPAD Area Bruker PHOTON-II CPAD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.576, 0.746 0.370, 0.433
No. of measured, independent and observed [I > 2σ(I)] reflections 74054, 13464, 11535 81284, 11662, 9342
Rint 0.042 0.049
(sin θ/λ)max−1) 0.718 0.715
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.063, 1.10 0.025, 0.057, 1.02
No. of reflections 13464 11662
No. of parameters 512 421
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 2.62, −1.64 0.98, −1.39
Computer programs: APEX3 (Bruker, 2014[Bruker (2014). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2014[Bruker (2014). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

For both structures, data collection: APEX3 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Bis{3,5-difluoro-2-[4-(2,4,6-trimethylphenyl)pyridin-2-yl]phenyl-κ2N,C1}(picolinato-κ2N,O)iridium(III) (1) top
Crystal data top
[Ir(C20H16F2N)2(C6H4NO2)]F(000) = 1848
Mr = 930.98Dx = 1.420 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 15.1582 (12) ÅCell parameters from 9153 reflections
b = 12.3530 (9) Åθ = 2.5–30.7°
c = 24.2353 (17) ŵ = 3.12 mm1
β = 106.374 (3)°T = 100 K
V = 4354.0 (6) Å3Block, yellow
Z = 40.12 × 0.12 × 0.12 mm
Data collection top
Area Bruker PHOTON-II CPAD
diffractometer
11535 reflections with I > 2σ(I)
Radiation source: microfocusRint = 0.042
φ and ω scansθmax = 30.7°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 2121
Tmin = 0.576, Tmax = 0.746k = 1717
74054 measured reflectionsl = 3034
13464 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.063 w = 1/[σ2(Fo2) + (0.0107P)2 + 8.8889P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.006
13464 reflectionsΔρmax = 2.62 e Å3
512 parametersΔρmin = 1.64 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ir10.44048 (2)0.26980 (2)0.61437 (2)0.01790 (3)
C10.46242 (17)0.32003 (19)0.54086 (10)0.0173 (4)
C20.39581 (18)0.3451 (2)0.48951 (10)0.0194 (5)
H2A0.3326350.3309910.4852770.023*
C30.42336 (18)0.3906 (2)0.44514 (10)0.0205 (5)
F10.35653 (11)0.42187 (13)0.39699 (6)0.0247 (3)
C40.51336 (19)0.4086 (2)0.44628 (10)0.0204 (5)
H4A0.5297440.4376930.4142380.025*
C50.57841 (18)0.3818 (2)0.49690 (11)0.0198 (5)
F20.66758 (11)0.40260 (14)0.49956 (7)0.0273 (3)
C60.55632 (18)0.3387 (2)0.54451 (10)0.0189 (5)
C70.62144 (18)0.3177 (2)0.60110 (10)0.0201 (5)
C80.71651 (19)0.3190 (2)0.61409 (11)0.0236 (5)
H8A0.7448650.3354310.5847790.028*
C90.77108 (19)0.2966 (2)0.66960 (12)0.0262 (6)
C100.72713 (19)0.2742 (3)0.71159 (11)0.0279 (6)
H10A0.7620280.2594160.7500190.033*
C110.63216 (19)0.2736 (2)0.69675 (11)0.0252 (5)
H11A0.6028780.2582110.7257350.030*
N10.57912 (15)0.29390 (17)0.64278 (9)0.0188 (4)
C120.8732 (2)0.2943 (3)0.68225 (12)0.0329 (7)
C130.9183 (3)0.1955 (3)0.68471 (16)0.0467 (9)
C141.0147 (3)0.1968 (4)0.69527 (19)0.0615 (12)
H14A1.0466830.1299770.6977810.074*
C151.0634 (3)0.2912 (5)0.70197 (17)0.0625 (13)
C161.0171 (3)0.3869 (4)0.6987 (2)0.0671 (13)
H16A1.0507630.4528020.7032170.080*
C170.9212 (2)0.3909 (4)0.68900 (18)0.0521 (10)
C180.8665 (3)0.0910 (4)0.6755 (3)0.0792 (16)
H18A0.9081290.0318420.6726230.119*
H18B0.8161110.0950330.6398510.119*
H18C0.8414170.0774520.7079480.119*
C191.1680 (3)0.2894 (6)0.7136 (3)0.099 (2)
H19A1.1898980.3624650.7088800.148*
H19B1.1845150.2401470.6864170.148*
H19C1.1964450.2643780.7529930.148*
C200.8725 (3)0.4990 (4)0.6840 (3)0.0834 (18)
H20A0.9169200.5555880.7013830.125*
H20B0.8247120.4954480.7040710.125*
H20C0.8441540.5158720.6433440.125*
C210.45657 (18)0.1194 (2)0.58964 (10)0.0199 (5)
C220.53758 (19)0.0587 (2)0.60259 (11)0.0228 (5)
H22A0.5928430.0876620.6271120.027*
C230.5370 (2)0.0434 (2)0.57965 (11)0.0244 (5)
F30.61738 (12)0.09986 (14)0.59174 (7)0.0312 (4)
C240.4596 (2)0.0919 (2)0.54407 (12)0.0265 (6)
H24A0.4612980.1624410.5287850.032*
C250.3798 (2)0.0319 (2)0.53206 (12)0.0256 (5)
F40.30307 (12)0.07915 (14)0.49674 (8)0.0347 (4)
C260.37433 (19)0.0718 (2)0.55362 (11)0.0214 (5)
C270.29216 (18)0.1404 (2)0.54264 (11)0.0216 (5)
C280.20602 (19)0.1192 (2)0.50477 (12)0.0255 (5)
H28A0.1967350.0543240.4828250.031*
C290.13299 (19)0.1916 (2)0.49849 (12)0.0264 (5)
C300.14919 (19)0.2857 (2)0.53145 (13)0.0273 (6)
H30A0.1008000.3358590.5292700.033*
C310.23655 (19)0.3057 (2)0.56749 (12)0.0242 (5)
H31A0.2473820.3712540.5888270.029*
N20.30662 (15)0.23538 (18)0.57334 (9)0.0207 (4)
C320.0424 (2)0.1647 (2)0.45704 (13)0.0290 (6)
C330.0347 (2)0.1588 (3)0.39791 (13)0.0329 (6)
C340.0469 (2)0.1216 (3)0.36043 (14)0.0386 (7)
H34A0.0518830.1170250.3205340.046*
C350.1215 (2)0.0909 (3)0.37967 (14)0.0364 (7)
C360.1140 (2)0.1033 (2)0.43762 (14)0.0333 (7)
H36A0.1655740.0865330.4510040.040*
C370.0340 (2)0.1391 (2)0.47677 (13)0.0302 (6)
C380.1131 (3)0.1942 (3)0.37436 (15)0.0438 (8)
H38A0.0892070.2092600.3331310.066*
H38B0.1591400.1363840.3803810.066*
H38C0.1416070.2597890.3944110.066*
C390.2074 (2)0.0433 (3)0.33887 (16)0.0483 (9)
H39A0.1931670.0164860.3042860.072*
H39B0.2550230.0992120.3280860.072*
H39C0.2296340.0166960.3578180.072*
C400.0297 (2)0.1475 (3)0.53984 (13)0.0355 (7)
H40A0.0223820.1050430.5627430.053*
H40B0.0869110.1194680.5456770.053*
H40C0.0219050.2234880.5518940.053*
O10.41561 (13)0.43013 (14)0.64265 (7)0.0207 (4)
O20.39443 (15)0.52154 (16)0.71775 (8)0.0289 (4)
C410.40599 (17)0.4372 (2)0.69325 (11)0.0203 (5)
C420.40885 (17)0.3319 (2)0.72522 (10)0.0198 (5)
C430.3988 (2)0.3291 (2)0.78032 (11)0.0271 (6)
H43A0.3914800.3942810.7993560.033*
C440.3995 (2)0.2302 (3)0.80721 (13)0.0337 (6)
H44A0.3922030.2263770.8448240.040*
C450.4111 (2)0.1365 (2)0.77822 (12)0.0305 (6)
H45A0.4111290.0675940.7955910.037*
C460.42253 (19)0.1451 (2)0.72369 (12)0.0254 (5)
H46A0.4314220.0810500.7042250.031*
N30.42147 (15)0.24099 (18)0.69746 (9)0.0202 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.02447 (5)0.01372 (4)0.01498 (4)0.00063 (4)0.00470 (3)0.00034 (4)
C10.0281 (12)0.0089 (10)0.0156 (10)0.0001 (9)0.0073 (9)0.0003 (8)
C20.0256 (12)0.0123 (11)0.0188 (11)0.0008 (9)0.0040 (9)0.0030 (8)
C30.0308 (13)0.0120 (11)0.0162 (11)0.0032 (9)0.0028 (9)0.0031 (8)
F10.0314 (8)0.0233 (8)0.0167 (7)0.0049 (6)0.0024 (6)0.0025 (6)
C40.0334 (14)0.0125 (11)0.0163 (11)0.0016 (10)0.0084 (10)0.0002 (8)
C50.0254 (12)0.0138 (11)0.0210 (12)0.0003 (9)0.0075 (9)0.0021 (9)
F20.0279 (8)0.0294 (9)0.0253 (8)0.0004 (7)0.0088 (6)0.0032 (6)
C60.0268 (12)0.0126 (11)0.0161 (11)0.0005 (9)0.0041 (9)0.0019 (8)
C70.0280 (13)0.0115 (11)0.0189 (11)0.0009 (9)0.0037 (9)0.0008 (8)
C80.0281 (13)0.0198 (13)0.0221 (12)0.0026 (10)0.0060 (10)0.0015 (10)
C90.0260 (13)0.0234 (14)0.0254 (13)0.0031 (10)0.0012 (10)0.0017 (10)
C100.0295 (13)0.0304 (14)0.0187 (12)0.0047 (12)0.0015 (10)0.0015 (11)
C110.0311 (13)0.0252 (13)0.0177 (11)0.0015 (11)0.0044 (10)0.0005 (10)
N10.0229 (10)0.0149 (10)0.0169 (9)0.0013 (8)0.0029 (8)0.0001 (7)
C120.0240 (13)0.048 (2)0.0226 (13)0.0070 (12)0.0004 (10)0.0045 (12)
C130.0387 (19)0.055 (2)0.049 (2)0.0164 (17)0.0151 (16)0.0065 (17)
C140.041 (2)0.084 (3)0.059 (3)0.029 (2)0.0128 (18)0.013 (2)
C150.0294 (18)0.110 (4)0.043 (2)0.012 (2)0.0014 (15)0.011 (2)
C160.034 (2)0.082 (4)0.073 (3)0.011 (2)0.0059 (19)0.007 (3)
C170.0271 (17)0.060 (3)0.058 (2)0.0040 (16)0.0064 (15)0.0019 (19)
C180.065 (3)0.044 (3)0.134 (5)0.027 (2)0.037 (3)0.003 (3)
C190.032 (2)0.171 (7)0.086 (4)0.017 (3)0.006 (2)0.030 (4)
C200.047 (3)0.045 (3)0.140 (5)0.017 (2)0.003 (3)0.003 (3)
C210.0295 (13)0.0172 (12)0.0141 (11)0.0012 (10)0.0080 (9)0.0037 (8)
C220.0312 (13)0.0175 (12)0.0188 (12)0.0012 (10)0.0057 (10)0.0031 (9)
C230.0338 (14)0.0178 (12)0.0229 (12)0.0053 (10)0.0102 (11)0.0041 (9)
F30.0392 (10)0.0225 (9)0.0320 (9)0.0117 (7)0.0100 (7)0.0033 (7)
C240.0418 (16)0.0132 (12)0.0272 (13)0.0027 (11)0.0140 (12)0.0018 (10)
C250.0335 (14)0.0185 (13)0.0247 (13)0.0057 (11)0.0080 (11)0.0021 (10)
F40.0357 (10)0.0211 (9)0.0444 (10)0.0075 (7)0.0065 (8)0.0116 (7)
C260.0304 (13)0.0135 (11)0.0209 (12)0.0019 (10)0.0082 (10)0.0014 (9)
C270.0273 (13)0.0156 (12)0.0228 (12)0.0024 (10)0.0084 (10)0.0018 (9)
C280.0316 (14)0.0185 (13)0.0246 (13)0.0053 (11)0.0051 (10)0.0012 (10)
C290.0276 (13)0.0228 (13)0.0273 (13)0.0035 (11)0.0051 (10)0.0046 (11)
C300.0245 (13)0.0200 (14)0.0360 (15)0.0012 (10)0.0065 (11)0.0020 (11)
C310.0290 (13)0.0180 (12)0.0271 (13)0.0012 (10)0.0104 (10)0.0004 (10)
N20.0257 (10)0.0152 (9)0.0213 (10)0.0024 (9)0.0067 (8)0.0017 (8)
C320.0292 (14)0.0213 (14)0.0323 (15)0.0022 (11)0.0019 (11)0.0042 (11)
C330.0357 (16)0.0237 (14)0.0353 (16)0.0007 (12)0.0036 (12)0.0036 (12)
C340.0440 (18)0.0295 (17)0.0333 (16)0.0027 (14)0.0036 (13)0.0032 (13)
C350.0317 (16)0.0266 (16)0.0410 (17)0.0003 (12)0.0061 (13)0.0037 (13)
C360.0246 (14)0.0242 (15)0.0448 (18)0.0016 (11)0.0007 (12)0.0071 (12)
C370.0286 (14)0.0227 (14)0.0360 (15)0.0001 (11)0.0040 (11)0.0071 (11)
C380.053 (2)0.044 (2)0.0325 (17)0.0121 (17)0.0089 (15)0.0014 (14)
C390.0387 (19)0.041 (2)0.051 (2)0.0039 (15)0.0115 (15)0.0008 (16)
C400.0303 (15)0.0360 (18)0.0374 (17)0.0040 (13)0.0052 (12)0.0049 (13)
O10.0297 (10)0.0143 (8)0.0185 (8)0.0007 (7)0.0075 (7)0.0003 (6)
O20.0448 (12)0.0199 (10)0.0237 (10)0.0001 (9)0.0122 (9)0.0034 (7)
C410.0211 (12)0.0188 (12)0.0203 (12)0.0038 (9)0.0048 (9)0.0008 (9)
C420.0203 (11)0.0200 (13)0.0184 (11)0.0000 (9)0.0042 (9)0.0009 (9)
C430.0359 (15)0.0274 (15)0.0198 (12)0.0032 (12)0.0107 (11)0.0021 (10)
C440.0468 (17)0.0340 (16)0.0241 (13)0.0067 (14)0.0163 (12)0.0077 (12)
C450.0392 (16)0.0256 (15)0.0279 (14)0.0057 (12)0.0113 (12)0.0128 (11)
C460.0320 (14)0.0195 (13)0.0255 (13)0.0035 (11)0.0094 (11)0.0033 (10)
N30.0243 (10)0.0178 (11)0.0179 (9)0.0002 (8)0.0049 (8)0.0029 (8)
Geometric parameters (Å, º) top
Ir1—C211.988 (3)C23—F31.363 (3)
Ir1—C12.001 (2)C23—C241.381 (4)
Ir1—N22.037 (2)C24—C251.378 (4)
Ir1—N12.040 (2)C24—H24A0.9500
Ir1—N32.143 (2)C25—F41.365 (3)
Ir1—O12.1633 (18)C25—C261.395 (4)
C1—C21.398 (3)C26—C271.468 (4)
C1—C61.420 (4)C27—N21.373 (3)
C2—C31.378 (4)C27—C281.393 (4)
C2—H2A0.9500C28—C291.398 (4)
C3—F11.368 (3)C28—H28A0.9500
C3—C41.375 (4)C29—C301.392 (4)
C4—C51.380 (3)C29—C321.493 (4)
C4—H4A0.9500C30—C311.388 (4)
C5—F21.359 (3)C30—H30A0.9500
C5—C61.394 (3)C31—N21.348 (4)
C6—C71.470 (3)C31—H31A0.9500
C7—N11.372 (3)C32—C331.407 (4)
C7—C81.386 (4)C32—C371.408 (4)
C8—C91.394 (4)C33—C341.390 (4)
C8—H8A0.9500C33—C381.521 (5)
C9—C101.392 (4)C34—C351.392 (5)
C9—C121.491 (4)C34—H34A0.9500
C10—C111.382 (4)C35—C361.385 (5)
C10—H10A0.9500C35—C391.514 (4)
C11—N11.352 (3)C36—C371.385 (4)
C11—H11A0.9500C36—H36A0.9500
C12—C171.383 (5)C37—C401.515 (4)
C12—C131.392 (5)C38—H38A0.9800
C13—C141.411 (5)C38—H38B0.9800
C13—C181.495 (6)C38—H38C0.9800
C14—C151.365 (7)C39—H39A0.9800
C14—H14A0.9500C39—H39B0.9800
C15—C161.366 (7)C39—H39C0.9800
C15—C191.529 (6)C40—H40A0.9800
C16—C171.406 (5)C40—H40B0.9800
C16—H16A0.9500C40—H40C0.9800
C17—C201.514 (6)O1—C411.278 (3)
C18—H18A0.9800O2—C411.236 (3)
C18—H18B0.9800C41—C421.508 (4)
C18—H18C0.9800C42—N31.350 (3)
C19—H19A0.9800C42—C431.387 (4)
C19—H19B0.9800C43—C441.383 (4)
C19—H19C0.9800C43—H43A0.9500
C20—H20A0.9800C44—C451.390 (4)
C20—H20B0.9800C44—H44A0.9500
C20—H20C0.9800C45—C461.384 (4)
C21—C221.397 (4)C45—H45A0.9500
C21—C261.431 (4)C46—N31.342 (3)
C22—C231.377 (4)C46—H46A0.9500
C22—H22A0.9500
C21—Ir1—C187.48 (9)C23—C22—H22A120.2
C21—Ir1—N281.24 (10)C21—C22—H22A120.2
C1—Ir1—N291.30 (9)F3—C23—C22118.5 (3)
C21—Ir1—N192.06 (10)F3—C23—C24117.6 (2)
C1—Ir1—N180.87 (9)C22—C23—C24123.9 (3)
N2—Ir1—N1169.95 (8)C25—C24—C23116.0 (3)
C21—Ir1—N3100.86 (9)C25—C24—H24A122.0
C1—Ir1—N3171.25 (9)C23—C24—H24A122.0
N2—Ir1—N392.56 (8)F4—C25—C24116.4 (2)
N1—Ir1—N396.07 (8)F4—C25—C26119.8 (3)
C21—Ir1—O1176.51 (9)C24—C25—C26123.8 (3)
C1—Ir1—O194.92 (8)C25—C26—C21118.2 (2)
N2—Ir1—O196.15 (8)C25—C26—C27126.8 (2)
N1—Ir1—O190.83 (8)C21—C26—C27115.0 (2)
N3—Ir1—O176.87 (7)N2—C27—C28119.6 (2)
C2—C1—C6118.6 (2)N2—C27—C26113.4 (2)
C2—C1—Ir1126.97 (19)C28—C27—C26126.9 (2)
C6—C1—Ir1114.22 (17)C27—C28—C29121.2 (3)
C3—C2—C1118.9 (2)C27—C28—H28A119.4
C3—C2—H2A120.6C29—C28—H28A119.4
C1—C2—H2A120.6C30—C29—C28117.8 (3)
F1—C3—C4117.6 (2)C30—C29—C32123.5 (3)
F1—C3—C2117.8 (2)C28—C29—C32118.7 (3)
C4—C3—C2124.6 (2)C31—C30—C29119.5 (3)
C3—C4—C5115.8 (2)C31—C30—H30A120.3
C3—C4—H4A122.1C29—C30—H30A120.3
C5—C4—H4A122.1N2—C31—C30122.4 (3)
F2—C5—C4116.6 (2)N2—C31—H31A118.8
F2—C5—C6120.0 (2)C30—C31—H31A118.8
C4—C5—C6123.3 (2)C31—N2—C27119.5 (2)
C5—C6—C1118.7 (2)C31—N2—Ir1124.31 (19)
C5—C6—C7125.8 (2)C27—N2—Ir1115.32 (17)
C1—C6—C7115.3 (2)C33—C32—C37119.7 (3)
N1—C7—C8120.5 (2)C33—C32—C29119.6 (3)
N1—C7—C6113.2 (2)C37—C32—C29120.7 (3)
C8—C7—C6126.3 (2)C34—C33—C32119.1 (3)
C7—C8—C9120.9 (3)C34—C33—C38119.7 (3)
C7—C8—H8A119.6C32—C33—C38121.2 (3)
C9—C8—H8A119.6C33—C34—C35121.9 (3)
C10—C9—C8118.0 (3)C33—C34—H34A119.0
C10—C9—C12121.9 (2)C35—C34—H34A119.0
C8—C9—C12120.1 (3)C36—C35—C34117.8 (3)
C11—C10—C9119.3 (2)C36—C35—C39121.0 (3)
C11—C10—H10A120.4C34—C35—C39121.2 (3)
C9—C10—H10A120.4C37—C36—C35122.4 (3)
N1—C11—C10122.9 (3)C37—C36—H36A118.8
N1—C11—H11A118.6C35—C36—H36A118.8
C10—C11—H11A118.6C36—C37—C32118.9 (3)
C11—N1—C7118.6 (2)C36—C37—C40119.6 (3)
C11—N1—Ir1125.07 (18)C32—C37—C40121.5 (3)
C7—N1—Ir1115.69 (16)C33—C38—H38A109.5
C17—C12—C13121.0 (3)C33—C38—H38B109.5
C17—C12—C9119.3 (3)H38A—C38—H38B109.5
C13—C12—C9119.6 (3)C33—C38—H38C109.5
C12—C13—C14118.0 (4)H38A—C38—H38C109.5
C12—C13—C18121.4 (3)H38B—C38—H38C109.5
C14—C13—C18120.6 (4)C35—C39—H39A109.5
C15—C14—C13121.9 (4)C35—C39—H39B109.5
C15—C14—H14A119.0H39A—C39—H39B109.5
C13—C14—H14A119.0C35—C39—H39C109.5
C14—C15—C16118.8 (4)H39A—C39—H39C109.5
C14—C15—C19120.5 (5)H39B—C39—H39C109.5
C16—C15—C19120.8 (5)C37—C40—H40A109.5
C15—C16—C17122.0 (5)C37—C40—H40B109.5
C15—C16—H16A119.0H40A—C40—H40B109.5
C17—C16—H16A119.0C37—C40—H40C109.5
C12—C17—C16118.3 (4)H40A—C40—H40C109.5
C12—C17—C20121.5 (3)H40B—C40—H40C109.5
C16—C17—C20120.2 (4)C41—O1—Ir1116.32 (16)
C13—C18—H18A109.5O2—C41—O1126.0 (2)
C13—C18—H18B109.5O2—C41—C42117.9 (2)
H18A—C18—H18B109.5O1—C41—C42116.1 (2)
C13—C18—H18C109.5N3—C42—C43121.9 (2)
H18A—C18—H18C109.5N3—C42—C41116.7 (2)
H18B—C18—H18C109.5C43—C42—C41121.4 (2)
C15—C19—H19A109.5C44—C43—C42119.2 (3)
C15—C19—H19B109.5C44—C43—H43A120.4
H19A—C19—H19B109.5C42—C43—H43A120.4
C15—C19—H19C109.5C43—C44—C45118.8 (3)
H19A—C19—H19C109.5C43—C44—H44A120.6
H19B—C19—H19C109.5C45—C44—H44A120.6
C17—C20—H20A109.5C46—C45—C44119.1 (3)
C17—C20—H20B109.5C46—C45—H45A120.4
H20A—C20—H20B109.5C44—C45—H45A120.4
C17—C20—H20C109.5N3—C46—C45122.1 (3)
H20A—C20—H20C109.5N3—C46—H46A118.9
H20B—C20—H20C109.5C45—C46—H46A118.9
C22—C21—C26118.4 (2)C46—N3—C42118.8 (2)
C22—C21—Ir1127.5 (2)C46—N3—Ir1127.22 (18)
C26—C21—Ir1114.08 (19)C42—N3—Ir1113.94 (16)
C23—C22—C21119.7 (3)
C6—C1—C2—C32.3 (3)C24—C25—C26—C210.9 (4)
Ir1—C1—C2—C3172.49 (18)F4—C25—C26—C270.1 (4)
C1—C2—C3—F1175.2 (2)C24—C25—C26—C27179.8 (3)
C1—C2—C3—C43.6 (4)C22—C21—C26—C251.6 (4)
F1—C3—C4—C5176.3 (2)Ir1—C21—C26—C25177.24 (19)
C2—C3—C4—C52.4 (4)C22—C21—C26—C27179.3 (2)
C3—C4—C5—F2177.7 (2)Ir1—C21—C26—C271.8 (3)
C3—C4—C5—C60.2 (4)C25—C26—C27—N2175.4 (2)
F2—C5—C6—C1178.7 (2)C21—C26—C27—N25.7 (3)
C4—C5—C6—C10.8 (4)C25—C26—C27—C286.0 (4)
F2—C5—C6—C73.7 (4)C21—C26—C27—C28172.9 (2)
C4—C5—C6—C7174.2 (2)N2—C27—C28—C291.7 (4)
C2—C1—C6—C50.3 (3)C26—C27—C28—C29179.8 (3)
Ir1—C1—C6—C5175.16 (18)C27—C28—C29—C300.1 (4)
C2—C1—C6—C7175.8 (2)C27—C28—C29—C32179.7 (3)
Ir1—C1—C6—C70.3 (3)C28—C29—C30—C312.0 (4)
C5—C6—C7—N1168.8 (2)C32—C29—C30—C31177.9 (3)
C1—C6—C7—N16.3 (3)C29—C30—C31—N22.1 (4)
C5—C6—C7—C812.0 (4)C30—C31—N2—C270.2 (4)
C1—C6—C7—C8172.9 (2)C30—C31—N2—Ir1169.2 (2)
N1—C7—C8—C90.2 (4)C28—C27—N2—C311.6 (4)
C6—C7—C8—C9179.3 (2)C26—C27—N2—C31179.6 (2)
C7—C8—C9—C100.7 (4)C28—C27—N2—Ir1168.25 (19)
C7—C8—C9—C12177.7 (3)C26—C27—N2—Ir110.5 (3)
C8—C9—C10—C110.8 (4)C30—C29—C32—C33115.0 (3)
C12—C9—C10—C11177.6 (3)C28—C29—C32—C3364.9 (4)
C9—C10—C11—N10.0 (5)C30—C29—C32—C3768.7 (4)
C10—C11—N1—C71.0 (4)C28—C29—C32—C37111.5 (3)
C10—C11—N1—Ir1169.1 (2)C37—C32—C33—C343.7 (5)
C8—C7—N1—C111.1 (4)C29—C32—C33—C34172.6 (3)
C6—C7—N1—C11179.7 (2)C37—C32—C33—C38175.1 (3)
C8—C7—N1—Ir1169.93 (19)C29—C32—C33—C388.5 (5)
C6—C7—N1—Ir19.3 (3)C32—C33—C34—C350.5 (5)
C10—C9—C12—C17103.3 (4)C38—C33—C34—C35178.3 (3)
C8—C9—C12—C1778.3 (4)C33—C34—C35—C363.0 (5)
C10—C9—C12—C1379.3 (4)C33—C34—C35—C39175.7 (3)
C8—C9—C12—C1399.1 (4)C34—C35—C36—C373.5 (5)
C17—C12—C13—C141.1 (5)C39—C35—C36—C37175.2 (3)
C9—C12—C13—C14178.3 (3)C35—C36—C37—C320.4 (5)
C17—C12—C13—C18177.9 (4)C35—C36—C37—C40178.1 (3)
C9—C12—C13—C180.6 (5)C33—C32—C37—C363.3 (4)
C12—C13—C14—C151.1 (6)C29—C32—C37—C36173.1 (3)
C18—C13—C14—C15177.8 (4)C33—C32—C37—C40178.2 (3)
C13—C14—C15—C160.5 (7)C29—C32—C37—C405.5 (4)
C13—C14—C15—C19179.7 (4)Ir1—O1—C41—O2177.5 (2)
C14—C15—C16—C170.3 (7)Ir1—O1—C41—C422.8 (3)
C19—C15—C16—C17179.0 (4)O2—C41—C42—N3179.9 (2)
C13—C12—C17—C160.3 (6)O1—C41—C42—N30.2 (3)
C9—C12—C17—C16177.6 (3)O2—C41—C42—C430.1 (4)
C13—C12—C17—C20177.5 (4)O1—C41—C42—C43179.7 (2)
C9—C12—C17—C200.2 (6)N3—C42—C43—C441.5 (4)
C15—C16—C17—C120.4 (7)C41—C42—C43—C44178.3 (3)
C15—C16—C17—C20178.2 (5)C42—C43—C44—C450.5 (5)
C26—C21—C22—C231.4 (4)C43—C44—C45—C460.7 (5)
Ir1—C21—C22—C23177.24 (19)C44—C45—C46—N31.0 (5)
C21—C22—C23—F3178.3 (2)C45—C46—N3—C420.0 (4)
C21—C22—C23—C240.5 (4)C45—C46—N3—Ir1178.7 (2)
F3—C23—C24—C25179.1 (2)C43—C42—N3—C461.3 (4)
C22—C23—C24—C250.2 (4)C41—C42—N3—C46178.6 (2)
C23—C24—C25—F4179.8 (2)C43—C42—N3—Ir1177.6 (2)
C23—C24—C25—C260.0 (4)C41—C42—N3—Ir12.5 (3)
F4—C25—C26—C21178.9 (2)
Bis[2-(4-tert-butylpyridin-2-yl)-3,5-difluorophenyl-κ2N,C1](picolinato-κ2N,O)iridium(III) (2) top
Crystal data top
[Ir(C15H14F2N)2(C6H4NO2)]F(000) = 1592
Mr = 806.84Dx = 1.406 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.7519 (7) ÅCell parameters from 2779 reflections
b = 14.4121 (7) Åθ = 2.8–30.1°
c = 18.5425 (8) ŵ = 3.55 mm1
β = 104.7761 (19)°T = 100 K
V = 3811.9 (3) Å3Plate, yellow
Z = 40.15 × 0.13 × 0.04 mm
Data collection top
Area Bruker PHOTON-II CPAD
diffractometer
9342 reflections with I > 2σ(I)
Radiation source: microfocusRint = 0.049
φ and ω scansθmax = 30.6°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 2121
Tmin = 0.370, Tmax = 0.433k = 2020
81284 measured reflectionsl = 2619
11662 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.057 w = 1/[σ2(Fo2) + (0.0242P)2 + 2.756P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.002
11662 reflectionsΔρmax = 0.98 e Å3
421 parametersΔρmin = 1.39 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ir10.30539 (2)0.53433 (2)0.67510 (2)0.01538 (3)
C10.23415 (16)0.65492 (15)0.65931 (13)0.0171 (4)
C20.17630 (18)0.68813 (17)0.59293 (14)0.0231 (5)
H20.1678510.6531120.5483050.028*
C30.13158 (19)0.77159 (18)0.59224 (16)0.0280 (6)
F10.07501 (14)0.80352 (12)0.52723 (10)0.0479 (5)
C40.13985 (18)0.82624 (17)0.65481 (16)0.0275 (6)
H40.1086140.8841970.6527140.033*
C50.19550 (18)0.79214 (16)0.71984 (15)0.0239 (5)
F20.20190 (12)0.84419 (11)0.78251 (9)0.0348 (4)
C60.24427 (16)0.70822 (16)0.72467 (13)0.0179 (5)
C70.30904 (17)0.67197 (16)0.79204 (13)0.0192 (5)
C80.34074 (18)0.71680 (17)0.86029 (14)0.0227 (5)
H80.3142100.7750530.8674990.027*
C90.41011 (19)0.67912 (18)0.91841 (14)0.0249 (5)
C100.4435 (2)0.5920 (2)0.90580 (14)0.0297 (6)
H100.4896110.5621610.9439490.036*
C110.4095 (2)0.54871 (18)0.83770 (14)0.0266 (6)
H110.4328310.4888430.8307090.032*
N10.34539 (14)0.58692 (13)0.78110 (11)0.0190 (4)
C120.4463 (2)0.7337 (2)0.99013 (15)0.0312 (6)
C130.4881 (2)0.8263 (2)0.97229 (17)0.0392 (7)
H13A0.5129940.8608431.0186140.059*
H13B0.4390810.8629710.9387080.059*
H13C0.5387320.8138630.9481830.059*
C140.5224 (2)0.6809 (2)1.04678 (16)0.0456 (8)
H14A0.5447890.7188861.0916080.068*
H14B0.5748060.6672421.0248680.068*
H14C0.4964800.6226291.0601210.068*
C150.3636 (2)0.7541 (2)1.02501 (16)0.0355 (7)
H15A0.3855390.7929021.0694600.053*
H15B0.3388440.6956001.0390340.053*
H15C0.3139990.7868090.9886290.053*
C160.18532 (17)0.47689 (15)0.68282 (14)0.0198 (5)
C170.15357 (19)0.46982 (19)0.74756 (16)0.0279 (6)
H170.1891740.4946620.7935380.034*
C180.0694 (2)0.4259 (2)0.74288 (17)0.0325 (6)
F30.03862 (13)0.41878 (15)0.80583 (10)0.0486 (5)
C190.0135 (2)0.3893 (2)0.67848 (19)0.0396 (7)
H190.0442040.3593790.6775080.048*
C200.0456 (2)0.3983 (2)0.61536 (18)0.0351 (7)
F40.01075 (13)0.36506 (15)0.55072 (11)0.0529 (6)
C210.13079 (19)0.43920 (17)0.61503 (15)0.0242 (5)
C220.17271 (18)0.44401 (17)0.55140 (15)0.0219 (5)
C230.13701 (18)0.40646 (18)0.48020 (15)0.0267 (6)
H230.0770700.3777300.4684640.032*
C240.18727 (17)0.41028 (17)0.42637 (14)0.0224 (5)
C250.27440 (17)0.45626 (17)0.44603 (14)0.0218 (5)
H250.3111710.4616240.4109830.026*
C260.30581 (17)0.49330 (16)0.51629 (14)0.0196 (5)
H260.3644110.5246250.5284150.023*
N20.25766 (14)0.48739 (13)0.56872 (11)0.0177 (4)
C270.15441 (19)0.36300 (19)0.35017 (15)0.0272 (6)
C280.0537 (2)0.3279 (2)0.33600 (17)0.0367 (7)
H28A0.0340090.3011180.2858380.055*
H28B0.0122190.3796620.3400760.055*
H28C0.0502160.2803410.3729870.055*
C290.1604 (2)0.4314 (2)0.28779 (16)0.0347 (7)
H29A0.1407830.4001650.2393770.052*
H29B0.2251280.4532350.2957020.052*
H29C0.1191140.4844910.2886010.052*
C300.2200 (2)0.2813 (2)0.34824 (18)0.0399 (7)
H30A0.1996920.2494670.3001290.060*
H30B0.2182590.2379260.3885380.060*
H30C0.2841380.3043270.3548220.060*
O10.43862 (11)0.58218 (10)0.66085 (9)0.0163 (3)
O20.58841 (12)0.54150 (12)0.67624 (11)0.0254 (4)
C310.50763 (17)0.52575 (15)0.67930 (12)0.0169 (4)
C320.48442 (17)0.43140 (16)0.70654 (12)0.0170 (4)
C330.55271 (19)0.36654 (17)0.73644 (14)0.0227 (5)
H330.6168640.3792030.7398430.027*
C340.5259 (2)0.28231 (17)0.76150 (15)0.0262 (6)
H340.5717510.2376410.7839800.031*
C350.4321 (2)0.26449 (17)0.75335 (14)0.0255 (6)
H350.4122060.2063120.7679200.031*
C360.36739 (19)0.33247 (16)0.72366 (13)0.0224 (5)
H360.3027520.3202690.7184500.027*
N30.39283 (14)0.41561 (12)0.70182 (10)0.0167 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.01640 (5)0.01245 (4)0.01887 (4)0.00043 (4)0.00740 (3)0.00049 (4)
C10.0156 (11)0.0118 (9)0.0256 (11)0.0016 (8)0.0083 (10)0.0007 (9)
C20.0211 (13)0.0208 (11)0.0271 (12)0.0005 (10)0.0056 (11)0.0017 (10)
C30.0196 (13)0.0263 (13)0.0346 (15)0.0043 (10)0.0003 (11)0.0020 (11)
F10.0514 (12)0.0343 (9)0.0438 (11)0.0202 (9)0.0142 (9)0.0006 (8)
C40.0202 (13)0.0170 (11)0.0457 (16)0.0063 (10)0.0089 (12)0.0002 (11)
C50.0221 (13)0.0162 (11)0.0357 (14)0.0003 (9)0.0115 (11)0.0066 (10)
F20.0370 (10)0.0268 (8)0.0407 (9)0.0108 (7)0.0101 (8)0.0110 (7)
C60.0137 (11)0.0167 (10)0.0251 (12)0.0005 (8)0.0081 (10)0.0010 (9)
C70.0181 (12)0.0165 (10)0.0257 (12)0.0008 (9)0.0109 (10)0.0012 (9)
C80.0278 (14)0.0192 (11)0.0244 (12)0.0002 (10)0.0127 (11)0.0029 (9)
C90.0304 (14)0.0263 (12)0.0201 (11)0.0002 (11)0.0103 (11)0.0033 (10)
C100.0365 (16)0.0336 (14)0.0179 (11)0.0100 (12)0.0049 (11)0.0000 (11)
C110.0354 (15)0.0236 (13)0.0230 (12)0.0100 (11)0.0113 (11)0.0006 (10)
N10.0228 (11)0.0158 (9)0.0200 (9)0.0023 (8)0.0082 (8)0.0009 (8)
C120.0409 (17)0.0305 (14)0.0227 (13)0.0001 (12)0.0093 (12)0.0070 (11)
C130.0423 (19)0.0450 (17)0.0319 (15)0.0131 (15)0.0126 (14)0.0134 (13)
C140.054 (2)0.052 (2)0.0246 (14)0.0127 (17)0.0003 (15)0.0107 (14)
C150.051 (2)0.0314 (14)0.0283 (14)0.0032 (13)0.0169 (14)0.0121 (12)
C160.0175 (11)0.0149 (10)0.0297 (12)0.0007 (9)0.0112 (10)0.0020 (9)
C170.0257 (13)0.0296 (13)0.0329 (14)0.0022 (11)0.0157 (12)0.0055 (12)
C180.0320 (16)0.0340 (14)0.0414 (16)0.0015 (12)0.0272 (14)0.0069 (13)
F30.0412 (11)0.0680 (13)0.0474 (11)0.0049 (10)0.0309 (9)0.0113 (10)
C190.0321 (16)0.0363 (16)0.061 (2)0.0101 (13)0.0318 (16)0.0054 (15)
C200.0263 (15)0.0348 (15)0.0487 (17)0.0131 (12)0.0181 (13)0.0139 (14)
F40.0334 (10)0.0725 (14)0.0595 (12)0.0292 (10)0.0243 (9)0.0327 (11)
C210.0210 (13)0.0217 (11)0.0337 (14)0.0035 (10)0.0137 (11)0.0054 (10)
C220.0177 (12)0.0202 (11)0.0292 (13)0.0023 (9)0.0087 (10)0.0058 (10)
C230.0191 (12)0.0275 (13)0.0356 (14)0.0090 (10)0.0105 (11)0.0119 (11)
C240.0178 (12)0.0226 (12)0.0267 (12)0.0013 (9)0.0055 (10)0.0086 (10)
C250.0189 (12)0.0236 (12)0.0251 (12)0.0026 (10)0.0097 (10)0.0054 (10)
C260.0181 (12)0.0176 (10)0.0242 (12)0.0021 (9)0.0075 (10)0.0008 (9)
N20.0171 (10)0.0145 (9)0.0215 (10)0.0001 (7)0.0048 (8)0.0026 (7)
C270.0217 (13)0.0320 (13)0.0278 (13)0.0047 (11)0.0059 (11)0.0113 (11)
C280.0270 (15)0.0447 (17)0.0386 (16)0.0140 (13)0.0090 (13)0.0186 (14)
C290.0302 (16)0.0440 (16)0.0288 (14)0.0086 (13)0.0053 (13)0.0063 (13)
C300.0388 (18)0.0368 (16)0.0437 (17)0.0009 (14)0.0099 (14)0.0194 (14)
O10.0149 (8)0.0132 (7)0.0213 (8)0.0007 (6)0.0054 (7)0.0005 (6)
O20.0187 (9)0.0244 (9)0.0351 (10)0.0003 (7)0.0108 (8)0.0033 (8)
C310.0198 (11)0.0154 (10)0.0165 (10)0.0001 (9)0.0062 (9)0.0015 (8)
C320.0225 (12)0.0150 (9)0.0158 (10)0.0004 (9)0.0093 (10)0.0010 (8)
C330.0241 (13)0.0218 (11)0.0243 (12)0.0069 (10)0.0102 (11)0.0036 (10)
C340.0322 (15)0.0211 (12)0.0289 (13)0.0112 (11)0.0141 (12)0.0052 (10)
C350.0381 (16)0.0157 (11)0.0276 (13)0.0016 (10)0.0170 (12)0.0029 (10)
C360.0299 (14)0.0171 (11)0.0240 (12)0.0028 (10)0.0137 (11)0.0017 (9)
N30.0223 (10)0.0119 (8)0.0185 (9)0.0023 (7)0.0098 (8)0.0010 (7)
Geometric parameters (Å, º) top
Ir1—C161.993 (2)C18—F31.360 (3)
Ir1—C12.013 (2)C18—C191.372 (4)
Ir1—N22.034 (2)C19—C201.376 (4)
Ir1—N12.048 (2)C19—H190.9500
Ir1—N32.1238 (19)C20—F41.360 (3)
Ir1—O12.1617 (16)C20—C211.389 (4)
C1—C21.392 (3)C21—C221.467 (4)
C1—C61.410 (3)C22—N21.363 (3)
C2—C31.370 (3)C22—C231.399 (4)
C2—H20.9500C23—C241.388 (3)
C3—F11.360 (3)C23—H230.9500
C3—C41.382 (4)C24—C251.409 (3)
C4—C51.365 (4)C24—C271.532 (3)
C4—H40.9500C25—C261.374 (3)
C5—F21.366 (3)C25—H250.9500
C5—C61.398 (3)C26—N21.345 (3)
C6—C71.462 (3)C26—H260.9500
C7—N11.374 (3)C27—C281.528 (4)
C7—C81.391 (3)C27—C301.530 (4)
C8—C91.393 (4)C27—C291.540 (4)
C8—H80.9500C28—H28A0.9800
C9—C101.391 (4)C28—H28B0.9800
C9—C121.520 (4)C28—H28C0.9800
C10—C111.382 (4)C29—H29A0.9800
C10—H100.9500C29—H29B0.9800
C11—N11.339 (3)C29—H29C0.9800
C11—H110.9500C30—H30A0.9800
C12—C141.530 (4)C30—H30B0.9800
C12—C131.541 (4)C30—H30C0.9800
C12—C151.548 (4)O1—C311.280 (3)
C13—H13A0.9800O2—C311.229 (3)
C13—H13B0.9800C31—C321.520 (3)
C13—H13C0.9800C32—N31.351 (3)
C14—H14A0.9800C32—C331.382 (3)
C14—H14B0.9800C33—C341.393 (3)
C14—H14C0.9800C33—H330.9500
C15—H15A0.9800C34—C351.377 (4)
C15—H15B0.9800C34—H340.9500
C15—H15C0.9800C35—C361.380 (4)
C16—C171.399 (3)C35—H350.9500
C16—C211.416 (4)C36—N31.348 (3)
C17—C181.376 (4)C36—H360.9500
C17—H170.9500
C16—Ir1—C185.90 (9)C18—C17—H17120.9
C16—Ir1—N280.63 (9)C16—C17—H17120.9
C1—Ir1—N296.16 (9)F3—C18—C19117.4 (3)
C16—Ir1—N197.39 (9)F3—C18—C17118.3 (3)
C1—Ir1—N180.33 (9)C19—C18—C17124.3 (3)
N2—Ir1—N1176.12 (8)C18—C19—C20116.3 (3)
C16—Ir1—N398.43 (8)C18—C19—H19121.9
C1—Ir1—N3173.10 (9)C20—C19—H19121.9
N2—Ir1—N389.87 (7)F4—C20—C19116.8 (3)
N1—Ir1—N393.73 (7)F4—C20—C21119.7 (3)
C16—Ir1—O1173.52 (8)C19—C20—C21123.5 (3)
C1—Ir1—O199.44 (8)C20—C21—C16117.9 (2)
N2—Ir1—O195.06 (7)C20—C21—C22126.2 (3)
N1—Ir1—O187.18 (7)C16—C21—C22115.8 (2)
N3—Ir1—O176.61 (7)N2—C22—C23120.1 (2)
C2—C1—C6118.6 (2)N2—C22—C21112.5 (2)
C2—C1—Ir1127.24 (18)C23—C22—C21127.3 (2)
C6—C1—Ir1114.10 (17)C24—C23—C22121.4 (2)
C3—C2—C1119.7 (2)C24—C23—H23119.3
C3—C2—H2120.2C22—C23—H23119.3
C1—C2—H2120.2C23—C24—C25116.9 (2)
F1—C3—C2119.4 (2)C23—C24—C27123.0 (2)
F1—C3—C4117.0 (2)C25—C24—C27120.1 (2)
C2—C3—C4123.6 (3)C26—C25—C24119.5 (2)
C5—C4—C3116.2 (2)C26—C25—H25120.2
C5—C4—H4121.9C24—C25—H25120.2
C3—C4—H4121.9N2—C26—C25123.2 (2)
C4—C5—F2116.7 (2)N2—C26—H26118.4
C4—C5—C6123.5 (2)C25—C26—H26118.4
F2—C5—C6119.8 (2)C26—N2—C22118.8 (2)
C5—C6—C1118.4 (2)C26—N2—Ir1124.33 (17)
C5—C6—C7125.3 (2)C22—N2—Ir1116.81 (16)
C1—C6—C7116.3 (2)C28—C27—C30109.5 (2)
N1—C7—C8119.7 (2)C28—C27—C24111.8 (2)
N1—C7—C6112.8 (2)C30—C27—C24108.1 (2)
C8—C7—C6127.3 (2)C28—C27—C29108.8 (2)
C7—C8—C9122.2 (2)C30—C27—C29108.5 (2)
C7—C8—H8118.9C24—C27—C29110.0 (2)
C9—C8—H8118.9C27—C28—H28A109.5
C10—C9—C8116.3 (2)C27—C28—H28B109.5
C10—C9—C12123.6 (2)H28A—C28—H28B109.5
C8—C9—C12120.0 (2)C27—C28—H28C109.5
C11—C10—C9120.0 (2)H28A—C28—H28C109.5
C11—C10—H10120.0H28B—C28—H28C109.5
C9—C10—H10120.0C27—C29—H29A109.5
N1—C11—C10123.3 (2)C27—C29—H29B109.5
N1—C11—H11118.3H29A—C29—H29B109.5
C10—C11—H11118.3C27—C29—H29C109.5
C11—N1—C7118.4 (2)H29A—C29—H29C109.5
C11—N1—Ir1124.96 (16)H29B—C29—H29C109.5
C7—N1—Ir1116.37 (16)C27—C30—H30A109.5
C9—C12—C14112.1 (2)C27—C30—H30B109.5
C9—C12—C13109.3 (2)H30A—C30—H30B109.5
C14—C12—C13108.3 (3)C27—C30—H30C109.5
C9—C12—C15109.0 (2)H30A—C30—H30C109.5
C14—C12—C15109.1 (2)H30B—C30—H30C109.5
C13—C12—C15109.0 (2)C31—O1—Ir1116.79 (14)
C12—C13—H13A109.5O2—C31—O1125.8 (2)
C12—C13—H13B109.5O2—C31—C32119.0 (2)
H13A—C13—H13B109.5O1—C31—C32115.2 (2)
C12—C13—H13C109.5N3—C32—C33121.8 (2)
H13A—C13—H13C109.5N3—C32—C31115.8 (2)
H13B—C13—H13C109.5C33—C32—C31122.4 (2)
C12—C14—H14A109.5C32—C33—C34118.9 (2)
C12—C14—H14B109.5C32—C33—H33120.6
H14A—C14—H14B109.5C34—C33—H33120.6
C12—C14—H14C109.5C35—C34—C33119.3 (2)
H14A—C14—H14C109.5C35—C34—H34120.4
H14B—C14—H14C109.5C33—C34—H34120.4
C12—C15—H15A109.5C34—C35—C36119.0 (2)
C12—C15—H15B109.5C34—C35—H35120.5
H15A—C15—H15B109.5C36—C35—H35120.5
C12—C15—H15C109.5N3—C36—C35122.2 (2)
H15A—C15—H15C109.5N3—C36—H36118.9
H15B—C15—H15C109.5C35—C36—H36118.9
C17—C16—C21119.7 (2)C36—N3—C32118.7 (2)
C17—C16—Ir1126.2 (2)C36—N3—Ir1125.94 (17)
C21—C16—Ir1114.18 (17)C32—N3—Ir1114.67 (14)
C18—C17—C16118.3 (3)
C6—C1—C2—C30.7 (4)C19—C20—C21—C162.7 (5)
Ir1—C1—C2—C3178.94 (19)F4—C20—C21—C225.8 (5)
C1—C2—C3—F1179.9 (2)C19—C20—C21—C22174.5 (3)
C1—C2—C3—C40.4 (4)C17—C16—C21—C201.6 (4)
F1—C3—C4—C5178.8 (2)Ir1—C16—C21—C20179.6 (2)
C2—C3—C4—C50.7 (4)C17—C16—C21—C22175.8 (2)
C3—C4—C5—F2178.0 (2)Ir1—C16—C21—C222.9 (3)
C3—C4—C5—C61.6 (4)C20—C21—C22—N2179.0 (3)
C4—C5—C6—C11.3 (4)C16—C21—C22—N21.8 (3)
F2—C5—C6—C1178.3 (2)C20—C21—C22—C232.1 (5)
C4—C5—C6—C7176.0 (2)C16—C21—C22—C23175.2 (3)
F2—C5—C6—C74.4 (4)N2—C22—C23—C241.5 (4)
C2—C1—C6—C50.1 (3)C21—C22—C23—C24175.3 (3)
Ir1—C1—C6—C5178.36 (18)C22—C23—C24—C252.0 (4)
C2—C1—C6—C7177.4 (2)C22—C23—C24—C27174.7 (2)
Ir1—C1—C6—C74.1 (3)C23—C24—C25—C260.9 (4)
C5—C6—C7—N1178.6 (2)C27—C24—C25—C26175.9 (2)
C1—C6—C7—N14.1 (3)C24—C25—C26—N20.6 (4)
C5—C6—C7—C86.7 (4)C25—C26—N2—C221.2 (4)
C1—C6—C7—C8170.6 (2)C25—C26—N2—Ir1176.09 (18)
N1—C7—C8—C91.2 (4)C23—C22—N2—C260.1 (4)
C6—C7—C8—C9173.2 (2)C21—C22—N2—C26177.3 (2)
C7—C8—C9—C102.7 (4)C23—C22—N2—Ir1177.36 (19)
C7—C8—C9—C12176.3 (2)C21—C22—N2—Ir10.1 (3)
C8—C9—C10—C111.7 (4)C23—C24—C27—C2810.5 (4)
C12—C9—C10—C11177.3 (3)C25—C24—C27—C28172.9 (3)
C9—C10—C11—N10.8 (4)C23—C24—C27—C30110.1 (3)
C10—C11—N1—C72.4 (4)C25—C24—C27—C3066.5 (3)
C10—C11—N1—Ir1171.5 (2)C23—C24—C27—C29131.5 (3)
C8—C7—N1—C111.4 (3)C25—C24—C27—C2951.9 (3)
C6—C7—N1—C11176.5 (2)Ir1—O1—C31—O2178.69 (19)
C8—C7—N1—Ir1173.01 (18)Ir1—O1—C31—C321.8 (2)
C6—C7—N1—Ir12.1 (3)O2—C31—C32—N3173.9 (2)
C10—C9—C12—C140.8 (4)O1—C31—C32—N35.6 (3)
C8—C9—C12—C14179.7 (3)O2—C31—C32—C337.9 (3)
C10—C9—C12—C13119.3 (3)O1—C31—C32—C33172.5 (2)
C8—C9—C12—C1359.6 (3)N3—C32—C33—C340.8 (4)
C10—C9—C12—C15121.6 (3)C31—C32—C33—C34178.8 (2)
C8—C9—C12—C1559.5 (3)C32—C33—C34—C352.4 (4)
C21—C16—C17—C180.0 (4)C33—C34—C35—C363.0 (4)
Ir1—C16—C17—C18178.6 (2)C34—C35—C36—N30.5 (4)
C16—C17—C18—F3179.8 (2)C35—C36—N3—C322.6 (3)
C16—C17—C18—C190.8 (4)C35—C36—N3—Ir1167.53 (18)
F3—C18—C19—C20179.3 (3)C33—C32—N3—C363.2 (3)
C17—C18—C19—C200.1 (5)C31—C32—N3—C36178.6 (2)
C18—C19—C20—F4177.8 (3)C33—C32—N3—Ir1167.98 (18)
C18—C19—C20—C211.9 (5)C31—C32—N3—Ir110.1 (2)
F4—C20—C21—C16177.0 (3)
 

Acknowledgements

We thank the X-Ray Crystallographic Laboratory, LeClaire-Dow Instrumentation Facility, Department of Chemistry, University of Minnesota, for its contribution. The authors would like to acknowledge Mr James T. Moore and the X-Ray Crystallography course CHEM5755 for assistance in collecting single-crystal diffraction data on 1 and 2. The Bruker AXS D8 Venture diffractometer was purchased through a grant from NSF/MRI and the University of Minnesota.

Funding information

Funding for this research was provided by: US DOE, Lawrence Livermore National Laboratory (contract No. DE-AC52-07NA27344); US DOE, National Nuclear Security Administration, Defense Nuclear Non-proliferation Research and Development (contract No. DE-AC03-76SF00098); NSF/MRI (award No. 1229400).

References

First citationBaranoff, E. & Curchod, B. F. E. (2015). Dalton Trans. 44, 8318–8329.  CrossRef Google Scholar
First citationBertrand, G. H. V., Hamel, M., Normand, S. & Sguerra, F. (2015). Nucl. Instrum. Methods Phys. Res. A, 776, 114–128.  CrossRef Google Scholar
First citationBruker (2014). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCherepy, N. J., Sanner, R. D., Beck, P. R., Swanberg, E. L., Tillotson, T. M., Payne, S. A. & Hurlbut, C. R. (2015). Nucl. Instrum. Methods Phys. Res. A, 778, 126–132.  CrossRef Google Scholar
First citationChi, Y. & Chou, P.-T. (2010). Chem. Soc. Rev. 39, 638–655.  Web of Science CrossRef CAS PubMed Google Scholar
First citationChoy, W. C. H., Chan, W. K. & Yuan, Y. (2014). Adv. Mater. 26, 5368–5399.  CrossRef Google Scholar
First citationFu, H., Cheng, Y.-M., Chou, P.-T. & Chi, Y. (2011). Mater. Today, 14, 472–479.  CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKim, H.-T., Seo, J. H., Ahn, J. H., Baek, M.-J., Um, H.-D., Lee, S., Roh, D.-H., Yum, J.-H., Shin, T. J., Seo, K. & Kwon, T.-H. (2016). ACS Energy Lett. 1, 991–999.  CrossRef Google Scholar
First citationKozhevnikov, V. N., Zheng, Y., Clough, M., Al-Attar, H. A., Griffiths, G. C., Abdullah, K., Raisys, S., Jankus, V., Bryce, M. R. & Monkman, A. P. (2013). Chem. Mater. 25, 2352–2358.  CrossRef Google Scholar
First citationLaskar, I. R., Hsu, S.-F. & Chen, T.-M. (2006). Polyhedron, 25, 1167–1176.  CrossRef Google Scholar
First citationMarín-Suárez, M., Curchod, B. F. E., Tavernelli, I., Rothlisberger, U., Scopelliti, R., Jung, I., Di Censo, D., Grätzel, M., Fernández-Sánchez, J. F., Fernández-Gutiérrez, A., Nazeeruddin, M. K. & Baranoff, E. (2012). Chem. Mater. 24, 2330–2338.  Google Scholar
First citationRupert, B. L., Cherepy, N. J., Sturm, B. W., Sanner, R. D. & Payne, S. A. (2012). EPL, 97, article No. 22002.  Google Scholar
First citationSanner, R. D., Cherepy, N. J. & Young, V. G. Jr (2016). Inorg. Chim. Acta, 440, 165–171.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZhang, K. Y., Liu, H.-W., Tang, M.-C., Choi, A. W.-T., Zhu, N., Wei, X.-G., Lau, K.-C. & Lo, K. K.-W. (2015). Inorg. Chem. 54, 6582–6593.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds