research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(NH4)Ga(HAsO4)2 and TlAl(HAsO4)2 - two new RbFe(HPO4)2-type M+M3+ arsenates

CROSSMARK_Color_square_no_text.svg

aInstitute for Chemical Technology and Analytics, Division of Structural Chemistry, TU Wien, Getreidemarkt 9/164-SC, 1060 Vienna, Austria, and bNaturhistorisches Museum, Burgring 7, 1010 Wien, and Institut für Mineralogie und Kristallographie, Universität Wien, Althanstrasse 14, 1090 Wien, Austria
*Correspondence e-mail: karolina.schwendtner@tuwien.ac.at

Edited by S. Parkin, University of Kentucky, USA (Received 18 September 2018; accepted 24 September 2018; online 28 September 2018)

The crystal structures of hydro­thermally synthesized (T = 493 K, 7–9 d) ammonium gallium bis­[hydrogen arsenate(V)], (NH4)Ga(HAsO4)2, and thallium aluminium bis­[hydrogen arsenate(V)], TlAl(HAsO4)2, were solved by single-crystal X-ray diffraction. Both compounds crystallize in the common RbFe(HPO4)2 structure type (R[\overline{3}]c) and share the same tetra­hedral–octa­hedral framework topology that houses the M+ cations in its channels. One of the two Tl sites is slightly offset from its ideal position. Strong O—H⋯O hydrogen bonds strengthen the network.

1. Chemical context

Compounds with mixed tetra­hedral–octa­hedral (T–O) framework structures feature a broad range of different atomic arrangements. These result in topologies with several inter­esting properties such as ion exchange (Masquelier et al., 1996[Masquelier, C., Padhi, A. K., Nanjundaswamy, K. S., Okada, S. & Goodenough, J. B. (1996). Proceedings of the 37th Power Sources Conference, June 17-20, 1996, pp. 188-191. Cherry Hill, New Jersey. Fort Monmouth, NJ: US Army Research Laboratory.]) and ion conductivity (Chouchene et al., 2017[Chouchene, S., Jaouadi, K., Mhiri, T. & Zouari, N. (2017). Solid State Ionics, 301, 78-85.]), as well as unusual piezoelectric (Ren et al., 2015[Ren, J., Ma, Z., He, C., Sa, R., Li, Q. & Wu, K. (2015). Comput. Mater. Sci. 106, 1-4.]), magnetic (Ouerfelli et al., 2007[Ouerfelli, N., Guesmi, A., Molinié, P., Mazza, D., Zid, M. F. & Driss, A. (2007). J. Solid State Chem. 180, 2942-2949.]) or non-linear optical features (frequency doubling) (Sun et al., 2017[Sun, Y., Yang, Z., Hou, D. & Pan, S. (2017). RSC Adv. 7, 2804-2809.]).

The two new compounds were obtained during an extensive experimental study of the system M+M3+–O–(H)–As5+ (M+ = Li, Na, K, Rb, Cs, Ag, Tl, NH4; M3+ = Al, Ga, In, Sc, Fe, Cr, Tl), which led to an unusually large variety of new structure types (Schwendtner & Kolitsch, 2004[Schwendtner, K. & Kolitsch, U. (2004). Acta Cryst. C60, i79-i83.], 2005[Schwendtner, K. & Kolitsch, U. (2005). Acta Cryst. C61, i90-i93.], 2007a[Schwendtner, K. & Kolitsch, U. (2007a). Acta Cryst. B63, 205-215.],b[Schwendtner, K. & Kolitsch, U. (2007b). Acta Cryst. C63, i17-i20.],c[Schwendtner, K. & Kolitsch, U. (2007c). Eur. J. Mineral. 19, 399-409.], 2017a[Schwendtner, K. & Kolitsch, U. (2017a). Acta Cryst. C73, 600-608.], 2018a[Schwendtner, K. & Kolitsch, U. (2018a). Acta Cryst. C74, 721-727.]; Schwendtner, 2006[Schwendtner, K. (2006). J. Alloys Compd. 421, 57-63.], 2008[Schwendtner, K. (2008). PhD thesis, Universität Wien, Austria.]). Among the many different structure types found during our study, one atomic arrangement, the RbFe(HPO4)2 type (Lii & Wu, 1994[Lii, K.-H. & Wu, L.-S. (1994). J. Chem. Soc. A, 10, 1577-1580.]; rhombohedral, R[\overline{3}]c), was found to exhibit a large crystal–chemical flexibility, which allows the incorporation of a wide variety of M+ and M3+ cations. Previously, it was also known for the phosphate members RbAl(HPO4)2 and RbGa(HPO4)2 (Lesage et al., 2007[Lesage, J., Adam, L., Guesdon, A. & Raveau, B. (2007). J. Solid State Chem. 180, 1799-1808.]). Currently (including the present paper), a total of eight arsenate members are known with the following M+M3+ combinations: TlAl and (NH4)Ga (this work), RbIn, RbGa, RbAl, RbFe, CsIn and CsFe (Schwendtner & Kolitsch, 2017b[Schwendtner, K. & Kolitsch, U. (2017b). Acta Cryst. E73, 1580-1586.], 2018a[Schwendtner, K. & Kolitsch, U. (2018a). Acta Cryst. C74, 721-727.],b[Schwendtner, K. & Kolitsch, U. (2018b). Acta Cryst. E74, 766-771.],c[Schwendtner, K. & Kolitsch, U. (2018c). Acta Cryst. E74, 1244-1249.]). It is noteworthy that no K members are currently known.

2. Structural commentary

The two compounds are representatives of the RbFe(HPO4)2 structure type (R[\overline{3}]c; Lii & Wu, 1994[Lii, K.-H. & Wu, L.-S. (1994). J. Chem. Soc. A, 10, 1577-1580.]) and show a basic tetra­hedral–octa­hedral framework structure featuring inter­penetrating channels, which host the M+ cations (Fig. 1[link]). This structure type is closely related to the triclinic (NH4)Fe(HPO4)2 type (P[\overline{1}]; Yakubovich, 1993[Yakubovich, O. V. (1993). Kristallografiya, 38, 43-48.]) in which all other known (NH4)M3+(HTO4)2 (T = P, As) compounds crystallize (see Schwendtner & Kolitsch, 2018b[Schwendtner, K. & Kolitsch, U. (2018b). Acta Cryst. E74, 766-771.] for a compilation), the RbAl2As(HAsO4)6 type (R[\overline{3}]c; Schwendtner & Kolitsch, 2018a[Schwendtner, K. & Kolitsch, U. (2018a). Acta Cryst. C74, 721-727.]) and the RbAl(HAsO4)2 type (R32; Schwendtner & Kolitsch, 2018a[Schwendtner, K. & Kolitsch, U. (2018a). Acta Cryst. C74, 721-727.]). The fundamental building unit in all these structure types contains M3+O6 octa­hedra, which are connected via their six corners to six protonated AsO4 tetra­hedra, thereby forming an M3+As6O24 unit. These units are in turn connected via three corners to other M3+O6 octa­hedra. The free, protonated corner of each AsO4 tetra­hedron forms a hydrogen bond to the neighbouring M3+As6O24 group (Fig. 2[link]). The M3+As6O24 units are arranged in layers perpendicular to the chex axis (Fig. 1[link]). The units within these layers are held together by medium–strong hydrogen bonds (Tables 1[link] and 2[link]). Both title compounds invariably show a very similar crystal habit: strongly pseudo-hexa­gonal to pseudo-octa­hedral (cf. Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °) for (NH4)Ga(HAsO4)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O4xxi 0.87 (3) 1.74 (3) 2.610 (3) 172 (6)
Symmetry code: (xxi) [y, x-1, -z+{\script{3\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °) for TlAl(HAsO4)2

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O4xxi 0.87 (4) 1.87 (5) 2.584 (5) 139 (6)
Symmetry code: (xxi) [y, x-1, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
Structure drawings of the framework structures of (a) (NH4)Ga(HAsO4)2 and (b) TlAl(HAsO4)2 viewed along a. The unit cell is outlined and the alternative position AsB in (b) is shown in light yellow (the main As position is orange). The Tl1 atom shows a slight positional disorder and is slightly offset from the ideal position.
[Figure 2]
Figure 2
Structure drawings of the framework structures of (a) (NH4)Ga(HAsO4)2 and (b) TlAl(HAsO4)2 viewed along c. The unit cells are outlined and the alternative position AsB in (b), which can be generated by a mirror plane in (110), is shown in light yellow (the main As position is orange). The Tl1 atom shows a slight positional disorder.
[Figure 3]
Figure 3
SEM image showing a flattened pseudo-octa­hedral crystal of (NH4)Ga(HAsO4)2.

TlAl(HAsO4)2 has the smallest unit cell of all the arsenates of this structure type published to date. Still, the size of the M+-hosting voids seems to be too large for the Tl+ cation, since Tl1 is slightly offset from the ideal position at 0, 0, 3/4 [resulting in some positional disorder for Tl1, with three symmetry-equivalent Tl1 positions in close proximity; Tl1–Tl1i,ii = 0.28 (3) Å; symmetry codes: (i) −y, x − y, z; (ii) y − x, −x, z] and there are minor, but distinct negative and positive residual electron densities close to the Tl2 atom. The latter is severely underbonded, with a very low bond-valence sum (BVS) of only 0.54 valence units (v.u.) (calculated after Gagné & Hawthorne, 2015[Gagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562-578.]). The average Tl2—O bond length (Table 3[link]) of 3.321 Å is considerably larger than the longest average Tl—O bond length of 3.304 Å described in the latest review paper (Gagné & Hawthorne, 2018[Gagné, O. C. & Hawthorne, F. C. (2018). Acta Cryst. B74, 63-78.]), but still shorter than the excessively long average Tl—O bond length found in the related compound TlGa2As(HAsO4)6 (3.439 Å, Schwendtner & Kolitsch, 2018b[Schwendtner, K. & Kolitsch, U. (2018b). Acta Cryst. E74, 766-771.]). The electron-density distribution is well fitted for the Tl1 atom, which has a BVS of 0.74 v.u. and an average Tl1—O bond length of 3.261 Å, which is also significantly longer than the reported average of 3.195 Å (Gagné & Hawthorne, 2018[Gagné, O. C. & Hawthorne, F. C. (2018). Acta Cryst. B74, 63-78.]). In contrast, the two Al atoms are considerably overbonded (3.05 and 3.14 v.u. for Al1 and Al2, respectively) and average Al—O bond lengths of 1.898 and 1.887 Å are slightly shorter than the reported average of 1.903 Å (Gagné & Hawthorne, 2018[Gagné, O. C. & Hawthorne, F. C. (2018). Acta Cryst. B74, 63-78.]), but well within the general range of Al—O bond lengths. The protonated AsO4 group shows a fairly typical configuration with slightly above average As—O bond lengths and a BVS of 4.97 v.u. for the As atom. As expected from the strong hydrogen bond [2.584 (5) Å, Table 2[link]] the As—O bond to the donor O3 atom is considerably elongated (Table 3[link]).

Table 3
Selected bond lengths (Å) for TlAl(HAsO4)2

Tl1—Tl1i 0.28 (3) Tl2—O4xi 3.516 (3)
Tl1—O3 3.085 (8) Tl2—O3xii 3.545 (4)
Tl1—O3ii 3.085 (8) Tl2—O3xiii 3.545 (4)
Tl1—O3iii 3.136 (5) Tl2—O3xiv 3.545 (4)
Tl1—O3i 3.136 (5) Al1—O2xv 1.895 (4)
Tl1—O2iii 3.233 (13) Al1—O2v 1.895 (4)
Tl1—O2i 3.233 (13) Al1—O2xvi 1.895 (4)
Tl1—O3iv 3.261 (12) Al1—O4xvii 1.901 (4)
Tl1—O3v 3.261 (12) Al1—O4i 1.901 (4)
Tl1—O2ii 3.351 (4) Al1—O4xviii 1.901 (4)
Tl1—O2 3.351 (4) Al2—O1viii 1.887 (4)
Tl1—O2v 3.501 (15) Al2—O1xiv 1.887 (4)
Tl1—O2iv 3.501 (15) Al2—O1xix 1.887 (4)
Tl2—O3i 2.813 (4) Al2—O1i 1.887 (4)
Tl2—O3v 2.813 (4) Al2—O1xviii 1.887 (4)
Tl2—O3 2.813 (4) Al2—O1xvii 1.887 (4)
Tl2—O1vi 3.410 (4) As—O1xx 1.661 (3)
Tl2—O1vii 3.410 (4) As—O2 1.674 (3)
Tl2—O1viii 3.410 (4) As—O4ii 1.679 (3)
Tl2—O4ix 3.516 (3) As—O3 1.746 (4)
Tl2—O4x 3.516 (3)    
Symmetry codes: (i) -y, x-y, z; (ii) [-x, -x+y, -z+{\script{3\over 2}}]; (iii) [y, x, -z+{\script{3\over 2}}]; (iv) [x-y, -y, -z+{\script{3\over 2}}]; (v) -x+y, -x, z; (vi) [-x+{\script{2\over 3}}, -y-{\script{2\over 3}}, -z+{\script{4\over 3}}]; (vii) [x-y-{\script{4\over 3}}, x-{\script{2\over 3}}, -z+{\script{4\over 3}}]; (viii) [y+{\script{2\over 3}}, -x+y+{\script{4\over 3}}, -z+{\script{4\over 3}}]; (ix) [x-{\script{1\over 3}}, x-y-{\script{2\over 3}}, z-{\script{1\over 6}}]; (x) [-y-{\script{1\over 3}}, -x+{\script{1\over 3}}, z-{\script{1\over 6}}]; (xi) [-x+y+{\script{2\over 3}}, y+{\script{1\over 3}}, z-{\script{1\over 6}}]; (xii) [-x-{\script{1\over 3}}, -y-{\script{2\over 3}}, -z+{\script{4\over 3}}]; (xiii) [y+{\script{2\over 3}}, -x+y+{\script{1\over 3}}, -z+{\script{4\over 3}}]; (xiv) [x-y-{\script{1\over 3}}, x+{\script{1\over 3}}, -z+{\script{4\over 3}}]; (xv) -y, x-y+1, z; (xvi) x+1, y+1, z; (xvii) x, y+1, z; (xviii) -x+y+1, -x+1, z; (xix) [-x+{\script{2\over 3}}, -y+{\script{1\over 3}}, -z+{\script{4\over 3}}]; (xx) x-1, y, z.

For (NH4)Ga(HAsO4)2, the bond-valence sum values for the M3+ cations and As are quite similar (Table 4[link]), with overbonded Ga3+ (BVS 3.10 and 3.15 v.u., respectively) and numbers for As that are close to the expected values (BVS 5.03 v.u., average bond length of 1.686 Å). The NH4+ cations (average N⋯O = 3.268 Å for N1 and 3.336 Å for N2) seem to fill the M+-hosting voids much better, and the BVSs (calculated after García-Rodríguez et al., 2000[García-Rodríguez, L., Rute-Pérez, Á., Piñero, J. R. & González-Silgo, C. (2000). Acta Cryst. B56, 565-569.]) of 0.74 and 1.03 v.u. for N1 and N2, respectively, are closer to ideal values, although N1 is underbonded.

Table 4
Selected bond lengths (Å) for (NH4)Ga(HAsO4)

N1—O3 3.173 (3) N2—O4xi 3.493 (5)
N1—O3i 3.173 (3) N2—O3xii 3.557 (4)
N1—O3ii 3.173 (3) N2—O3xiii 3.557 (4)
N1—O3iii 3.173 (3) N2—O3xiv 3.557 (4)
N1—O3iv 3.173 (3) Ga1—O2xv 1.9619 (16)
N1—O3v 3.173 (3) Ga1—O2iii 1.9619 (17)
N1—O2 3.3657 (18) Ga1—O2xvi 1.9619 (17)
N1—O2ii 3.3657 (18) Ga1—O4v 1.9666 (17)
N1—O2iv 3.3657 (18) Ga1—O4xvii 1.9666 (17)
N1—O2iii 3.3657 (18) Ga1—O4xviii 1.9667 (16)
N1—O2i 3.3657 (17) Ga2—O1viii 1.9588 (18)
N1—O2v 3.3657 (17) Ga2—O1xiv 1.9588 (19)
N2—O3v 2.918 (4) Ga2—O1xix 1.9588 (18)
N2—O3iii 2.918 (4) Ga2—O1v 1.9589 (18)
N2—O3 2.918 (4) Ga2—O1xviii 1.9589 (19)
N2—O1vi 3.375 (3) Ga2—O1xvii 1.9589 (18)
N2—O1vii 3.375 (3) As—O1xx 1.6555 (18)
N2—O1viii 3.375 (3) As—O2 1.6700 (16)
N2—O4ix 3.493 (5) As—O4ii 1.6783 (17)
N2—O4x 3.493 (5) As—O3 1.740 (2)
Symmetry codes: (i) [x-y, -y, -z+{\script{3\over 2}}]; (ii) [-x, -x+y, -z+{\script{3\over 2}}]; (iii) -x+y, -x, z; (iv) [y, x, -z+{\script{3\over 2}}]; (v) -y, x-y, z; (vi) [-x+{\script{2\over 3}}, -y-{\script{2\over 3}}, -z+{\script{4\over 3}}]; (vii) [x-y-{\script{4\over 3}}, x-{\script{2\over 3}}, -z+{\script{4\over 3}}]; (viii) [y+{\script{2\over 3}}, -x+y+{\script{4\over 3}}, -z+{\script{4\over 3}}]; (ix) [x-{\script{1\over 3}}, x-y-{\script{2\over 3}}, z-{\script{1\over 6}}]; (x) [-y-{\script{1\over 3}}, -x+{\script{1\over 3}}, z-{\script{1\over 6}}]; (xi) [-x+y+{\script{2\over 3}}, y+{\script{1\over 3}}, z-{\script{1\over 6}}]; (xii) [-x-{\script{1\over 3}}, -y-{\script{2\over 3}}, -z+{\script{4\over 3}}]; (xiii) [y+{\script{2\over 3}}, -x+y+{\script{1\over 3}}, -z+{\script{4\over 3}}]; (xiv) [x-y-{\script{1\over 3}}, x+{\script{1\over 3}}, -z+{\script{4\over 3}}]; (xv) -y, x-y+1, z; (xvi) x+1, y+1, z; (xvii) x, y+1, z; (xviii) -x+y+1, -x+1, z; (xix) [-x+{\script{2\over 3}}, -y+{\script{1\over 3}}, -z+{\script{4\over 3}}]; (xx) x-1, y, z.

3. Synthesis and crystallization

The compounds were grown by hydro­thermal synthesis at 493 K (autogeneous pressure, slow furnace cooling) using Teflon-lined stainless steel autoclaves with an approximate filling volume of 2 cm3. Reagent-grade NH4OH, Tl2CO3, Ga2O3, Al2O3 and H3AsO4·0.5H2O were used as starting reagents in approximate volume ratios of M+:M3+:As of 1:1:3 of the respective M+M3+ compound for both synthesis batches. For TlAl(HAsO4)2, the vessels were filled with distilled water to about 70% of their inner volumes, which led to initial and final pH values of 1 and 0.5, respectively, and the synthesis was allowed to proceed at 493 K for 9 d. (NH4)Ga(HAsO4)2 was grown over a period of 7 d and the initial and final pH values were 3 and 1, respectively. The reaction products were washed thoroughly with distilled water, filtered, and dried at room temperature. (NH4)Ga(HAsO4)2 formed large colourless pseudo-octa­hedral crystals (Fig. 3[link]), while TlAl(HAsO4)2 formed small pseudo-hexa­gonal platelets. Both compounds are stable in air.

A measured X-ray powder diffraction pattern of (NH4)Ga(HAsO4)2 was deposited at the Inter­national Centre for Diffraction Data under PDF number 00-059-0055 (Wohlschlaeger et al., 2007[Wohlschlaeger, A., Lengauer, C. & Tillmanns, E. (2007). ICDD Grant-in-Aid. University of Vienna, Austria.]).

Semiqu­anti­tative SEM–EDX analysis (15 kV) of carbon-coated, horizontally oriented crystals of (NH4)Ga(HAsO4)2 were undertaken to discriminate between H3O+ and NH4+. They confirmed the suspected formula and revealed no impurities.

4. Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 5[link].

Table 5
Experimental details

  (NH4)Ga(HAsO4)2 TlAl(HAsO4)2
Crystal data
Mr 367.62 511.21
Crystal system, space group Trigonal, R[\overline{3}]c:H Trigonal, R[\overline{3}]c:H
Temperature (K) 293 293
a, c (Å) 8.380 (1), 53.811 (11) 8.290 (1), 52.940 (11)
V3) 3272.6 (10) 3150.8 (10)
Z 18 18
Radiation type Mo Kα Mo Kα
μ (mm−1) 12.83 32.58
Crystal size (mm) 0.08 × 0.07 × 0.03 0.08 × 0.07 × 0.03
 
Data collection
Diffractometer Nonius KappaCCD single-crystal four-circle diffractometer Nonius KappaCCD single-crystal four-circle
Absorption correction Multi-scan (HKL SCALEPACK; Otwinowski et al., 2003[Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228-234.]) Multi-scan (HKL SCALEPACK; Otwinowski et al., 2003[Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228-234.])
Tmin, Tmax 0.427, 0.700 0.180, 0.441
No. of measured, independent and observed [I > 2σ(I)] reflections 4834, 1326, 1156 2478, 698, 685
Rint 0.024 0.022
(sin θ/λ)max−1) 0.757 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.055, 1.07 0.022, 0.058, 1.21
No. of reflections 1326 698
No. of parameters 61 69
No. of restraints 1 2
H-atom treatment All H-atom parameters refined All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.75, −0.95 0.82, −1.98
Computer programs: COLLECT (Nonius, 2003[Nonius, B. V. (2003). COLLECT. Delft, The Netherlands.]), HKL DENZO and SCALEPACK (Otwinowski et al., 2003[Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228-234.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

For the refinement of both compounds, the coordinates of RbFe(HPO4)2 (Lii & Wu, 1994[Lii, K.-H. & Wu, L.-S. (1994). J. Chem. Soc. A, 10, 1577-1580.]) were used for the initial refinement steps. The hydrogen atoms were then located in difference-Fourier maps and added to the models. In both compounds O—H bonds were restrained to 0.9 ± 0.04 Å. In (NH4)Ga(HAsO4)2, several electron-density peaks between 0.4 and 0.75 e Å−3 were recognizable that could be attributed to the H atoms of the NH4+ cation. These peaks are located at the following coordinates for the N1 atom: 0.0170, 0.1329, 0.7450; 0.0641, 0.0560, 0.7414 and −0.0910, 0.0000, 0.7500. For the N2 atom, the coordinates are: 0.0478, −0.0330, 0.6635; −0.0655, −0.1106, 0.6786; 0.1301, 0.0094, 0.6695 and −0.0521, −0.0657, 0.6513. However, despite the use of restraints, no sensible coordination geometry for the H atoms around the N atoms could be found. Therefore, they were omitted from the model. As a result of the fact that there are 12 possible N—H⋯O bonds for each N atom, with only two symmetry-equivalent positions for N1 and four for N2, it seems reasonable to assume that the H-atom positions around the N atoms are, in both cases, highly disordered. The final residual electron density in (NH4)Ga(HAsO4)2 is < 1e Å−3.

The refinement of TlAl(HAsO4)2 revealed a considerable residual electron-density peak of 2.2 e Å−3 1.28 Å away from As and 1.61 Å away from the O1 site. The corresponding position can be generated by a mirror plane in (110) and therefore could be an alternative flipped As position (sharing the same O1 atom). Since the inclusion of the alternative position led to a considerable drop in R1 and weighting parameters and the highest residual electron density dropped to < 1 e Å−3, this position was kept in the model. The occupancy of the alternative position AsB (Fig. 1[link]b, 2b) refined to only 2.1%, which makes it impossible to locate the alternative O ligand positions that should comprise the coordination sphere of the AsB position. For the final refinement, the displacement parameters of the AsB position were restrained to be the same as for the main As position and the sum of As was restrained to give a total occupancy of 1.00. We note that a similar alternative position was also found for isotypic CsIn(HAsO4)2 (Schwendtner & Kolitsch, 2017b[Schwendtner, K. & Kolitsch, U. (2017b). Acta Cryst. E73, 1580-1586.]).

There was also considerable residual electron density of ±2 e Å −3 close to the two Tl positions, similar to what was encountered in the structurally related TlGa2As(HAsO4)6 (Schwendtner & Kolitsch, 2018d[Schwendtner, K. & Kolitsch, U. (2018d). Acta Cryst. E74, 1163-1167.]). We tried a similar approach that had worked well for the aforementioned compound, viz. to remove the Tl atoms from their ideal, highly symmetrical positions in this structure type. We obtained a better refinement with a slightly off-centre position for Tl1, in line with a slight disorder (probably static), possibly in part or in whole due to the stereochemical activity of the lone electron pair on the Tl+ cations. So, although the Tl1 site is slightly offset from its ideal position (0, 0, 3/4), we unfortunately did not manage to get rid of the negative residual electron density of about −2 e Å−3 next to Tl2. The most positive residual electron density peak, however, dropped to < 1 e Å−3.

Supporting information


Computing details top

For both structures, data collection: COLLECT (Nonius, 2003); cell refinement: HKL SCALEPACK (Otwinowski et al., 2003); data reduction: HKL DENZO and SCALEPACK (Otwinowski et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: publCIF (Westrip, 2010).

Ammonium gallium bis[hydrogen arsenate(V)] (NH4GaHAsO42) top
Crystal data top
(NH4)Ga(HAsO4)2Dx = 3.358 Mg m3
Mr = 367.62Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3c:HCell parameters from 2653 reflections
a = 8.380 (1) Åθ = 2.9–32.5°
c = 53.811 (11) ŵ = 12.83 mm1
V = 3272.6 (10) Å3T = 293 K
Z = 18Small pseudo-octahedral platelets, colourless
F(000) = 31320.08 × 0.07 × 0.03 mm
Data collection top
Nonius KappaCCD single-crystal four-circle
diffractometer
1156 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
φ and ω scansθmax = 32.5°, θmin = 2.9°
Absorption correction: multi-scan
(HKL SCALEPACK; Otwinowski et al., 2003)
h = 1212
Tmin = 0.427, Tmax = 0.700k = 1010
4834 measured reflectionsl = 8081
1326 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022All H-atom parameters refined
wR(F2) = 0.055 w = 1/[σ2(Fo2) + (0.0273P)2 + 16.8283P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.003
1326 reflectionsΔρmax = 0.75 e Å3
61 parametersΔρmin = 0.95 e Å3
1 restraintExtinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00016 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.0000000.0000000.7500000.051 (2)
N20.0000000.0000000.66731 (10)0.0487 (15)
Ga10.3333330.6666670.75382 (2)0.00954 (10)
Ga20.3333330.6666670.6666670.01164 (13)
As0.42915 (3)0.39386 (3)0.71282 (2)0.01072 (8)
O10.4557 (3)0.4378 (3)0.68635 (3)0.0218 (4)
O20.4457 (2)0.2535 (2)0.73337 (3)0.0133 (3)
O30.1958 (3)0.2785 (3)0.70541 (4)0.0243 (4)
O40.4778 (2)0.1224 (2)0.77594 (3)0.0127 (3)
H30.161 (8)0.353 (6)0.7114 (9)0.075 (18)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.062 (4)0.062 (4)0.029 (4)0.0311 (18)0.0000.000
N20.060 (2)0.060 (2)0.026 (2)0.0300 (12)0.0000.000
Ga10.01025 (13)0.01025 (13)0.00811 (19)0.00513 (6)0.0000.000
Ga20.01394 (18)0.01394 (18)0.0070 (2)0.00697 (9)0.0000.000
As0.01365 (12)0.01158 (12)0.00927 (12)0.00807 (9)0.00172 (8)0.00141 (7)
O10.0368 (11)0.0281 (10)0.0101 (7)0.0234 (9)0.0049 (7)0.0010 (7)
O20.0137 (7)0.0121 (7)0.0135 (7)0.0061 (6)0.0030 (6)0.0014 (6)
O30.0192 (9)0.0220 (9)0.0362 (12)0.0137 (8)0.0137 (8)0.0126 (8)
O40.0136 (7)0.0108 (7)0.0153 (7)0.0073 (6)0.0026 (6)0.0047 (6)
Geometric parameters (Å, º) top
N1—O33.173 (3)N2—O3xii3.557 (4)
N1—O3i3.173 (3)N2—O3xiii3.557 (4)
N1—O3ii3.173 (3)N2—O3xiv3.557 (4)
N1—O3iii3.173 (3)Ga1—O2xv1.9619 (16)
N1—O3iv3.173 (3)Ga1—O2iii1.9619 (17)
N1—O3v3.173 (3)Ga1—O2xvi1.9619 (17)
N1—O23.3657 (18)Ga1—O4v1.9666 (17)
N1—O2ii3.3657 (18)Ga1—O4xvii1.9666 (17)
N1—O2iv3.3657 (18)Ga1—O4xviii1.9667 (16)
N1—O2iii3.3657 (18)Ga2—O1viii1.9588 (18)
N1—O2i3.3657 (17)Ga2—O1xiv1.9588 (19)
N1—O2v3.3657 (17)Ga2—O1xix1.9588 (18)
N2—O3v2.918 (4)Ga2—O1v1.9589 (18)
N2—O3iii2.918 (4)Ga2—O1xviii1.9589 (19)
N2—O32.918 (4)Ga2—O1xvii1.9589 (18)
N2—O1vi3.375 (3)As—O1xx1.6555 (18)
N2—O1vii3.375 (3)As—O21.6700 (16)
N2—O1viii3.375 (3)As—O4ii1.6783 (17)
N2—O4ix3.493 (5)As—O31.740 (2)
N2—O4x3.493 (5)O3—H30.87 (3)
N2—O4xi3.493 (5)
O3—N1—O3i162.83 (7)O2xv—Ga1—N1119.85 (5)
O3—N1—O3ii123.01 (7)O2iii—Ga1—N132.80 (5)
O3i—N1—O3ii69.03 (6)O2xvi—Ga1—N1105.75 (5)
O3—N1—O3iii69.03 (6)O4v—Ga1—N177.33 (5)
O3i—N1—O3iii102.44 (7)O4xvii—Ga1—N1143.46 (5)
O3ii—N1—O3iii162.83 (8)O4xviii—Ga1—N159.54 (5)
O3—N1—O3iv102.44 (7)N2xxi—Ga1—N192.432 (5)
O3i—N1—O3iv69.03 (6)N1xvii—Ga1—N1119.821 (1)
O3ii—N1—O3iv69.03 (6)O2xv—Ga1—N1xvi105.75 (5)
O3iii—N1—O3iv123.01 (7)O2iii—Ga1—N1xvi119.85 (5)
O3—N1—O3v69.03 (6)O2xvi—Ga1—N1xvi32.80 (5)
O3i—N1—O3v123.01 (8)O4v—Ga1—N1xvi143.46 (5)
O3ii—N1—O3v102.44 (7)O4xvii—Ga1—N1xvi59.54 (5)
O3iii—N1—O3v69.03 (6)O4xviii—Ga1—N1xvi77.33 (5)
O3iv—N1—O3v162.83 (7)N2xxi—Ga1—N1xvi92.432 (5)
O3—N1—O248.11 (4)N1xvii—Ga1—N1xvi119.821 (1)
O3i—N1—O2115.51 (5)N1—Ga1—N1xvi119.821 (1)
O3ii—N1—O2126.51 (5)O1viii—Ga2—O1xiv93.53 (7)
O3iii—N1—O270.41 (5)O1viii—Ga2—O1xix93.53 (7)
O3iv—N1—O265.01 (5)O1xiv—Ga2—O1xix93.53 (7)
O3v—N1—O2113.56 (5)O1viii—Ga2—O1v180.0
O3—N1—O2ii126.52 (5)O1xiv—Ga2—O1v86.47 (7)
O3i—N1—O2ii70.41 (5)O1xix—Ga2—O1v86.47 (7)
O3ii—N1—O2ii48.11 (5)O1viii—Ga2—O1xviii86.47 (7)
O3iii—N1—O2ii115.51 (5)O1xiv—Ga2—O1xviii180.0
O3iv—N1—O2ii113.56 (5)O1xix—Ga2—O1xviii86.47 (7)
O3v—N1—O2ii65.01 (5)O1v—Ga2—O1xviii93.53 (7)
O2—N1—O2ii171.26 (6)O1viii—Ga2—O1xvii86.47 (7)
O3—N1—O2iv65.01 (5)O1xiv—Ga2—O1xvii86.47 (7)
O3i—N1—O2iv113.56 (5)O1xix—Ga2—O1xvii180.0
O3ii—N1—O2iv70.41 (5)O1v—Ga2—O1xvii93.53 (7)
O3iii—N1—O2iv126.51 (5)O1xviii—Ga2—O1xvii93.53 (7)
O3iv—N1—O2iv48.11 (4)O1viii—Ga2—N2xix62.79 (8)
O3v—N1—O2iv115.51 (5)O1xiv—Ga2—N2xix67.00 (7)
O2—N1—O2iv59.00 (6)O1xix—Ga2—N2xix146.77 (8)
O2ii—N1—O2iv113.20 (2)O1v—Ga2—N2xix117.21 (8)
O3—N1—O2iii113.56 (5)O1xviii—Ga2—N2xix113.00 (7)
O3i—N1—O2iii65.01 (5)O1xvii—Ga2—N2xix33.23 (8)
O3ii—N1—O2iii115.51 (5)O1viii—Ga2—N2xvii117.21 (8)
O3iii—N1—O2iii48.11 (5)O1xiv—Ga2—N2xvii113.00 (7)
O3iv—N1—O2iii126.51 (5)O1xix—Ga2—N2xvii33.23 (8)
O3v—N1—O2iii70.41 (5)O1v—Ga2—N2xvii62.79 (8)
O2—N1—O2iii113.20 (2)O1xviii—Ga2—N2xvii66.99 (7)
O2ii—N1—O2iii74.86 (6)O1xvii—Ga2—N2xvii146.77 (8)
O2iv—N1—O2iii171.26 (6)N2xix—Ga2—N2xvii180.0
O3—N1—O2i115.51 (5)O1viii—Ga2—N233.23 (8)
O3i—N1—O2i48.11 (4)O1xiv—Ga2—N2117.21 (8)
O3ii—N1—O2i113.56 (5)O1xix—Ga2—N2113.01 (8)
O3iii—N1—O2i65.01 (5)O1v—Ga2—N2146.77 (8)
O3iv—N1—O2i70.41 (5)O1xviii—Ga2—N262.79 (8)
O3v—N1—O2i126.51 (5)O1xvii—Ga2—N267.00 (8)
O2—N1—O2i74.86 (6)N2xix—Ga2—N260.005 (2)
O2ii—N1—O2i113.20 (2)N2xvii—Ga2—N2119.995 (2)
O2iv—N1—O2i113.20 (2)O1viii—Ga2—N2xvi113.01 (7)
O2iii—N1—O2i59.00 (6)O1xiv—Ga2—N2xvi33.23 (8)
O3—N1—O2v70.41 (5)O1xix—Ga2—N2xvi117.21 (8)
O3i—N1—O2v126.51 (5)O1v—Ga2—N2xvi66.99 (7)
O3ii—N1—O2v65.01 (5)O1xviii—Ga2—N2xvi146.77 (8)
O3iii—N1—O2v113.56 (5)O1xvii—Ga2—N2xvi62.79 (8)
O3iv—N1—O2v115.51 (5)N2xix—Ga2—N2xvi60.005 (2)
O3v—N1—O2v48.11 (4)N2xvii—Ga2—N2xvi119.995 (2)
O2—N1—O2v113.20 (2)N2—Ga2—N2xvi119.995 (2)
O2ii—N1—O2v59.00 (6)O1viii—Ga2—N2xxii66.99 (7)
O2iv—N1—O2v74.86 (6)O1xiv—Ga2—N2xxii146.77 (8)
O2iii—N1—O2v113.20 (2)O1xix—Ga2—N2xxii62.79 (8)
O2i—N1—O2v171.26 (6)O1v—Ga2—N2xxii113.00 (7)
O3v—N2—O3iii76.09 (13)O1xviii—Ga2—N2xxii33.23 (8)
O3v—N2—O376.08 (13)O1xvii—Ga2—N2xxii117.21 (8)
O3iii—N2—O376.08 (13)N2xix—Ga2—N2xxii119.995 (2)
O3v—N2—O1vi77.21 (6)N2xvii—Ga2—N2xxii60.005 (2)
O3iii—N2—O1vi152.44 (16)N2—Ga2—N2xxii60.005 (2)
O3—N2—O1vi91.02 (6)N2xvi—Ga2—N2xxii180.0
O3v—N2—O1vii152.44 (16)O1viii—Ga2—N2xxiii146.77 (8)
O3iii—N2—O1vii91.02 (6)O1xiv—Ga2—N2xxiii62.79 (8)
O3—N2—O1vii77.21 (6)O1xix—Ga2—N2xxiii66.99 (8)
O1vi—N2—O1vii110.03 (9)O1v—Ga2—N2xxiii33.23 (8)
O3v—N2—O1viii91.02 (6)O1xviii—Ga2—N2xxiii117.21 (8)
O3iii—N2—O1viii77.21 (6)O1xvii—Ga2—N2xxiii113.00 (8)
O3—N2—O1viii152.44 (16)N2xix—Ga2—N2xxiii119.995 (2)
O1vi—N2—O1viii110.03 (9)N2xvii—Ga2—N2xxiii60.005 (2)
O1vii—N2—O1viii110.03 (9)N2—Ga2—N2xxiii180.0
O3v—N2—O4ix111.48 (7)N2xvi—Ga2—N2xxiii60.005 (2)
O3iii—N2—O4ix156.43 (10)N2xxii—Ga2—N2xxiii119.994 (2)
O3—N2—O4ix126.99 (7)O1xx—As—O2118.81 (9)
O1vi—N2—O4ix45.41 (6)O1xx—As—O4ii105.46 (9)
O1vii—N2—O4ix90.09 (12)O2—As—O4ii115.11 (9)
O1viii—N2—O4ix80.30 (10)O1xx—As—O3107.12 (11)
O3v—N2—O4x156.43 (10)O2—As—O3103.09 (10)
O3iii—N2—O4x126.99 (7)O4ii—As—O3106.35 (9)
O3—N2—O4x111.48 (7)O1xx—As—N2xii64.22 (8)
O1vi—N2—O4x80.30 (10)O2—As—N2xii173.25 (6)
O1vii—N2—O4x45.41 (6)O4ii—As—N2xii68.25 (8)
O1viii—N2—O4x90.09 (12)O3—As—N2xii70.17 (8)
O4ix—N2—O4x45.67 (8)O1xx—As—N1142.98 (8)
O3v—N2—O4xi126.99 (7)O2—As—N156.21 (6)
O3iii—N2—O4xi111.48 (7)O4ii—As—N1108.99 (6)
O3—N2—O4xi156.43 (10)O3—As—N150.09 (8)
O1vi—N2—O4xi90.09 (12)N2xii—As—N1117.48 (2)
O1vii—N2—O4xi80.30 (10)O1xx—As—N281.32 (10)
O1viii—N2—O4xi45.41 (6)O2—As—N299.84 (7)
O4ix—N2—O4xi45.67 (8)O4ii—As—N2133.25 (6)
O4x—N2—O4xi45.67 (8)O3—As—N232.26 (8)
O3v—N2—O3xii119.40 (8)N2xii—As—N274.310 (11)
O3iii—N2—O3xii150.86 (8)N1—As—N265.36 (6)
O3—N2—O3xii83.78 (6)O1xx—As—N1xxiv88.02 (8)
O1vi—N2—O3xii46.33 (6)O2—As—N1xxiv94.12 (6)
O1vii—N2—O3xii63.78 (7)O4ii—As—N1xxiv40.77 (6)
O1viii—N2—O3xii123.57 (16)O3—As—N1xxiv147.10 (7)
O4ix—N2—O3xii45.67 (7)N2xii—As—N1xxiv92.00 (3)
O4x—N2—O3xii43.44 (7)N1—As—N1xxiv127.434 (12)
O4xi—N2—O3xii80.03 (12)N2—As—N1xxiv165.32 (5)
O3v—N2—O3xiii83.77 (6)O1xx—As—N2xxiv43.28 (9)
O3iii—N2—O3xiii119.40 (8)O2—As—N2xxiv127.15 (7)
O3—N2—O3xiii150.86 (7)O4ii—As—N2xxiv63.82 (7)
O1vi—N2—O3xiii63.78 (7)O3—As—N2xxiv128.79 (9)
O1vii—N2—O3xiii123.57 (16)N2xii—As—N2xxiv59.42 (2)
O1viii—N2—O3xiii46.33 (6)N1—As—N2xxiv172.65 (3)
O4ix—N2—O3xiii43.44 (7)N2—As—N2xxiv117.94 (11)
O4x—N2—O3xiii80.03 (12)N1xxiv—As—N2xxiv48.43 (5)
O4xi—N2—O3xiii45.67 (7)Asxxv—O1—Ga2xxvi137.99 (11)
O3xii—N2—O3xiii88.14 (11)Asxxv—O1—N2vi89.57 (11)
O3v—N2—O3xiv150.86 (8)Ga2xxvi—O1—N2vi128.22 (11)
O3iii—N2—O3xiv83.77 (6)Asxxv—O1—N2xxv76.36 (10)
O3—N2—O3xiv119.40 (8)Ga2xxvi—O1—N2xxv93.37 (8)
O1vi—N2—O3xiv123.57 (16)N2vi—O1—N2xxv76.98 (4)
O1vii—N2—O3xiv46.33 (6)Asxxv—O1—N2xxvi121.95 (10)
O1viii—N2—O3xiv63.78 (7)Ga2xxvi—O1—N2xxvi89.12 (8)
O4ix—N2—O3xiv80.03 (12)N2vi—O1—N2xxvi74.93 (4)
O4x—N2—O3xiv45.67 (7)N2xxv—O1—N2xxvi145.93 (11)
O4xi—N2—O3xiv43.44 (7)As—O2—Ga1xxiv121.85 (9)
O3xii—N2—O3xiv88.14 (11)As—O2—N199.43 (7)
O3xiii—N2—O3xiv88.14 (11)Ga1xxiv—O2—N1128.79 (7)
O2xv—Ga1—O2iii91.61 (7)As—O2—N260.17 (5)
O2xv—Ga1—O2xvi91.61 (7)Ga1xxiv—O2—N2163.08 (8)
O2iii—Ga1—O2xvi91.61 (7)N1—O2—N263.03 (5)
O2xv—Ga1—O4v88.91 (7)As—O3—N2129.17 (11)
O2iii—Ga1—O4v92.29 (8)As—O3—N1105.03 (9)
O2xvi—Ga1—O4v176.05 (7)N2—O3—N193.77 (9)
O2xv—Ga1—O4xvii92.29 (8)As—O3—N2xii82.43 (8)
O2iii—Ga1—O4xvii176.05 (7)N2—O3—N2xii96.22 (6)
O2xvi—Ga1—O4xvii88.91 (7)N1—O3—N2xii159.27 (9)
O4v—Ga1—O4xvii87.16 (8)As—O3—H3102 (4)
O2xv—Ga1—O4xviii176.05 (7)N2—O3—H3125 (4)
O2iii—Ga1—O4xviii88.91 (7)N1—O3—H391 (3)
O2xvi—Ga1—O4xviii92.29 (7)N2xii—O3—H369 (3)
O4v—Ga1—O4xviii87.16 (8)Asii—O4—Ga1xxvi130.02 (10)
O4xvii—Ga1—O4xviii87.16 (8)Asii—O4—N2xxvii85.25 (7)
O2xv—Ga1—N2xxi124.12 (5)Ga1xxvi—O4—N2xxvii100.62 (8)
O2iii—Ga1—N2xxi124.12 (5)Asii—O4—N1xxv124.11 (7)
O2xvi—Ga1—N2xxi124.12 (5)Ga1xxvi—O4—N1xxv96.68 (6)
O4v—Ga1—N2xxi52.75 (5)N2xxvii—O4—N1xxv118.40 (4)
O4xvii—Ga1—N2xxi52.75 (5)Asii—O4—N151.75 (5)
O4xviii—Ga1—N2xxi52.75 (5)Ga1xxvi—O4—N179.17 (5)
O2xv—Ga1—N1xvii32.80 (5)N2xxvii—O4—N1104.63 (4)
O2iii—Ga1—N1xvii105.75 (5)N1xxv—O4—N1136.70 (4)
O2xvi—Ga1—N1xvii119.85 (5)Asii—O4—N2xxviii98.66 (7)
O4v—Ga1—N1xvii59.54 (5)Ga1xxvi—O4—N2xxviii129.48 (6)
O4xvii—Ga1—N1xvii77.33 (5)N2xxvii—O4—N2xxviii66.70 (3)
O4xviii—Ga1—N1xvii143.46 (5)N1xxv—O4—N2xxviii57.01 (5)
N2xxi—Ga1—N1xvii92.432 (5)N1—O4—N2xxviii150.37 (5)
Symmetry codes: (i) xy, y, z+3/2; (ii) x, x+y, z+3/2; (iii) x+y, x, z; (iv) y, x, z+3/2; (v) y, xy, z; (vi) x+2/3, y2/3, z+4/3; (vii) xy4/3, x2/3, z+4/3; (viii) y+2/3, x+y+4/3, z+4/3; (ix) x1/3, xy2/3, z1/6; (x) y1/3, x+1/3, z1/6; (xi) x+y+2/3, y+1/3, z1/6; (xii) x1/3, y2/3, z+4/3; (xiii) y+2/3, x+y+1/3, z+4/3; (xiv) xy1/3, x+1/3, z+4/3; (xv) y, xy+1, z; (xvi) x+1, y+1, z; (xvii) x, y+1, z; (xviii) x+y+1, x+1, z; (xix) x+2/3, y+1/3, z+4/3; (xx) x1, y, z; (xxi) y+1/3, x+2/3, z+1/6; (xxii) x1/3, y+1/3, z+4/3; (xxiii) x+2/3, y+4/3, z+4/3; (xxiv) x1, y1, z; (xxv) x+1, y, z; (xxvi) x, y1, z; (xxvii) y+1/3, x1/3, z+1/6; (xxviii) y+1, x, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O4xxix0.87 (3)1.74 (3)2.610 (3)172 (6)
Symmetry code: (xxix) y, x1, z+3/2.
Thallium aluminium bis[hydrogen arsenate(V)] (TlAlHAsO42) top
Crystal data top
TlAl(HAsO4)2Dx = 4.849 Mg m3
Mr = 511.21Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3c:HCell parameters from 1004 reflections
a = 8.290 (1) Åθ = 2.9–30.0°
c = 52.940 (11) ŵ = 32.58 mm1
V = 3150.8 (10) Å3T = 293 K
Z = 18Small pseudo-octahedral platelets, colourless
F(000) = 40680.08 × 0.07 × 0.03 mm
Data collection top
Nonius KappaCCD single-crystal four-circle
diffractometer
685 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
φ and ω scansθmax = 26.0°, θmin = 2.9°
Absorption correction: multi-scan
(HKL SCALEPACK; Otwinowski et al., 2003)
h = 1010
Tmin = 0.180, Tmax = 0.441k = 88
2478 measured reflectionsl = 6464
698 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022All H-atom parameters refined
wR(F2) = 0.058 w = 1/[σ2(Fo2) + (0.023P)2 + 84.2452P]
where P = (Fo2 + 2Fc2)/3
S = 1.21(Δ/σ)max = 0.003
698 reflectionsΔρmax = 0.82 e Å3
69 parametersΔρmin = 1.98 e Å3
2 restraintsExtinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00049 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Tl10.0000000.019 (2)0.7500000.037 (2)0.3333
Tl20.0000000.0000000.66885 (2)0.0322 (2)
Al10.3333330.6666670.75439 (5)0.0051 (5)
Al20.3333330.6666670.6666670.0061 (7)
As0.43603 (7)0.39811 (7)0.71289 (2)0.00523 (19)0.9790 (14)
AsB0.596 (3)0.559 (3)0.7127 (4)0.00523 (19)0.0210 (14)
O10.4431 (5)0.4433 (5)0.68625 (6)0.0120 (8)
O20.4518 (5)0.2576 (5)0.73421 (6)0.0080 (7)
O30.2001 (5)0.2792 (5)0.70491 (8)0.0144 (8)
O40.4791 (5)0.1259 (5)0.77571 (6)0.0083 (7)
H30.126 (8)0.323 (8)0.7074 (11)0.010 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tl10.0356 (8)0.051 (5)0.0190 (4)0.0178 (4)0.003 (2)0.0015 (10)
Tl20.0411 (3)0.0411 (3)0.0145 (3)0.02053 (13)0.0000.000
Al10.0069 (7)0.0069 (7)0.0014 (11)0.0035 (4)0.0000.000
Al20.0085 (11)0.0085 (11)0.0014 (16)0.0042 (5)0.0000.000
As0.0081 (3)0.0070 (3)0.0019 (3)0.0047 (2)0.00051 (17)0.00064 (17)
AsB0.0081 (3)0.0070 (3)0.0019 (3)0.0047 (2)0.00051 (17)0.00064 (17)
O10.0188 (19)0.0166 (18)0.0032 (15)0.0109 (16)0.0020 (14)0.0009 (13)
O20.0077 (17)0.0103 (16)0.0045 (15)0.0034 (14)0.0021 (13)0.0004 (13)
O30.0091 (18)0.0168 (19)0.0199 (19)0.0085 (15)0.0098 (15)0.0102 (15)
O40.0119 (17)0.0085 (17)0.0049 (15)0.0054 (14)0.0011 (13)0.0044 (13)
Geometric parameters (Å, º) top
Tl1—Tl1i0.28 (3)Tl2—O3xiv3.545 (4)
Tl1—Tl1ii0.28 (3)Tl2—O3xv3.545 (4)
Tl1—O33.085 (8)Tl2—AsBxiii3.74 (2)
Tl1—O3iii3.085 (8)Tl2—AsBxv3.74 (2)
Tl1—O3iv3.136 (5)Tl2—AsBxiv3.74 (2)
Tl1—O3i3.136 (5)Al1—O2xvi1.895 (4)
Tl1—O2iv3.233 (13)Al1—O2ii1.895 (4)
Tl1—O2i3.233 (13)Al1—O2xvii1.895 (4)
Tl1—O3v3.261 (12)Al1—O4xviii1.901 (4)
Tl1—O3ii3.261 (12)Al1—O4i1.901 (4)
Tl1—O2iii3.351 (4)Al1—O4xix1.901 (4)
Tl1—O23.351 (4)Al2—O1ix1.887 (4)
Tl1—O2ii3.501 (15)Al2—O1xv1.887 (4)
Tl1—O2v3.501 (15)Al2—O1xx1.887 (4)
Tl1—AsBvi3.89 (3)Al2—O1i1.887 (4)
Tl2—O3i2.813 (4)Al2—O1xix1.887 (4)
Tl2—O3ii2.813 (4)Al2—O1xviii1.887 (4)
Tl2—O32.813 (4)As—AsB1.33 (2)
Tl2—O1vii3.410 (4)As—O1xxi1.661 (3)
Tl2—O1viii3.410 (4)As—O21.674 (3)
Tl2—O1ix3.410 (4)As—O4iii1.679 (3)
Tl2—O4x3.516 (3)As—O31.746 (4)
Tl2—O4xi3.516 (3)AsB—O4iii1.35 (2)
Tl2—O4xii3.516 (3)AsB—O1xxi1.64 (2)
Tl2—O3xiii3.545 (4)AsB—O2xxii2.12 (2)
Tl1i—Tl1—Tl1ii60.00 (3)O1xix—Al2—O1xviii92.71 (15)
Tl1i—Tl1—O3127.2 (3)O1ix—Al2—Tl2xx64.49 (12)
Tl1ii—Tl1—O398.0 (3)O1xv—Al2—Tl2xx64.45 (11)
Tl1i—Tl1—O3iii98.0 (3)O1xx—Al2—Tl2xx145.30 (11)
Tl1ii—Tl1—O3iii127.2 (2)O1i—Al2—Tl2xx115.51 (12)
O3—Tl1—O3iii129.1 (6)O1xix—Al2—Tl2xx115.55 (11)
Tl1i—Tl1—O3iv114.4 (3)O1xviii—Al2—Tl2xx34.70 (11)
Tl1ii—Tl1—O3iv77.0 (4)O1ix—Al2—Tl2xviii115.51 (12)
O3—Tl1—O3iv104.2 (3)O1xv—Al2—Tl2xviii115.55 (11)
O3iii—Tl1—O3iv70.24 (16)O1xx—Al2—Tl2xviii34.70 (11)
Tl1i—Tl1—O3i77.0 (3)O1i—Al2—Tl2xviii64.49 (12)
Tl1ii—Tl1—O3i114.4 (2)O1xix—Al2—Tl2xviii64.45 (11)
O3—Tl1—O3i70.24 (16)O1xviii—Al2—Tl2xviii145.29 (11)
O3iii—Tl1—O3i104.2 (3)Tl2xx—Al2—Tl2xviii180.0
O3iv—Tl1—O3i167.5 (6)O1ix—Al2—Tl2xvii115.55 (11)
Tl1i—Tl1—O2iv163.77 (15)O1xv—Al2—Tl2xvii34.70 (11)
Tl1ii—Tl1—O2iv112.8 (3)O1xx—Al2—Tl2xvii115.51 (12)
O3—Tl1—O2iv66.4 (3)O1i—Al2—Tl2xvii64.45 (11)
O3iii—Tl1—O2iv74.5 (3)O1xix—Al2—Tl2xvii145.29 (11)
O3iv—Tl1—O2iv49.68 (16)O1xviii—Al2—Tl2xvii64.49 (12)
O3i—Tl1—O2iv118.5 (5)Tl2xx—Al2—Tl2xvii60.1
Tl1i—Tl1—O2i112.84 (18)Tl2xviii—Al2—Tl2xvii119.9
Tl1ii—Tl1—O2i163.77 (10)O1ix—Al2—Tl234.70 (11)
O3—Tl1—O2i74.5 (3)O1xv—Al2—Tl2115.51 (12)
O3iii—Tl1—O2i66.4 (3)O1xx—Al2—Tl2115.55 (12)
O3iv—Tl1—O2i118.5 (5)O1i—Al2—Tl2145.29 (11)
O3i—Tl1—O2i49.68 (16)O1xix—Al2—Tl264.49 (12)
O2iv—Tl1—O2i77.8 (4)O1xviii—Al2—Tl264.45 (12)
Tl1i—Tl1—O3v48.90 (18)Tl2xx—Al2—Tl260.1
Tl1ii—Tl1—O3v61.10 (14)Tl2xviii—Al2—Tl2119.942 (1)
O3—Tl1—O3v158.5 (4)Tl2xvii—Al2—Tl2119.9
O3iii—Tl1—O3v68.60 (12)O1ix—Al2—Tl2xxiv64.45 (11)
O3iv—Tl1—O3v68.01 (16)O1xv—Al2—Tl2xxiv145.30 (11)
O3i—Tl1—O3v121.2 (3)O1xx—Al2—Tl2xxiv64.49 (12)
O2iv—Tl1—O3v115.03 (10)O1i—Al2—Tl2xxiv115.55 (11)
O2i—Tl1—O3v127.04 (11)O1xix—Al2—Tl2xxiv34.70 (11)
Tl1i—Tl1—O3ii61.1 (2)O1xviii—Al2—Tl2xxiv115.51 (12)
Tl1ii—Tl1—O3ii48.90 (16)Tl2xx—Al2—Tl2xxiv119.9
O3—Tl1—O3ii68.60 (12)Tl2xviii—Al2—Tl2xxiv60.1
O3iii—Tl1—O3ii158.5 (4)Tl2xvii—Al2—Tl2xxiv180.0
O3iv—Tl1—O3ii121.2 (3)Tl2—Al2—Tl2xxiv60.1
O3i—Tl1—O3ii68.01 (16)O1ix—Al2—Tl2xxv145.30 (11)
O2iv—Tl1—O3ii127.04 (11)O1xv—Al2—Tl2xxv64.49 (12)
O2i—Tl1—O3ii115.03 (10)O1xx—Al2—Tl2xxv64.45 (12)
O3v—Tl1—O3ii97.6 (5)O1i—Al2—Tl2xxv34.70 (11)
Tl1i—Tl1—O2iii62.8 (3)O1xix—Al2—Tl2xxv115.51 (12)
Tl1ii—Tl1—O2iii120.68 (19)O1xviii—Al2—Tl2xxv115.55 (12)
O3—Tl1—O2iii129.1 (3)Tl2xx—Al2—Tl2xxv119.9
O3iii—Tl1—O2iii48.95 (11)Tl2xviii—Al2—Tl2xxv60.1
O3iv—Tl1—O2iii115.18 (11)Tl2xvii—Al2—Tl2xxv60.1
O3i—Tl1—O2iii64.40 (9)Tl2—Al2—Tl2xxv180.0
O2iv—Tl1—O2iii117.7 (4)Tl2xxiv—Al2—Tl2xxv119.9
O2i—Tl1—O2iii59.15 (18)AsB—As—O1xxi65.3 (9)
O3v—Tl1—O2iii70.66 (15)AsB—As—O2108.5 (9)
O3ii—Tl1—O2iii111.8 (3)O1xxi—As—O2118.77 (18)
Tl1i—Tl1—O2120.7 (3)AsB—As—O4iii51.8 (9)
Tl1ii—Tl1—O262.8 (4)O1xxi—As—O4iii106.18 (18)
O3—Tl1—O248.94 (10)O2—As—O4iii114.71 (17)
O3iii—Tl1—O2129.1 (3)AsB—As—O3147.0 (10)
O3iv—Tl1—O264.40 (9)O1xxi—As—O3107.52 (19)
O3i—Tl1—O2115.18 (11)O2—As—O3103.03 (19)
O2iv—Tl1—O259.15 (17)O4iii—As—O3105.63 (17)
O2i—Tl1—O2117.7 (4)AsB—As—Tl2xiii79.0 (9)
O3v—Tl1—O2111.8 (3)O1xxi—As—Tl2xiii65.02 (13)
O3ii—Tl1—O270.66 (15)O2—As—Tl2xiii172.42 (13)
O2iii—Tl1—O2176.5 (6)O4iii—As—Tl2xiii68.63 (12)
Tl1i—Tl1—O2ii14.95 (6)O3—As—Tl2xiii69.39 (14)
Tl1ii—Tl1—O2ii55.40 (8)AsB—As—Tl1ii150.1 (9)
O3—Tl1—O2ii112.4 (2)O1xxi—As—Tl1ii142.74 (15)
O3iii—Tl1—O2ii112.3 (2)O2—As—Tl1ii54.3 (2)
O3iv—Tl1—O2ii122.2 (4)O4iii—As—Tl1ii109.18 (17)
O3i—Tl1—O2ii70.1 (2)O3—As—Tl1ii51.5 (2)
O2iv—Tl1—O2ii168.2 (3)Tl2xiii—As—Tl1ii118.4 (2)
O2i—Tl1—O2ii113.58 (8)AsB—As—Tl1149.5 (9)
O3v—Tl1—O2ii61.5 (3)O1xxi—As—Tl1144.6 (2)
O3ii—Tl1—O2ii46.5 (2)O2—As—Tl157.8 (2)
O2iii—Tl1—O2ii72.6 (2)O4iii—As—Tl1106.1 (2)
O2—Tl1—O2ii110.7 (4)O3—As—Tl149.19 (16)
Tl1i—Tl1—O2v55.40 (16)Tl2xiii—As—Tl1115.07 (16)
Tl1ii—Tl1—O2v14.95 (6)Tl1ii—As—Tl14.1 (4)
O3—Tl1—O2v112.3 (2)AsB—As—Tl1i151.5 (9)
O3iii—Tl1—O2v112.4 (2)O1xxi—As—Tl1i142.12 (17)
O3iv—Tl1—O2v70.1 (2)O2—As—Tl1i56.77 (13)
O3i—Tl1—O2v122.2 (4)O4iii—As—Tl1i108.88 (15)
O2iv—Tl1—O2v113.58 (7)O3—As—Tl1i49.06 (16)
O2i—Tl1—O2v168.2 (3)Tl2xiii—As—Tl1i115.97 (5)
O3v—Tl1—O2v46.5 (2)Tl1ii—As—Tl1i2.5 (3)
O3ii—Tl1—O2v61.5 (3)Tl1—As—Tl1i2.8 (3)
O2iii—Tl1—O2v110.7 (4)AsB—As—Tl2145.5 (9)
O2—Tl1—O2v72.6 (2)O1xxi—As—Tl283.71 (13)
O2ii—Tl1—O2v55.3 (3)O2—As—Tl299.45 (13)
Tl1i—Tl1—AsBvi135.2 (4)O4iii—As—Tl2131.69 (12)
Tl1ii—Tl1—AsBvi141.1 (4)O3—As—Tl230.29 (12)
O3—Tl1—AsBvi43.1 (4)Tl2xiii—As—Tl274.034 (11)
O3iii—Tl1—AsBvi89.5 (5)Tl1ii—As—Tl264.11 (8)
O3iv—Tl1—AsBvi109.6 (5)Tl1—As—Tl263.95 (6)
O3i—Tl1—AsBvi58.5 (4)Tl1i—As—Tl262.34 (12)
O2iv—Tl1—AsBvi60.1 (4)AsB—As—Tl1xxvi23.3 (9)
O2i—Tl1—AsBvi33.0 (4)O1xxi—As—Tl1xxvi87.98 (15)
O3v—Tl1—AsBvi157.7 (4)O2—As—Tl1xxvi93.41 (14)
O3ii—Tl1—AsBvi101.9 (3)O4iii—As—Tl1xxvi41.90 (12)
O2iii—Tl1—AsBvi92.0 (4)O3—As—Tl1xxvi147.50 (13)
O2—Tl1—AsBvi85.0 (4)Tl2xiii—As—Tl1xxvi93.30 (5)
O2ii—Tl1—AsBvi127.8 (3)Tl1ii—As—Tl1xxvi126.79 (12)
O2v—Tl1—AsBvi155.4 (3)Tl1—As—Tl1xxvi126.30 (17)
O3i—Tl2—O3ii79.02 (13)Tl1i—As—Tl1xxvi128.27 (4)
O3i—Tl2—O379.02 (13)Tl2—As—Tl1xxvi166.91 (6)
O3ii—Tl2—O379.02 (13)AsB—As—Tl1xxii22.1 (9)
O3i—Tl2—O1vii75.43 (10)O1xxi—As—Tl1xxii86.49 (17)
O3ii—Tl2—O1vii154.16 (10)O2—As—Tl1xxii93.06 (16)
O3—Tl2—O1vii92.26 (10)O4iii—As—Tl1xxii43.7 (2)
O3i—Tl2—O1viii154.16 (10)O3—As—Tl1xxii149.3 (2)
O3ii—Tl2—O1viii92.26 (10)Tl2xiii—As—Tl1xxii93.75 (10)
O3—Tl2—O1viii75.43 (10)Tl1ii—As—Tl1xxii127.913 (17)
O1vii—Tl2—O1viii109.19 (6)Tl1—As—Tl1xxii127.56 (3)
O3i—Tl2—O1ix92.26 (10)Tl1i—As—Tl1xxii129.46 (17)
O3ii—Tl2—O1ix75.43 (10)Tl2—As—Tl1xxii166.76 (4)
O3—Tl2—O1ix154.15 (10)Tl1xxvi—As—Tl1xxii1.9 (2)
O1vii—Tl2—O1ix109.19 (6)As—AsB—O4iii77.6 (12)
O1viii—Tl2—O1ix109.19 (6)As—AsB—O1xxi67.1 (10)
O3i—Tl2—O4x110.02 (10)O4iii—AsB—O1xxi126.4 (16)
O3ii—Tl2—O4x153.52 (10)As—AsB—O2xxii112.5 (13)
O3—Tl2—O4x126.54 (10)O4iii—AsB—O2xxii119.3 (13)
O1vii—Tl2—O4x45.33 (8)O1xxi—AsB—O2xxii111.1 (11)
O1viii—Tl2—O4x88.61 (8)As—AsB—Tl2xiii80.6 (10)
O1ix—Tl2—O4x79.30 (8)O4iii—AsB—Tl2xiii69.9 (9)
O3i—Tl2—O4xi153.52 (10)O1xxi—AsB—Tl2xiii65.6 (7)
O3ii—Tl2—O4xi126.54 (10)O2xxii—AsB—Tl2xiii164.8 (9)
O3—Tl2—O4xi110.02 (11)As—AsB—Tl1xxvi149.0 (12)
O1vii—Tl2—O4xi79.30 (8)O4iii—AsB—Tl1xxvi84.2 (10)
O1viii—Tl2—O4xi45.33 (8)O1xxi—AsB—Tl1xxvi142.5 (11)
O1ix—Tl2—O4xi88.61 (8)O2xxii—AsB—Tl1xxvi56.2 (5)
O4x—Tl2—O4xi44.26 (9)Tl2xiii—AsB—Tl1xxvi116.5 (6)
O3i—Tl2—O4xii126.54 (11)As—AsB—Tl1xxii150.8 (12)
O3ii—Tl2—O4xii110.01 (10)O4iii—AsB—Tl1xxii86.9 (10)
O3—Tl2—O4xii153.52 (11)O1xxi—AsB—Tl1xxii140.0 (11)
O1vii—Tl2—O4xii88.61 (8)O2xxii—AsB—Tl1xxii54.8 (5)
O1viii—Tl2—O4xii79.30 (8)Tl2xiii—AsB—Tl1xxii117.2 (6)
O1ix—Tl2—O4xii45.33 (8)Tl1xxvi—AsB—Tl1xxii2.7 (3)
O4x—Tl2—O4xii44.26 (9)As—AsB—Tl1xxvii150.4 (12)
O4xi—Tl2—O4xii44.26 (9)O4iii—AsB—Tl1xxvii83.6 (10)
O3i—Tl2—O3xiii117.91 (14)O1xxi—AsB—Tl1xxvii141.8 (11)
O3ii—Tl2—O3xiii152.25 (13)O2xxii—AsB—Tl1xxvii58.4 (6)
O3—Tl2—O3xiii82.85 (11)Tl2xiii—AsB—Tl1xxvii114.1 (6)
O1vii—Tl2—O3xiii46.50 (9)Tl1xxvi—AsB—Tl1xxvii2.4 (3)
O1viii—Tl2—O3xiii62.74 (9)Tl1xxii—AsB—Tl1xxvii3.9 (4)
O1ix—Tl2—O3xiii122.31 (9)As—AsB—Tl2xxvii146.6 (12)
O4x—Tl2—O3xiii45.47 (8)O4iii—AsB—Tl2xxvii112.1 (11)
O4xi—Tl2—O3xiii42.94 (8)O1xxi—AsB—Tl2xxvii82.8 (8)
O4xii—Tl2—O3xiii78.63 (8)O2xxii—AsB—Tl2xxvii91.1 (7)
O3i—Tl2—O3xiv82.85 (11)Tl2xiii—AsB—Tl2xxvii73.8 (4)
O3ii—Tl2—O3xiv117.91 (14)Tl1xxvi—AsB—Tl2xxvii64.0 (4)
O3—Tl2—O3xiv152.25 (12)Tl1xxii—AsB—Tl2xxvii62.3 (3)
O1vii—Tl2—O3xiv62.74 (9)Tl1xxvii—AsB—Tl2xxvii62.2 (3)
O1viii—Tl2—O3xiv122.31 (9)As—AsB—Tl1ii22.5 (7)
O1ix—Tl2—O3xiv46.50 (9)O4iii—AsB—Tl1ii66.6 (9)
O4x—Tl2—O3xiv42.94 (9)O1xxi—AsB—Tl1ii88.7 (8)
O4xi—Tl2—O3xiv78.63 (8)O2xxii—AsB—Tl1ii99.8 (7)
O4xii—Tl2—O3xiv45.47 (8)Tl2xiii—AsB—Tl1ii95.0 (5)
O3xiii—Tl2—O3xiv87.33 (9)Tl1xxvi—AsB—Tl1ii126.5 (5)
O3i—Tl2—O3xv152.25 (13)Tl1xxii—AsB—Tl1ii128.3 (5)
O3ii—Tl2—O3xv82.85 (11)Tl1xxvii—AsB—Tl1ii128.0 (5)
O3—Tl2—O3xv117.91 (14)Tl2xxvii—AsB—Tl1ii168.1 (5)
O1vii—Tl2—O3xv122.31 (9)As—AsB—Tl122.9 (7)
O1viii—Tl2—O3xv46.50 (9)O4iii—AsB—Tl163.7 (9)
O1ix—Tl2—O3xv62.74 (9)O1xxi—AsB—Tl189.8 (9)
O4x—Tl2—O3xv78.63 (8)O2xxii—AsB—Tl1102.1 (7)
O4xi—Tl2—O3xv45.47 (8)Tl2xiii—AsB—Tl192.8 (5)
O4xii—Tl2—O3xv42.94 (8)Tl1xxvi—AsB—Tl1126.1 (5)
O3xiii—Tl2—O3xv87.33 (9)Tl1xxii—AsB—Tl1128.1 (5)
O3xiv—Tl2—O3xv87.33 (9)Tl1xxvii—AsB—Tl1127.5 (5)
O3i—Tl2—AsBxiii90.6 (3)Tl2xxvii—AsB—Tl1166.5 (6)
O3ii—Tl2—AsBxiii159.8 (4)Tl1ii—AsB—Tl13.1 (3)
O3—Tl2—AsBxiii116.2 (4)As—AsB—Tl226.4 (7)
O1vii—Tl2—AsBxiii25.9 (3)O4iii—AsB—Tl287.6 (10)
O1viii—Tl2—AsBxiii104.1 (4)O1xxi—AsB—Tl244.9 (7)
O1ix—Tl2—AsBxiii87.9 (4)O2xxii—AsB—Tl2128.4 (8)
O4x—Tl2—AsBxiii21.2 (3)Tl2xiii—AsB—Tl260.8 (3)
O4xi—Tl2—AsBxiii63.0 (3)Tl1xxvi—AsB—Tl2171.8 (6)
O4xii—Tl2—AsBxiii62.7 (3)Tl1xxii—AsB—Tl2174.5 (6)
O3xiii—Tl2—AsBxiii47.7 (4)Tl1xxvii—AsB—Tl2171.0 (6)
O3xiv—Tl2—AsBxiii42.9 (4)Tl2xxvii—AsB—Tl2120.2 (4)
O3xv—Tl2—AsBxiii99.8 (3)Tl1ii—AsB—Tl248.6 (2)
O3i—Tl2—AsBxv159.8 (4)Tl1—AsB—Tl248.5 (2)
O3ii—Tl2—AsBxv116.2 (4)AsBxxviii—O1—Asxxviii47.6 (8)
O3—Tl2—AsBxv90.6 (4)AsBxxviii—O1—Al2xxix138.8 (8)
O1vii—Tl2—AsBxv87.9 (4)Asxxviii—O1—Al2xxix137.7 (2)
O1viii—Tl2—AsBxv25.9 (3)AsBxxviii—O1—Tl2vii88.4 (8)
O1ix—Tl2—AsBxv104.1 (3)Asxxviii—O1—Tl2vii88.78 (15)
O4x—Tl2—AsBxv62.7 (3)Al2xxix—O1—Tl2vii126.91 (15)
O4xi—Tl2—AsBxv21.2 (3)AsBxxviii—O1—Tl2xxix75.1 (8)
O4xii—Tl2—AsBxv63.0 (3)Asxxviii—O1—Tl2xxix121.09 (16)
O3xiii—Tl2—AsBxv42.9 (4)Al2xxix—O1—Tl2xxix92.35 (12)
O3xiv—Tl2—AsBxv99.8 (3)Tl2vii—O1—Tl2xxix75.55 (7)
O3xv—Tl2—AsBxv47.7 (4)AsBxxviii—O1—Tl2xxviii119.6 (8)
AsBxiii—Tl2—AsBxv78.5 (5)Asxxviii—O1—Tl2xxviii73.85 (13)
O3i—Tl2—AsBxiv116.2 (4)Al2xxix—O1—Tl2xxviii92.31 (12)
O3ii—Tl2—AsBxiv90.6 (4)Tl2vii—O1—Tl2xxviii75.53 (7)
O3—Tl2—AsBxiv159.8 (4)Tl2xxix—O1—Tl2xxviii146.93 (9)
O1vii—Tl2—AsBxiv104.1 (4)As—O2—Al1xxvii122.5 (2)
O1viii—Tl2—AsBxiv87.9 (4)As—O2—AsBxxx104.8 (6)
O1ix—Tl2—AsBxiv25.9 (3)Al1xxvii—O2—AsBxxx102.5 (6)
O4x—Tl2—AsBxiv63.0 (3)As—O2—Tl1ii100.8 (2)
O4xi—Tl2—AsBxiv62.7 (3)Al1xxvii—O2—Tl1ii128.4 (2)
O4xii—Tl2—AsBxiv21.2 (3)AsBxxx—O2—Tl1ii90.8 (7)
O3xiii—Tl2—AsBxiv99.8 (3)As—O2—Tl197.2 (3)
O3xiv—Tl2—AsBxiv47.7 (4)Al1xxvii—O2—Tl1130.04 (17)
O3xv—Tl2—AsBxiv42.9 (4)AsBxxx—O2—Tl194.2 (7)
AsBxiii—Tl2—AsBxiv78.5 (5)Tl1ii—O2—Tl14.4 (5)
AsBxv—Tl2—AsBxiv78.5 (5)As—O2—Tl1i99.66 (14)
O2xvi—Al1—O2ii91.34 (17)Al1xxvii—O2—Tl1i129.68 (16)
O2xvi—Al1—O2xvii91.34 (17)AsBxxx—O2—Tl1i90.6 (7)
O2ii—Al1—O2xvii91.34 (17)Tl1ii—O2—Tl1i1.27 (13)
O2xvi—Al1—O4xviii92.20 (15)Tl1—O2—Tl1i3.9 (4)
O2ii—Al1—O4xviii176.43 (17)As—O2—Tl260.21 (10)
O2xvii—Al1—O4xviii88.17 (15)Al1xxvii—O2—Tl2163.54 (15)
O2xvi—Al1—O4i88.17 (15)AsBxxx—O2—Tl262.4 (6)
O2ii—Al1—O4i92.20 (16)Tl1ii—O2—Tl261.76 (9)
O2xvii—Al1—O4i176.43 (18)Tl1—O2—Tl261.25 (6)
O4xviii—Al1—O4i88.32 (17)Tl1i—O2—Tl260.58 (8)
O2xvi—Al1—O4xix176.43 (17)As—O3—Tl2131.46 (18)
O2ii—Al1—O4xix88.16 (15)As—O3—Tl1105.45 (17)
O2xvii—Al1—O4xix92.20 (15)Tl2—O3—Tl193.5 (2)
O4xviii—Al1—O4xix88.32 (17)As—O3—Tl1ii102.7 (3)
O4i—Al1—O4xix88.32 (17)Tl2—O3—Tl1ii92.38 (13)
O2xvi—Al1—Tl2xxiii124.31 (12)Tl1—O3—Tl1ii5.0 (5)
O2ii—Al1—Tl2xxiii124.31 (12)As—O3—Tl1i107.1 (3)
O2xvii—Al1—Tl2xxiii124.31 (12)Tl2—O3—Tl1i89.8 (3)
O4xviii—Al1—Tl2xxiii53.56 (12)Tl1—O3—Tl1i3.9 (4)
O4i—Al1—Tl2xxiii53.56 (12)Tl1ii—O3—Tl1i4.5 (5)
O4xix—Al1—Tl2xxiii53.56 (12)As—O3—Tl2xiii83.17 (14)
O2xvi—Al1—Tl1xviii32.98 (11)Tl2—O3—Tl2xiii97.14 (11)
O2ii—Al1—Tl1xviii104.20 (15)Tl1—O3—Tl2xiii156.2 (3)
O2xvii—Al1—Tl1xviii120.62 (14)Tl1ii—O3—Tl2xiii161.0 (3)
O4xviii—Al1—Tl1xviii79.07 (14)Tl1i—O3—Tl2xiii158.83 (12)
O4i—Al1—Tl1xviii57.99 (12)AsBiii—O4—Asiii50.7 (10)
O4xix—Al1—Tl1xviii143.97 (14)AsBiii—O4—Al1xxix170.4 (10)
Tl2xxiii—Al1—Tl1xviii92.86 (3)Asiii—O4—Al1xxix130.5 (2)
O2xvi—Al1—Tl1i120.61 (14)AsBiii—O4—Tl2xxxi88.9 (9)
O2ii—Al1—Tl1i32.98 (11)Asiii—O4—Tl2xxxi84.96 (12)
O2xvii—Al1—Tl1i104.20 (15)Al1xxix—O4—Tl2xxxi100.65 (14)
O4xviii—Al1—Tl1i143.97 (14)AsBiii—O4—Tl1xxxii76.1 (10)
O4i—Al1—Tl1i79.07 (14)Asiii—O4—Tl1xxxii121.76 (16)
O4xix—Al1—Tl1i57.99 (13)Al1xxix—O4—Tl1xxxii98.16 (12)
Tl2xxiii—Al1—Tl1i92.86 (3)Tl2xxxi—O4—Tl1xxxii119.60 (14)
Tl1xviii—Al1—Tl1i119.753 (11)AsBiii—O4—Tl1xxviii77.7 (10)
O2xvi—Al1—Tl1xix104.20 (16)Asiii—O4—Tl1xxviii124.1 (3)
O2ii—Al1—Tl1xix120.61 (14)Al1xxix—O4—Tl1xxviii96.88 (19)
O2xvii—Al1—Tl1xix32.98 (12)Tl2xxxi—O4—Tl1xxviii117.56 (15)
O4xviii—Al1—Tl1xix57.99 (13)Tl1xxxii—O4—Tl1xxviii2.8 (3)
O4i—Al1—Tl1xix143.97 (14)AsBiii—O4—Tl1xxxiii74.5 (10)
O4xix—Al1—Tl1xix79.07 (15)Asiii—O4—Tl1xxxiii120.5 (2)
Tl2xxiii—Al1—Tl1xix92.86 (4)Al1xxix—O4—Tl1xxxiii99.8 (2)
Tl1xviii—Al1—Tl1xix119.753 (7)Tl2xxxi—O4—Tl1xxxiii118.95 (9)
Tl1i—Al1—Tl1xix119.753 (6)Tl1xxxii—O4—Tl1xxxiii1.61 (17)
O2xvi—Al1—Tl1xvi32.35 (12)Tl1xxviii—O4—Tl1xxxiii3.7 (4)
O2ii—Al1—Tl1xvi106.6 (2)AsBiii—O4—Tl1101.3 (10)
O2xvii—Al1—Tl1xvi118.5 (2)Asiii—O4—Tl153.74 (18)
O4xviii—Al1—Tl1xvi76.73 (19)Al1xxix—O4—Tl177.44 (19)
O4i—Al1—Tl1xvi59.94 (18)Tl2xxxi—O4—Tl1103.75 (9)
O4xix—Al1—Tl1xvi144.77 (15)Tl1xxxii—O4—Tl1136.34 (9)
Tl2xxiii—Al1—Tl1xvi92.78 (3)Tl1xxviii—O4—Tl1138.6 (2)
Tl1xviii—Al1—Tl1xvi2.9 (3)Tl1xxxiii—O4—Tl1136.76 (8)
Tl1i—Al1—Tl1xvi122.7 (3)AsBiii—O4—Tl1i98.2 (10)
Tl1xix—Al1—Tl1xvi116.9 (3)Asiii—O4—Tl1i51.25 (16)
O2xvi—Al1—Tl1ii118.5 (2)Al1xxix—O4—Tl1i80.3 (2)
O2ii—Al1—Tl1ii32.35 (12)Tl2xxxi—O4—Tl1i105.06 (14)
O2xvii—Al1—Tl1ii106.6 (2)Tl1xxxii—O4—Tl1i134.6 (3)
O4xviii—Al1—Tl1ii144.77 (15)Tl1xxviii—O4—Tl1i136.94 (8)
O4i—Al1—Tl1ii76.7 (2)Tl1xxxiii—O4—Tl1i134.9 (2)
O4xix—Al1—Tl1ii59.94 (19)Tl1—O4—Tl1i3.3 (4)
Tl2xxiii—Al1—Tl1ii92.78 (3)AsBiii—O4—Tl2xxxiv53.0 (10)
Tl1xviii—Al1—Tl1ii116.9 (3)Asiii—O4—Tl2xxxiv97.70 (13)
Tl1i—Al1—Tl1ii2.9 (3)Al1xxix—O4—Tl2xxxiv130.13 (14)
Tl1xix—Al1—Tl1ii122.7 (3)Tl2xxxi—O4—Tl2xxxiv67.31 (5)
Tl1xvi—Al1—Tl1ii119.767 (7)Tl1xxxii—O4—Tl2xxxiv56.91 (9)
O1ix—Al2—O1xv92.72 (15)Tl1xxviii—O4—Tl2xxxiv55.99 (5)
O1ix—Al2—O1xx92.72 (15)Tl1xxxiii—O4—Tl2xxxiv55.69 (6)
O1xv—Al2—O1xx92.72 (15)Tl1—O4—Tl2xxxiv151.34 (16)
O1ix—Al2—O1i180.0Tl1i—O4—Tl2xxxiv148.95 (14)
O1xv—Al2—O1i87.28 (15)AsBiii—O4—Tl1ii99.9 (10)
O1xx—Al2—O1i87.28 (15)Asiii—O4—Tl1ii52.32 (10)
O1ix—Al2—O1xix87.28 (15)Al1xxix—O4—Tl1ii78.86 (11)
O1xv—Al2—O1xix180.0Tl2xxxi—O4—Tl1ii103.45 (10)
O1xx—Al2—O1xix87.28 (15)Tl1xxxii—O4—Tl1ii136.45 (9)
O1i—Al2—O1xix92.71 (15)Tl1xxviii—O4—Tl1ii138.7 (2)
O1ix—Al2—O1xviii87.28 (15)Tl1xxxiii—O4—Tl1ii136.81 (8)
O1xv—Al2—O1xviii87.28 (15)Tl1—O4—Tl1ii1.42 (15)
O1xx—Al2—O1xviii180.00 (17)Tl1i—O4—Tl1ii2.3 (3)
O1i—Al2—O1xviii92.71 (15)Tl2xxxiv—O4—Tl1ii149.95 (8)
Symmetry codes: (i) y, xy, z; (ii) x+y, x, z; (iii) x, x+y, z+3/2; (iv) y, x, z+3/2; (v) xy, y, z+3/2; (vi) x+y, x1, z; (vii) x+2/3, y2/3, z+4/3; (viii) xy4/3, x2/3, z+4/3; (ix) y+2/3, x+y+4/3, z+4/3; (x) x1/3, xy2/3, z1/6; (xi) y1/3, x+1/3, z1/6; (xii) x+y+2/3, y+1/3, z1/6; (xiii) x1/3, y2/3, z+4/3; (xiv) y+2/3, x+y+1/3, z+4/3; (xv) xy1/3, x+1/3, z+4/3; (xvi) y, xy+1, z; (xvii) x+1, y+1, z; (xviii) x, y+1, z; (xix) x+y+1, x+1, z; (xx) x+2/3, y+1/3, z+4/3; (xxi) x1, y, z; (xxii) x+y1, x1, z; (xxiii) y+1/3, x+2/3, z+1/6; (xxiv) x1/3, y+1/3, z+4/3; (xxv) x+2/3, y+4/3, z+4/3; (xxvi) y1, xy1, z; (xxvii) x1, y1, z; (xxviii) x+1, y, z; (xxix) x, y1, z; (xxx) y1, xy, z; (xxxi) y+1/3, x1/3, z+1/6; (xxxii) x+y+1, x, z; (xxxiii) y+1, xy, z; (xxxiv) y+1, x, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O4xxxv0.87 (4)1.87 (5)2.584 (5)139 (6)
Symmetry code: (xxxv) y, x1, z+3/2.
 

Funding information

Funding for this research was provided by: Doc fForte Fellowship of the Austrian Academy of Sciences to K. Schwendtner. The authors acknowledge the TU Wien University Library for financial support through its Open Access Funding Program.

References

First citationBrandenburg, K. (2005). DIAMOND. Bonn, Germany.  Google Scholar
First citationChouchene, S., Jaouadi, K., Mhiri, T. & Zouari, N. (2017). Solid State Ionics, 301, 78–85.  Web of Science CrossRef CAS Google Scholar
First citationGagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562–578.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGagné, O. C. & Hawthorne, F. C. (2018). Acta Cryst. B74, 63–78.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGarcía-Rodríguez, L., Rute-Pérez, Á., Piñero, J. R. & González-Silgo, C. (2000). Acta Cryst. B56, 565–569.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLesage, J., Adam, L., Guesdon, A. & Raveau, B. (2007). J. Solid State Chem. 180, 1799–1808.  Web of Science CrossRef CAS Google Scholar
First citationLii, K.-H. & Wu, L.-S. (1994). J. Chem. Soc. A, 10, 1577–1580.  Google Scholar
First citationMasquelier, C., Padhi, A. K., Nanjundaswamy, K. S., Okada, S. & Goodenough, J. B. (1996). Proceedings of the 37th Power Sources Conference, June 17–20, 1996, pp. 188–191. Cherry Hill, New Jersey. Fort Monmouth, NJ: US Army Research Laboratory.  Google Scholar
First citationNonius, B. V. (2003). COLLECT. Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228–234.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOuerfelli, N., Guesmi, A., Molinié, P., Mazza, D., Zid, M. F. & Driss, A. (2007). J. Solid State Chem. 180, 2942–2949.  Web of Science CrossRef CAS Google Scholar
First citationRen, J., Ma, Z., He, C., Sa, R., Li, Q. & Wu, K. (2015). Comput. Mater. Sci. 106, 1–4.  Web of Science CrossRef CAS Google Scholar
First citationSchwendtner, K. (2006). J. Alloys Compd. 421, 57–63.  Web of Science CrossRef CAS Google Scholar
First citationSchwendtner, K. (2008). PhD thesis, Universität Wien, Austria.  Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2004). Acta Cryst. C60, i79–i83.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2005). Acta Cryst. C61, i90–i93.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2007a). Acta Cryst. B63, 205–215.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2007b). Acta Cryst. C63, i17–i20.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2007c). Eur. J. Mineral. 19, 399–409.  Web of Science CrossRef CAS Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2017a). Acta Cryst. C73, 600–608.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2017b). Acta Cryst. E73, 1580–1586.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2018a). Acta Cryst. C74, 721–727.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2018b). Acta Cryst. E74, 766–771.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2018c). Acta Cryst. E74, 1244–1249.  CrossRef IUCr Journals Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2018d). Acta Cryst. E74, 1163–1167.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSun, Y., Yang, Z., Hou, D. & Pan, S. (2017). RSC Adv. 7, 2804–2809.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWohlschlaeger, A., Lengauer, C. & Tillmanns, E. (2007). ICDD Grant-in-Aid. University of Vienna, Austria.  Google Scholar
First citationYakubovich, O. V. (1993). Kristallografiya, 38, 43–48.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds