research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of fac-{5-[(hexyl­aza­nium­yl)meth­yl]-2-(pyridin-2-yl)phenyl-κ2N,C1}bis­­[2-(pyridin-2-yl)phenyl-κ2N,C1]iridium(III) chloride

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Faculty of Science, Naresuan University, Muang, Phitsanulok 65000, Thailand, bDivision of Chemistry, Faculty of Science and Technology, Thammasat University, Klong Luang, Pathum Thani 12121, Thailand, cMaterials and Textile Technology, Faculty of Science and Technology, Thammasat University, Klong Luang, Pathum Thani 12121, Thailand, and dNSTDA Characterization and Testing Center, Thailand Science Park, Klong Luang, Pathum Thani 12120, Thailand
*Correspondence e-mail: Filipk@nu.ac.th

Edited by T. J. Prior, University of Hull, England (Received 3 September 2018; accepted 11 September 2018; online 14 September 2018)

The asymmetric unit of the title compound, fac-[Ir(C11H8N)2(C18H24N2)]Cl or fac-[Ir(ppy)2(Hppy-NC6)]Cl, contains two [Ir(ppy)2(ppy-NC6)](H+) cations, two Cl anions and disordered solvent. In each complex mol­ecule, the IrIII ion is coordinated by two C,N-bidentate 2-(pyridin-2-yl)phenyl ligands and one C,N-bidentate N-[4-(pyridin-2-yl)benz­yl]hexan-1-aminium ligand, leading to a distorted fac-octa­hedral coordination environment. In the crystal, the mol­ecules are linked by N—H⋯Cl, C—H⋯π and ππ inter­actions, forming a three-dimensional supra­molecular structure. The hexyl group of one mol­ecule is disordered over two orientations with a refined occupancy ratio of 0.412 (13):0.588 (13). The acetone and hexane solvent mol­ecules were found to be highly disordered and their contribution to the scattering was masked using the solvent-masking routine smtbx.mask in OLEX2 [Rees et al. (2005[Rees, B., Jenner, L. & Yusupov, M. (2005). Acta Cryst. D61, 1299-1301.]). Acta Cryst. D61, 1299–1301]. These solvent mol­ecules are not considered in the given chemical formula and other crystal data.

1. Chemical context

Luminescent iridium complexes have attracted a significant amount of inter­est over the past decades as they have been shown to possess potential for use in a number of applications such as in organic-light emitting devices (OLED), cellular imaging and photoredox catalysis (You, 2013[You, Y. (2013). Curr. Opin. Chem. Biol. 17, 699-707.]; You & Nam, 2012[You, Y. & Nam, W. (2012). Chem. Soc. Rev. 41, 7061-7084.]; König, 2017[König, B. (2017). Eur. J. Org. Chem. 2017, 1979-1981.]; Caporale & Massi, 2018[Caporale, C. & Massi, M. (2018). Coord. Chem. Rev. 363, 71-91.]). The beneficial photophysical properties of these complexes, which are at the core of their potential utilization, arise both from the properties of the Ir3+ ion and its coordination environment. The large spin–orbit coupling constant of iridium ensures efficient involvement of triplet excited states in the photophysical properties, which results in luminescent lifetimes in the microsecond regime (Ladouceur, S. & Zysman-Colman, 2013[Ladouceur, S. & Zysman-Colman, E. (2013). Eur. J. Inorg. Chem. pp. 2985-3007.]; Zanoni et al., 2015[Zanoni, K. P., Coppo, R. L., Amaral, R. C. & Murakami Iha, N. Y. (2015). Dalton Trans. 44, 14559-14573.]; Thorp-Greenwood et al., 2012[Thorp-Greenwood, F. L., Balasingham, R. G. & Coogan, M. P. (2012). J. Organomet. Chem. 714, 12-21.]). This is significantly longer than for fluorescence from organic fluoro­phores, a benefit for imaging applications, yet also much shorter than phospho­rescence lifetimes of organic phosphors, which is important for OLED applications. The NC cyclo­metalating ligands such as 2-phenyl­pyridine usually used to chelate the iridium center provide strong ligand fields, which result in lifting of the unfilled metal-based orbitals above the π* orbitals of the ligands, thus eliminating metal-centered transitions from the photophysical properties (You & Nam, 2012[You, Y. & Nam, W. (2012). Chem. Soc. Rev. 41, 7061-7084.]). Thus, the usual electronic transitions present in the photochemistry of luminescent iridium complexes have charge–transfer characteristics such as metal-to-ligand charge transfer (MLCT) or ligand-to-ligand charger transfer (LLCT).

[Scheme 1]

Luminescent iridium complexes can be divided into several distinct classes, one of which is tris-cyclo­metalated complexes. These complexes contain three cyclo­metalating NC ligands such 2-phenyl­pyridine (ppy) and the prototypical example of this structural class is [Ir(ppy)3] (You & Nam, 2012[You, Y. & Nam, W. (2012). Chem. Soc. Rev. 41, 7061-7084.]). These complexes usually exhibit good photophysical properties. However, their use in cellular imaging is limited as they do not seem to be very readily taken up by cells (Fernández-Moreira et al., 2010[Fernández-Moreira, V., Thorp-Greenwood, F. L. & Coogan, M. P. (2010). Chem. Comm. 46, 186-202.]; Steunenberg et al., 2012[Steunenberg, P., Ruggi, A., van den Berg, N. S., Buckle, T., Kuil, J., van Leeuwen, F. W. B. & Velders, A. H. (2012). Inorg. Chem. 51, 2105-2114.]; Ho et al., 2012[Ho, C. L., Wong, K. L., Kong, H. K., Ho, Y. M., Chan, C. T., Kwok, W. M., Leung, K. S., Tam, H. L., Lam, M. H., Ren, X. F., Ren, A. M., Feng, J. K. & Wong, W. Y. (2012). Chem. Commun. 48, 2525-2527.]). It has been noted that this problem can be alleviated by introducing protonatable groups into their structures, which helps them to become positively charged and thus be better taken up by cells (Kando et al., 2015[Kando, A., Hisamatsu, Y., Ohwada, H., Itoh, T., Moromizato, S., Kohno, M. & Aoki, S. (2015). Inorg. Chem. 54, 5342-5357.]). We have recently reported two simple derivatives of the prototypical structure mentioned above, which contain an amino­alkyl side chain on one of the ppy ligands (Sansee et al., 2016[Sansee, A., Meksawangwong, S., Chainok, K., Franz, K. J., Gál, M., Pålsson, L. O., Puniyan, W., Traiphol, R., Pal, R. & Kielar, F. (2016). Dalton Trans. 45, 17420-17430.]). The complexes differ only in the length of the alkyl chain, one being butyl while the other one is dodecyl. Both complexes are capable of staining live cells in fluorescence microscopy experiments. Furthermore, the complexes also exhibit ratiometric response to pH, which depends on their structure and is attributed to changes in their aggregation status. Several further analogues of these complexes are currently being investigated in order to obtain more detailed knowledge of the relationship between the structure of these compounds and their photophysical properties. The complex reported herein is one of these further compounds studied for this purpose.

2. Structural commentary

The asymmetric unit of the title compound contains two [Ir(ppy)2(Hppy-NC6)]+ cations, two Cl anions and disordered solvent mol­ecules. In each complex mol­ecule, the IrIII ion is coordinated by two C,N-bidentate ppy ligands and one C,N-bidentate Hppy-NC6 ligand, leading to a distorted fac-octa­hedral coordination environment as shown in Fig. 1[link]. The Ir—C and Ir—N bond lengths in the title compound range from 2.010 (6) to 2.036 (5) Å and 2.105 (5) to 2.144 (4) Å, respectively, whereas the bond angles in the [IrN3C3] octa­hedral core vary from 79.1 (2) to 172.1 (2)°. These structural features are typical of related iridium(III) complexes containing C,N-donor set ligands (Steunenberg et al., 2012[Steunenberg, P., Ruggi, A., van den Berg, N. S., Buckle, T., Kuil, J., van Leeuwen, F. W. B. & Velders, A. H. (2012). Inorg. Chem. 51, 2105-2114.]). The current mol­ecule is isostructural with the butyl equivalent and displays similar packing and voids (see Refinement section) in the solid state. Full details of this structure have been published by Sansee et al. (2016[Sansee, A., Meksawangwong, S., Chainok, K., Franz, K. J., Gál, M., Pålsson, L. O., Puniyan, W., Traiphol, R., Pal, R. & Kielar, F. (2016). Dalton Trans. 45, 17420-17430.]).

[Figure 1]
Figure 1
A view of the mol­ecular structures of the two independent cationic mol­ecules of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 35% probability level.

3. Supra­molecular features

In the crystal, pairs of cationic [Ir(ppy)2(Hppy-NC6)]+ complex mol­ecules are linked through N—H⋯Cl hydrogen bonds (Table 1[link]) between the amino groups of the ppy-NC6 ligands and chloride anions (Fig. 2[link]) with an Ir⋯Ir separation of 15.8207 (7) Å. Simultaneously, pairs of cationic complexes with an Ir⋯Ir separation of 8.5468 (4) Å (Fig. 3[link]) also inter­act with each other via a parallel fourfold phenyl embrace (Dance & Scudder, 1996[Dance, I. G. & Scudder, M. L. (1996). J. Chem. Soc. Dalton Trans. pp. 3755.]), which contains one ππ stacking [centroid-to-centroid distance between the N3/C23–C27 and N7/C63–C67 rings = 3.682 (3) Å; dihedral angle = 6.5 (5)°] and two edge-to-face (phen­yl)-C—H⋯π(phen­yl) inter­actions (H26⋯Cg5 = 2.79 Å and H65⋯Cg3 = 2.85 Å; Cg5 and Cg3 are the centroids of the C57–C62 and C17–C22 rings, respectively). Numerous weak (phen­yl)-C—H⋯π(phen­yl) and (methyl­ene)-C—H⋯π(phen­yl) are observed with H⋯centroid distances ranging from 2.79 to 3.12 Å (Table 1[link]). In addition, a comparison of the effect of the alkyl chain length between the ppy-NC6 in the title compound and the related complex with ppy-NC4 (Sansee et al., 2016[Sansee, A., Meksawangwong, S., Chainok, K., Franz, K. J., Gál, M., Pålsson, L. O., Puniyan, W., Traiphol, R., Pal, R. & Kielar, F. (2016). Dalton Trans. 45, 17420-17430.]) on the packing arrangement suggests that the key inter­molecular inter­actions (N—H⋯Cl, C—H⋯π and ππ) remain the same.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1–Cg6 are the centroids of the C6–C11, N2/C12–C16, C17–C22, C46–C51, C57–C62 and C68–C73 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯Cl2i 0.89 2.30 3.172 (6) 168
N4—H4B⋯Cl1i 0.89 2.26 3.142 (6) 172
N8—H8A⋯Cl2 0.89 2.21 3.073 (6) 165
N8—H8B⋯Cl1 0.89 2.16 3.044 (6) 171
C20—H20⋯Cg1ii 0.93 3.12 3.497 (7) 145
C24—H24⋯Cg4iii 0.93 2.89 3.532 (7) 139
C26—H26⋯Cg5 0.93 2.79 3.645 (7) 158
C34—H34BCg3ii 0.97 2.91 3.422 (7) 160
C37—H37⋯Cg1ii 0.97 3.01 3.818 (7) 141
C49—H49⋯Cg2iii 0.93 3.07 3.705 (7) 145
C53—H53⋯Cg6iii 0.93 3.10 3.692 (7) 135
C65—H65⋯Cg3 0.93 2.86 3.530 (7) 135
Symmetry codes: (i) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+2, -y+1, -z+1; (iii) [x, -y+{\script{1\over 2}}, z-{\script{3\over 2}}].
[Figure 2]
Figure 2
A perspective view of the title compound, showing the inter­molecular N—H⋯Cl hydrogen bonds (dotted lines) between the two independent mol­ecules.
[Figure 3]
Figure 3
A perspective view showing the parallel fourfold phenyl embrace in the title compound.

4. Photophysical properties

The photophysical properties of the title compound have also been investigated in di­chloro­methane solution and the results can be seen in Fig. 4[link], which shows normalized absorption and emission spectra. The spectra exhibit the expected features, which are analogous to those of the parent complex and the complexes previously reported by our group. The absorption spectra can be roughly divided into three portions. The first portion lies between 250 and 320 nm and is mainly attributed to ligand-based π to π* transitions. The second portion of this spectrum lies between 320 and 430 nm and is attributed to spin-allowed singlet metal-to-ligand charge transfer (1MLCT) transition. Finally, the tail of the spectrum extending from 430 nm beyond 500 nm is attributed to spin-forbidden triplet metal-to-ligand charge transfer (3MLCT). The emission spectrum exhibits a single unstructured peak centered at 520 nm. The photoluminescence quantum yield has been determined to be 39%.

[Figure 4]
Figure 4
The photophysical properties of the title compound.

5. Synthesis and crystallization

All chemicals and reagents were of commercial grade and were used without further purification. The complex fac-[Ir(ppy)2(Fppy)] [ppy is 2-phenylpyridine and Fppy is 2-(2,4-difluorophenyl)pyridine] was prepared according to a literature proc­edure (Beeby et al., 2003[Beeby, A., Bettington, S., Samuel, I. D. W. & Wang, Z. (2003). J. Mater. Chem. 13, 80-83.]). 1H NMR spectra were recorded on a Bruker Advance 400MHz instrument operating at 400 MHz. The 13C NMR spectrum was recorded on the same instrument operating at 100 MHz for carbon. Mass spectra were acquired with an Agilent technologies UHD Accurate-Mass Q-TOF LC–MS instrument model 6540. UV-Visible absorption spectra were recorded using an Analytik Jena 210plus diode array spectrophotometer. Steady-state emission spectra were recorded using Fluoro­max-4 and Fluoro­log spectro­fluoro­meters from Yvon Horiba. Phos­phor­escence lifetime measurements were performed on a DeltaFlexTM instrument equipped with a UV LED (λex = 372 nm).

fac-[Ir(ppy)3(Fppy)] (200 mg, 0.29 mmol), n-hexyl­amine (90 µL, 0.44 mmol) and tri­ethyl­amine (40 µL, 0.43 mmol) were suspended in a CH3OH/CH2Cl2 (1:1) mixture (20 mL). The reaction mixture was heated to reflux for 10 h. The solution was left to cool to room temperature and NaBH4 (37 mg, 0.58 mmol) was added. The reaction mixture was stirred at room temperature for 20 h. The solvent was removed under vacuum. The residue was dissolved in di­chloro­methane, dried over anhydrous sodium sulfate and filtered. The residue was purified by column chromatography on silica using gradient of methanol (up to 5%) in di­chloro­methane as the eluent. The pure product was isolated as an orange solid (yield 89.5%, 204 mg). Single crystals of the complex suitable for the single crystal X-ray diffraction analysis were grown by slow diffusion of hexane into its solution in acetone.

1H NMR (400 MHz, DMSO-d6, δ) 8.18 (d, J = 8.2 Hz, 1H), 8.13 (d, J = 8.0 Hz, 2H), 7.85–7.70 (m, 6H), 7.40–7.50 (m, 3H), 7.15–7.06 (m, 3H), 7.05 (d, J = 7.8 Hz, 1H), 6.75–6.85 (m, 2H), 6.70–6.65 (m, 5H), 3.67 (s, 2H), 2.52–2.65 (m, 2H), 1.47 (m, 2H), 1.32–1.21 (m, 6H), 0.85 (t, J = 6.7 Hz, 3H). 13C NMR (100 MHz, DMSO-d6, δ) 165.5, 165.0, 161.2, 160.1, 146.8, 144.5, 143.7, 137.5, 137.0, 136.2, 133.0, 129.0, 124.2, 123.1, 122.8, 120.6, 119.7, 119.4, 119.1, 130.2, 130.0, 125.0, 124.1, 122.6, 122.4, 122.2, 122.1, 121.7, 120.4, 120.1, 119.3, 119.0, 118.8, 50.6, 46.1, 30.7, 25.8, 25.5, 21.9, 13.8. HRMS (ES+) calculated for C40H40IrN4 (769.2882); found 769.2937. In di­chloro­methane at 298 K, λex = 390 nm and λem = 515 nm while the luminescence lifetime is 70 ns and 1.44 µs, respectively, for aerated and degassed solutions.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The hydrogen atoms attached to carbon atoms were placed in calculated positions and constrained to ride on their parent with Uiso(H) = 1.2Ueq(C) and a C—H distance of 0.93 Å for aromatic and 0.97 Å for methyl­ene hydrogen atoms. The nitro­gen-bound hydrogen atoms were located in a difference-Fourier map but were refined with a distance restraint of N—H = 0.89 Å with Uiso(H) = 1.2Ueq(N). The hexyl group of one complex is disordered over two orientations with a refined occupancy ratio of 0.412 (13):0.588 (13). Anisotropic displacement parameters of all atoms were restrained using enhanced rigid-bond restraints (RIGU command; Thorn et al., 2012[Thorn, A., Dittrich, B. & Sheldrick, G. M. (2012). Acta Cryst. A68, 448-451.]). All attempts to model disordered acetone or hexane as the solvents used for crystallization failed. Therefore, the solvent-masking routine smtbx.mask (Rees et al., 2005[Rees, B., Jenner, L. & Yusupov, M. (2005). Acta Cryst. D61, 1299-1301.]) was used and found four solvent-accessible voids in the unit cell. Two of them are of 490 Å3 in volume and contain an estimated 71 electrons; the other two are of 157 Å3 in volume and contain an estimated 60 electrons. These electrons are attributable to four mol­ecules of acetone and two mol­ecules of hexane, which means that there are two mol­ecules of acetone and one mol­ecule of hexane per formula unit present in this structure.

Table 2
Experimental details

Crystal data
Chemical formula [Ir(C11H8N)2(C18H24N2)]Cl
Mr 804.41
Crystal system, space group Monoclinic, P21/c
Temperature (K) 298
a, b, c (Å) 12.1012 (7), 34.267 (2), 18.4681 (11)
β (°) 94.471 (2)
V3) 7634.9 (8)
Z 8
Radiation type Cu Kα
μ (mm−1) 7.64
Crystal size (mm) 0.18 × 0.1 × 0.1
 
Data collection
Diffractometer Bruker D8 VENTURE
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.635, 0.734
No. of measured, independent and observed [I > 2σ(I)] reflections 110242, 15577, 14944
Rint 0.056
(sin θ/λ)max−1) 0.626
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.135, 1.07
No. of reflections 15577
No. of parameters 869
No. of restraints 142
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 3.11, −1.29
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

fac-{5-[(Hexylazaniumyl)methyl]-2-(pyridin-2-yl)phenyl-κ2N,C1}bis[2-(pyridin-2-yl)phenyl-κ2N,C1]iridium(III) chloride top
Crystal data top
[Ir(C11H8N)2(C18H24N2)]ClF(000) = 3216
Mr = 804.41Dx = 1.400 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 12.1012 (7) ÅCell parameters from 9555 reflections
b = 34.267 (2) Åθ = 4.4–74.7°
c = 18.4681 (11) ŵ = 7.64 mm1
β = 94.471 (2)°T = 298 K
V = 7634.9 (8) Å3Block, light yellow
Z = 80.18 × 0.1 × 0.1 mm
Data collection top
Bruker D8 VENTURE
diffractometer
15577 independent reflections
Radiation source: X-ray tube, Micro focus tube14944 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
Detector resolution: 10.4167 pixels mm-1θmax = 74.8°, θmin = 4.5°
φ and ω scansh = 1515
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 4241
Tmin = 0.635, Tmax = 0.734l = 2323
110242 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.0495P)2 + 49.4936P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.002
15577 reflectionsΔρmax = 3.11 e Å3
869 parametersΔρmin = 1.29 e Å3
142 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ir11.07478 (2)0.43998 (2)0.33055 (2)0.03495 (8)
Ir20.76998 (2)0.24093 (2)0.51021 (2)0.03391 (8)
Cl10.41899 (15)0.04389 (5)0.29918 (10)0.0557 (4)
Cl20.28414 (15)0.17148 (5)0.23161 (11)0.0596 (5)
N11.2374 (4)0.43256 (16)0.2959 (3)0.0437 (12)
N21.0072 (5)0.45999 (14)0.2272 (3)0.0406 (11)
N31.0194 (4)0.38123 (13)0.3108 (3)0.0342 (10)
N41.2417 (5)0.41718 (18)0.6886 (3)0.0549 (15)
H4A1.2539770.3916700.6934680.066*
H4B1.2865750.4292680.7218680.066*
N50.6118 (4)0.24667 (16)0.5517 (3)0.0377 (10)
N60.8554 (5)0.26539 (15)0.6040 (3)0.0426 (12)
N70.7597 (4)0.29451 (14)0.4543 (3)0.0374 (10)
N80.4565 (5)0.12975 (17)0.3354 (3)0.0529 (14)
H8A0.4077180.1455150.3116680.064*
H8B0.4376540.1053800.3232070.064*
C11.2805 (6)0.3999 (2)0.2736 (4)0.0588 (18)
H11.2388620.3771850.2759680.071*
C21.3852 (7)0.3971 (3)0.2464 (6)0.078 (3)
H21.4129360.3734390.2308470.094*
C31.4449 (8)0.4315 (3)0.2440 (6)0.084 (3)
H31.5151400.4312310.2268260.101*
C41.4019 (7)0.4656 (3)0.2666 (5)0.071 (2)
H41.4413320.4886680.2628330.085*
C51.2994 (6)0.4661 (2)0.2953 (4)0.0523 (16)
C61.2458 (6)0.5001 (2)0.3268 (4)0.0486 (15)
C71.1397 (5)0.49365 (17)0.3512 (3)0.0402 (13)
C81.0913 (6)0.52524 (18)0.3849 (4)0.0467 (15)
H81.0226650.5220190.4035560.056*
C91.1438 (7)0.56144 (19)0.3910 (4)0.0528 (17)
H91.1092260.5819950.4131730.063*
C101.2451 (8)0.5672 (2)0.3650 (4)0.063 (2)
H101.2783240.5916550.3684650.076*
C111.2982 (7)0.5366 (2)0.3334 (5)0.062 (2)
H111.3679520.5401300.3166150.074*
C121.0618 (7)0.4635 (2)0.1662 (4)0.0530 (16)
H121.1370460.4576940.1683230.064*
C131.0090 (7)0.4755 (2)0.1009 (4)0.0581 (19)
H131.0478580.4771860.0595570.070*
C140.8963 (7)0.4849 (2)0.0980 (4)0.060 (2)
H140.8595850.4936100.0548560.072*
C150.8421 (6)0.4813 (2)0.1581 (4)0.0503 (16)
H150.7669480.4871930.1562240.060*
C160.8964 (6)0.46876 (17)0.2241 (4)0.0437 (14)
C170.8474 (5)0.46419 (16)0.2925 (3)0.0394 (13)
C180.7338 (5)0.47131 (17)0.3000 (4)0.0449 (14)
H180.6862570.4764640.2591340.054*
C190.6941 (6)0.47065 (19)0.3666 (4)0.0491 (16)
H190.6190080.4748120.3710280.059*
C200.7654 (6)0.46373 (18)0.4289 (4)0.0466 (15)
H200.7385530.4646690.4747370.056*
C210.8754 (5)0.45555 (16)0.4216 (3)0.0371 (12)
H210.9218820.4507940.4631350.045*
C220.9199 (5)0.45412 (15)0.3538 (3)0.0335 (11)
C230.9639 (5)0.36784 (18)0.2508 (3)0.0393 (13)
H230.9476620.3851170.2126430.047*
C240.9291 (5)0.3295 (2)0.2424 (3)0.0453 (14)
H240.8925150.3209400.1991010.054*
C250.9501 (6)0.30434 (18)0.2999 (4)0.0450 (14)
H250.9272570.2784540.2962280.054*
C261.0051 (6)0.31783 (18)0.3624 (4)0.0444 (14)
H261.0192510.3010260.4016040.053*
C271.0402 (5)0.35680 (16)0.3680 (3)0.0354 (12)
C281.0981 (5)0.37445 (16)0.4324 (3)0.0350 (12)
C291.1200 (5)0.41497 (16)0.4284 (3)0.0339 (11)
C301.1738 (5)0.43178 (18)0.4908 (4)0.0439 (14)
H301.1891900.4583680.4907100.053*
C311.2051 (6)0.4101 (2)0.5529 (4)0.0497 (16)
C321.1826 (6)0.3705 (2)0.5553 (4)0.0483 (15)
H321.2041350.3558770.5964290.058*
C331.1271 (6)0.35296 (18)0.4950 (4)0.0460 (15)
H331.1091680.3266010.4965390.055*
C341.2727 (7)0.4294 (2)0.6147 (4)0.062 (2)
H34A1.3503520.4234510.6107410.075*
H34B1.2639220.4574840.6101900.075*
C351.1267 (7)0.4251 (2)0.7043 (5)0.064 (2)
H35A1.0765780.4104210.6709850.076*
H35B1.1107520.4526140.6972660.076*
C361.1083 (8)0.4140 (3)0.7800 (5)0.073 (2)
H36A1.1553440.4296540.8135590.088*
H36B1.1279310.3867750.7879730.088*
C370.9843 (8)0.4204 (3)0.7947 (5)0.083 (3)
H37A0.9662550.4477890.7884170.100*
H37B0.9377630.4057520.7591770.100*
C380.9596 (9)0.4083 (4)0.8668 (6)0.098 (4)
H38A0.9982480.4256130.9018770.118*
H38B0.9886820.3822550.8755820.118*
C390.8353 (10)0.4083 (4)0.8805 (8)0.112 (4)
H39A0.7975330.3903700.8462250.134*
H39B0.8280540.3979450.9287730.134*
C400.7766 (12)0.4461 (5)0.8747 (9)0.126 (5)
H40A0.7879100.4579690.8287640.189*
H40B0.8050670.4630330.9132560.189*
H40C0.6988080.4420000.8784310.189*
C410.5498 (6)0.2789 (2)0.5490 (4)0.0499 (16)
H410.5740540.3004870.5240730.060*
C420.4508 (6)0.2816 (3)0.5817 (4)0.0590 (19)
H420.4085510.3042680.5788370.071*
C430.4169 (6)0.2486 (3)0.6194 (4)0.064 (2)
H430.3524230.2493380.6436910.077*
C440.4783 (6)0.2158 (3)0.6202 (4)0.0558 (18)
H440.4534300.1935300.6424780.067*
C450.5781 (5)0.2149 (2)0.5882 (3)0.0441 (15)
C460.6555 (5)0.18172 (19)0.5898 (3)0.0423 (14)
C470.7542 (5)0.18778 (17)0.5566 (3)0.0418 (14)
C480.8281 (6)0.15588 (18)0.5553 (4)0.0473 (15)
H480.8945880.1588480.5338470.057*
C490.8031 (7)0.1205 (2)0.5853 (4)0.0555 (18)
H490.8527890.0998860.5832970.067*
C500.7073 (7)0.1150 (2)0.6178 (5)0.064 (2)
H500.6922560.0908850.6378600.076*
C510.6315 (7)0.1455 (3)0.6213 (4)0.063 (2)
H510.5661810.1419480.6438900.076*
C520.8091 (6)0.2805 (2)0.6618 (4)0.0507 (16)
H520.7331480.2776430.6649720.061*
C530.8708 (7)0.3000 (2)0.7166 (4)0.0605 (19)
H530.8371460.3101140.7560320.073*
C540.9818 (7)0.3040 (2)0.7116 (4)0.066 (2)
H541.0241600.3179160.7470010.079*
C551.0308 (6)0.2878 (2)0.6553 (4)0.057 (2)
H551.1070960.2899220.6530510.068*
C560.9670 (5)0.26793 (18)0.6006 (4)0.0444 (15)
C571.0098 (5)0.24927 (19)0.5357 (4)0.0465 (15)
C580.9277 (5)0.23316 (17)0.4857 (4)0.0409 (13)
C590.9663 (6)0.2147 (2)0.4258 (4)0.0491 (15)
H590.9158360.2039170.3907800.059*
C601.0815 (7)0.2119 (2)0.4170 (5)0.063 (2)
H601.1053940.1992870.3764490.075*
C611.1573 (7)0.2274 (3)0.4669 (6)0.070 (2)
H611.2326160.2253640.4607040.084*
C621.1224 (7)0.2460 (2)0.5260 (5)0.065 (2)
H621.1741770.2565810.5603570.078*
C630.7952 (6)0.32935 (19)0.4802 (4)0.0491 (15)
H630.8314430.3302290.5264580.059*
C640.7811 (6)0.36363 (19)0.4425 (4)0.0530 (17)
H640.8054410.3871490.4632440.064*
C650.7303 (7)0.3625 (2)0.3734 (4)0.0555 (18)
H650.7211460.3852170.3462110.067*
C660.6933 (5)0.32747 (19)0.3450 (4)0.0455 (14)
H660.6579220.3265050.2984290.055*
C670.7084 (5)0.29345 (17)0.3854 (3)0.0368 (12)
C680.6741 (5)0.25362 (17)0.3615 (3)0.0343 (11)
C690.6989 (5)0.22348 (17)0.4136 (3)0.0356 (12)
C700.6660 (5)0.18595 (17)0.3923 (3)0.0375 (12)
H700.6843640.1652870.4235470.045*
C710.6078 (5)0.17814 (18)0.3272 (4)0.0423 (13)
C720.5840 (6)0.2087 (2)0.2768 (4)0.0494 (16)
H720.5455400.2037520.2321430.059*
C730.6187 (6)0.24592 (19)0.2951 (4)0.0462 (15)
H730.6045430.2661610.2621210.055*
C740.5677 (6)0.1377 (2)0.3095 (4)0.0498 (16)
H74A0.5643410.1340230.2573470.060*
H74B0.6204520.1191070.3315920.060*
C750.4457 (7)0.1345 (3)0.4145 (5)0.067 (2)
H75A0.4593280.1615050.4282610.081*
H75B0.5002410.1183980.4416110.081*
C760.3303 (9)0.1228 (3)0.4325 (5)0.083 (3)
H76A0.3245150.0945870.4288120.100*0.412 (13)
H76B0.2774660.1337700.3959180.100*0.412 (13)
H76C0.3068270.0992060.4065680.100*0.588 (13)
H76D0.2775210.1433710.4194450.100*0.588 (13)
C770.2953 (14)0.1351 (5)0.5082 (8)0.054 (3)0.412 (13)
H77A0.3474860.1243520.5455180.065*0.412 (13)
H77B0.2978840.1632720.5121460.065*0.412 (13)
C77A0.3386 (16)0.1154 (7)0.5185 (8)0.090 (4)0.588 (13)
H77C0.4050210.1003760.5321530.108*0.588 (13)
H77D0.3452330.1402600.5434660.108*0.588 (13)
C780.1840 (16)0.1215 (7)0.5202 (10)0.067 (3)0.412 (13)
H78A0.1772130.0944760.5051580.080*0.412 (13)
H78B0.1310410.1365500.4894500.080*0.412 (13)
C78A0.2409 (14)0.0942 (6)0.5424 (13)0.102 (4)0.588 (13)
H78C0.2590080.0830010.5901170.122*0.588 (13)
H78D0.2216460.0729890.5089170.122*0.588 (13)
C790.1531 (18)0.1248 (6)0.5994 (11)0.067 (3)0.412 (13)
H79A0.0767020.1164980.6010590.080*0.412 (13)
H79B0.1988490.1065740.6286200.080*0.412 (13)
C79A0.1412 (16)0.1218 (6)0.5454 (12)0.099 (3)0.588 (13)
H79C0.1312990.1356530.4995020.119*0.588 (13)
H79D0.0752960.1061120.5497840.119*0.588 (13)
C800.1650 (19)0.1640 (6)0.6337 (14)0.068 (4)0.412 (13)
H80A0.1066640.1807310.6138810.102*0.412 (13)
H80B0.2354340.1749450.6242300.102*0.412 (13)
H80C0.1605750.1615670.6851980.102*0.412 (13)
C80A0.149 (2)0.1505 (7)0.6040 (12)0.102 (4)0.588 (13)
H80D0.0924080.1700460.5944900.153*0.588 (13)
H80E0.2203020.1625770.6067970.153*0.588 (13)
H80F0.1376660.1377510.6491550.153*0.588 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.03986 (14)0.03253 (13)0.03194 (13)0.00881 (9)0.00058 (10)0.00123 (9)
Ir20.03531 (13)0.03230 (13)0.03245 (13)0.00578 (9)0.00788 (9)0.00281 (9)
Cl10.0552 (9)0.0412 (8)0.0675 (11)0.0030 (7)0.0152 (8)0.0086 (7)
Cl20.0564 (9)0.0473 (8)0.0701 (11)0.0028 (7)0.0264 (8)0.0008 (8)
N10.041 (3)0.052 (3)0.039 (3)0.011 (2)0.005 (2)0.001 (2)
N20.054 (3)0.034 (2)0.033 (3)0.011 (2)0.001 (2)0.003 (2)
N30.037 (2)0.032 (2)0.033 (2)0.0083 (19)0.0011 (19)0.0016 (19)
N40.061 (4)0.048 (3)0.052 (3)0.002 (3)0.017 (3)0.001 (3)
N50.036 (2)0.051 (3)0.026 (2)0.002 (2)0.0002 (19)0.000 (2)
N60.048 (3)0.042 (3)0.035 (3)0.012 (2)0.016 (2)0.001 (2)
N70.035 (2)0.035 (2)0.041 (3)0.0025 (19)0.000 (2)0.000 (2)
N80.054 (3)0.044 (3)0.058 (4)0.004 (2)0.015 (3)0.008 (3)
C10.051 (4)0.062 (4)0.064 (5)0.014 (3)0.009 (3)0.008 (4)
C20.055 (5)0.090 (7)0.093 (7)0.007 (4)0.024 (5)0.018 (5)
C30.055 (5)0.103 (8)0.096 (7)0.020 (5)0.019 (5)0.020 (6)
C40.054 (4)0.089 (6)0.070 (5)0.030 (4)0.011 (4)0.003 (5)
C50.047 (4)0.059 (4)0.050 (4)0.017 (3)0.002 (3)0.005 (3)
C60.057 (4)0.051 (4)0.038 (3)0.020 (3)0.002 (3)0.005 (3)
C70.049 (3)0.037 (3)0.033 (3)0.014 (3)0.005 (2)0.004 (2)
C80.062 (4)0.038 (3)0.039 (3)0.009 (3)0.005 (3)0.003 (3)
C90.081 (5)0.038 (3)0.036 (3)0.008 (3)0.009 (3)0.001 (3)
C100.086 (6)0.047 (4)0.056 (4)0.030 (4)0.002 (4)0.008 (3)
C110.060 (4)0.061 (5)0.063 (5)0.025 (4)0.002 (4)0.010 (4)
C120.065 (4)0.047 (4)0.049 (4)0.008 (3)0.009 (3)0.008 (3)
C130.078 (5)0.058 (4)0.040 (4)0.009 (4)0.018 (3)0.008 (3)
C140.087 (6)0.051 (4)0.039 (4)0.010 (4)0.013 (4)0.007 (3)
C150.059 (4)0.043 (3)0.047 (4)0.006 (3)0.007 (3)0.003 (3)
C160.057 (4)0.028 (3)0.044 (3)0.009 (3)0.007 (3)0.001 (2)
C170.046 (3)0.028 (3)0.043 (3)0.007 (2)0.008 (3)0.002 (2)
C180.043 (3)0.032 (3)0.058 (4)0.002 (2)0.009 (3)0.007 (3)
C190.040 (3)0.038 (3)0.068 (5)0.000 (3)0.000 (3)0.000 (3)
C200.050 (4)0.034 (3)0.056 (4)0.002 (3)0.007 (3)0.003 (3)
C210.041 (3)0.031 (3)0.039 (3)0.005 (2)0.002 (2)0.001 (2)
C220.039 (3)0.023 (2)0.038 (3)0.007 (2)0.002 (2)0.000 (2)
C230.042 (3)0.040 (3)0.036 (3)0.007 (2)0.001 (2)0.000 (2)
C240.048 (3)0.050 (4)0.037 (3)0.009 (3)0.004 (3)0.006 (3)
C250.058 (4)0.034 (3)0.042 (3)0.007 (3)0.006 (3)0.002 (2)
C260.052 (4)0.034 (3)0.047 (4)0.004 (3)0.001 (3)0.002 (3)
C270.036 (3)0.033 (3)0.037 (3)0.006 (2)0.002 (2)0.002 (2)
C280.040 (3)0.035 (3)0.029 (3)0.005 (2)0.003 (2)0.004 (2)
C290.039 (3)0.034 (3)0.027 (3)0.000 (2)0.004 (2)0.003 (2)
C300.047 (3)0.035 (3)0.049 (4)0.011 (3)0.005 (3)0.002 (3)
C310.061 (4)0.045 (3)0.040 (3)0.011 (3)0.014 (3)0.005 (3)
C320.058 (4)0.045 (3)0.039 (3)0.006 (3)0.013 (3)0.004 (3)
C330.060 (4)0.032 (3)0.045 (3)0.009 (3)0.003 (3)0.002 (3)
C340.078 (5)0.056 (4)0.050 (4)0.025 (4)0.014 (4)0.006 (3)
C350.060 (5)0.060 (5)0.068 (5)0.004 (4)0.017 (4)0.013 (4)
C360.083 (6)0.066 (5)0.069 (6)0.002 (4)0.003 (5)0.017 (4)
C370.075 (6)0.099 (7)0.072 (6)0.024 (5)0.019 (5)0.008 (5)
C380.088 (7)0.106 (8)0.097 (8)0.027 (6)0.011 (6)0.029 (7)
C390.099 (9)0.126 (11)0.109 (10)0.030 (8)0.005 (7)0.023 (8)
C400.107 (10)0.143 (13)0.125 (11)0.061 (10)0.010 (8)0.011 (10)
C410.042 (3)0.068 (4)0.039 (3)0.003 (3)0.005 (3)0.005 (3)
C420.041 (4)0.088 (6)0.047 (4)0.012 (4)0.002 (3)0.005 (4)
C430.038 (4)0.114 (7)0.039 (4)0.010 (4)0.000 (3)0.000 (4)
C440.044 (4)0.082 (5)0.039 (3)0.008 (4)0.010 (3)0.002 (3)
C450.040 (3)0.067 (4)0.025 (3)0.019 (3)0.006 (2)0.003 (3)
C460.049 (3)0.049 (3)0.027 (3)0.016 (3)0.007 (2)0.009 (2)
C470.050 (3)0.039 (3)0.033 (3)0.017 (3)0.021 (3)0.009 (2)
C480.058 (4)0.038 (3)0.043 (3)0.002 (3)0.015 (3)0.007 (3)
C490.070 (5)0.044 (4)0.049 (4)0.001 (3)0.020 (3)0.008 (3)
C500.073 (5)0.051 (4)0.065 (5)0.010 (4)0.005 (4)0.023 (4)
C510.066 (5)0.077 (5)0.046 (4)0.027 (4)0.007 (3)0.018 (4)
C520.058 (4)0.054 (4)0.038 (3)0.011 (3)0.008 (3)0.003 (3)
C530.073 (5)0.061 (4)0.045 (4)0.013 (4)0.010 (4)0.005 (3)
C540.078 (5)0.064 (5)0.050 (4)0.032 (4)0.024 (4)0.001 (4)
C550.058 (4)0.053 (4)0.054 (4)0.021 (3)0.026 (3)0.015 (3)
C560.047 (3)0.039 (3)0.044 (3)0.013 (3)0.016 (3)0.009 (3)
C570.033 (3)0.042 (3)0.062 (4)0.004 (2)0.011 (3)0.017 (3)
C580.040 (3)0.035 (3)0.046 (3)0.001 (2)0.006 (3)0.007 (3)
C590.045 (3)0.044 (3)0.058 (4)0.001 (3)0.001 (3)0.001 (3)
C600.053 (4)0.060 (4)0.077 (5)0.014 (3)0.015 (4)0.002 (4)
C610.044 (4)0.062 (5)0.102 (7)0.007 (4)0.002 (4)0.013 (5)
C620.050 (4)0.052 (4)0.089 (6)0.006 (3)0.021 (4)0.015 (4)
C630.055 (4)0.041 (3)0.050 (4)0.011 (3)0.004 (3)0.001 (3)
C640.060 (4)0.035 (3)0.063 (4)0.005 (3)0.000 (3)0.000 (3)
C650.069 (5)0.036 (3)0.063 (5)0.002 (3)0.014 (4)0.016 (3)
C660.047 (3)0.042 (3)0.046 (3)0.001 (3)0.001 (3)0.012 (3)
C670.036 (3)0.036 (3)0.038 (3)0.000 (2)0.003 (2)0.005 (2)
C680.037 (3)0.037 (3)0.027 (3)0.001 (2)0.001 (2)0.004 (2)
C690.034 (3)0.036 (3)0.035 (3)0.001 (2)0.009 (2)0.007 (2)
C700.036 (3)0.035 (3)0.040 (3)0.001 (2)0.009 (2)0.003 (2)
C710.041 (3)0.040 (3)0.044 (3)0.002 (2)0.008 (3)0.008 (3)
C720.052 (4)0.058 (4)0.036 (3)0.001 (3)0.016 (3)0.001 (3)
C730.053 (4)0.045 (3)0.040 (3)0.006 (3)0.007 (3)0.008 (3)
C740.047 (4)0.047 (4)0.054 (4)0.001 (3)0.004 (3)0.015 (3)
C750.074 (5)0.063 (5)0.062 (5)0.021 (4)0.007 (4)0.014 (4)
C760.082 (6)0.085 (6)0.083 (6)0.033 (5)0.005 (5)0.019 (5)
C770.061 (4)0.036 (7)0.066 (5)0.016 (4)0.000 (4)0.023 (5)
C77A0.089 (4)0.110 (7)0.071 (9)0.010 (4)0.009 (5)0.012 (7)
C780.065 (4)0.066 (6)0.069 (4)0.005 (5)0.002 (4)0.020 (4)
C78A0.087 (4)0.117 (6)0.103 (9)0.005 (4)0.011 (5)0.009 (5)
C790.062 (6)0.069 (5)0.069 (4)0.002 (5)0.001 (4)0.018 (4)
C79A0.092 (4)0.122 (6)0.085 (7)0.001 (4)0.017 (5)0.018 (5)
C800.062 (11)0.070 (5)0.072 (5)0.001 (5)0.006 (6)0.016 (4)
C80A0.105 (9)0.119 (7)0.082 (7)0.011 (7)0.007 (6)0.021 (5)
Geometric parameters (Å, º) top
Ir1—N12.132 (5)C38—H38B0.9700
Ir1—N22.131 (5)C38—C391.544 (14)
Ir1—N32.144 (4)C39—H39A0.9700
Ir1—C72.024 (6)C39—H39B0.9700
Ir1—C222.015 (6)C39—C401.478 (19)
Ir1—C292.036 (5)C40—H40A0.9600
Ir2—N52.125 (5)C40—H40B0.9600
Ir2—N62.119 (5)C40—H40C0.9600
Ir2—N72.105 (5)C41—H410.9300
Ir2—C472.028 (6)C41—C421.387 (10)
Ir2—C582.013 (6)C42—H420.9300
Ir2—C692.010 (6)C42—C431.407 (12)
N1—C11.315 (10)C43—H430.9300
N1—C51.373 (8)C43—C441.344 (12)
N2—C121.354 (9)C44—H440.9300
N2—C161.371 (9)C44—C451.384 (10)
N3—C231.332 (7)C45—C461.471 (10)
N3—C271.355 (7)C46—C471.399 (9)
N4—H4A0.8900C46—C511.412 (10)
N4—H4B0.8900C47—C481.414 (10)
N4—C341.503 (10)C48—H480.9300
N4—C351.469 (10)C48—C491.377 (9)
N5—C411.334 (9)C49—H490.9300
N5—C451.362 (8)C49—C501.360 (12)
N6—C521.347 (9)C50—H500.9300
N6—C561.359 (9)C50—C511.394 (13)
N7—C631.344 (8)C51—H510.9300
N7—C671.372 (8)C52—H520.9300
N8—H8A0.8900C52—C531.382 (10)
N8—H8B0.8900C53—H530.9300
N8—C741.488 (9)C53—C541.360 (12)
N8—C751.485 (10)C54—H540.9300
C1—H10.9300C54—C551.355 (13)
C1—C21.402 (11)C55—H550.9300
C2—H20.9300C55—C561.401 (9)
C2—C31.386 (14)C56—C571.486 (11)
C3—H30.9300C57—C581.414 (9)
C3—C41.358 (14)C57—C621.393 (11)
C4—H40.9300C58—C591.388 (10)
C4—C51.386 (11)C59—H590.9300
C5—C61.473 (11)C59—C601.419 (10)
C6—C71.411 (9)C60—H600.9300
C6—C111.403 (10)C60—C611.357 (13)
C7—C81.399 (10)C61—H610.9300
C8—H80.9300C61—C621.359 (14)
C8—C91.394 (9)C62—H620.9300
C9—H90.9300C63—H630.9300
C9—C101.366 (12)C63—C641.369 (10)
C10—H100.9300C64—H640.9300
C10—C111.383 (13)C64—C651.373 (11)
C11—H110.9300C65—H650.9300
C12—H120.9300C65—C661.371 (10)
C12—C131.381 (11)C66—H660.9300
C13—H130.9300C66—C671.389 (8)
C13—C141.398 (12)C67—C681.483 (8)
C14—H140.9300C68—C691.428 (8)
C14—C151.340 (11)C68—C731.377 (9)
C15—H150.9300C69—C701.394 (8)
C15—C161.406 (9)C70—H700.9300
C16—C171.445 (9)C70—C711.371 (8)
C17—C181.413 (9)C71—C721.416 (9)
C17—C221.419 (8)C71—C741.495 (9)
C18—H180.9300C72—H720.9300
C18—C191.355 (10)C72—C731.376 (10)
C19—H190.9300C73—H730.9300
C19—C201.403 (10)C74—H74A0.9700
C20—H200.9300C74—H74B0.9700
C20—C211.378 (9)C75—H75A0.9700
C21—H210.9300C75—H75B0.9700
C21—C221.401 (8)C75—C761.515 (13)
C23—H230.9300C76—H76A0.9700
C23—C241.386 (9)C76—H76B0.9700
C24—H240.9300C76—H76C0.9700
C24—C251.375 (9)C76—H76D0.9700
C25—H250.9300C76—C771.549 (15)
C25—C261.368 (9)C76—C77A1.604 (15)
C26—H260.9300C77—H77A0.9700
C26—C271.403 (8)C77—H77B0.9700
C27—C281.463 (8)C77—C781.457 (17)
C28—C291.417 (8)C77A—H77C0.9700
C28—C331.393 (8)C77A—H77D0.9700
C29—C301.402 (8)C77A—C78A1.484 (17)
C30—H300.9300C78—H78A0.9700
C30—C311.394 (9)C78—H78B0.9700
C31—C321.386 (9)C78—C791.542 (18)
C31—C341.506 (9)C78A—H78C0.9700
C32—H320.9300C78A—H78D0.9700
C32—C331.390 (9)C78A—C79A1.538 (18)
C33—H330.9300C79—H79A0.9700
C34—H34A0.9700C79—H79B0.9700
C34—H34B0.9700C79—C801.49 (3)
C35—H35A0.9700C79A—H79C0.9700
C35—H35B0.9700C79A—H79D0.9700
C35—C361.482 (13)C79A—C80A1.46 (3)
C36—H36A0.9700C80—H80A0.9600
C36—H36B0.9700C80—H80B0.9600
C36—C371.561 (12)C80—H80C0.9600
C37—H37A0.9700C80A—H80D0.9600
C37—H37B0.9700C80A—H80E0.9600
C37—C381.447 (12)C80A—H80F0.9600
C38—H38A0.9700
N1—Ir1—N396.9 (2)H38A—C38—H38B107.5
N2—Ir1—N193.9 (2)C39—C38—H38A108.5
N2—Ir1—N393.27 (18)C39—C38—H38B108.5
C7—Ir1—N179.1 (2)C38—C39—H39A108.0
C7—Ir1—N289.6 (2)C38—C39—H39B108.0
C7—Ir1—N3175.3 (2)H39A—C39—H39B107.3
C7—Ir1—C2998.1 (2)C40—C39—C38117.1 (11)
C22—Ir1—N1171.5 (2)C40—C39—H39A108.0
C22—Ir1—N279.4 (2)C40—C39—H39B108.0
C22—Ir1—N388.74 (19)C39—C40—H40A109.5
C22—Ir1—C795.5 (2)C39—C40—H40B109.5
C22—Ir1—C2995.9 (2)C39—C40—H40C109.5
C29—Ir1—N191.4 (2)H40A—C40—H40B109.5
C29—Ir1—N2171.3 (2)H40A—C40—H40C109.5
C29—Ir1—N379.3 (2)H40B—C40—H40C109.5
N6—Ir2—N593.7 (2)N5—C41—H41118.6
N7—Ir2—N594.34 (19)N5—C41—C42122.7 (7)
N7—Ir2—N693.57 (19)C42—C41—H41118.6
C47—Ir2—N579.3 (2)C41—C42—H42121.4
C47—Ir2—N693.8 (2)C41—C42—C43117.3 (8)
C47—Ir2—N7170.5 (2)C43—C42—H42121.4
C58—Ir2—N5171.6 (2)C42—C43—H43120.2
C58—Ir2—N679.9 (2)C44—C43—C42119.5 (7)
C58—Ir2—N791.5 (2)C44—C43—H43120.2
C58—Ir2—C4795.6 (3)C43—C44—H44119.5
C69—Ir2—N590.7 (2)C43—C44—C45121.1 (8)
C69—Ir2—N6172.1 (2)C45—C44—H44119.5
C69—Ir2—N779.6 (2)N5—C45—C44119.8 (7)
C69—Ir2—C4793.4 (2)N5—C45—C46114.3 (5)
C69—Ir2—C5896.3 (3)C44—C45—C46125.9 (6)
C1—N1—Ir1126.4 (5)C47—C46—C45116.2 (5)
C1—N1—C5118.7 (6)C47—C46—C51121.4 (7)
C5—N1—Ir1114.8 (5)C51—C46—C45122.4 (6)
C12—N2—Ir1126.6 (5)C46—C47—Ir2115.5 (5)
C12—N2—C16119.0 (6)C46—C47—C48117.1 (6)
C16—N2—Ir1114.4 (4)C48—C47—Ir2127.3 (5)
C23—N3—Ir1126.5 (4)C47—C48—H48119.5
C23—N3—C27119.1 (5)C49—C48—C47121.0 (7)
C27—N3—Ir1114.3 (4)C49—C48—H48119.5
H4A—N4—H4B107.4C48—C49—H49119.3
C34—N4—H4A108.3C50—C49—C48121.4 (7)
C34—N4—H4B108.3C50—C49—H49119.3
C35—N4—H4A108.3C49—C50—H50119.9
C35—N4—H4B108.3C49—C50—C51120.3 (7)
C35—N4—C34115.8 (6)C51—C50—H50119.9
C41—N5—Ir2125.6 (5)C46—C51—H51120.6
C41—N5—C45119.5 (6)C50—C51—C46118.8 (7)
C45—N5—Ir2114.7 (4)C50—C51—H51120.6
C52—N6—Ir2126.4 (5)N6—C52—H52119.0
C52—N6—C56119.2 (5)N6—C52—C53122.0 (7)
C56—N6—Ir2114.2 (4)C53—C52—H52119.0
C63—N7—Ir2126.5 (4)C52—C53—H53120.6
C63—N7—C67117.5 (5)C54—C53—C52118.7 (8)
C67—N7—Ir2115.9 (4)C54—C53—H53120.6
H8A—N8—H8B107.3C53—C54—H54119.9
C74—N8—H8A108.2C55—C54—C53120.2 (7)
C74—N8—H8B108.2C55—C54—H54119.9
C75—N8—H8A108.2C54—C55—H55119.9
C75—N8—H8B108.2C54—C55—C56120.2 (7)
C75—N8—C74116.5 (6)C56—C55—H55119.9
N1—C1—H1117.9N6—C56—C55119.5 (7)
N1—C1—C2124.3 (8)N6—C56—C57114.8 (5)
C2—C1—H1117.9C55—C56—C57125.7 (7)
C1—C2—H2121.9C58—C57—C56115.0 (6)
C3—C2—C1116.1 (9)C62—C57—C56123.0 (7)
C3—C2—H2121.9C62—C57—C58121.9 (8)
C2—C3—H3119.7C57—C58—Ir2115.6 (5)
C4—C3—C2120.6 (9)C59—C58—Ir2128.6 (5)
C4—C3—H3119.7C59—C58—C57115.9 (6)
C3—C4—H4119.8C58—C59—H59119.5
C3—C4—C5120.4 (8)C58—C59—C60121.1 (7)
C5—C4—H4119.8C60—C59—H59119.5
N1—C5—C4119.8 (7)C59—C60—H60119.5
N1—C5—C6113.6 (6)C61—C60—C59120.9 (8)
C4—C5—C6126.6 (7)C61—C60—H60119.5
C7—C6—C5116.3 (6)C60—C61—H61120.2
C11—C6—C5121.9 (7)C60—C61—C62119.5 (8)
C11—C6—C7121.8 (7)C62—C61—H61120.2
C6—C7—Ir1115.5 (5)C57—C62—H62119.7
C8—C7—Ir1128.1 (5)C61—C62—C57120.6 (8)
C8—C7—C6116.4 (6)C61—C62—H62119.7
C7—C8—H8119.3N7—C63—H63118.0
C9—C8—C7121.4 (7)N7—C63—C64123.9 (6)
C9—C8—H8119.3C64—C63—H63118.0
C8—C9—H9119.5C63—C64—H64120.8
C10—C9—C8121.0 (7)C63—C64—C65118.4 (6)
C10—C9—H9119.5C65—C64—H64120.8
C9—C10—H10120.1C64—C65—H65120.3
C9—C10—C11119.9 (7)C66—C65—C64119.5 (6)
C11—C10—H10120.1C66—C65—H65120.3
C6—C11—H11120.3C65—C66—H66119.9
C10—C11—C6119.4 (7)C65—C66—C67120.1 (6)
C10—C11—H11120.3C67—C66—H66119.9
N2—C12—H12119.0N7—C67—C66120.5 (6)
N2—C12—C13122.0 (7)N7—C67—C68113.3 (5)
C13—C12—H12119.0C66—C67—C68126.1 (6)
C12—C13—H13120.4C69—C68—C67115.2 (5)
C12—C13—C14119.1 (7)C73—C68—C67123.2 (5)
C14—C13—H13120.4C73—C68—C69121.6 (6)
C13—C14—H14120.5C68—C69—Ir2115.8 (4)
C15—C14—C13119.0 (7)C70—C69—Ir2128.2 (4)
C15—C14—H14120.5C70—C69—C68115.9 (5)
C14—C15—H15119.3C69—C70—H70118.5
C14—C15—C16121.5 (7)C71—C70—C69123.0 (5)
C16—C15—H15119.3C71—C70—H70118.5
N2—C16—C15119.4 (6)C70—C71—C72119.7 (6)
N2—C16—C17114.0 (5)C70—C71—C74120.5 (6)
C15—C16—C17126.5 (7)C72—C71—C74119.7 (6)
C18—C17—C16122.4 (6)C71—C72—H72120.6
C18—C17—C22120.6 (6)C73—C72—C71118.7 (6)
C22—C17—C16117.0 (6)C73—C72—H72120.6
C17—C18—H18119.9C68—C73—H73119.5
C19—C18—C17120.2 (6)C72—C73—C68121.0 (6)
C19—C18—H18119.9C72—C73—H73119.5
C18—C19—H19119.7N8—C74—C71112.8 (6)
C18—C19—C20120.6 (6)N8—C74—H74A109.0
C20—C19—H19119.7N8—C74—H74B109.0
C19—C20—H20120.3C71—C74—H74A109.0
C21—C20—C19119.3 (7)C71—C74—H74B109.0
C21—C20—H20120.3H74A—C74—H74B107.8
C20—C21—H21118.8N8—C75—H75A109.7
C20—C21—C22122.5 (6)N8—C75—H75B109.7
C22—C21—H21118.8N8—C75—C76109.9 (6)
C17—C22—Ir1114.6 (4)H75A—C75—H75B108.2
C21—C22—Ir1128.9 (4)C76—C75—H75A109.7
C21—C22—C17116.6 (5)C76—C75—H75B109.7
N3—C23—H23118.3C75—C76—H76A108.1
N3—C23—C24123.3 (6)C75—C76—H76B108.1
C24—C23—H23118.3C75—C76—H76C110.6
C23—C24—H24121.0C75—C76—H76D110.6
C25—C24—C23118.1 (6)C75—C76—C77116.6 (9)
C25—C24—H24121.0C75—C76—C77A105.8 (9)
C24—C25—H25120.4H76A—C76—H76B107.3
C26—C25—C24119.3 (6)H76C—C76—H76D108.7
C26—C25—H25120.4C77—C76—H76A108.1
C25—C26—H26119.7C77—C76—H76B108.1
C25—C26—C27120.5 (6)C77A—C76—H76C110.6
C27—C26—H26119.7C77A—C76—H76D110.6
N3—C27—C26119.6 (5)C76—C77—H77A109.3
N3—C27—C28115.2 (5)C76—C77—H77B109.3
C26—C27—C28125.2 (5)H77A—C77—H77B107.9
C29—C28—C27116.3 (5)C78—C77—C76111.8 (14)
C33—C28—C27122.0 (5)C78—C77—H77A109.3
C33—C28—C29121.7 (5)C78—C77—H77B109.3
C28—C29—Ir1114.9 (4)C76—C77A—H77C109.1
C30—C29—Ir1129.2 (4)C76—C77A—H77D109.1
C30—C29—C28115.9 (5)H77C—C77A—H77D107.9
C29—C30—H30118.8C78A—C77A—C76112.4 (14)
C31—C30—C29122.4 (6)C78A—C77A—H77C109.1
C31—C30—H30118.8C78A—C77A—H77D109.1
C30—C31—C34119.1 (6)C77—C78—H78A108.6
C32—C31—C30120.4 (6)C77—C78—H78B108.6
C32—C31—C34120.2 (6)C77—C78—C79114.7 (17)
C31—C32—H32120.6H78A—C78—H78B107.6
C31—C32—C33118.8 (6)C79—C78—H78A108.6
C33—C32—H32120.6C79—C78—H78B108.6
C28—C33—H33119.6C77A—C78A—H78C109.5
C32—C33—C28120.8 (6)C77A—C78A—H78D109.5
C32—C33—H33119.6C77A—C78A—C79A110.8 (18)
N4—C34—C31114.0 (6)H78C—C78A—H78D108.1
N4—C34—H34A108.8C79A—C78A—H78C109.5
N4—C34—H34B108.8C79A—C78A—H78D109.5
C31—C34—H34A108.8C78—C79—H79A108.2
C31—C34—H34B108.8C78—C79—H79B108.2
H34A—C34—H34B107.7H79A—C79—H79B107.3
N4—C35—H35A109.5C80—C79—C78116.5 (18)
N4—C35—H35B109.5C80—C79—H79A108.2
N4—C35—C36110.7 (7)C80—C79—H79B108.2
H35A—C35—H35B108.1C78A—C79A—H79C108.3
C36—C35—H35A109.5C78A—C79A—H79D108.3
C36—C35—H35B109.5H79C—C79A—H79D107.4
C35—C36—H36A109.6C80A—C79A—C78A116 (2)
C35—C36—H36B109.6C80A—C79A—H79C108.3
C35—C36—C37110.2 (8)C80A—C79A—H79D108.3
H36A—C36—H36B108.1C79—C80—H80A109.5
C37—C36—H36A109.6C79—C80—H80B109.5
C37—C36—H36B109.6C79—C80—H80C109.5
C36—C37—H37A109.0H80A—C80—H80B109.5
C36—C37—H37B109.0H80A—C80—H80C109.5
H37A—C37—H37B107.8H80B—C80—H80C109.5
C38—C37—C36113.0 (8)C79A—C80A—H80D109.5
C38—C37—H37A109.0C79A—C80A—H80E109.5
C38—C37—H37B109.0C79A—C80A—H80F109.5
C37—C38—H38A108.5H80D—C80A—H80E109.5
C37—C38—H38B108.5H80D—C80A—H80F109.5
C37—C38—C39115.1 (10)H80E—C80A—H80F109.5
Ir1—N1—C1—C2175.2 (7)C26—C27—C28—C332.0 (10)
Ir1—N1—C5—C4173.2 (6)C27—N3—C23—C242.4 (9)
Ir1—N1—C5—C66.7 (7)C27—C28—C29—Ir13.7 (7)
Ir1—N2—C12—C13177.5 (5)C27—C28—C29—C30178.9 (6)
Ir1—N2—C16—C15178.4 (4)C27—C28—C33—C32179.7 (6)
Ir1—N2—C16—C172.2 (6)C28—C29—C30—C310.7 (10)
Ir1—N3—C23—C24178.9 (5)C29—C28—C33—C322.3 (10)
Ir1—N3—C27—C26178.2 (5)C29—C30—C31—C320.7 (12)
Ir1—N3—C27—C281.0 (6)C29—C30—C31—C34173.9 (7)
Ir1—C7—C8—C9175.6 (5)C30—C31—C32—C330.7 (12)
Ir1—C29—C30—C31176.2 (5)C30—C31—C34—N4141.8 (7)
Ir2—N5—C41—C42175.2 (5)C31—C32—C33—C282.2 (11)
Ir2—N5—C45—C44177.4 (5)C32—C31—C34—N443.7 (11)
Ir2—N5—C45—C462.3 (6)C33—C28—C29—Ir1178.2 (5)
Ir2—N6—C52—C53172.1 (5)C33—C28—C29—C300.8 (9)
Ir2—N6—C56—C55172.4 (5)C34—N4—C35—C36176.5 (6)
Ir2—N6—C56—C576.4 (7)C34—C31—C32—C33175.3 (7)
Ir2—N7—C63—C64176.5 (6)C35—N4—C34—C3159.9 (9)
Ir2—N7—C67—C66177.4 (5)C35—C36—C37—C38177.3 (9)
Ir2—N7—C67—C683.0 (6)C36—C37—C38—C39171.4 (10)
Ir2—C47—C48—C49175.7 (5)C37—C38—C39—C4062.2 (18)
Ir2—C58—C59—C60179.8 (5)C41—N5—C45—C442.1 (8)
Ir2—C69—C70—C71173.1 (5)C41—N5—C45—C46177.7 (5)
N1—C1—C2—C30.3 (15)C41—C42—C43—C442.3 (11)
N1—C5—C6—C71.3 (9)C42—C43—C44—C454.1 (11)
N1—C5—C6—C11177.6 (7)C43—C44—C45—N54.0 (10)
N2—C12—C13—C141.2 (11)C43—C44—C45—C46175.8 (6)
N2—C16—C17—C18179.1 (5)C44—C45—C46—C47177.2 (6)
N2—C16—C17—C224.2 (7)C44—C45—C46—C514.2 (10)
N3—C23—C24—C252.1 (10)C45—N5—C41—C420.4 (9)
N3—C27—C28—C293.1 (8)C45—C46—C47—Ir21.5 (7)
N3—C27—C28—C33178.8 (6)C45—C46—C47—C48177.9 (5)
N4—C35—C36—C37176.9 (7)C45—C46—C51—C50177.4 (6)
N5—C41—C42—C430.5 (10)C46—C47—C48—C490.2 (9)
N5—C45—C46—C472.5 (7)C47—C46—C51—C501.1 (10)
N5—C45—C46—C51176.0 (6)C47—C48—C49—C500.7 (10)
N6—C52—C53—C540.0 (12)C48—C49—C50—C510.2 (12)
N6—C56—C57—C582.6 (8)C49—C50—C51—C460.7 (12)
N6—C56—C57—C62174.3 (6)C51—C46—C47—Ir2177.1 (5)
N7—C63—C64—C651.7 (12)C51—C46—C47—C480.7 (9)
N7—C67—C68—C690.6 (8)C52—N6—C56—C553.2 (9)
N7—C67—C68—C73178.3 (6)C52—N6—C56—C57178.1 (6)
N8—C75—C76—C77165.8 (10)C52—C53—C54—C552.5 (12)
N8—C75—C76—C77A161.9 (11)C53—C54—C55—C562.1 (12)
C1—N1—C5—C44.6 (11)C54—C55—C56—N60.7 (10)
C1—N1—C5—C6175.5 (6)C54—C55—C56—C57179.3 (7)
C1—C2—C3—C40.5 (16)C55—C56—C57—C58176.0 (6)
C2—C3—C4—C52.8 (16)C55—C56—C57—C627.1 (10)
C3—C4—C5—N14.9 (13)C56—N6—C52—C532.8 (10)
C3—C4—C5—C6175.2 (9)C56—C57—C58—Ir22.7 (7)
C4—C5—C6—C7178.6 (7)C56—C57—C58—C59178.3 (6)
C4—C5—C6—C112.4 (12)C56—C57—C62—C61177.7 (7)
C5—N1—C1—C22.4 (12)C57—C58—C59—C601.0 (10)
C5—C6—C7—Ir15.0 (8)C58—C57—C62—C611.0 (11)
C5—C6—C7—C8176.5 (6)C58—C59—C60—C610.3 (12)
C5—C6—C11—C10178.5 (7)C59—C60—C61—C620.2 (13)
C6—C7—C8—C92.6 (9)C60—C61—C62—C570.1 (13)
C7—C6—C11—C100.4 (11)C62—C57—C58—Ir2179.7 (5)
C7—C8—C9—C100.7 (10)C62—C57—C58—C591.4 (9)
C8—C9—C10—C111.4 (11)C63—N7—C67—C660.6 (9)
C9—C10—C11—C61.6 (12)C63—N7—C67—C68179.0 (6)
C11—C6—C7—Ir1176.0 (6)C63—C64—C65—C661.4 (12)
C11—C6—C7—C82.4 (10)C64—C65—C66—C670.8 (11)
C12—N2—C16—C150.2 (8)C65—C66—C67—N70.4 (10)
C12—N2—C16—C17179.6 (5)C65—C66—C67—C68179.2 (6)
C12—C13—C14—C151.5 (11)C66—C67—C68—C69179.8 (6)
C13—C14—C15—C160.9 (11)C66—C67—C68—C732.1 (10)
C14—C15—C16—N20.1 (10)C67—N7—C63—C641.3 (10)
C14—C15—C16—C17179.2 (6)C67—C68—C69—Ir22.2 (7)
C15—C16—C17—C181.6 (9)C67—C68—C69—C70179.2 (5)
C15—C16—C17—C22175.1 (6)C67—C68—C73—C72176.8 (6)
C16—N2—C12—C130.4 (10)C68—C69—C70—C713.6 (9)
C16—C17—C18—C19173.0 (6)C69—C68—C73—C720.7 (10)
C16—C17—C22—Ir19.0 (6)C69—C70—C71—C723.4 (10)
C16—C17—C22—C21170.6 (5)C69—C70—C71—C74175.5 (6)
C17—C18—C19—C201.4 (9)C70—C71—C72—C731.0 (10)
C18—C17—C22—Ir1174.3 (4)C70—C71—C74—N888.1 (8)
C18—C17—C22—C216.2 (8)C71—C72—C73—C681.0 (11)
C18—C19—C20—C213.4 (9)C72—C71—C74—N890.9 (8)
C19—C20—C21—C220.5 (9)C73—C68—C69—Ir2175.6 (5)
C20—C21—C22—Ir1176.4 (4)C73—C68—C69—C701.5 (9)
C20—C21—C22—C174.2 (8)C74—N8—C75—C76176.3 (7)
C22—C17—C18—C193.6 (9)C74—C71—C72—C73178.0 (7)
C23—N3—C27—C261.3 (9)C75—N8—C74—C7158.0 (8)
C23—N3—C27—C28177.9 (5)C75—C76—C77—C78178.8 (13)
C23—C24—C25—C260.6 (10)C75—C76—C77A—C78A165.5 (15)
C24—C25—C26—C270.3 (10)C76—C77—C78—C79167.4 (15)
C25—C26—C27—N30.0 (10)C76—C77A—C78A—C79A78 (2)
C25—C26—C27—C28179.1 (6)C77—C78—C79—C8055 (3)
C26—C27—C28—C29176.1 (6)C77A—C78A—C79A—C80A71 (3)
Hydrogen-bond geometry (Å, º) top
Cg1–Cg6 are the centroids of the C6–C11, N2/C12–C16, C17–C22, C46–C51, C57–C62 and C68–C73 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N4—H4A···Cl2i0.892.303.172 (6)168
N4—H4B···Cl1i0.892.263.142 (6)172
N8—H8A···Cl20.892.213.073 (6)165
N8—H8B···Cl10.892.163.044 (6)171
C20—H20···Cg1ii0.933.123.497 (7)145
C24—H24···Cg4iii0.932.893.532 (7)139
C26—H26···Cg50.932.793.645 (7)158
C34—H34B···Cg3ii0.972.913.422 (7)160
C37—H37···Cg1ii0.973.013.818 (7)141
C49—H49···Cg2iii0.933.073.705 (7)145
C53—H53···Cg6iii0.933.103.692 (7)135
C65—H65···Cg30.932.863.530 (7)135
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+2, y+1, z+1; (iii) x, y+1/2, z3/2.
 

Funding information

The authors acknowledge financial support provided from the NRCT and administered by the Division of Research Administration at Naresuan University under grant No. R2560B098. SM also acknowledges scholarship support from the Science Achievement Scholarship of Thailand (SAST).

References

First citationBeeby, A., Bettington, S., Samuel, I. D. W. & Wang, Z. (2003). J. Mater. Chem. 13, 80–83.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaporale, C. & Massi, M. (2018). Coord. Chem. Rev. 363, 71–91.  Web of Science CrossRef Google Scholar
First citationDance, I. G. & Scudder, M. L. (1996). J. Chem. Soc. Dalton Trans. pp. 3755.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFernández-Moreira, V., Thorp-Greenwood, F. L. & Coogan, M. P. (2010). Chem. Comm. 46, 186–202.  PubMed Google Scholar
First citationHo, C. L., Wong, K. L., Kong, H. K., Ho, Y. M., Chan, C. T., Kwok, W. M., Leung, K. S., Tam, H. L., Lam, M. H., Ren, X. F., Ren, A. M., Feng, J. K. & Wong, W. Y. (2012). Chem. Commun. 48, 2525–2527.  Web of Science CrossRef Google Scholar
First citationKando, A., Hisamatsu, Y., Ohwada, H., Itoh, T., Moromizato, S., Kohno, M. & Aoki, S. (2015). Inorg. Chem. 54, 5342–5357.  Web of Science CrossRef PubMed Google Scholar
First citationKönig, B. (2017). Eur. J. Org. Chem. 2017, 1979–1981.  Google Scholar
First citationLadouceur, S. & Zysman-Colman, E. (2013). Eur. J. Inorg. Chem. pp. 2985–3007.  Web of Science CrossRef Google Scholar
First citationRees, B., Jenner, L. & Yusupov, M. (2005). Acta Cryst. D61, 1299–1301.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSansee, A., Meksawangwong, S., Chainok, K., Franz, K. J., Gál, M., Pålsson, L. O., Puniyan, W., Traiphol, R., Pal, R. & Kielar, F. (2016). Dalton Trans. 45, 17420–17430.  Web of Science CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSteunenberg, P., Ruggi, A., van den Berg, N. S., Buckle, T., Kuil, J., van Leeuwen, F. W. B. & Velders, A. H. (2012). Inorg. Chem. 51, 2105–2114.  Web of Science CrossRef PubMed Google Scholar
First citationThorn, A., Dittrich, B. & Sheldrick, G. M. (2012). Acta Cryst. A68, 448–451.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThorp-Greenwood, F. L., Balasingham, R. G. & Coogan, M. P. (2012). J. Organomet. Chem. 714, 12–21.  Google Scholar
First citationYou, Y. (2013). Curr. Opin. Chem. Biol. 17, 699–707.  Web of Science CrossRef PubMed Google Scholar
First citationYou, Y. & Nam, W. (2012). Chem. Soc. Rev. 41, 7061–7084.  Web of Science CrossRef PubMed Google Scholar
First citationZanoni, K. P., Coppo, R. L., Amaral, R. C. & Murakami Iha, N. Y. (2015). Dalton Trans. 44, 14559–14573.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds