research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[Bis(2,6-diiso­propyl­phen­yl) phosphato-κO]penta­kis­­(methanol-κO)manganese bis­­(2,6-diiso­propyl­phen­yl) phosphate methanol tris­­olvate

CROSSMARK_Color_square_no_text.svg

aA.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospect, 119991, Moscow, Russian Federation, bChemistry Department, M.V. Lomonosov Moscow State University, 1 Leninskie Gory Str., Building 3, Moscow 119991, Russian Federation, cN.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky Prospect, Moscow 119991, Russian Federation, and dA.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova Str., Moscow, 119991, Russian Federation
*Correspondence e-mail: mminyaev@mail.ru

Edited by T. J. Prior, University of Hull, England (Received 12 July 2018; accepted 11 September 2018; online 14 September 2018)

The title compound, [Mn(C24H34O4P)(CH3OH)5](C24H34O4P)·3CH3OH, was formed in the reaction between a hydrate of a manganese(II) salt [either Mn(NO3)2(H2O)6 or MnCl2(H2O)4] with a methanol solvate of lithium bis­(2,6-diiso­propyl­phen­yl) phosphate, {Li[OOP(O-2,6-iPr2C6H3)2]·(CH4O)3}·CH4O, in methanol. The structure has monoclinic (Cc) symmetry at 150 K. The complex consists of an [Mn{OOP(O-2,6-iPr2C6H3)2}(CH3OH)5]+ cation, an [OOP(O-2,6-iPr2C6H3)2] anion and three non-coordinating methanol mol­ecules. The anion demonstrates disorder of an isopropyl group [occupancy ratio is 0.57 (4):0.43 (4)]. The di­aryl­phosphate ligand in the cation exhibits a κ1O terminal coordination mode. The Mn atom is in a nearly unperturbed octa­hedral environment. The [Mn{OOP(O-2,6-iPr2C6H3)2}(CH3OH)5]+ cation exhibits one intra­molecular O—H⋯O bond, and is coordinated via two inter­molecular O—H⋯O hydrogen bonds to the [OOP(O-2,6-iPr2C6H3)2] anion. The cations, anions and non-coordinating methanol mol­ecules are linked into infinite chains along the c-axis direction via 0—H⋯O hydrogen bonding. The complex is of inter­est as a possible inhibitor for the thermal decomposition of polydi­methyl­siloxane. The crystal studied was refined as an inversion twin with a domain ratio of 0.47 (3):0.53 (3).

1. Chemical context

Polydi­methyl­siloxane (PDMS) liquids are widely applied in many devices as shock-absorbing, hydraulic and damping liquids, as bases for greases and as heat-transfer agents for many industrial processes carried out at elevated temperatures. Various lipophilic derivatives of metals with variable valency, such as Mn, Fe, Ni, Ce, etc., are used for the inhibition of thermo-oxidative decomposition of polyorganosiloxane heat carriers (Swihart & Jones, 1985[Swihart, T. J. & Jones, J. E. (1985). Patent US 4528313 (to Dow Corning Corporation).]; Nielsen, 1961[Nielsen, J. M. (1961). Patent US3009876 (to General Electric Company).]; Halm, 1980[Halm, R. L. (1980). Patent US4193885 (to Dow Corning Corporation).]; Kobzova et al., 1966[Kobzova, R. I., Tubyanskaya, G. S., Oparina, E. M., Zaitsev, V. A. & Egorova, A. A. (1966). Chem. Technol. Fuels Oils, 2, 270-271.]; Kishimoto et al., 1976[Kishimoto, K., Koda, Y. & Sasaki, Sh. (1976). Patent US4070343 (to Toray Silicone Company).]; Rozanova et al., 1995[Rozanova, N. L., Klimov, A. K., Zverev, O. V., Mukhanova, E. E., Gusev, V. K., Raskin, Ju. E., Markina, E. B. & Minsker, M. Z. (1995). Patent RU2034868 (to the All-Russian Research Institute for Oil Refining).]; Minyaev et al., 2018a[Minyaev, M. E., Tavtorkin, A. N., Korchagina, S. A., Bondarenko, G. N., Churakov, A. V. & Nifant'ev, I. E. (2018a). Acta Cryst. C74, 590-598.]) in order to increase their operating time and temperature (usually up to ca 550 K). As manganese-based inhibitors, cymantrene and its derivatives have shown promising results (Sobolevskiy et al., 1970[Sobolevskiy, M. B., Skorokhodov, I. I., Ditsent, V. E. & Sobolevskaya, L. V. (1970). Proceedings of the USSR conference `Synthesis and study of the efficiency of chemicals for polymer materials' ,Tambov, pp. 194-208. (In Russian.)]). However, these Mn compounds are not available on an industrial scale. Easily accessible disubstituted organophosphate ligands are usually regarded as being lipophilic. For example, rare-earth complexes with such disubstituted organophosphate ligands are highly soluble in hydro­carbon media (Nifant'ev et al., 2013[Nifant'ev, I. E., Tavtorkin, A. N., Shlyahtin, A. V., Korchagina, S. A., Gavrilenko, I. F., Glebova, N. N. & Churakov, A. V. (2013). Dalton Trans. 42, 1223-1230.], 2014[Nifant'ev, I. E., Tavtorkin, A. N., Korchagina, S. A., Gavrilenko, I. F., Glebova, N. N., Kostitsyna, N. N., Yakovlev, V. A., Bondarenko, G. N. & Filatova, M. P. (2014). Appl. Catal. Gen. 478, 219-227.]). Therefore, the obtained manganese derivative with the organophosphate ligand might be a readily available alternative to cymantrene and to its derivatives.

Herein we report on the crystal structure of the Mn organo­phosphate complex [Mn{OOP(O-2,6-iPr2C6H3)2}(CH3OH)5]+[OOP(O-2,6-iPr2C6H3)2]·3CH3OH, which contains a lipophilic diaryl-substituted organophosphate ligand, and on its properties regarding inhibition of the thermal oxidation of polydi­methyl­siloxane.

[Scheme 1]

The title compound can be synthesized (Fig. 1[link]) by the reaction of either manganese(II) nitrate hexa­hydrate, Mn(NO3)2(H2O)6, or manganese(II) chloride tetra­hydrate, MnCl2(H2O)4, with lithium bis­(2,6-diiso­propyl­phen­yl) phosphate methanol solvate, {Li[OOP(O-2,6-iPr2C6H3)2](CH3OH)3}·CH3OH (for its structure, see Minyaev et al., 2015[Minyaev, M. E., Nifant'ev, I. E., Tavtorkin, A. N., Korchagina, S. A. & Zeynalova, S. S. (2015). Acta Cryst. E71, 443-446.]). Performing the reaction in a methanol medium provided the ionic complex instead of the expected neutral complex.

[Figure 1]
Figure 1
Synthesis of [Mn{(2,6-iPr2C6H3-O)2PO2}(CH3OH)5][(2,6-iPr2C6H3-O)2PO2]·(CH3OH)3.

2. Analysis of thermal decomposition inhibition properties

We tested the title Mn compound as a possible inhibitor for the thermal decomposition of the heat-transfer agent PDMS in air at a temperature of 573 K, and compared the obtained results with control experiments and with experiments, where the Ce complex [Ce{O2P(O-2,6-iPr2C6H3)2}2(CH3OH)5]·CH3OH bearing the same ligand was used (Minyaev et al., 2018a[Minyaev, M. E., Tavtorkin, A. N., Korchagina, S. A., Bondarenko, G. N., Churakov, A. V. & Nifant'ev, I. E. (2018a). Acta Cryst. C74, 590-598.]). All experiments were carried out under the same conditions (Table 1[link]).

Table 1
Weight loss (%) versus time and gel time (h) in the thermal destruction of PDMS

The starting mass of PDMS-50 was 2.000 g. The thermal destruction experiments were carried out at T = 573 K. The Mn complex is [Mn{O2P(O-2,6-iPr2C6H3)2}(CH3OH)5]+[O2P(O-2,6-iPr2C6H3)2]·3CH3OH and the Ce complex is [Ce{O2P(O-2,6-iPr2C6H3)2}2(CH3OH)5]·CH3OH.

Entry Additive Weight loss Gel timea
    1 h 2 h 3 h 5 h 9 h  
1 None (control) 1.5% 3.5% 5.5% 9% 13.5% 5 h
2 0.1% Mn 1% 2% 3% 6% 8.5% 9 h
3 0.5% Mn 1% 2% 2.5% 3.5% 6% b
4 0.1% Ce 1% 1.5% 2% 3% 4.5% b
Notes: (a) After this time, the PDMS liquid becomes fully solidified. (b) No precipitate, low viscosity, clear liquid at the end of the experiment (9 h).

The results indicate that the manganese derivative inhibits the thermal decomposition of the silicone heat carrier, although to a much lesser extent than the cerium derivative at the same loads (each 0.1% by mass, entries 2 and 4). Moreover, the PDMS liquid containing 0.1% of the Mn complex became solidified at the end of the experiment. However, with an increase of the manganese derivative load of up to 0.5% (entry 3), the PDMS decomposition decreases to the level displayed by the cerium additive at 0.1%. Thus, the lipophilic manganese derivative may be used as an accessible alternative to cerium and organometallic manganese derivatives.

3. Structural commentary

The mol­ecular components of the title compound comprise an [Mn{O2P(O-2,6-iPr2C6H3)2}(CH3OH)5]+ cation (Fig. 2[link], left), an [O2P(O-2,6-iPr2C6H3)2] anion (Fig. 2[link], right) and three non-coordinating methanol mol­ecules (Fig. 3[link]). The bis­(2,6-diiso­propyl­phen­yl)phosphate ligand in the cation exhibits a κ1O terminal coordination mode. The Mn2+ cation is also coordinated by five methanol mol­ecules, providing a nearly unperturbed octa­hedral environment. The Mn—Omethanol bond distances range from 2.146 (3) to 2.236 (4) Å, whereas the Mn—Ophosphate bond length is shorter, with a value of 2.116 (3) Å (Table 2[link]). The shortest Mn—OMethanol bond (Mn—O1) is at the trans-position to the Mn—Ophosphate bond. The O—Mn—O bond angles between two neighboring ligands (at the cis-positions) are very close to 90° and vary between 86.88 (14)° [O1—Mn—O4] and 93.86 (13)° [O2—Mn—O9]. The O—Mn—O angles between trans-ligands range from 175.26 (14)° [O2—Mn—O4] to 178.62 (16)° [O3—Mn—O5].

Table 2
Selected bond lengths (Å)

Mn1—O1 2.146 (3) P1—O10 1.488 (3)
Mn1—O2 2.236 (4) P1—O11 1.600 (3)
Mn1—O3 2.158 (4) P1—O12 1.597 (3)
Mn1—O4 2.213 (4) P2—O13 1.496 (4)
Mn1—O5 2.220 (4) P2—O14 1.488 (3)
Mn1—O9 2.116 (3) P2—O15 1.607 (3)
P1—O9 1.503 (3) P2—O16 1.600 (3)
[Figure 2]
Figure 2
The structures of the [Mn{OOP(O-2,6-iPr2C6H3)2}(CH3OH)5]+ cation (left) and [OOP(O-2,6-iPr2C6H3)2] anion (right). Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms have been omitted for clarity.
[Figure 3]
Figure 3
The asymmetric unit and hydrogen bonding within it. Displacement ellipsoids are drawn at the 50% probability level. Only hy­droxy H atoms and only Cipso atoms (C9, C21, C33 and C45) of aryl groups are shown for clarity.

The O—Cipso bond distances [which range from 1.403 (5) Å for O12–C21 to 1.409 (5) Å for O16—C45] correspond to those of a slightly shortened regular single O—C bond (1.43 Å), indicating no significant charge redistribution between the PO4 and aryl fragments. Both phospho­rous atoms adopt distorted tetra­hedral environments. The value of the P—OMn distance [P1—O9 = 1.503 (3) Å] is very close to the P—O distances for O atoms that are not connected to any other non-H atoms in both phosphate groups [1.488 (3)–1.496 (4) Å for the P1—O10, P2—O13 and P2—O14 bonds; see Table 2[link]]. This indicates a mainly ionic character of the Mn—phosphate bond. The P—OC bond lengths are considerably higher [1.597 (3)–1.607 (3) Å]. Regardless of aryl steric hindrance, the OC—P—OC bond angles are the smallest [100.3 (2)° for O11—P1—O12 and 99.3 (2)° for O15—P2—O16] among all of the O—P—O angles, which range from 105.8 (2)° for O10—P1—O12 to 117.1 (2)° for O13—P2—O14.

All of these facts point not only to an approximately equal negative charge redistribution on atoms O9, O10 and O13, O14, but also to more pronounced double-bond character for the corresponding P—O bonds compared to the P—OC bonds. These results are in good agreement with data obtained for rare-earth phosphates bearing the same ligand: [Ln{O2P(O-2,6-iPr2C6H3)2}2Cl(CH3OH)4]·2CH3OH (Ln = Nd, Lu, Y; Minyaev et al., 2017[Minyaev, M. E., Nifant'ev, I. E., Tavtorkin, A. N., Korchagina, S. A., Zeynalova, S. S., Ananyev, I. V. & Churakov, A. V. (2017). Acta Cryst. C73, 820-827.]), [Ln{O2P(O-2,6-iPr2C6H3)2}3(CH3OH)5]·CH3OH (Ln = La, Ce, Nd; Minyaev et al., 2018a[Minyaev, M. E., Tavtorkin, A. N., Korchagina, S. A., Bondarenko, G. N., Churakov, A. V. & Nifant'ev, I. E. (2018a). Acta Cryst. C74, 590-598.]), {La2[(2,6-iPr2C6H3-O)2POO]5(H2O)2(OH)}·2(hexa­ne) and {Nd2[(2,6-iPr2C6H3-O)2POO]4(H2O)4(OH)}+[(2,6-iPr2C6H3-O)2POO]·2(hepta­ne) (Minyaev et al., 2018b[Minyaev, M. E., Korchagina, S. A., Tavtorkin, A. N., Churakov, A. V. & Nifant'ev, I. E. (2018b). Acta Cryst. C74, 673-682.]).

4. Supra­molecular features

The [Mn{O2P(O-2,6-iPr2C6H3)2}(CH3OH)5]+ cation exhibits one intra­molecular hydrogen bond (O5—H5⋯O10, Table 3[link]). The [OOP(O-2,6-iPr2C6H3)2] anion and the cation are connected via two hydrogen bonds: O1—H1⋯O13 and O2—H2⋯O14. The cation is also connected to the non-coordin­ating methanol mol­ecules via O3—H3⋯O7 and O4—-H4⋯O6 hydrogen bonds, and further linked to the third mol­ecule by the O7—H7⋯O8 hydrogen bond, forming the supramolecular moiety shown in Fig. 3[link]. These moieties are linked by O6—H6⋯O14i and O8—H8⋯O10ii bonds [symmetry codes: (i) x, −y + 1, z − [{1\over 2}]; (ii) x, −y + 1, z + [{1\over 2}]; see Table 3[link]], forming infinite chains along the c-axis direction (Fig. 4[link]).

Table 3
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O13 0.85 1.79 2.537 (5) 145
O2—H2⋯O14 0.82 1.99 2.724 (5) 148
O3—H3⋯O7 0.86 1.79 2.644 (6) 170
O4—H4⋯O6 0.85 1.95 2.700 (7) 147
O5—H5⋯O10 0.85 1.84 2.661 (5) 163
O6—H6⋯O14i 0.86 1.89 2.708 (6) 157
O7—H7⋯O8 0.85 1.88 2.697 (8) 159
O8—H8⋯O10ii 0.85 1.86 2.708 (7) 174
Symmetry codes: (i) [x, -y+1, z-{\script{1\over 2}}]; (ii) [x, -y+1, z+{\script{1\over 2}}].
[Figure 4]
Figure 4
An infinite one-dimensional supramolecular chain {[Mn{OOP(O-2,6-iPr2C6H3)2}(CH3OH)5]+[OOP(O-2,6-iPr2C6H3)2]·3CH3OH3} formed by O—H⋯O bonds (blue dashed lines). Displacement ellipsoids are drawn at the 50% probability level. Disorder is not shown.

The presence of two separate ions in the crystal lattice can be explained by the relatively large solvation energy obtained from the formation of many O—H⋯O bonds within a one-dimensional hydrogen-bond network. This might be one of the driving forces for crystal formation.

5. Database survey

The crystal structures of manganese complexes with various di-substituted organophosphate ligands have not yet been studied well. Thus, the number of structures in the Cambridge Structural Database (CSD version 5.38, latest update May 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) is limited to 20 (after the exclusion of duplicated structures). These comprise: one mononuclear complex (MOKCEU; Murugavel & Sathiyendiran, 2001[Murugavel, R. & Sathiyendiran, M. (2001). Chem. Lett. 30, 84-85.]); four binuclear complexes [DAVFEM (Shiraishi et al., 2005[Shiraishi, H., Jikido, R., Matsufuji, K., Nakanishi, T., Shiga, T., Ohba, M., Sakai, K., Kitagawa, H. & Okawa, H. (2005). Bull. Chem. Soc. Jpn, 78, 1072-1076.]), ENIMUJ (Yashiro et al., 2003[Yashiro, M., Higuchi, M., Komiyama, M. & Ishii, Y. (2003). Bull. Chem. Soc. Jpn, 76, 1813-1817.]), YIWYUA and YIWZAH (Pothi­raja et al., 2014[Pothiraja, R., Rajakannu, P., Vishnoi, P., Butcher, R. J. & Murugavel, R. (2014). Inorg. Chim. Acta, 414, 264-273.])]; three tetra­nuclear complexes (YOSPIH, YOSPON and YOSPUT; Van Allsburg et al., 2015[Van Allsburg, K. M., Anzenberg, E., Drisdell, W. S., Yano, J. & Tilley, T. D. (2015). Chem. Eur. J. 21, 4646-4654.]); two trinuclear heterometallic complexes [ENEHAI (Nakajima et al., 2016[Nakajima, T., Yamashiro, C., Taya, M., Kure, B. & Tanase, T. (2016). Eur. J. Inorg. Chem. pp. 2764-2773.]) and RITKIO (Dean et al., 1997[Dean, N. S., Mokry, L. M., Bond, M. R., Mohan, M., Otieno, T., O'Connor, C. J., Spartalian, K. & Carrano, C. J. (1997). Inorg. Chem. 36, 1424-1430.])]; two dodeca­nuclear complexes [DAGJEB/DAGJEB01 (Bian et al., 2004[Bian, G.-Q., Kuroda-Sowa, T., Konaka, H., Hatano, M., Maekawa, M., Munakata, M., Miyasaka, H. & Yamashita, M. (2004). Inorg. Chem. 43, 4790-4792.]; Kuroda-Sowa et al., 2005[Kuroda-Sowa, T., Bian, G.-Q., Hatano, M., Konaka, H., Fukuda, S., Miyoshi, S., Maekawa, M., Munakata, M., Miyasaka, H. & Yamashita, M. (2005). Polyhedron, 24, 2680-2690.]) and XUBXOH/XUBXOH01 (Kuroda-Sowa et al., 2002[Kuroda-Sowa, T., Fukuda, S., Miyoshi, S., Maekawa, M., Munakata, M., Miyasaka, H. & Yamashita, M. (2002). Chem. Lett. 31, 682-683.], 2005[Kuroda-Sowa, T., Bian, G.-Q., Hatano, M., Konaka, H., Fukuda, S., Miyoshi, S., Maekawa, M., Munakata, M., Miyasaka, H. & Yamashita, M. (2005). Polyhedron, 24, 2680-2690.])]; eight coordination polymers [KOZZAC and KOZZUW (Rajakannu et al., 2015[Rajakannu, P., Howlader, R., Kalita, A. Ch., Butcher, R. J. & Murugavel, R. (2015). Inorg. Chem. Front. 2, 55-66.]), LULGEE (Sathiyendiran & Murugavel, 2002[Sathiyendiran, M. & Murugavel, R. (2002). Inorg. Chem. 41, 6404-6411.]), ODEWOK (Rafizadeh et al., 2007[Rafizadeh, M., Amani, V. & Farajian, H. (2007). Z. Anorg. Allg. Chem. 633, 1143-1145.]), SAMNEA/SAMNEA01 (Pothiraja et al., 2004[Pothiraja, R., Sathiyendiran, M., Butcher, R. J. & Murugavel, R. (2004). Inorg. Chem. 43, 7585-7587.], 2005[Pothiraja, R., Sathiyendiran, M., Butcher, R. J. & Murugavel, R. (2005). Inorg. Chem. 44, 6314-6323.]), TEKQOR and TEKQUX (Dey et al., 2013[Dey, R., Bhattacharya, B., Colacio, E. & Ghoshal, D. (2013). Dalton Trans. 42, 2094-2106.]) and WENSUE (Rafizadeh et al., 2006[Rafizadeh, M., Amani, V. & Aghayan, H. (2006). Acta Cryst. E62, m2450-m2452.])]. All of the above are heteroleptic complexes containing the following di-substituted organophosphate ligands: PO2(OPh)2, PO2(OC6H4-4-NO2)2, PO2(OMe)2, PO2(OtBu)2 and PO2(OCMe2CMe2O). The ligands mainly display a μ2-κ1O:κ1O′ bridging coordination mode, and occasionally a κ1O terminal mode. The Mn complexes, especially mononuclear ones, with other disubstituted organophosphate anions are yet to be synthesized. It is worth mentioning that the tile complex is mononuclear, incorporates a novel organo­phosphate ligand, and is the first Mn–phosphate complex with a phosphate anion separated from the Mn complex cation in the crystal lattice.

6. Synthesis and crystallization

6.1. General experimental remarks

The synthesis of the title complex was carried out under an argon atmosphere. Lithium bis­(2,6-diiso­propyl­phen­yl) phosphate methanol tetra­solvate, [Li{OOP(O-2,6-iPr2C6H3)2}(CH3OH)3]·CH3OH, was synthesized according to the literature procedure (Minyaev et al., 2015[Minyaev, M. E., Nifant'ev, I. E., Tavtorkin, A. N., Korchagina, S. A. & Zeynalova, S. S. (2015). Acta Cryst. E71, 443-446.]). C/H elemental analysis was performed with a Perkin–Elmer 2400 Series II elemental analyzer. Methanol was distilled over a Ca/Mg alloy and stored over mol­ecular sieves (4 Å). Polydi­methyl­siloxane (PDMS-50, viscosity 50 mm2 s−1) was used as purchased (Sofex–Silicone). XRF studies were performed with an ARL ADVANTIX instrument. Powder patterns (supplementary Figs. S1–S5) were recorded on a Bruker D8 Advance Vario diffractometer, using Cu Kα1 radiation [Ge(111) monochromator] and a LynxEye 1D position-sensitive detector in transmission mode at room temperature. The 2θ range was 2–90° with a 0.01° step for all samples. The Rietveld analysis was carried out with Topas software (Bruker, 2015[Bruker (2015). TOPAS. Bruker AXS, Karlsruhe, Germany.]).

6.2. Synthesis and crystallization of the complex

A solution of Mn(NO3)2(H2O)6 (159 mg, 0.55 mmol) in 5 ml of methanol was carefully added to a solution of [Li{OOP(O-2,6-iPr2C6H3)2}(CH3OH)3]·CH3OH (580 mg, 1.05 mmol) in 5 ml of methanol at room temperature. The mixture was stirred for 10 s. Crystals started to precipitate out after 20 min.. The following day, some crystals were taken from the mother liquor for X-ray studies. The remaining crystals were filtered off, washed with methanol (2 × 10 ml) and dried briefly under dynamic vacuum [yield 485 mg (0.42 mmol, 81%) as colourless prismatic crystals. Analysis found (calculated for C56H100MnO16P2): C 58.75 (58.68), H 8.72% (8.79%). The same com­pound was prepared in 80% yield from MnCl2(H2O)4 under similar reaction conditions. The crystal shapes varied from needles to blocks, depending on the synthesis and crystal growth conditions. The formed high-spin Mn complex cannot be studied by NMR techniques because of its paramagnetic behaviour.

6.3. Thermal oxidation of polydi­methyl­siloxane

A mixture (2.000 g) of the Mn complex (either 2 mg or 10 mg) and PDMS was placed in a glass beaker. No additive was used in the control experiments. The beaker was placed into a muffle furnace with a preset temperature of 573 K. The beaker was periodically taken out from the furnace and weighed to determine the weight loss.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The positions of most hydrogen atoms were found from the difference electron-density map, but they were positioned geometrically (C—H = 0.95 Å for aromatic, 0.98 Å for methyl and 0.99 Å for methyl­ene H atoms) and refined as riding atoms with relative isotropic displacement parameters Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) otherwise. The positions of the hy­droxy H atoms were refined with restrained O—H distances of 0.85 (2) Å with Uiso(H)= 1.2Ueq(O). A rotating group model was applied for methyl groups. Two reflections ([\overline{2}] 0 0 and 2 0 0) were affected by the beam stop, and were therefore omitted from the refinement. Two reflections ([\overline{8}] 2 10 and 4 0 4) were also omitted from the final cycles of the refinement as their (Iobs − Icalcd)/σ(w) values were over 10.

Table 4
Experimental details

Crystal data
Chemical formula [Mn(C24H34O4P)(CH4O)5](C24H34O4P)·3CH4O
Mr 1146.23
Crystal system, space group Monoclinic, Cc
Temperature (K) 150
a, b, c (Å) 31.872 (6), 12.640 (2), 16.881 (3)
β (°) 109.990 (2)
V3) 6391 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.32
Crystal size (mm) 0.40 × 0.40 × 0.25
 
Data collection
Diffractometer Bruker SMART APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc.,Madison, Wisconsin, USA.])
Tmin, Tmax 0.724, 0.923
No. of measured, independent and observed [I > 2σ(I)] reflections 36871, 18839, 16119
Rint 0.031
(sin θ/λ)max−1) 0.714
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.197, 1.07
No. of reflections 18839
No. of parameters 730
No. of restraints 52
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 3.11, −0.74
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.47 (2)
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc.,Madison, Wisconsin, USA.]), SHELXS2013 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2017 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and Mercury (Macrae et al.,2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

One of the isopropyl groups is disordered over two sets of sites with an occupancy ratio of 0.57 (4):0.43 (4) for atoms C40A/C41A and C40B/C41B, respectively. Four HC—CH3 distances in the disordered fragment were restrained to be equal within an estimated standard deviation of 0.01 Å. Similarity restraints for thermal displacement ellipsoids were also applied. The crystal studied was refined as an inversion twin with a domain ratio of 0.47 (3):0.53 (3).

The final crystallographic model exhibits some problems, including two relatively high remaining Q peaks of residual electron density, which could not be reasonably handled, and a rather high Δρmax/Δρmin ratio.

The problems might have been caused by (1) incomplete substitution of NO3 in crystals initially made from Mn(NO3)2(H2O)6, (2) some content of other metal impurities, (3) crystal decomposition during data collection, (4) twinning or (5) disorder. Several attempts to prepare crystal batches were made, starting from Mn(NO3)2(H2O)6 and from MnCl2(H2O)4 by varying the crystal-growth conditions slightly. Several attempts to reestablish the crystal structure were made using different diffractometers and software (see Table S1 in the supporting information for details). Crystallographic models of the studied crystals demonstrated the same problems regardless of differences in the preparation and the instrument used. Modelling disorder and applying various twinning laws (using CELL_NOW) were unsuccessful. The X-ray fluorescence (XRF) analysis demonstrated the presence of only the elements P and Mn and the absence of a noticeable qu­antity of any other heavy element (heavier than Ne). Several C/H analyses undertaken immediately after the crystal preparation showed very similar results that were nearly identical to calculated values.

Inter­esting results were obtained by using the powder X-ray diffraction (pXRD) method (see the supporting information). After several days without being in the solvent, the sample became non-single-phased. Moreover, the sample demonstrated dramatic changes in its phase composition during the pXRD measurements (see Figs. S2–S5). Such a phase change might be attributed to the facile loss of non-coordinating methanol mol­ecules.

Therefore, the inherent problems of the presented crystallographic model can only be the result of slow crystal decomposition during the X-ray measurements or/and, more likely, from some subtle unrevealed twinning.

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010) and Mercury (Macrae et al.,2006).

[Bis(2,6-diisopropylphenyl) phosphato-κO]pentakis(methanol-κO)manganese bis(2,6-diisopropylphenyl) phosphate methanol trisolvate top
Crystal data top
[Mn(C24H34O4P)(CH4O)5](C24H34O4P)·3CH4OF(000) = 2476
Mr = 1146.23Dx = 1.191 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 31.872 (6) ÅCell parameters from 9949 reflections
b = 12.640 (2) Åθ = 2.3–30.5°
c = 16.881 (3) ŵ = 0.32 mm1
β = 109.990 (2)°T = 150 K
V = 6391 (2) Å3Prism, colourless
Z = 40.40 × 0.40 × 0.25 mm
Data collection top
Bruker SMART APEXII
diffractometer
18839 independent reflections
Radiation source: fine-focus sealed tube16119 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 30.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 4545
Tmin = 0.724, Tmax = 0.923k = 1717
36871 measured reflectionsl = 2424
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.072H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.197 w = 1/[σ2(Fo2) + (0.1189P)2 + 8.5165P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.002
18839 reflectionsΔρmax = 3.11 e Å3
730 parametersΔρmin = 0.74 e Å3
52 restraintsAbsolute structure: Refined as an inversion twin
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.47 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.51624 (2)0.56670 (5)0.44955 (4)0.02200 (15)
O10.45043 (11)0.5084 (3)0.4319 (2)0.0317 (8)
H10.4396 (4)0.5541 (15)0.4563 (8)0.048*
C10.41774 (19)0.4808 (7)0.3527 (4)0.0469 (16)
H1A0.4043560.4124170.3577520.070*
H1B0.4320050.4757510.3097810.070*
H1C0.3944470.5351740.3362040.070*
O20.51222 (12)0.6630 (3)0.5578 (2)0.0324 (8)
H20.4873 (9)0.6797 (7)0.5578 (2)0.049*
C20.54381 (19)0.7447 (5)0.5988 (4)0.0374 (12)
H2A0.5287520.7994320.6203220.056*
H2B0.5559950.7761270.5582410.056*
H2C0.5681340.7138680.6457660.056*
O30.54723 (14)0.4397 (4)0.5350 (3)0.0419 (10)
H30.5324 (5)0.3856 (18)0.5417 (4)0.063*
C30.5834 (2)0.4602 (7)0.6116 (4)0.0498 (16)
H3A0.5827580.4087050.6545090.075*
H3B0.5804680.5318350.6313330.075*
H3C0.6117840.4542250.6013160.075*
O40.51420 (13)0.4692 (3)0.3394 (3)0.0336 (8)
H40.51595 (14)0.402 (2)0.3393 (3)0.050*
C40.5057 (2)0.5088 (6)0.2549 (4)0.0444 (14)
H4A0.5148940.4556150.2217730.067*
H4B0.5228070.5739810.2574620.067*
H4C0.4738110.5235790.2281820.067*
O50.48595 (12)0.6992 (3)0.3625 (3)0.0335 (8)
H50.5086 (8)0.7311 (11)0.3584 (3)0.050*
C50.4553 (2)0.7743 (6)0.3730 (5)0.0472 (15)
H5A0.4424180.8148780.3207840.071*
H5B0.4708280.8224520.4192110.071*
H5C0.4314220.7375560.3861750.071*
O60.48720 (19)0.2694 (4)0.2918 (3)0.0506 (12)
H60.4699 (6)0.2887 (8)0.2426 (17)0.076*
C60.4648 (3)0.1958 (8)0.3256 (7)0.071 (3)
H6A0.4552520.1353450.2872730.107*
H6B0.4385470.2294620.3325500.107*
H6C0.4849050.1713130.3805330.107*
O70.5105 (2)0.2605 (4)0.5589 (4)0.0547 (13)
H70.5293 (7)0.2376 (9)0.6050 (16)0.082*
C70.4701 (4)0.2874 (8)0.5717 (10)0.087 (3)
H7A0.4473950.2337790.5454710.130*
H7B0.4597630.3565670.5461850.130*
H7C0.4751960.2906010.6322910.130*
O80.5566 (3)0.1457 (5)0.6957 (4)0.0733 (19)
H80.5582 (3)0.1795 (12)0.7402 (15)0.110*
C80.5546 (4)0.0388 (7)0.7096 (6)0.071 (3)
H8A0.5828790.0154020.7513090.107*
H8B0.5494150.0003870.6566640.107*
H8C0.5301320.0244460.7307770.107*
P10.59610 (3)0.69092 (9)0.40155 (6)0.0186 (2)
O90.58012 (10)0.6249 (3)0.4596 (2)0.0206 (6)
O100.56168 (12)0.7604 (3)0.3429 (2)0.0274 (7)
O110.63971 (10)0.7556 (3)0.4553 (2)0.0229 (6)
O120.61596 (10)0.6216 (3)0.3435 (2)0.0207 (6)
C90.64458 (15)0.8004 (4)0.5344 (3)0.0250 (9)
C100.62856 (17)0.9022 (4)0.5377 (4)0.0325 (11)
C110.6356 (2)0.9445 (5)0.6181 (5)0.0437 (14)
H110.6252801.0139250.6229880.052*
C120.6572 (2)0.8867 (6)0.6907 (4)0.0446 (14)
H120.6609790.9160220.7444620.053*
C130.67350 (19)0.7859 (5)0.6847 (3)0.0361 (11)
H130.6883950.7472360.7346720.043*
C140.66832 (16)0.7409 (4)0.6069 (3)0.0255 (9)
C150.6067 (2)0.9678 (5)0.4592 (4)0.0424 (13)
H150.6021640.9196070.4099780.051*
C160.6377 (4)1.0557 (8)0.4513 (7)0.088 (4)
H16A0.6637901.0246080.4419840.132*
H16B0.6474721.0976120.5032940.132*
H16C0.6218091.1014720.4036280.132*
C170.5615 (4)1.0072 (12)0.4531 (8)0.100 (4)
H17A0.5398940.9491040.4360310.149*
H17B0.5524121.0640610.4111730.149*
H17C0.5624741.0343930.5080850.149*
C180.68866 (16)0.6365 (4)0.6000 (3)0.0288 (10)
H180.6664950.5967530.5528510.035*
C190.73069 (17)0.6506 (5)0.5770 (4)0.0349 (11)
H19A0.7230640.6876910.5228810.052*
H19B0.7432880.5811070.5724120.052*
H19C0.7526790.6921680.6208320.052*
C200.6993 (2)0.5684 (6)0.6793 (4)0.0432 (14)
H20A0.6728840.5643270.6964770.065*
H20B0.7240670.6001050.7247870.065*
H20C0.7076380.4970500.6674570.065*
C210.65996 (15)0.5850 (4)0.3640 (3)0.0229 (8)
C220.69048 (16)0.6485 (4)0.3443 (3)0.0270 (9)
C230.73334 (17)0.6070 (6)0.3618 (4)0.0380 (12)
H230.7552560.6488900.3500390.046*
C240.74489 (19)0.5081 (6)0.3953 (4)0.0432 (14)
H240.7743250.4820280.4067090.052*
C250.7130 (2)0.4466 (5)0.4124 (4)0.0394 (13)
H250.7208280.3777810.4353360.047*
C260.66984 (17)0.4836 (4)0.3968 (3)0.0279 (9)
C270.67872 (18)0.7571 (5)0.3055 (3)0.0321 (10)
H270.6477540.7747910.3032530.038*
C280.7104 (3)0.8409 (6)0.3582 (5)0.0548 (18)
H28A0.7126530.8336430.4173080.082*
H28B0.6988830.9113740.3376890.082*
H28C0.7399520.8316680.3534470.082*
C290.6796 (3)0.7569 (6)0.2156 (4)0.0478 (15)
H29A0.6598850.7009780.1830230.072*
H29B0.7101120.7441110.2168730.072*
H29C0.6692380.8256320.1892130.072*
C300.6346 (2)0.4124 (4)0.4107 (3)0.0316 (10)
H300.6109500.4589360.4185540.038*
C310.6530 (3)0.3440 (6)0.4892 (4)0.0498 (16)
H31A0.6667220.3893010.5384070.075*
H31B0.6755750.2955080.4824080.075*
H31C0.6287220.3030660.4973850.075*
C320.6127 (2)0.3442 (6)0.3331 (4)0.0435 (14)
H32A0.5871650.3065810.3395760.065*
H32B0.6343980.2928850.3269520.065*
H32C0.6023940.3893570.2829550.065*
P20.40310 (3)0.65637 (9)0.57832 (6)0.0196 (2)
O130.40161 (12)0.5762 (3)0.5122 (2)0.0271 (7)
O140.44699 (11)0.7068 (3)0.6233 (2)0.0277 (7)
O150.36432 (11)0.7424 (3)0.5400 (2)0.0268 (7)
O160.38666 (10)0.6071 (3)0.6500 (2)0.0207 (6)
C330.35548 (16)0.7897 (4)0.4612 (3)0.0262 (9)
C340.37518 (19)0.8881 (4)0.4574 (4)0.0374 (12)
C350.3646 (2)0.9357 (5)0.3782 (5)0.0500 (17)
H350.3772331.0024280.3733480.060*
C360.3366 (3)0.8874 (6)0.3081 (5)0.058 (2)
H360.3304230.9201130.2546560.070*
C370.3166 (3)0.7909 (6)0.3135 (4)0.0518 (17)
H370.2967720.7593420.2636900.062*
C380.32544 (18)0.7394 (4)0.3912 (3)0.0334 (11)
C390.4047 (2)0.9445 (5)0.5350 (6)0.058 (2)
H39A0.4224840.8875360.5727930.070*0.57 (4)
H39B0.4073750.8936410.5818210.070*0.43 (4)
C40A0.3824 (9)1.002 (2)0.586 (2)0.082 (6)0.57 (4)
H40A0.4041961.0181630.6416040.123*0.57 (4)
H40B0.3584830.9580160.5925950.123*0.57 (4)
H40C0.3696361.0681670.5574480.123*0.57 (4)
C41A0.4384 (8)1.0114 (19)0.5135 (17)0.080 (6)0.57 (4)
H41A0.4608910.9655050.5034870.121*0.57 (4)
H41B0.4529901.0594650.5603640.121*0.57 (4)
H41C0.4233001.0526770.4625460.121*0.57 (4)
C40B0.3777 (10)1.034 (2)0.551 (3)0.080 (8)0.43 (4)
H40D0.3507311.0061810.5589000.121*0.43 (4)
H40E0.3692201.0827060.5028040.121*0.43 (4)
H40F0.3955411.0725130.6019400.121*0.43 (4)
C41B0.4512 (6)0.975 (3)0.548 (3)0.085 (8)0.43 (4)
H41D0.4695800.9107900.5550350.128*0.43 (4)
H41E0.4626941.0191710.5980490.128*0.43 (4)
H41F0.4522871.0140680.4984240.128*0.43 (4)
C420.30163 (18)0.6380 (4)0.3977 (4)0.0359 (12)
H420.3219290.5957330.4456000.043*
C430.2902 (2)0.5700 (5)0.3168 (5)0.0513 (18)
H43A0.2761660.5037860.3248240.077*
H43B0.3176420.5541190.3052130.077*
H43C0.2695860.6090550.2692140.077*
C440.2597 (2)0.6629 (5)0.4174 (4)0.0413 (13)
H44A0.2677370.7015600.4708040.062*
H44B0.2446120.5968320.4218990.062*
H44C0.2397070.7064400.3720850.062*
C450.34258 (14)0.5721 (4)0.6342 (3)0.0233 (8)
C460.33076 (16)0.4681 (4)0.6054 (3)0.0279 (9)
C470.28661 (19)0.4370 (5)0.5914 (4)0.0365 (12)
H470.2772680.3681340.5702520.044*
C480.25617 (17)0.5045 (5)0.6078 (4)0.0390 (13)
H480.2265440.4812950.5987480.047*
C490.26909 (16)0.6054 (5)0.6374 (4)0.0354 (12)
H490.2479310.6510350.6480400.042*
C500.31255 (15)0.6426 (4)0.6521 (3)0.0252 (9)
C510.3635 (2)0.3893 (4)0.5925 (4)0.0349 (11)
H510.3925470.4263630.6024650.042*
C520.3713 (3)0.2997 (5)0.6566 (5)0.0515 (17)
H52A0.3753280.3293920.7123780.077*
H52B0.3980460.2600640.6587190.077*
H52C0.3454060.2521990.6398850.077*
C530.3473 (2)0.3454 (5)0.5018 (4)0.0441 (14)
H53A0.3393290.4043570.4616550.066*
H53B0.3210860.3004200.4932720.066*
H53C0.3711940.3037140.4928010.066*
C540.32659 (17)0.7519 (4)0.6884 (3)0.0286 (9)
H540.3573290.7659470.6876780.034*
C550.3285 (2)0.7536 (6)0.7818 (4)0.0422 (13)
H55A0.3490820.6986220.8136220.063*
H55B0.2986390.7401840.7839630.063*
H55C0.3390200.8229630.8065530.063*
C560.2958 (2)0.8386 (5)0.6375 (5)0.0445 (14)
H56A0.2966480.8392530.5800440.067*
H56B0.3056480.9073090.6641840.067*
H56C0.2651590.8247650.6355360.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0168 (3)0.0254 (3)0.0250 (3)0.0019 (2)0.0087 (2)0.0027 (3)
O10.0203 (15)0.046 (2)0.0307 (18)0.0062 (15)0.0115 (14)0.0132 (16)
C10.023 (2)0.075 (5)0.040 (3)0.013 (3)0.007 (2)0.029 (3)
O20.0208 (15)0.044 (2)0.037 (2)0.0079 (14)0.0156 (14)0.0157 (16)
C20.028 (2)0.044 (3)0.041 (3)0.012 (2)0.013 (2)0.017 (2)
O30.0301 (19)0.043 (2)0.048 (2)0.0038 (17)0.0073 (17)0.0173 (19)
C30.034 (3)0.070 (5)0.040 (3)0.011 (3)0.005 (2)0.019 (3)
O40.0324 (18)0.0347 (19)0.036 (2)0.0044 (15)0.0143 (15)0.0090 (15)
C40.048 (3)0.052 (4)0.038 (3)0.018 (3)0.020 (3)0.015 (3)
O50.0211 (15)0.0308 (19)0.047 (2)0.0036 (13)0.0093 (15)0.0033 (16)
C50.025 (2)0.053 (4)0.057 (4)0.012 (2)0.005 (2)0.006 (3)
O60.061 (3)0.047 (3)0.037 (2)0.008 (2)0.007 (2)0.0022 (19)
C60.067 (5)0.064 (5)0.076 (6)0.001 (4)0.016 (4)0.028 (5)
O70.073 (4)0.034 (2)0.059 (3)0.003 (2)0.024 (3)0.006 (2)
C70.079 (7)0.049 (5)0.150 (11)0.008 (4)0.061 (7)0.009 (6)
O80.119 (6)0.057 (3)0.039 (3)0.001 (3)0.020 (3)0.014 (2)
C80.094 (7)0.052 (4)0.058 (5)0.017 (4)0.013 (5)0.019 (4)
P10.0157 (4)0.0217 (5)0.0178 (4)0.0022 (4)0.0048 (4)0.0031 (4)
O90.0177 (13)0.0232 (15)0.0213 (14)0.0026 (11)0.0072 (11)0.0031 (11)
O100.0245 (15)0.0229 (16)0.0292 (17)0.0019 (12)0.0019 (13)0.0036 (13)
O110.0186 (13)0.0254 (16)0.0239 (15)0.0050 (11)0.0061 (11)0.0035 (12)
O120.0161 (13)0.0243 (15)0.0227 (14)0.0013 (11)0.0078 (11)0.0006 (12)
C90.0180 (18)0.028 (2)0.029 (2)0.0085 (16)0.0077 (16)0.0026 (17)
C100.024 (2)0.027 (2)0.045 (3)0.0078 (18)0.010 (2)0.001 (2)
C110.042 (3)0.032 (3)0.057 (4)0.008 (2)0.016 (3)0.012 (3)
C120.044 (3)0.050 (4)0.037 (3)0.014 (3)0.010 (2)0.019 (3)
C130.036 (3)0.042 (3)0.026 (2)0.011 (2)0.005 (2)0.006 (2)
C140.0219 (19)0.029 (2)0.022 (2)0.0104 (17)0.0038 (16)0.0028 (17)
C150.048 (3)0.022 (2)0.052 (4)0.002 (2)0.011 (3)0.002 (2)
C160.092 (7)0.066 (6)0.084 (7)0.045 (5)0.001 (5)0.027 (5)
C170.069 (6)0.139 (11)0.085 (7)0.066 (7)0.020 (6)0.029 (7)
C180.024 (2)0.031 (2)0.022 (2)0.0055 (18)0.0037 (17)0.0023 (17)
C190.024 (2)0.043 (3)0.032 (3)0.003 (2)0.0016 (19)0.000 (2)
C200.035 (3)0.051 (4)0.033 (3)0.002 (2)0.001 (2)0.012 (2)
C210.0209 (19)0.026 (2)0.0222 (19)0.0022 (16)0.0078 (16)0.0014 (16)
C220.023 (2)0.033 (2)0.027 (2)0.0052 (17)0.0107 (17)0.0023 (18)
C230.022 (2)0.060 (4)0.037 (3)0.003 (2)0.016 (2)0.001 (3)
C240.024 (2)0.070 (4)0.037 (3)0.012 (3)0.012 (2)0.001 (3)
C250.035 (3)0.047 (3)0.035 (3)0.016 (2)0.012 (2)0.004 (2)
C260.030 (2)0.029 (2)0.026 (2)0.0059 (18)0.0110 (18)0.0014 (17)
C270.030 (2)0.038 (3)0.033 (2)0.010 (2)0.016 (2)0.003 (2)
C280.062 (4)0.041 (4)0.055 (4)0.021 (3)0.012 (3)0.002 (3)
C290.058 (4)0.057 (4)0.033 (3)0.011 (3)0.022 (3)0.011 (3)
C300.043 (3)0.022 (2)0.035 (3)0.004 (2)0.021 (2)0.0016 (18)
C310.072 (5)0.040 (3)0.037 (3)0.006 (3)0.019 (3)0.007 (3)
C320.046 (3)0.046 (3)0.036 (3)0.014 (3)0.012 (3)0.004 (2)
P20.0128 (4)0.0282 (5)0.0168 (4)0.0042 (4)0.0039 (3)0.0041 (4)
O130.0234 (15)0.0327 (18)0.0260 (16)0.0015 (13)0.0094 (13)0.0055 (13)
O140.0175 (14)0.0394 (19)0.0254 (16)0.0052 (13)0.0064 (12)0.0007 (14)
O150.0237 (15)0.0281 (17)0.0286 (17)0.0090 (13)0.0090 (13)0.0023 (13)
O160.0135 (12)0.0206 (14)0.0271 (15)0.0021 (11)0.0058 (11)0.0010 (12)
C330.024 (2)0.018 (2)0.034 (2)0.0052 (16)0.0073 (18)0.0037 (17)
C340.029 (2)0.017 (2)0.061 (4)0.0064 (18)0.009 (2)0.001 (2)
C350.045 (3)0.025 (3)0.079 (5)0.008 (2)0.019 (3)0.019 (3)
C360.069 (5)0.043 (4)0.061 (5)0.019 (3)0.019 (4)0.029 (3)
C370.059 (4)0.042 (3)0.035 (3)0.011 (3)0.008 (3)0.012 (3)
C380.030 (2)0.028 (2)0.033 (3)0.0063 (19)0.001 (2)0.007 (2)
C390.053 (4)0.022 (3)0.085 (5)0.006 (3)0.005 (4)0.017 (3)
C40A0.090 (11)0.083 (13)0.086 (13)0.035 (10)0.046 (10)0.033 (10)
C41A0.045 (9)0.074 (11)0.114 (14)0.013 (8)0.016 (9)0.040 (10)
C40B0.077 (12)0.058 (13)0.109 (17)0.018 (10)0.035 (13)0.049 (12)
C41B0.032 (9)0.080 (14)0.126 (18)0.016 (9)0.004 (10)0.032 (13)
C420.026 (2)0.027 (2)0.038 (3)0.0010 (18)0.010 (2)0.007 (2)
C430.030 (3)0.043 (3)0.069 (5)0.002 (2)0.002 (3)0.021 (3)
C440.040 (3)0.040 (3)0.035 (3)0.005 (2)0.001 (2)0.002 (2)
C450.0149 (17)0.022 (2)0.032 (2)0.0008 (15)0.0068 (16)0.0058 (17)
C460.024 (2)0.021 (2)0.039 (3)0.0026 (16)0.0108 (19)0.0031 (18)
C470.028 (2)0.035 (3)0.044 (3)0.012 (2)0.009 (2)0.003 (2)
C480.018 (2)0.047 (3)0.052 (3)0.009 (2)0.012 (2)0.004 (3)
C490.019 (2)0.041 (3)0.050 (3)0.0006 (19)0.018 (2)0.003 (2)
C500.0165 (18)0.027 (2)0.033 (2)0.0000 (16)0.0099 (16)0.0028 (18)
C510.039 (3)0.022 (2)0.041 (3)0.005 (2)0.010 (2)0.003 (2)
C520.067 (5)0.033 (3)0.057 (4)0.016 (3)0.025 (3)0.013 (3)
C530.053 (4)0.031 (3)0.047 (3)0.003 (3)0.014 (3)0.003 (2)
C540.030 (2)0.025 (2)0.032 (2)0.0048 (18)0.0130 (19)0.0057 (18)
C550.047 (3)0.045 (3)0.040 (3)0.004 (3)0.023 (3)0.008 (3)
C560.048 (3)0.027 (3)0.053 (4)0.011 (2)0.010 (3)0.005 (2)
Geometric parameters (Å, º) top
Mn1—O12.146 (3)C27—C281.522 (9)
Mn1—O22.236 (4)C27—C291.527 (8)
Mn1—O32.158 (4)C27—H271.0000
Mn1—O42.213 (4)C28—H28A0.9800
Mn1—O52.220 (4)C28—H28B0.9800
Mn1—O92.116 (3)C28—H28C0.9800
O1—C11.430 (6)C29—H29A0.9800
O1—H10.85 (3)C29—H29B0.9800
C1—H1A0.9800C29—H29C0.9800
C1—H1B0.9800C30—C321.522 (8)
C1—H1C0.9800C30—C311.523 (8)
O2—C21.443 (6)C30—H301.0000
O2—H20.82 (3)C31—H31A0.9800
C2—H2A0.9800C31—H31B0.9800
C2—H2B0.9800C31—H31C0.9800
C2—H2C0.9800C32—H32A0.9800
O3—C31.432 (8)C32—H32B0.9800
O3—H30.86 (3)C32—H32C0.9800
C3—H3A0.9800P2—O131.496 (4)
C3—H3B0.9800P2—O141.488 (3)
C3—H3C0.9800P2—O151.607 (3)
O4—C41.448 (8)P2—O161.600 (3)
O4—H40.85 (3)O15—C331.397 (6)
C4—H4A0.9800O16—C451.409 (5)
C4—H4B0.9800C33—C381.394 (7)
C4—H4C0.9800C33—C341.405 (7)
O5—C51.416 (7)C34—C351.397 (10)
O5—H50.85 (3)C34—C391.506 (10)
C5—H5A0.9800C35—C361.360 (12)
C5—H5B0.9800C35—H350.9500
C5—H5C0.9800C36—C371.392 (11)
O6—C61.408 (10)C36—H360.9500
O6—H60.86 (3)C37—C381.405 (8)
C6—H6A0.9800C37—H370.9500
C6—H6B0.9800C38—C421.513 (8)
C6—H6C0.9800C39—C41B1.473 (13)
O7—C71.419 (11)C39—C40A1.482 (13)
O7—H70.85 (3)C39—C40B1.504 (13)
C7—H7A0.9800C39—C41A1.505 (13)
C7—H7B0.9800C39—H39A1.0000
C7—H7C0.9800C39—H39B1.0000
O8—C81.377 (11)C40A—H40A0.9800
O8—H80.85 (3)C40A—H40B0.9800
C8—H8A0.9800C40A—H40C0.9800
C8—H8B0.9800C41A—H41A0.9800
C8—H8C0.9800C41A—H41B0.9800
P1—O91.503 (3)C41A—H41C0.9800
P1—O101.488 (3)C40B—H40D0.9800
P1—O111.600 (3)C40B—H40E0.9800
P1—O121.597 (3)C40B—H40F0.9800
O11—C91.410 (6)C41B—H41D0.9800
O12—C211.403 (5)C41B—H41E0.9800
C9—C101.392 (8)C41B—H41F0.9800
C9—C141.415 (7)C42—C441.515 (9)
C10—C111.404 (9)C42—C431.547 (9)
C10—C151.517 (9)C42—H421.0000
C11—C121.391 (10)C43—H43A0.9800
C11—H110.9500C43—H43B0.9800
C12—C131.392 (10)C43—H43C0.9800
C12—H120.9500C44—H44A0.9800
C13—C141.387 (7)C44—H44B0.9800
C13—H130.9500C44—H44C0.9800
C14—C181.493 (8)C45—C461.408 (6)
C15—C171.494 (12)C45—C501.414 (6)
C15—C161.523 (10)C46—C471.401 (7)
C15—H151.0000C46—C511.511 (7)
C16—H16A0.9800C47—C481.389 (9)
C16—H16B0.9800C47—H470.9500
C16—H16C0.9800C48—C491.380 (9)
C17—H17A0.9800C48—H480.9500
C17—H17B0.9800C49—C501.402 (6)
C17—H17C0.9800C49—H490.9500
C18—C191.528 (8)C50—C541.517 (7)
C18—C201.529 (8)C51—C521.527 (9)
C18—H181.0000C51—C531.542 (9)
C19—H19A0.9800C51—H511.0000
C19—H19B0.9800C52—H52A0.9800
C19—H19C0.9800C52—H52B0.9800
C20—H20A0.9800C52—H52C0.9800
C20—H20B0.9800C53—H53A0.9800
C20—H20C0.9800C53—H53B0.9800
C21—C221.387 (6)C53—H53C0.9800
C21—C261.389 (7)C54—C561.525 (8)
C22—C231.397 (7)C54—C551.556 (8)
C22—C271.512 (8)C54—H541.0000
C23—C241.370 (10)C55—H55A0.9800
C23—H230.9500C55—H55B0.9800
C24—C251.385 (10)C55—H55C0.9800
C24—H240.9500C56—H56A0.9800
C25—C261.390 (7)C56—H56B0.9800
C25—H250.9500C56—H56C0.9800
C26—C301.519 (8)
O9—Mn1—O1176.85 (14)C28—C27—H27108.4
O9—Mn1—O389.81 (14)C29—C27—H27108.4
O1—Mn1—O392.26 (16)C27—C28—H28A109.5
O9—Mn1—O490.71 (14)C27—C28—H28B109.5
O1—Mn1—O486.88 (14)H28A—C28—H28B109.5
O3—Mn1—O491.29 (18)C27—C28—H28C109.5
O9—Mn1—O588.84 (13)H28A—C28—H28C109.5
O1—Mn1—O589.09 (15)H28B—C28—H28C109.5
O3—Mn1—O5178.62 (16)C27—C29—H29A109.5
O4—Mn1—O589.03 (16)C27—C29—H29B109.5
O9—Mn1—O293.86 (13)H29A—C29—H29B109.5
O1—Mn1—O288.51 (13)C27—C29—H29C109.5
O3—Mn1—O289.98 (18)H29A—C29—H29C109.5
O4—Mn1—O2175.26 (14)H29B—C29—H29C109.5
O5—Mn1—O289.81 (16)C26—C30—C32110.4 (4)
C1—O1—Mn1125.4 (3)C26—C30—C31112.6 (5)
C1—O1—H1109.5C32—C30—C31110.8 (5)
Mn1—O1—H1103.8C26—C30—H30107.6
O1—C1—H1A109.5C32—C30—H30107.6
O1—C1—H1B109.5C31—C30—H30107.6
H1A—C1—H1B109.5C30—C31—H31A109.5
O1—C1—H1C109.5C30—C31—H31B109.5
H1A—C1—H1C109.5H31A—C31—H31B109.5
H1B—C1—H1C109.5C30—C31—H31C109.5
C2—O2—Mn1123.8 (3)H31A—C31—H31C109.5
C2—O2—H2109.5H31B—C31—H31C109.5
Mn1—O2—H2117.6C30—C32—H32A109.5
O2—C2—H2A109.5C30—C32—H32B109.5
O2—C2—H2B109.5H32A—C32—H32B109.5
H2A—C2—H2B109.5C30—C32—H32C109.5
O2—C2—H2C109.5H32A—C32—H32C109.5
H2A—C2—H2C109.5H32B—C32—H32C109.5
H2B—C2—H2C109.5O14—P2—O13117.1 (2)
C3—O3—Mn1120.8 (4)O14—P2—O16105.98 (18)
C3—O3—H3109.5O13—P2—O16111.4 (2)
Mn1—O3—H3122.2O14—P2—O15112.0 (2)
O3—C3—H3A109.5O13—P2—O15109.5 (2)
O3—C3—H3B109.5O16—P2—O1599.33 (18)
H3A—C3—H3B109.5C33—O15—P2123.4 (3)
O3—C3—H3C109.5C45—O16—P2122.9 (3)
H3A—C3—H3C109.5C38—C33—O15117.9 (4)
H3B—C3—H3C109.5C38—C33—C34123.6 (5)
C4—O4—Mn1125.3 (4)O15—C33—C34118.4 (5)
C4—O4—H4109.5C35—C34—C33117.4 (6)
Mn1—O4—H4125.0C35—C34—C39120.2 (6)
O4—C4—H4A109.5C33—C34—C39122.4 (6)
O4—C4—H4B109.5C36—C35—C34120.7 (6)
H4A—C4—H4B109.5C36—C35—H35119.6
O4—C4—H4C109.5C34—C35—H35119.6
H4A—C4—H4C109.5C35—C36—C37121.0 (7)
H4B—C4—H4C109.5C35—C36—H36119.5
C5—O5—Mn1125.9 (4)C37—C36—H36119.5
C5—O5—H5109.5C36—C37—C38121.1 (7)
Mn1—O5—H5102.9C36—C37—H37119.4
O5—C5—H5A109.5C38—C37—H37119.4
O5—C5—H5B109.5C33—C38—C37116.1 (5)
H5A—C5—H5B109.5C33—C38—C42122.8 (5)
O5—C5—H5C109.5C37—C38—C42121.0 (5)
H5A—C5—H5C109.5C41B—C39—C40B112.9 (17)
H5B—C5—H5C109.5C40A—C39—C41A112.9 (13)
C6—O6—H6109.5C41B—C39—C34123.2 (16)
O6—C6—H6A109.5C40A—C39—C34117.1 (13)
O6—C6—H6B109.5C40B—C39—C34106.7 (15)
H6A—C6—H6B109.5C41A—C39—C34109.9 (11)
O6—C6—H6C109.5C40A—C39—H39A105.3
H6A—C6—H6C109.5C41A—C39—H39A105.3
H6B—C6—H6C109.5C34—C39—H39A105.3
C7—O7—H7109.5C41B—C39—H39B104.0
O7—C7—H7A109.5C40B—C39—H39B104.0
O7—C7—H7B109.5C34—C39—H39B104.0
H7A—C7—H7B109.5C39—C40A—H40A109.5
O7—C7—H7C109.5C39—C40A—H40B109.5
H7A—C7—H7C109.5H40A—C40A—H40B109.5
H7B—C7—H7C109.5C39—C40A—H40C109.5
C8—O8—H8109.5H40A—C40A—H40C109.5
O8—C8—H8A109.5H40B—C40A—H40C109.5
O8—C8—H8B109.5C39—C41A—H41A109.5
H8A—C8—H8B109.5C39—C41A—H41B109.5
O8—C8—H8C109.5H41A—C41A—H41B109.5
H8A—C8—H8C109.5C39—C41A—H41C109.5
H8B—C8—H8C109.5H41A—C41A—H41C109.5
O10—P1—O9115.2 (2)H41B—C41A—H41C109.5
O10—P1—O12105.8 (2)C39—C40B—H40D109.5
O9—P1—O12112.90 (18)C39—C40B—H40E109.5
O10—P1—O11112.08 (19)H40D—C40B—H40E109.5
O9—P1—O11109.62 (18)C39—C40B—H40F109.5
O12—P1—O11100.29 (18)H40D—C40B—H40F109.5
P1—O9—Mn1132.20 (19)H40E—C40B—H40F109.5
C9—O11—P1122.4 (3)C39—C41B—H41D109.5
C21—O12—P1127.0 (3)C39—C41B—H41E109.5
C10—C9—O11119.1 (5)H41D—C41B—H41E109.5
C10—C9—C14123.5 (5)C39—C41B—H41F109.5
O11—C9—C14117.3 (4)H41D—C41B—H41F109.5
C9—C10—C11116.8 (5)H41E—C41B—H41F109.5
C9—C10—C15122.4 (5)C38—C42—C44109.9 (5)
C11—C10—C15120.7 (5)C38—C42—C43112.3 (6)
C12—C11—C10121.2 (6)C44—C42—C43110.5 (5)
C12—C11—H11119.4C38—C42—H42108.0
C10—C11—H11119.4C44—C42—H42108.0
C11—C12—C13120.1 (6)C43—C42—H42108.0
C11—C12—H12119.9C42—C43—H43A109.5
C13—C12—H12119.9C42—C43—H43B109.5
C14—C13—C12121.1 (6)H43A—C43—H43B109.5
C14—C13—H13119.4C42—C43—H43C109.5
C12—C13—H13119.4H43A—C43—H43C109.5
C13—C14—C9117.1 (5)H43B—C43—H43C109.5
C13—C14—C18121.5 (5)C42—C44—H44A109.5
C9—C14—C18121.3 (4)C42—C44—H44B109.5
C17—C15—C10112.8 (7)H44A—C44—H44B109.5
C17—C15—C16113.0 (9)C42—C44—H44C109.5
C10—C15—C16110.9 (6)H44A—C44—H44C109.5
C17—C15—H15106.6H44B—C44—H44C109.5
C10—C15—H15106.6C46—C45—O16119.3 (4)
C16—C15—H15106.6C46—C45—C50122.8 (4)
C15—C16—H16A109.5O16—C45—C50117.8 (4)
C15—C16—H16B109.5C47—C46—C45117.0 (5)
H16A—C16—H16B109.5C47—C46—C51119.6 (5)
C15—C16—H16C109.5C45—C46—C51123.3 (4)
H16A—C16—H16C109.5C48—C47—C46121.6 (5)
H16B—C16—H16C109.5C48—C47—H47119.2
C15—C17—H17A109.5C46—C47—H47119.2
C15—C17—H17B109.5C49—C48—C47119.8 (5)
H17A—C17—H17B109.5C49—C48—H48120.1
C15—C17—H17C109.5C47—C48—H48120.1
H17A—C17—H17C109.5C48—C49—C50121.9 (5)
H17B—C17—H17C109.5C48—C49—H49119.1
C14—C18—C19111.0 (4)C50—C49—H49119.1
C14—C18—C20113.6 (5)C49—C50—C45116.8 (5)
C19—C18—C20109.8 (5)C49—C50—C54120.9 (4)
C14—C18—H18107.4C45—C50—C54122.2 (4)
C19—C18—H18107.4C46—C51—C52109.9 (5)
C20—C18—H18107.4C46—C51—C53111.5 (5)
C18—C19—H19A109.5C52—C51—C53110.8 (5)
C18—C19—H19B109.5C46—C51—H51108.2
H19A—C19—H19B109.5C52—C51—H51108.2
C18—C19—H19C109.5C53—C51—H51108.2
H19A—C19—H19C109.5C51—C52—H52A109.5
H19B—C19—H19C109.5C51—C52—H52B109.5
C18—C20—H20A109.5H52A—C52—H52B109.5
C18—C20—H20B109.5C51—C52—H52C109.5
H20A—C20—H20B109.5H52A—C52—H52C109.5
C18—C20—H20C109.5H52B—C52—H52C109.5
H20A—C20—H20C109.5C51—C53—H53A109.5
H20B—C20—H20C109.5C51—C53—H53B109.5
C22—C21—C26123.2 (5)H53A—C53—H53B109.5
C22—C21—O12118.3 (4)C51—C53—H53C109.5
C26—C21—O12118.3 (4)H53A—C53—H53C109.5
C21—C22—C23116.6 (5)H53B—C53—H53C109.5
C21—C22—C27122.6 (4)C50—C54—C56112.5 (5)
C23—C22—C27120.8 (5)C50—C54—C55109.0 (5)
C24—C23—C22122.4 (5)C56—C54—C55110.9 (5)
C24—C23—H23118.8C50—C54—H54108.1
C22—C23—H23118.8C56—C54—H54108.1
C23—C24—C25119.0 (5)C55—C54—H54108.1
C23—C24—H24120.5C54—C55—H55A109.5
C25—C24—H24120.5C54—C55—H55B109.5
C24—C25—C26121.4 (6)H55A—C55—H55B109.5
C24—C25—H25119.3C54—C55—H55C109.5
C26—C25—H25119.3H55A—C55—H55C109.5
C21—C26—C25117.4 (5)H55B—C55—H55C109.5
C21—C26—C30121.9 (4)C54—C56—H56A109.5
C25—C26—C30120.5 (5)C54—C56—H56B109.5
C22—C27—C28111.2 (5)H56A—C56—H56B109.5
C22—C27—C29110.1 (5)C54—C56—H56C109.5
C28—C27—C29110.4 (5)H56A—C56—H56C109.5
C22—C27—H27108.4H56B—C56—H56C109.5
O10—P1—O9—Mn125.7 (3)O13—P2—O15—C3345.8 (4)
O12—P1—O9—Mn195.9 (3)O16—P2—O15—C33162.6 (4)
O11—P1—O9—Mn1153.2 (2)O14—P2—O16—C45166.3 (3)
O10—P1—O11—C990.7 (4)O13—P2—O16—C4565.3 (4)
O9—P1—O11—C938.5 (4)O15—P2—O16—C4550.1 (4)
O12—P1—O11—C9157.5 (3)P2—O15—C33—C3888.9 (5)
O10—P1—O12—C21146.7 (4)P2—O15—C33—C3494.9 (5)
O9—P1—O12—C2186.5 (4)C38—C33—C34—C351.8 (8)
O11—P1—O12—C2130.1 (4)O15—C33—C34—C35177.8 (5)
P1—O11—C9—C1088.0 (5)C38—C33—C34—C39175.1 (5)
P1—O11—C9—C1495.9 (4)O15—C33—C34—C391.0 (8)
O11—C9—C10—C11177.9 (4)C33—C34—C35—C360.4 (10)
C14—C9—C10—C112.2 (7)C39—C34—C35—C36177.3 (7)
O11—C9—C10—C151.1 (7)C34—C35—C36—C371.7 (12)
C14—C9—C10—C15174.7 (5)C35—C36—C37—C381.0 (12)
C9—C10—C11—C120.4 (8)O15—C33—C38—C37178.5 (5)
C15—C10—C11—C12177.3 (6)C34—C33—C38—C372.4 (8)
C10—C11—C12—C131.6 (10)O15—C33—C38—C421.3 (8)
C11—C12—C13—C140.3 (9)C34—C33—C38—C42174.8 (5)
C12—C13—C14—C92.1 (8)C36—C37—C38—C331.0 (10)
C12—C13—C14—C18175.2 (5)C36—C37—C38—C42176.2 (7)
C10—C9—C14—C133.4 (7)C35—C34—C39—C41B61 (2)
O11—C9—C14—C13179.2 (4)C33—C34—C39—C41B122 (2)
C10—C9—C14—C18173.9 (4)C35—C34—C39—C40A98.1 (18)
O11—C9—C14—C181.9 (6)C33—C34—C39—C40A78.7 (17)
C9—C10—C15—C17125.9 (8)C35—C34—C39—C40B72 (2)
C11—C10—C15—C1757.4 (10)C33—C34—C39—C40B105 (2)
C9—C10—C15—C16106.3 (8)C35—C34—C39—C41A32.5 (15)
C11—C10—C15—C1670.4 (9)C33—C34—C39—C41A150.7 (14)
C13—C14—C18—C19102.7 (5)C33—C38—C42—C4485.4 (6)
C9—C14—C18—C1974.5 (5)C37—C38—C42—C4491.7 (7)
C13—C14—C18—C2021.6 (7)C33—C38—C42—C43151.2 (5)
C9—C14—C18—C20161.2 (4)C37—C38—C42—C4331.8 (8)
P1—O12—C21—C2290.2 (5)P2—O16—C45—C4686.4 (5)
P1—O12—C21—C2694.9 (5)P2—O16—C45—C5096.5 (5)
C26—C21—C22—C232.2 (8)O16—C45—C46—C47179.4 (5)
O12—C21—C22—C23176.9 (4)C50—C45—C46—C472.5 (8)
C26—C21—C22—C27177.6 (5)O16—C45—C46—C511.9 (8)
O12—C21—C22—C272.9 (7)C50—C45—C46—C51175.0 (5)
C21—C22—C23—C241.1 (8)C45—C46—C47—C482.0 (9)
C27—C22—C23—C24178.7 (6)C51—C46—C47—C48175.6 (6)
C22—C23—C24—C250.1 (9)C46—C47—C48—C491.0 (10)
C23—C24—C25—C260.4 (9)C47—C48—C49—C500.4 (10)
C22—C21—C26—C252.0 (8)C48—C49—C50—C450.8 (9)
O12—C21—C26—C25176.6 (5)C48—C49—C50—C54177.1 (6)
C22—C21—C26—C30174.6 (5)C46—C45—C50—C491.9 (8)
O12—C21—C26—C300.1 (7)O16—C45—C50—C49178.9 (5)
C24—C25—C26—C210.6 (8)C46—C45—C50—C54176.0 (5)
C24—C25—C26—C30176.0 (5)O16—C45—C50—C541.0 (7)
C21—C22—C27—C28124.6 (6)C47—C46—C51—C5264.9 (7)
C23—C22—C27—C2855.6 (7)C45—C46—C51—C52112.5 (6)
C21—C22—C27—C29112.7 (6)C47—C46—C51—C5358.4 (7)
C23—C22—C27—C2967.1 (7)C45—C46—C51—C53124.2 (6)
C21—C26—C30—C3291.5 (6)C49—C50—C54—C5654.2 (7)
C25—C26—C30—C3285.0 (7)C45—C50—C54—C56127.9 (6)
C21—C26—C30—C31144.2 (5)C49—C50—C54—C5569.1 (6)
C25—C26—C30—C3139.4 (7)C45—C50—C54—C55108.7 (6)
O14—P2—O15—C3385.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O130.851.792.537 (5)145
O2—H2···O140.821.992.724 (5)148
O3—H3···O70.861.792.644 (6)170
O4—H4···O60.851.952.700 (7)147
O5—H5···O100.851.842.661 (5)163
O6—H6···O14i0.861.892.708 (6)157
O7—H7···O80.851.882.697 (8)159
O8—H8···O10ii0.851.862.708 (7)174
C1—H1B···O40.982.493.162 (7)125
C7—H7B···O10.982.663.570 (13)154
Symmetry codes: (i) x, y+1, z1/2; (ii) x, y+1, z+1/2.
Weight loss (%) versus time and gel time (h) in the thermal destruction of PDMS top
The starting mass of PDMS-50 was 2.000 g. The thermal destruction experiments were carried out at T = 573 K. The Mn complex is [Mn{O2P(O-2,6-iPr2C6H3)2}(CH3OH)5]+[O2P(O-2,6-iPr2C6H3)2]-·3CH3OH and the Ce complex is [Ce{O2P(O-2,6-iPr2C6H3)2}2(CH3OH)5]·CH3OH.
EntryAdditiveWeight lossGel timea
1 h2 h3 h5 h9 h
1None (control experiment)1.5%3.5%5.5%9%13.5%5 h
20.1% Mn1%2%3%6%8.5%9 h
30.5% Mn1%2%2.5%3.5%6%b
40.1% Ce1%1.5%2%3%4.5%b
Notes: (a) After this time, the PDMS liquid becomes fully solidified. (b) No precipitate, low viscosity, clear liquid at the end of the experiment (9 h).
 

Acknowledgements

Equipment from the collective exploitation center `New petrochemical processes, polymer composites and adhesives' of the TIPS RAS was used.

Funding information

Funding for this research was provided by: the State Program of TIPS RAS.

References

First citationBian, G.-Q., Kuroda-Sowa, T., Konaka, H., Hatano, M., Maekawa, M., Munakata, M., Miyasaka, H. & Yamashita, M. (2004). Inorg. Chem. 43, 4790–4792.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc.,Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2015). TOPAS. Bruker AXS, Karlsruhe, Germany.  Google Scholar
First citationDean, N. S., Mokry, L. M., Bond, M. R., Mohan, M., Otieno, T., O'Connor, C. J., Spartalian, K. & Carrano, C. J. (1997). Inorg. Chem. 36, 1424–1430.  CrossRef PubMed Web of Science Google Scholar
First citationDey, R., Bhattacharya, B., Colacio, E. & Ghoshal, D. (2013). Dalton Trans. 42, 2094–2106.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHalm, R. L. (1980). Patent US4193885 (to Dow Corning Corporation).  Google Scholar
First citationKishimoto, K., Koda, Y. & Sasaki, Sh. (1976). Patent US4070343 (to Toray Silicone Company).  Google Scholar
First citationKobzova, R. I., Tubyanskaya, G. S., Oparina, E. M., Zaitsev, V. A. & Egorova, A. A. (1966). Chem. Technol. Fuels Oils, 2, 270–271.  CrossRef Google Scholar
First citationKuroda-Sowa, T., Bian, G.-Q., Hatano, M., Konaka, H., Fukuda, S., Miyoshi, S., Maekawa, M., Munakata, M., Miyasaka, H. & Yamashita, M. (2005). Polyhedron, 24, 2680–2690.  Google Scholar
First citationKuroda-Sowa, T., Fukuda, S., Miyoshi, S., Maekawa, M., Munakata, M., Miyasaka, H. & Yamashita, M. (2002). Chem. Lett. 31, 682–683.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMinyaev, M. E., Korchagina, S. A., Tavtorkin, A. N., Churakov, A. V. & Nifant'ev, I. E. (2018b). Acta Cryst. C74, 673–682.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMinyaev, M. E., Nifant'ev, I. E., Tavtorkin, A. N., Korchagina, S. A., Zeynalova, S. S., Ananyev, I. V. & Churakov, A. V. (2017). Acta Cryst. C73, 820–827.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMinyaev, M. E., Nifant'ev, I. E., Tavtorkin, A. N., Korchagina, S. A. & Zeynalova, S. S. (2015). Acta Cryst. E71, 443–446.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMinyaev, M. E., Tavtorkin, A. N., Korchagina, S. A., Bondarenko, G. N., Churakov, A. V. & Nifant'ev, I. E. (2018a). Acta Cryst. C74, 590–598.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMurugavel, R. & Sathiyendiran, M. (2001). Chem. Lett. 30, 84–85.  Web of Science CrossRef Google Scholar
First citationNakajima, T., Yamashiro, C., Taya, M., Kure, B. & Tanase, T. (2016). Eur. J. Inorg. Chem. pp. 2764–2773.  Web of Science CrossRef Google Scholar
First citationNielsen, J. M. (1961). Patent US3009876 (to General Electric Company).  Google Scholar
First citationNifant'ev, I. E., Tavtorkin, A. N., Korchagina, S. A., Gavrilenko, I. F., Glebova, N. N., Kostitsyna, N. N., Yakovlev, V. A., Bondarenko, G. N. & Filatova, M. P. (2014). Appl. Catal. Gen. 478, 219–227.  CAS Google Scholar
First citationNifant'ev, I. E., Tavtorkin, A. N., Shlyahtin, A. V., Korchagina, S. A., Gavrilenko, I. F., Glebova, N. N. & Churakov, A. V. (2013). Dalton Trans. 42, 1223–1230.  Web of Science CAS PubMed Google Scholar
First citationPothiraja, R., Rajakannu, P., Vishnoi, P., Butcher, R. J. & Murugavel, R. (2014). Inorg. Chim. Acta, 414, 264–273.  Web of Science CrossRef Google Scholar
First citationPothiraja, R., Sathiyendiran, M., Butcher, R. J. & Murugavel, R. (2004). Inorg. Chem. 43, 7585–7587.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPothiraja, R., Sathiyendiran, M., Butcher, R. J. & Murugavel, R. (2005). Inorg. Chem. 44, 6314–6323.  Web of Science CrossRef PubMed Google Scholar
First citationRafizadeh, M., Amani, V. & Aghayan, H. (2006). Acta Cryst. E62, m2450–m2452.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRafizadeh, M., Amani, V. & Farajian, H. (2007). Z. Anorg. Allg. Chem. 633, 1143–1145.  Web of Science CSD CrossRef CAS Google Scholar
First citationRajakannu, P., Howlader, R., Kalita, A. Ch., Butcher, R. J. & Murugavel, R. (2015). Inorg. Chem. Front. 2, 55–66.  Web of Science CSD CrossRef CAS Google Scholar
First citationRozanova, N. L., Klimov, A. K., Zverev, O. V., Mukhanova, E. E., Gusev, V. K., Raskin, Ju. E., Markina, E. B. & Minsker, M. Z. (1995). Patent RU2034868 (to the All-Russian Research Institute for Oil Refining).  Google Scholar
First citationSathiyendiran, M. & Murugavel, R. (2002). Inorg. Chem. 41, 6404–6411.  Web of Science CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShiraishi, H., Jikido, R., Matsufuji, K., Nakanishi, T., Shiga, T., Ohba, M., Sakai, K., Kitagawa, H. & Okawa, H. (2005). Bull. Chem. Soc. Jpn, 78, 1072–1076.  Web of Science CrossRef Google Scholar
First citationSobolevskiy, M. B., Skorokhodov, I. I., Ditsent, V. E. & Sobolevskaya, L. V. (1970). Proceedings of the USSR conference `Synthesis and study of the efficiency of chemicals for polymer materials' ,Tambov, pp. 194–208. (In Russian.)  Google Scholar
First citationSwihart, T. J. & Jones, J. E. (1985). Patent US 4528313 (to Dow Corning Corporation).  Google Scholar
First citationVan Allsburg, K. M., Anzenberg, E., Drisdell, W. S., Yano, J. & Tilley, T. D. (2015). Chem. Eur. J. 21, 4646–4654.  PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYashiro, M., Higuchi, M., Komiyama, M. & Ishii, Y. (2003). Bull. Chem. Soc. Jpn, 76, 1813–1817.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds