research communications
(NH4)Ga(HAsO4)2 and TlAl(HAsO4)2 - two new RbFe(HPO4)2-type M+M3+ arsenates
aInstitute for Chemical Technology and Analytics, Division of Structural Chemistry, TU Wien, Getreidemarkt 9/164-SC, 1060 Vienna, Austria, and bNaturhistorisches Museum, Burgring 7, 1010 Wien, and Institut für Mineralogie und Kristallographie, Universität Wien, Althanstrasse 14, 1090 Wien, Austria
*Correspondence e-mail: karolina.schwendtner@tuwien.ac.at
The crystal structures of hydrothermally synthesized (T = 493 K, 7–9 d) ammonium gallium bis[hydrogen arsenate(V)], (NH4)Ga(HAsO4)2, and thallium aluminium bis[hydrogen arsenate(V)], TlAl(HAsO4)2, were solved by single-crystal X-ray diffraction. Both compounds crystallize in the common RbFe(HPO4)2 structure type (Rc) and share the same tetrahedral–octahedral framework topology that houses the M+ cations in its channels. One of the two Tl sites is slightly offset from its ideal position. Strong O—H⋯O hydrogen bonds strengthen the network.
Keywords: crystal structure; (NH4)Ga(HAsO4)2; TlAl(HAsO4)2.
1. Chemical context
Compounds with mixed tetrahedral–octahedral (T–O) framework structures feature a broad range of different atomic arrangements. These result in topologies with several interesting properties such as ion exchange (Masquelier et al., 1996) and ion conductivity (Chouchene et al., 2017), as well as unusual piezoelectric (Ren et al., 2015), magnetic (Ouerfelli et al., 2007) or non-linear optical features (frequency doubling) (Sun et al., 2017).
The two new compounds were obtained during an extensive experimental study of the system M+–M3+–O–(H)–As5+ (M+ = Li, Na, K, Rb, Cs, Ag, Tl, NH4; M3+ = Al, Ga, In, Sc, Fe, Cr, Tl), which led to an unusually large variety of new structure types (Schwendtner & Kolitsch, 2004, 2005, 2007a,b,c, 2017a, 2018a; Schwendtner, 2006, 2008). Among the many different structure types found during our study, one atomic arrangement, the RbFe(HPO4)2 type (Lii & Wu, 1994; rhombohedral, Rc), was found to exhibit a large crystal–chemical flexibility, which allows the incorporation of a wide variety of M+ and M3+ cations. Previously, it was also known for the phosphate members RbAl(HPO4)2 and RbGa(HPO4)2 (Lesage et al., 2007). Currently (including the present paper), a total of eight arsenate members are known with the following M+M3+ combinations: TlAl and (NH4)Ga (this work), RbIn, RbGa, RbAl, RbFe, CsIn and CsFe (Schwendtner & Kolitsch, 2017b, 2018a,b,c). It is noteworthy that no K members are currently known.
2. Structural commentary
The two compounds are representatives of the RbFe(HPO4)2 structure type (Rc; Lii & Wu, 1994) and show a basic tetrahedral–octahedral framework structure featuring interpenetrating channels, which host the M+ cations (Fig. 1). This structure type is closely related to the triclinic (NH4)Fe(HPO4)2 type (P; Yakubovich, 1993) in which all other known (NH4)M3+(HTO4)2 (T = P, As) compounds crystallize (see Schwendtner & Kolitsch, 2018b for a compilation), the RbAl2As(HAsO4)6 type (Rc; Schwendtner & Kolitsch, 2018a) and the RbAl(HAsO4)2 type (R32; Schwendtner & Kolitsch, 2018a). The fundamental building unit in all these structure types contains M3+O6 octahedra, which are connected via their six corners to six protonated AsO4 tetrahedra, thereby forming an M3+As6O24 unit. These units are in turn connected via three corners to other M3+O6 octahedra. The free, protonated corner of each AsO4 tetrahedron forms a hydrogen bond to the neighbouring M3+As6O24 group (Fig. 2). The M3+As6O24 units are arranged in layers perpendicular to the chex axis (Fig. 1). The units within these layers are held together by medium–strong hydrogen bonds (Tables 1 and 2). Both title compounds invariably show a very similar strongly pseudo-hexagonal to pseudo-octahedral (cf. Fig. 3).
TlAl(HAsO4)2 has the smallest of all the arsenates of this structure type published to date. Still, the size of the M+-hosting voids seems to be too large for the Tl+ cation, since Tl1 is slightly offset from the ideal position at 0, 0, 3/4 [resulting in some positional disorder for Tl1, with three symmetry-equivalent Tl1 positions in close proximity; Tl1–Tl1i,ii = 0.28 (3) Å; symmetry codes: (i) −y, x − y, z; (ii) y − x, −x, z] and there are minor, but distinct negative and positive residual electron densities close to the Tl2 atom. The latter is severely underbonded, with a very low bond-valence sum (BVS) of only 0.54 valence units (v.u.) (calculated after Gagné & Hawthorne, 2015). The average Tl2—O bond length (Table 3) of 3.321 Å is considerably larger than the longest average Tl—O bond length of 3.304 Å described in the latest review paper (Gagné & Hawthorne, 2018), but still shorter than the excessively long average Tl—O bond length found in the related compound TlGa2As(HAsO4)6 (3.439 Å, Schwendtner & Kolitsch, 2018b). The electron-density distribution is well fitted for the Tl1 atom, which has a BVS of 0.74 v.u. and an average Tl1—O bond length of 3.261 Å, which is also significantly longer than the reported average of 3.195 Å (Gagné & Hawthorne, 2018). In contrast, the two Al atoms are considerably overbonded (3.05 and 3.14 v.u. for Al1 and Al2, respectively) and average Al—O bond lengths of 1.898 and 1.887 Å are slightly shorter than the reported average of 1.903 Å (Gagné & Hawthorne, 2018), but well within the general range of Al—O bond lengths. The protonated AsO4 group shows a fairly typical configuration with slightly above average As—O bond lengths and a BVS of 4.97 v.u. for the As atom. As expected from the strong hydrogen bond [2.584 (5) Å, Table 2] the As—O bond to the donor O3 atom is considerably elongated (Table 3).
For (NH4)Ga(HAsO4)2, the bond-valence sum values for the M3+ cations and As are quite similar (Table 4), with overbonded Ga3+ (BVS 3.10 and 3.15 v.u., respectively) and numbers for As that are close to the expected values (BVS 5.03 v.u., average bond length of 1.686 Å). The NH4+ cations (average N⋯O = 3.268 Å for N1 and 3.336 Å for N2) seem to fill the M+-hosting voids much better, and the BVSs (calculated after García-Rodríguez et al., 2000) of 0.74 and 1.03 v.u. for N1 and N2, respectively, are closer to ideal values, although N1 is underbonded.
|
3. Synthesis and crystallization
The compounds were grown by hydrothermal synthesis at 493 K (autogeneous pressure, slow furnace cooling) using Teflon-lined stainless steel autoclaves with an approximate filling volume of 2 cm3. Reagent-grade NH4OH, Tl2CO3, Ga2O3, Al2O3 and H3AsO4·0.5H2O were used as starting reagents in approximate volume ratios of M+:M3+:As of 1:1:3 of the respective M+M3+ compound for both synthesis batches. For TlAl(HAsO4)2, the vessels were filled with distilled water to about 70% of their inner volumes, which led to initial and final pH values of 1 and 0.5, respectively, and the synthesis was allowed to proceed at 493 K for 9 d. (NH4)Ga(HAsO4)2 was grown over a period of 7 d and the initial and final pH values were 3 and 1, respectively. The reaction products were washed thoroughly with distilled water, filtered, and dried at room temperature. (NH4)Ga(HAsO4)2 formed large colourless pseudo-octahedral crystals (Fig. 3), while TlAl(HAsO4)2 formed small pseudo-hexagonal platelets. Both compounds are stable in air.
A measured X-ray powder diffraction pattern of (NH4)Ga(HAsO4)2 was deposited at the International Centre for Diffraction Data under PDF number 00-059-0055 (Wohlschlaeger et al., 2007).
Semiquantitative SEM–EDX analysis (15 kV) of carbon-coated, horizontally oriented crystals of (NH4)Ga(HAsO4)2 were undertaken to discriminate between H3O+ and NH4+. They confirmed the suspected formula and revealed no impurities.
4. Refinement
Crystal data, data collection, and structure .
details are summarized in Table 5
|
For the 4)2 (Lii & Wu, 1994) were used for the initial steps. The hydrogen atoms were then located in difference-Fourier maps and added to the models. In both compounds O—H bonds were restrained to 0.9 ± 0.04 Å. In (NH4)Ga(HAsO4)2, several electron-density peaks between 0.4 and 0.75 e Å−3 were recognizable that could be attributed to the H atoms of the NH4+ cation. These peaks are located at the following coordinates for the N1 atom: 0.0170, 0.1329, 0.7450; 0.0641, 0.0560, 0.7414 and −0.0910, 0.0000, 0.7500. For the N2 atom, the coordinates are: 0.0478, −0.0330, 0.6635; −0.0655, −0.1106, 0.6786; 0.1301, 0.0094, 0.6695 and −0.0521, −0.0657, 0.6513. However, despite the use of restraints, no sensible coordination geometry for the H atoms around the N atoms could be found. Therefore, they were omitted from the model. As a result of the fact that there are 12 possible N—H⋯O bonds for each N atom, with only two symmetry-equivalent positions for N1 and four for N2, it seems reasonable to assume that the H-atom positions around the N atoms are, in both cases, highly disordered. The final residual electron density in (NH4)Ga(HAsO4)2 is < 1e Å−3.
of both compounds, the coordinates of RbFe(HPOThe 4)2 revealed a considerable residual electron-density peak of 2.2 e Å−3 1.28 Å away from As and 1.61 Å away from the O1 site. The corresponding position can be generated by a mirror plane in (110) and therefore could be an alternative flipped As position (sharing the same O1 atom). Since the inclusion of the alternative position led to a considerable drop in R1 and weighting parameters and the highest residual electron density dropped to < 1 e Å−3, this position was kept in the model. The occupancy of the alternative position AsB (Fig. 1b, 2b) refined to only 2.1%, which makes it impossible to locate the alternative O ligand positions that should comprise the coordination sphere of the AsB position. For the final the displacement parameters of the AsB position were restrained to be the same as for the main As position and the sum of As was restrained to give a total occupancy of 1.00. We note that a similar alternative position was also found for isotypic CsIn(HAsO4)2 (Schwendtner & Kolitsch, 2017b).
of TlAl(HAsOThere was also considerable residual electron density of ±2 e Å −3 close to the two Tl positions, similar to what was encountered in the structurally related TlGa2As(HAsO4)6 (Schwendtner & Kolitsch, 2018d). We tried a similar approach that had worked well for the aforementioned compound, viz. to remove the Tl atoms from their ideal, highly symmetrical positions in this structure type. We obtained a better with a slightly off-centre position for Tl1, in line with a slight disorder (probably static), possibly in part or in whole due to the stereochemical activity of the on the Tl+ cations. So, although the Tl1 site is slightly offset from its ideal position (0, 0, 3/4), we unfortunately did not manage to get rid of the negative residual electron density of about −2 e Å−3 next to Tl2. The most positive residual electron density peak, however, dropped to < 1 e Å−3.
Supporting information
https://doi.org/10.1107/S2056989018013567/pk2608sup1.cif
contains datablocks NH4GaHAsO42, TlAlHAsO42. DOI:Structure factors: contains datablock NH4GaHAsO42. DOI: https://doi.org/10.1107/S2056989018013567/pk2608NH4GaHAsO42sup2.hkl
Structure factors: contains datablock TlAlHAsO42. DOI: https://doi.org/10.1107/S2056989018013567/pk2608TlAlHAsO42sup3.hkl
For both structures, data collection: COLLECT (Nonius, 2003); cell
HKL SCALEPACK (Otwinowski et al., 2003); data reduction: HKL DENZO and SCALEPACK (Otwinowski et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: publCIF (Westrip, 2010).(NH4)Ga(HAsO4)2 | Dx = 3.358 Mg m−3 |
Mr = 367.62 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, R3c:H | Cell parameters from 2653 reflections |
a = 8.380 (1) Å | θ = 2.9–32.5° |
c = 53.811 (11) Å | µ = 12.83 mm−1 |
V = 3272.6 (10) Å3 | T = 293 K |
Z = 18 | Small pseudo-octahedral platelets, colourless |
F(000) = 3132 | 0.08 × 0.07 × 0.03 mm |
Nonius KappaCCD single-crystal four-circle diffractometer | 1156 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.024 |
φ and ω scans | θmax = 32.5°, θmin = 2.9° |
Absorption correction: multi-scan (HKL SCALEPACK; Otwinowski et al., 2003) | h = −12→12 |
Tmin = 0.427, Tmax = 0.700 | k = −10→10 |
4834 measured reflections | l = −80→81 |
1326 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.022 | All H-atom parameters refined |
wR(F2) = 0.055 | w = 1/[σ2(Fo2) + (0.0273P)2 + 16.8283P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max = 0.003 |
1326 reflections | Δρmax = 0.75 e Å−3 |
61 parameters | Δρmin = −0.95 e Å−3 |
1 restraint | Extinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.00016 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.000000 | 0.000000 | 0.750000 | 0.051 (2) | |
N2 | 0.000000 | 0.000000 | 0.66731 (10) | 0.0487 (15) | |
Ga1 | 0.333333 | 0.666667 | 0.75382 (2) | 0.00954 (10) | |
Ga2 | 0.333333 | 0.666667 | 0.666667 | 0.01164 (13) | |
As | −0.42915 (3) | −0.39386 (3) | 0.71282 (2) | 0.01072 (8) | |
O1 | 0.4557 (3) | −0.4378 (3) | 0.68635 (3) | 0.0218 (4) | |
O2 | −0.4457 (2) | −0.2535 (2) | 0.73337 (3) | 0.0133 (3) | |
O3 | −0.1958 (3) | −0.2785 (3) | 0.70541 (4) | 0.0243 (4) | |
O4 | 0.4778 (2) | −0.1224 (2) | 0.77594 (3) | 0.0127 (3) | |
H3 | −0.161 (8) | −0.353 (6) | 0.7114 (9) | 0.075 (18)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.062 (4) | 0.062 (4) | 0.029 (4) | 0.0311 (18) | 0.000 | 0.000 |
N2 | 0.060 (2) | 0.060 (2) | 0.026 (2) | 0.0300 (12) | 0.000 | 0.000 |
Ga1 | 0.01025 (13) | 0.01025 (13) | 0.00811 (19) | 0.00513 (6) | 0.000 | 0.000 |
Ga2 | 0.01394 (18) | 0.01394 (18) | 0.0070 (2) | 0.00697 (9) | 0.000 | 0.000 |
As | 0.01365 (12) | 0.01158 (12) | 0.00927 (12) | 0.00807 (9) | 0.00172 (8) | 0.00141 (7) |
O1 | 0.0368 (11) | 0.0281 (10) | 0.0101 (7) | 0.0234 (9) | −0.0049 (7) | −0.0010 (7) |
O2 | 0.0137 (7) | 0.0121 (7) | 0.0135 (7) | 0.0061 (6) | 0.0030 (6) | −0.0014 (6) |
O3 | 0.0192 (9) | 0.0220 (9) | 0.0362 (12) | 0.0137 (8) | 0.0137 (8) | 0.0126 (8) |
O4 | 0.0136 (7) | 0.0108 (7) | 0.0153 (7) | 0.0073 (6) | −0.0026 (6) | −0.0047 (6) |
N1—O3 | 3.173 (3) | N2—O3xii | 3.557 (4) |
N1—O3i | 3.173 (3) | N2—O3xiii | 3.557 (4) |
N1—O3ii | 3.173 (3) | N2—O3xiv | 3.557 (4) |
N1—O3iii | 3.173 (3) | Ga1—O2xv | 1.9619 (16) |
N1—O3iv | 3.173 (3) | Ga1—O2iii | 1.9619 (17) |
N1—O3v | 3.173 (3) | Ga1—O2xvi | 1.9619 (17) |
N1—O2 | 3.3657 (18) | Ga1—O4v | 1.9666 (17) |
N1—O2ii | 3.3657 (18) | Ga1—O4xvii | 1.9666 (17) |
N1—O2iv | 3.3657 (18) | Ga1—O4xviii | 1.9667 (16) |
N1—O2iii | 3.3657 (18) | Ga2—O1viii | 1.9588 (18) |
N1—O2i | 3.3657 (17) | Ga2—O1xiv | 1.9588 (19) |
N1—O2v | 3.3657 (17) | Ga2—O1xix | 1.9588 (18) |
N2—O3v | 2.918 (4) | Ga2—O1v | 1.9589 (18) |
N2—O3iii | 2.918 (4) | Ga2—O1xviii | 1.9589 (19) |
N2—O3 | 2.918 (4) | Ga2—O1xvii | 1.9589 (18) |
N2—O1vi | 3.375 (3) | As—O1xx | 1.6555 (18) |
N2—O1vii | 3.375 (3) | As—O2 | 1.6700 (16) |
N2—O1viii | 3.375 (3) | As—O4ii | 1.6783 (17) |
N2—O4ix | 3.493 (5) | As—O3 | 1.740 (2) |
N2—O4x | 3.493 (5) | O3—H3 | 0.87 (3) |
N2—O4xi | 3.493 (5) | ||
O3—N1—O3i | 162.83 (7) | O2xv—Ga1—N1 | 119.85 (5) |
O3—N1—O3ii | 123.01 (7) | O2iii—Ga1—N1 | 32.80 (5) |
O3i—N1—O3ii | 69.03 (6) | O2xvi—Ga1—N1 | 105.75 (5) |
O3—N1—O3iii | 69.03 (6) | O4v—Ga1—N1 | 77.33 (5) |
O3i—N1—O3iii | 102.44 (7) | O4xvii—Ga1—N1 | 143.46 (5) |
O3ii—N1—O3iii | 162.83 (8) | O4xviii—Ga1—N1 | 59.54 (5) |
O3—N1—O3iv | 102.44 (7) | N2xxi—Ga1—N1 | 92.432 (5) |
O3i—N1—O3iv | 69.03 (6) | N1xvii—Ga1—N1 | 119.821 (1) |
O3ii—N1—O3iv | 69.03 (6) | O2xv—Ga1—N1xvi | 105.75 (5) |
O3iii—N1—O3iv | 123.01 (7) | O2iii—Ga1—N1xvi | 119.85 (5) |
O3—N1—O3v | 69.03 (6) | O2xvi—Ga1—N1xvi | 32.80 (5) |
O3i—N1—O3v | 123.01 (8) | O4v—Ga1—N1xvi | 143.46 (5) |
O3ii—N1—O3v | 102.44 (7) | O4xvii—Ga1—N1xvi | 59.54 (5) |
O3iii—N1—O3v | 69.03 (6) | O4xviii—Ga1—N1xvi | 77.33 (5) |
O3iv—N1—O3v | 162.83 (7) | N2xxi—Ga1—N1xvi | 92.432 (5) |
O3—N1—O2 | 48.11 (4) | N1xvii—Ga1—N1xvi | 119.821 (1) |
O3i—N1—O2 | 115.51 (5) | N1—Ga1—N1xvi | 119.821 (1) |
O3ii—N1—O2 | 126.51 (5) | O1viii—Ga2—O1xiv | 93.53 (7) |
O3iii—N1—O2 | 70.41 (5) | O1viii—Ga2—O1xix | 93.53 (7) |
O3iv—N1—O2 | 65.01 (5) | O1xiv—Ga2—O1xix | 93.53 (7) |
O3v—N1—O2 | 113.56 (5) | O1viii—Ga2—O1v | 180.0 |
O3—N1—O2ii | 126.52 (5) | O1xiv—Ga2—O1v | 86.47 (7) |
O3i—N1—O2ii | 70.41 (5) | O1xix—Ga2—O1v | 86.47 (7) |
O3ii—N1—O2ii | 48.11 (5) | O1viii—Ga2—O1xviii | 86.47 (7) |
O3iii—N1—O2ii | 115.51 (5) | O1xiv—Ga2—O1xviii | 180.0 |
O3iv—N1—O2ii | 113.56 (5) | O1xix—Ga2—O1xviii | 86.47 (7) |
O3v—N1—O2ii | 65.01 (5) | O1v—Ga2—O1xviii | 93.53 (7) |
O2—N1—O2ii | 171.26 (6) | O1viii—Ga2—O1xvii | 86.47 (7) |
O3—N1—O2iv | 65.01 (5) | O1xiv—Ga2—O1xvii | 86.47 (7) |
O3i—N1—O2iv | 113.56 (5) | O1xix—Ga2—O1xvii | 180.0 |
O3ii—N1—O2iv | 70.41 (5) | O1v—Ga2—O1xvii | 93.53 (7) |
O3iii—N1—O2iv | 126.51 (5) | O1xviii—Ga2—O1xvii | 93.53 (7) |
O3iv—N1—O2iv | 48.11 (4) | O1viii—Ga2—N2xix | 62.79 (8) |
O3v—N1—O2iv | 115.51 (5) | O1xiv—Ga2—N2xix | 67.00 (7) |
O2—N1—O2iv | 59.00 (6) | O1xix—Ga2—N2xix | 146.77 (8) |
O2ii—N1—O2iv | 113.20 (2) | O1v—Ga2—N2xix | 117.21 (8) |
O3—N1—O2iii | 113.56 (5) | O1xviii—Ga2—N2xix | 113.00 (7) |
O3i—N1—O2iii | 65.01 (5) | O1xvii—Ga2—N2xix | 33.23 (8) |
O3ii—N1—O2iii | 115.51 (5) | O1viii—Ga2—N2xvii | 117.21 (8) |
O3iii—N1—O2iii | 48.11 (5) | O1xiv—Ga2—N2xvii | 113.00 (7) |
O3iv—N1—O2iii | 126.51 (5) | O1xix—Ga2—N2xvii | 33.23 (8) |
O3v—N1—O2iii | 70.41 (5) | O1v—Ga2—N2xvii | 62.79 (8) |
O2—N1—O2iii | 113.20 (2) | O1xviii—Ga2—N2xvii | 66.99 (7) |
O2ii—N1—O2iii | 74.86 (6) | O1xvii—Ga2—N2xvii | 146.77 (8) |
O2iv—N1—O2iii | 171.26 (6) | N2xix—Ga2—N2xvii | 180.0 |
O3—N1—O2i | 115.51 (5) | O1viii—Ga2—N2 | 33.23 (8) |
O3i—N1—O2i | 48.11 (4) | O1xiv—Ga2—N2 | 117.21 (8) |
O3ii—N1—O2i | 113.56 (5) | O1xix—Ga2—N2 | 113.01 (8) |
O3iii—N1—O2i | 65.01 (5) | O1v—Ga2—N2 | 146.77 (8) |
O3iv—N1—O2i | 70.41 (5) | O1xviii—Ga2—N2 | 62.79 (8) |
O3v—N1—O2i | 126.51 (5) | O1xvii—Ga2—N2 | 67.00 (8) |
O2—N1—O2i | 74.86 (6) | N2xix—Ga2—N2 | 60.005 (2) |
O2ii—N1—O2i | 113.20 (2) | N2xvii—Ga2—N2 | 119.995 (2) |
O2iv—N1—O2i | 113.20 (2) | O1viii—Ga2—N2xvi | 113.01 (7) |
O2iii—N1—O2i | 59.00 (6) | O1xiv—Ga2—N2xvi | 33.23 (8) |
O3—N1—O2v | 70.41 (5) | O1xix—Ga2—N2xvi | 117.21 (8) |
O3i—N1—O2v | 126.51 (5) | O1v—Ga2—N2xvi | 66.99 (7) |
O3ii—N1—O2v | 65.01 (5) | O1xviii—Ga2—N2xvi | 146.77 (8) |
O3iii—N1—O2v | 113.56 (5) | O1xvii—Ga2—N2xvi | 62.79 (8) |
O3iv—N1—O2v | 115.51 (5) | N2xix—Ga2—N2xvi | 60.005 (2) |
O3v—N1—O2v | 48.11 (4) | N2xvii—Ga2—N2xvi | 119.995 (2) |
O2—N1—O2v | 113.20 (2) | N2—Ga2—N2xvi | 119.995 (2) |
O2ii—N1—O2v | 59.00 (6) | O1viii—Ga2—N2xxii | 66.99 (7) |
O2iv—N1—O2v | 74.86 (6) | O1xiv—Ga2—N2xxii | 146.77 (8) |
O2iii—N1—O2v | 113.20 (2) | O1xix—Ga2—N2xxii | 62.79 (8) |
O2i—N1—O2v | 171.26 (6) | O1v—Ga2—N2xxii | 113.00 (7) |
O3v—N2—O3iii | 76.09 (13) | O1xviii—Ga2—N2xxii | 33.23 (8) |
O3v—N2—O3 | 76.08 (13) | O1xvii—Ga2—N2xxii | 117.21 (8) |
O3iii—N2—O3 | 76.08 (13) | N2xix—Ga2—N2xxii | 119.995 (2) |
O3v—N2—O1vi | 77.21 (6) | N2xvii—Ga2—N2xxii | 60.005 (2) |
O3iii—N2—O1vi | 152.44 (16) | N2—Ga2—N2xxii | 60.005 (2) |
O3—N2—O1vi | 91.02 (6) | N2xvi—Ga2—N2xxii | 180.0 |
O3v—N2—O1vii | 152.44 (16) | O1viii—Ga2—N2xxiii | 146.77 (8) |
O3iii—N2—O1vii | 91.02 (6) | O1xiv—Ga2—N2xxiii | 62.79 (8) |
O3—N2—O1vii | 77.21 (6) | O1xix—Ga2—N2xxiii | 66.99 (8) |
O1vi—N2—O1vii | 110.03 (9) | O1v—Ga2—N2xxiii | 33.23 (8) |
O3v—N2—O1viii | 91.02 (6) | O1xviii—Ga2—N2xxiii | 117.21 (8) |
O3iii—N2—O1viii | 77.21 (6) | O1xvii—Ga2—N2xxiii | 113.00 (8) |
O3—N2—O1viii | 152.44 (16) | N2xix—Ga2—N2xxiii | 119.995 (2) |
O1vi—N2—O1viii | 110.03 (9) | N2xvii—Ga2—N2xxiii | 60.005 (2) |
O1vii—N2—O1viii | 110.03 (9) | N2—Ga2—N2xxiii | 180.0 |
O3v—N2—O4ix | 111.48 (7) | N2xvi—Ga2—N2xxiii | 60.005 (2) |
O3iii—N2—O4ix | 156.43 (10) | N2xxii—Ga2—N2xxiii | 119.994 (2) |
O3—N2—O4ix | 126.99 (7) | O1xx—As—O2 | 118.81 (9) |
O1vi—N2—O4ix | 45.41 (6) | O1xx—As—O4ii | 105.46 (9) |
O1vii—N2—O4ix | 90.09 (12) | O2—As—O4ii | 115.11 (9) |
O1viii—N2—O4ix | 80.30 (10) | O1xx—As—O3 | 107.12 (11) |
O3v—N2—O4x | 156.43 (10) | O2—As—O3 | 103.09 (10) |
O3iii—N2—O4x | 126.99 (7) | O4ii—As—O3 | 106.35 (9) |
O3—N2—O4x | 111.48 (7) | O1xx—As—N2xii | 64.22 (8) |
O1vi—N2—O4x | 80.30 (10) | O2—As—N2xii | 173.25 (6) |
O1vii—N2—O4x | 45.41 (6) | O4ii—As—N2xii | 68.25 (8) |
O1viii—N2—O4x | 90.09 (12) | O3—As—N2xii | 70.17 (8) |
O4ix—N2—O4x | 45.67 (8) | O1xx—As—N1 | 142.98 (8) |
O3v—N2—O4xi | 126.99 (7) | O2—As—N1 | 56.21 (6) |
O3iii—N2—O4xi | 111.48 (7) | O4ii—As—N1 | 108.99 (6) |
O3—N2—O4xi | 156.43 (10) | O3—As—N1 | 50.09 (8) |
O1vi—N2—O4xi | 90.09 (12) | N2xii—As—N1 | 117.48 (2) |
O1vii—N2—O4xi | 80.30 (10) | O1xx—As—N2 | 81.32 (10) |
O1viii—N2—O4xi | 45.41 (6) | O2—As—N2 | 99.84 (7) |
O4ix—N2—O4xi | 45.67 (8) | O4ii—As—N2 | 133.25 (6) |
O4x—N2—O4xi | 45.67 (8) | O3—As—N2 | 32.26 (8) |
O3v—N2—O3xii | 119.40 (8) | N2xii—As—N2 | 74.310 (11) |
O3iii—N2—O3xii | 150.86 (8) | N1—As—N2 | 65.36 (6) |
O3—N2—O3xii | 83.78 (6) | O1xx—As—N1xxiv | 88.02 (8) |
O1vi—N2—O3xii | 46.33 (6) | O2—As—N1xxiv | 94.12 (6) |
O1vii—N2—O3xii | 63.78 (7) | O4ii—As—N1xxiv | 40.77 (6) |
O1viii—N2—O3xii | 123.57 (16) | O3—As—N1xxiv | 147.10 (7) |
O4ix—N2—O3xii | 45.67 (7) | N2xii—As—N1xxiv | 92.00 (3) |
O4x—N2—O3xii | 43.44 (7) | N1—As—N1xxiv | 127.434 (12) |
O4xi—N2—O3xii | 80.03 (12) | N2—As—N1xxiv | 165.32 (5) |
O3v—N2—O3xiii | 83.77 (6) | O1xx—As—N2xxiv | 43.28 (9) |
O3iii—N2—O3xiii | 119.40 (8) | O2—As—N2xxiv | 127.15 (7) |
O3—N2—O3xiii | 150.86 (7) | O4ii—As—N2xxiv | 63.82 (7) |
O1vi—N2—O3xiii | 63.78 (7) | O3—As—N2xxiv | 128.79 (9) |
O1vii—N2—O3xiii | 123.57 (16) | N2xii—As—N2xxiv | 59.42 (2) |
O1viii—N2—O3xiii | 46.33 (6) | N1—As—N2xxiv | 172.65 (3) |
O4ix—N2—O3xiii | 43.44 (7) | N2—As—N2xxiv | 117.94 (11) |
O4x—N2—O3xiii | 80.03 (12) | N1xxiv—As—N2xxiv | 48.43 (5) |
O4xi—N2—O3xiii | 45.67 (7) | Asxxv—O1—Ga2xxvi | 137.99 (11) |
O3xii—N2—O3xiii | 88.14 (11) | Asxxv—O1—N2vi | 89.57 (11) |
O3v—N2—O3xiv | 150.86 (8) | Ga2xxvi—O1—N2vi | 128.22 (11) |
O3iii—N2—O3xiv | 83.77 (6) | Asxxv—O1—N2xxv | 76.36 (10) |
O3—N2—O3xiv | 119.40 (8) | Ga2xxvi—O1—N2xxv | 93.37 (8) |
O1vi—N2—O3xiv | 123.57 (16) | N2vi—O1—N2xxv | 76.98 (4) |
O1vii—N2—O3xiv | 46.33 (6) | Asxxv—O1—N2xxvi | 121.95 (10) |
O1viii—N2—O3xiv | 63.78 (7) | Ga2xxvi—O1—N2xxvi | 89.12 (8) |
O4ix—N2—O3xiv | 80.03 (12) | N2vi—O1—N2xxvi | 74.93 (4) |
O4x—N2—O3xiv | 45.67 (7) | N2xxv—O1—N2xxvi | 145.93 (11) |
O4xi—N2—O3xiv | 43.44 (7) | As—O2—Ga1xxiv | 121.85 (9) |
O3xii—N2—O3xiv | 88.14 (11) | As—O2—N1 | 99.43 (7) |
O3xiii—N2—O3xiv | 88.14 (11) | Ga1xxiv—O2—N1 | 128.79 (7) |
O2xv—Ga1—O2iii | 91.61 (7) | As—O2—N2 | 60.17 (5) |
O2xv—Ga1—O2xvi | 91.61 (7) | Ga1xxiv—O2—N2 | 163.08 (8) |
O2iii—Ga1—O2xvi | 91.61 (7) | N1—O2—N2 | 63.03 (5) |
O2xv—Ga1—O4v | 88.91 (7) | As—O3—N2 | 129.17 (11) |
O2iii—Ga1—O4v | 92.29 (8) | As—O3—N1 | 105.03 (9) |
O2xvi—Ga1—O4v | 176.05 (7) | N2—O3—N1 | 93.77 (9) |
O2xv—Ga1—O4xvii | 92.29 (8) | As—O3—N2xii | 82.43 (8) |
O2iii—Ga1—O4xvii | 176.05 (7) | N2—O3—N2xii | 96.22 (6) |
O2xvi—Ga1—O4xvii | 88.91 (7) | N1—O3—N2xii | 159.27 (9) |
O4v—Ga1—O4xvii | 87.16 (8) | As—O3—H3 | 102 (4) |
O2xv—Ga1—O4xviii | 176.05 (7) | N2—O3—H3 | 125 (4) |
O2iii—Ga1—O4xviii | 88.91 (7) | N1—O3—H3 | 91 (3) |
O2xvi—Ga1—O4xviii | 92.29 (7) | N2xii—O3—H3 | 69 (3) |
O4v—Ga1—O4xviii | 87.16 (8) | Asii—O4—Ga1xxvi | 130.02 (10) |
O4xvii—Ga1—O4xviii | 87.16 (8) | Asii—O4—N2xxvii | 85.25 (7) |
O2xv—Ga1—N2xxi | 124.12 (5) | Ga1xxvi—O4—N2xxvii | 100.62 (8) |
O2iii—Ga1—N2xxi | 124.12 (5) | Asii—O4—N1xxv | 124.11 (7) |
O2xvi—Ga1—N2xxi | 124.12 (5) | Ga1xxvi—O4—N1xxv | 96.68 (6) |
O4v—Ga1—N2xxi | 52.75 (5) | N2xxvii—O4—N1xxv | 118.40 (4) |
O4xvii—Ga1—N2xxi | 52.75 (5) | Asii—O4—N1 | 51.75 (5) |
O4xviii—Ga1—N2xxi | 52.75 (5) | Ga1xxvi—O4—N1 | 79.17 (5) |
O2xv—Ga1—N1xvii | 32.80 (5) | N2xxvii—O4—N1 | 104.63 (4) |
O2iii—Ga1—N1xvii | 105.75 (5) | N1xxv—O4—N1 | 136.70 (4) |
O2xvi—Ga1—N1xvii | 119.85 (5) | Asii—O4—N2xxviii | 98.66 (7) |
O4v—Ga1—N1xvii | 59.54 (5) | Ga1xxvi—O4—N2xxviii | 129.48 (6) |
O4xvii—Ga1—N1xvii | 77.33 (5) | N2xxvii—O4—N2xxviii | 66.70 (3) |
O4xviii—Ga1—N1xvii | 143.46 (5) | N1xxv—O4—N2xxviii | 57.01 (5) |
N2xxi—Ga1—N1xvii | 92.432 (5) | N1—O4—N2xxviii | 150.37 (5) |
Symmetry codes: (i) x−y, −y, −z+3/2; (ii) −x, −x+y, −z+3/2; (iii) −x+y, −x, z; (iv) y, x, −z+3/2; (v) −y, x−y, z; (vi) −x+2/3, −y−2/3, −z+4/3; (vii) x−y−4/3, x−2/3, −z+4/3; (viii) y+2/3, −x+y+4/3, −z+4/3; (ix) x−1/3, x−y−2/3, z−1/6; (x) −y−1/3, −x+1/3, z−1/6; (xi) −x+y+2/3, y+1/3, z−1/6; (xii) −x−1/3, −y−2/3, −z+4/3; (xiii) y+2/3, −x+y+1/3, −z+4/3; (xiv) x−y−1/3, x+1/3, −z+4/3; (xv) −y, x−y+1, z; (xvi) x+1, y+1, z; (xvii) x, y+1, z; (xviii) −x+y+1, −x+1, z; (xix) −x+2/3, −y+1/3, −z+4/3; (xx) x−1, y, z; (xxi) −y+1/3, −x+2/3, z+1/6; (xxii) −x−1/3, −y+1/3, −z+4/3; (xxiii) −x+2/3, −y+4/3, −z+4/3; (xxiv) x−1, y−1, z; (xxv) x+1, y, z; (xxvi) x, y−1, z; (xxvii) −y+1/3, −x−1/3, z+1/6; (xxviii) y+1, x, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O4xxix | 0.87 (3) | 1.74 (3) | 2.610 (3) | 172 (6) |
Symmetry code: (xxix) y, x−1, −z+3/2. |
TlAl(HAsO4)2 | Dx = 4.849 Mg m−3 |
Mr = 511.21 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, R3c:H | Cell parameters from 1004 reflections |
a = 8.290 (1) Å | θ = 2.9–30.0° |
c = 52.940 (11) Å | µ = 32.58 mm−1 |
V = 3150.8 (10) Å3 | T = 293 K |
Z = 18 | Small pseudo-octahedral platelets, colourless |
F(000) = 4068 | 0.08 × 0.07 × 0.03 mm |
Nonius KappaCCD single-crystal four-circle diffractometer | 685 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.022 |
φ and ω scans | θmax = 26.0°, θmin = 2.9° |
Absorption correction: multi-scan (HKL SCALEPACK; Otwinowski et al., 2003) | h = −10→10 |
Tmin = 0.180, Tmax = 0.441 | k = −8→8 |
2478 measured reflections | l = −64→64 |
698 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.022 | All H-atom parameters refined |
wR(F2) = 0.058 | w = 1/[σ2(Fo2) + (0.023P)2 + 84.2452P] where P = (Fo2 + 2Fc2)/3 |
S = 1.21 | (Δ/σ)max = 0.003 |
698 reflections | Δρmax = 0.82 e Å−3 |
69 parameters | Δρmin = −1.98 e Å−3 |
2 restraints | Extinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.00049 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Tl1 | 0.000000 | −0.019 (2) | 0.750000 | 0.037 (2) | 0.3333 |
Tl2 | 0.000000 | 0.000000 | 0.66885 (2) | 0.0322 (2) | |
Al1 | 0.333333 | 0.666667 | 0.75439 (5) | 0.0051 (5) | |
Al2 | 0.333333 | 0.666667 | 0.666667 | 0.0061 (7) | |
As | −0.43603 (7) | −0.39811 (7) | 0.71289 (2) | 0.00523 (19) | 0.9790 (14) |
AsB | −0.596 (3) | −0.559 (3) | 0.7127 (4) | 0.00523 (19) | 0.0210 (14) |
O1 | 0.4431 (5) | −0.4433 (5) | 0.68625 (6) | 0.0120 (8) | |
O2 | −0.4518 (5) | −0.2576 (5) | 0.73421 (6) | 0.0080 (7) | |
O3 | −0.2001 (5) | −0.2792 (5) | 0.70491 (8) | 0.0144 (8) | |
O4 | 0.4791 (5) | −0.1259 (5) | 0.77571 (6) | 0.0083 (7) | |
H3 | −0.126 (8) | −0.323 (8) | 0.7074 (11) | 0.010 (15)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Tl1 | 0.0356 (8) | 0.051 (5) | 0.0190 (4) | 0.0178 (4) | −0.003 (2) | −0.0015 (10) |
Tl2 | 0.0411 (3) | 0.0411 (3) | 0.0145 (3) | 0.02053 (13) | 0.000 | 0.000 |
Al1 | 0.0069 (7) | 0.0069 (7) | 0.0014 (11) | 0.0035 (4) | 0.000 | 0.000 |
Al2 | 0.0085 (11) | 0.0085 (11) | 0.0014 (16) | 0.0042 (5) | 0.000 | 0.000 |
As | 0.0081 (3) | 0.0070 (3) | 0.0019 (3) | 0.0047 (2) | 0.00051 (17) | 0.00064 (17) |
AsB | 0.0081 (3) | 0.0070 (3) | 0.0019 (3) | 0.0047 (2) | 0.00051 (17) | 0.00064 (17) |
O1 | 0.0188 (19) | 0.0166 (18) | 0.0032 (15) | 0.0109 (16) | −0.0020 (14) | −0.0009 (13) |
O2 | 0.0077 (17) | 0.0103 (16) | 0.0045 (15) | 0.0034 (14) | 0.0021 (13) | −0.0004 (13) |
O3 | 0.0091 (18) | 0.0168 (19) | 0.0199 (19) | 0.0085 (15) | 0.0098 (15) | 0.0102 (15) |
O4 | 0.0119 (17) | 0.0085 (17) | 0.0049 (15) | 0.0054 (14) | −0.0011 (13) | −0.0044 (13) |
Tl1—Tl1i | 0.28 (3) | Tl2—O3xiv | 3.545 (4) |
Tl1—Tl1ii | 0.28 (3) | Tl2—O3xv | 3.545 (4) |
Tl1—O3 | 3.085 (8) | Tl2—AsBxiii | 3.74 (2) |
Tl1—O3iii | 3.085 (8) | Tl2—AsBxv | 3.74 (2) |
Tl1—O3iv | 3.136 (5) | Tl2—AsBxiv | 3.74 (2) |
Tl1—O3i | 3.136 (5) | Al1—O2xvi | 1.895 (4) |
Tl1—O2iv | 3.233 (13) | Al1—O2ii | 1.895 (4) |
Tl1—O2i | 3.233 (13) | Al1—O2xvii | 1.895 (4) |
Tl1—O3v | 3.261 (12) | Al1—O4xviii | 1.901 (4) |
Tl1—O3ii | 3.261 (12) | Al1—O4i | 1.901 (4) |
Tl1—O2iii | 3.351 (4) | Al1—O4xix | 1.901 (4) |
Tl1—O2 | 3.351 (4) | Al2—O1ix | 1.887 (4) |
Tl1—O2ii | 3.501 (15) | Al2—O1xv | 1.887 (4) |
Tl1—O2v | 3.501 (15) | Al2—O1xx | 1.887 (4) |
Tl1—AsBvi | 3.89 (3) | Al2—O1i | 1.887 (4) |
Tl2—O3i | 2.813 (4) | Al2—O1xix | 1.887 (4) |
Tl2—O3ii | 2.813 (4) | Al2—O1xviii | 1.887 (4) |
Tl2—O3 | 2.813 (4) | As—AsB | 1.33 (2) |
Tl2—O1vii | 3.410 (4) | As—O1xxi | 1.661 (3) |
Tl2—O1viii | 3.410 (4) | As—O2 | 1.674 (3) |
Tl2—O1ix | 3.410 (4) | As—O4iii | 1.679 (3) |
Tl2—O4x | 3.516 (3) | As—O3 | 1.746 (4) |
Tl2—O4xi | 3.516 (3) | AsB—O4iii | 1.35 (2) |
Tl2—O4xii | 3.516 (3) | AsB—O1xxi | 1.64 (2) |
Tl2—O3xiii | 3.545 (4) | AsB—O2xxii | 2.12 (2) |
Tl1i—Tl1—Tl1ii | 60.00 (3) | O1xix—Al2—O1xviii | 92.71 (15) |
Tl1i—Tl1—O3 | 127.2 (3) | O1ix—Al2—Tl2xx | 64.49 (12) |
Tl1ii—Tl1—O3 | 98.0 (3) | O1xv—Al2—Tl2xx | 64.45 (11) |
Tl1i—Tl1—O3iii | 98.0 (3) | O1xx—Al2—Tl2xx | 145.30 (11) |
Tl1ii—Tl1—O3iii | 127.2 (2) | O1i—Al2—Tl2xx | 115.51 (12) |
O3—Tl1—O3iii | 129.1 (6) | O1xix—Al2—Tl2xx | 115.55 (11) |
Tl1i—Tl1—O3iv | 114.4 (3) | O1xviii—Al2—Tl2xx | 34.70 (11) |
Tl1ii—Tl1—O3iv | 77.0 (4) | O1ix—Al2—Tl2xviii | 115.51 (12) |
O3—Tl1—O3iv | 104.2 (3) | O1xv—Al2—Tl2xviii | 115.55 (11) |
O3iii—Tl1—O3iv | 70.24 (16) | O1xx—Al2—Tl2xviii | 34.70 (11) |
Tl1i—Tl1—O3i | 77.0 (3) | O1i—Al2—Tl2xviii | 64.49 (12) |
Tl1ii—Tl1—O3i | 114.4 (2) | O1xix—Al2—Tl2xviii | 64.45 (11) |
O3—Tl1—O3i | 70.24 (16) | O1xviii—Al2—Tl2xviii | 145.29 (11) |
O3iii—Tl1—O3i | 104.2 (3) | Tl2xx—Al2—Tl2xviii | 180.0 |
O3iv—Tl1—O3i | 167.5 (6) | O1ix—Al2—Tl2xvii | 115.55 (11) |
Tl1i—Tl1—O2iv | 163.77 (15) | O1xv—Al2—Tl2xvii | 34.70 (11) |
Tl1ii—Tl1—O2iv | 112.8 (3) | O1xx—Al2—Tl2xvii | 115.51 (12) |
O3—Tl1—O2iv | 66.4 (3) | O1i—Al2—Tl2xvii | 64.45 (11) |
O3iii—Tl1—O2iv | 74.5 (3) | O1xix—Al2—Tl2xvii | 145.29 (11) |
O3iv—Tl1—O2iv | 49.68 (16) | O1xviii—Al2—Tl2xvii | 64.49 (12) |
O3i—Tl1—O2iv | 118.5 (5) | Tl2xx—Al2—Tl2xvii | 60.1 |
Tl1i—Tl1—O2i | 112.84 (18) | Tl2xviii—Al2—Tl2xvii | 119.9 |
Tl1ii—Tl1—O2i | 163.77 (10) | O1ix—Al2—Tl2 | 34.70 (11) |
O3—Tl1—O2i | 74.5 (3) | O1xv—Al2—Tl2 | 115.51 (12) |
O3iii—Tl1—O2i | 66.4 (3) | O1xx—Al2—Tl2 | 115.55 (12) |
O3iv—Tl1—O2i | 118.5 (5) | O1i—Al2—Tl2 | 145.29 (11) |
O3i—Tl1—O2i | 49.68 (16) | O1xix—Al2—Tl2 | 64.49 (12) |
O2iv—Tl1—O2i | 77.8 (4) | O1xviii—Al2—Tl2 | 64.45 (12) |
Tl1i—Tl1—O3v | 48.90 (18) | Tl2xx—Al2—Tl2 | 60.1 |
Tl1ii—Tl1—O3v | 61.10 (14) | Tl2xviii—Al2—Tl2 | 119.942 (1) |
O3—Tl1—O3v | 158.5 (4) | Tl2xvii—Al2—Tl2 | 119.9 |
O3iii—Tl1—O3v | 68.60 (12) | O1ix—Al2—Tl2xxiv | 64.45 (11) |
O3iv—Tl1—O3v | 68.01 (16) | O1xv—Al2—Tl2xxiv | 145.30 (11) |
O3i—Tl1—O3v | 121.2 (3) | O1xx—Al2—Tl2xxiv | 64.49 (12) |
O2iv—Tl1—O3v | 115.03 (10) | O1i—Al2—Tl2xxiv | 115.55 (11) |
O2i—Tl1—O3v | 127.04 (11) | O1xix—Al2—Tl2xxiv | 34.70 (11) |
Tl1i—Tl1—O3ii | 61.1 (2) | O1xviii—Al2—Tl2xxiv | 115.51 (12) |
Tl1ii—Tl1—O3ii | 48.90 (16) | Tl2xx—Al2—Tl2xxiv | 119.9 |
O3—Tl1—O3ii | 68.60 (12) | Tl2xviii—Al2—Tl2xxiv | 60.1 |
O3iii—Tl1—O3ii | 158.5 (4) | Tl2xvii—Al2—Tl2xxiv | 180.0 |
O3iv—Tl1—O3ii | 121.2 (3) | Tl2—Al2—Tl2xxiv | 60.1 |
O3i—Tl1—O3ii | 68.01 (16) | O1ix—Al2—Tl2xxv | 145.30 (11) |
O2iv—Tl1—O3ii | 127.04 (11) | O1xv—Al2—Tl2xxv | 64.49 (12) |
O2i—Tl1—O3ii | 115.03 (10) | O1xx—Al2—Tl2xxv | 64.45 (12) |
O3v—Tl1—O3ii | 97.6 (5) | O1i—Al2—Tl2xxv | 34.70 (11) |
Tl1i—Tl1—O2iii | 62.8 (3) | O1xix—Al2—Tl2xxv | 115.51 (12) |
Tl1ii—Tl1—O2iii | 120.68 (19) | O1xviii—Al2—Tl2xxv | 115.55 (12) |
O3—Tl1—O2iii | 129.1 (3) | Tl2xx—Al2—Tl2xxv | 119.9 |
O3iii—Tl1—O2iii | 48.95 (11) | Tl2xviii—Al2—Tl2xxv | 60.1 |
O3iv—Tl1—O2iii | 115.18 (11) | Tl2xvii—Al2—Tl2xxv | 60.1 |
O3i—Tl1—O2iii | 64.40 (9) | Tl2—Al2—Tl2xxv | 180.0 |
O2iv—Tl1—O2iii | 117.7 (4) | Tl2xxiv—Al2—Tl2xxv | 119.9 |
O2i—Tl1—O2iii | 59.15 (18) | AsB—As—O1xxi | 65.3 (9) |
O3v—Tl1—O2iii | 70.66 (15) | AsB—As—O2 | 108.5 (9) |
O3ii—Tl1—O2iii | 111.8 (3) | O1xxi—As—O2 | 118.77 (18) |
Tl1i—Tl1—O2 | 120.7 (3) | AsB—As—O4iii | 51.8 (9) |
Tl1ii—Tl1—O2 | 62.8 (4) | O1xxi—As—O4iii | 106.18 (18) |
O3—Tl1—O2 | 48.94 (10) | O2—As—O4iii | 114.71 (17) |
O3iii—Tl1—O2 | 129.1 (3) | AsB—As—O3 | 147.0 (10) |
O3iv—Tl1—O2 | 64.40 (9) | O1xxi—As—O3 | 107.52 (19) |
O3i—Tl1—O2 | 115.18 (11) | O2—As—O3 | 103.03 (19) |
O2iv—Tl1—O2 | 59.15 (17) | O4iii—As—O3 | 105.63 (17) |
O2i—Tl1—O2 | 117.7 (4) | AsB—As—Tl2xiii | 79.0 (9) |
O3v—Tl1—O2 | 111.8 (3) | O1xxi—As—Tl2xiii | 65.02 (13) |
O3ii—Tl1—O2 | 70.66 (15) | O2—As—Tl2xiii | 172.42 (13) |
O2iii—Tl1—O2 | 176.5 (6) | O4iii—As—Tl2xiii | 68.63 (12) |
Tl1i—Tl1—O2ii | 14.95 (6) | O3—As—Tl2xiii | 69.39 (14) |
Tl1ii—Tl1—O2ii | 55.40 (8) | AsB—As—Tl1ii | 150.1 (9) |
O3—Tl1—O2ii | 112.4 (2) | O1xxi—As—Tl1ii | 142.74 (15) |
O3iii—Tl1—O2ii | 112.3 (2) | O2—As—Tl1ii | 54.3 (2) |
O3iv—Tl1—O2ii | 122.2 (4) | O4iii—As—Tl1ii | 109.18 (17) |
O3i—Tl1—O2ii | 70.1 (2) | O3—As—Tl1ii | 51.5 (2) |
O2iv—Tl1—O2ii | 168.2 (3) | Tl2xiii—As—Tl1ii | 118.4 (2) |
O2i—Tl1—O2ii | 113.58 (8) | AsB—As—Tl1 | 149.5 (9) |
O3v—Tl1—O2ii | 61.5 (3) | O1xxi—As—Tl1 | 144.6 (2) |
O3ii—Tl1—O2ii | 46.5 (2) | O2—As—Tl1 | 57.8 (2) |
O2iii—Tl1—O2ii | 72.6 (2) | O4iii—As—Tl1 | 106.1 (2) |
O2—Tl1—O2ii | 110.7 (4) | O3—As—Tl1 | 49.19 (16) |
Tl1i—Tl1—O2v | 55.40 (16) | Tl2xiii—As—Tl1 | 115.07 (16) |
Tl1ii—Tl1—O2v | 14.95 (6) | Tl1ii—As—Tl1 | 4.1 (4) |
O3—Tl1—O2v | 112.3 (2) | AsB—As—Tl1i | 151.5 (9) |
O3iii—Tl1—O2v | 112.4 (2) | O1xxi—As—Tl1i | 142.12 (17) |
O3iv—Tl1—O2v | 70.1 (2) | O2—As—Tl1i | 56.77 (13) |
O3i—Tl1—O2v | 122.2 (4) | O4iii—As—Tl1i | 108.88 (15) |
O2iv—Tl1—O2v | 113.58 (7) | O3—As—Tl1i | 49.06 (16) |
O2i—Tl1—O2v | 168.2 (3) | Tl2xiii—As—Tl1i | 115.97 (5) |
O3v—Tl1—O2v | 46.5 (2) | Tl1ii—As—Tl1i | 2.5 (3) |
O3ii—Tl1—O2v | 61.5 (3) | Tl1—As—Tl1i | 2.8 (3) |
O2iii—Tl1—O2v | 110.7 (4) | AsB—As—Tl2 | 145.5 (9) |
O2—Tl1—O2v | 72.6 (2) | O1xxi—As—Tl2 | 83.71 (13) |
O2ii—Tl1—O2v | 55.3 (3) | O2—As—Tl2 | 99.45 (13) |
Tl1i—Tl1—AsBvi | 135.2 (4) | O4iii—As—Tl2 | 131.69 (12) |
Tl1ii—Tl1—AsBvi | 141.1 (4) | O3—As—Tl2 | 30.29 (12) |
O3—Tl1—AsBvi | 43.1 (4) | Tl2xiii—As—Tl2 | 74.034 (11) |
O3iii—Tl1—AsBvi | 89.5 (5) | Tl1ii—As—Tl2 | 64.11 (8) |
O3iv—Tl1—AsBvi | 109.6 (5) | Tl1—As—Tl2 | 63.95 (6) |
O3i—Tl1—AsBvi | 58.5 (4) | Tl1i—As—Tl2 | 62.34 (12) |
O2iv—Tl1—AsBvi | 60.1 (4) | AsB—As—Tl1xxvi | 23.3 (9) |
O2i—Tl1—AsBvi | 33.0 (4) | O1xxi—As—Tl1xxvi | 87.98 (15) |
O3v—Tl1—AsBvi | 157.7 (4) | O2—As—Tl1xxvi | 93.41 (14) |
O3ii—Tl1—AsBvi | 101.9 (3) | O4iii—As—Tl1xxvi | 41.90 (12) |
O2iii—Tl1—AsBvi | 92.0 (4) | O3—As—Tl1xxvi | 147.50 (13) |
O2—Tl1—AsBvi | 85.0 (4) | Tl2xiii—As—Tl1xxvi | 93.30 (5) |
O2ii—Tl1—AsBvi | 127.8 (3) | Tl1ii—As—Tl1xxvi | 126.79 (12) |
O2v—Tl1—AsBvi | 155.4 (3) | Tl1—As—Tl1xxvi | 126.30 (17) |
O3i—Tl2—O3ii | 79.02 (13) | Tl1i—As—Tl1xxvi | 128.27 (4) |
O3i—Tl2—O3 | 79.02 (13) | Tl2—As—Tl1xxvi | 166.91 (6) |
O3ii—Tl2—O3 | 79.02 (13) | AsB—As—Tl1xxii | 22.1 (9) |
O3i—Tl2—O1vii | 75.43 (10) | O1xxi—As—Tl1xxii | 86.49 (17) |
O3ii—Tl2—O1vii | 154.16 (10) | O2—As—Tl1xxii | 93.06 (16) |
O3—Tl2—O1vii | 92.26 (10) | O4iii—As—Tl1xxii | 43.7 (2) |
O3i—Tl2—O1viii | 154.16 (10) | O3—As—Tl1xxii | 149.3 (2) |
O3ii—Tl2—O1viii | 92.26 (10) | Tl2xiii—As—Tl1xxii | 93.75 (10) |
O3—Tl2—O1viii | 75.43 (10) | Tl1ii—As—Tl1xxii | 127.913 (17) |
O1vii—Tl2—O1viii | 109.19 (6) | Tl1—As—Tl1xxii | 127.56 (3) |
O3i—Tl2—O1ix | 92.26 (10) | Tl1i—As—Tl1xxii | 129.46 (17) |
O3ii—Tl2—O1ix | 75.43 (10) | Tl2—As—Tl1xxii | 166.76 (4) |
O3—Tl2—O1ix | 154.15 (10) | Tl1xxvi—As—Tl1xxii | 1.9 (2) |
O1vii—Tl2—O1ix | 109.19 (6) | As—AsB—O4iii | 77.6 (12) |
O1viii—Tl2—O1ix | 109.19 (6) | As—AsB—O1xxi | 67.1 (10) |
O3i—Tl2—O4x | 110.02 (10) | O4iii—AsB—O1xxi | 126.4 (16) |
O3ii—Tl2—O4x | 153.52 (10) | As—AsB—O2xxii | 112.5 (13) |
O3—Tl2—O4x | 126.54 (10) | O4iii—AsB—O2xxii | 119.3 (13) |
O1vii—Tl2—O4x | 45.33 (8) | O1xxi—AsB—O2xxii | 111.1 (11) |
O1viii—Tl2—O4x | 88.61 (8) | As—AsB—Tl2xiii | 80.6 (10) |
O1ix—Tl2—O4x | 79.30 (8) | O4iii—AsB—Tl2xiii | 69.9 (9) |
O3i—Tl2—O4xi | 153.52 (10) | O1xxi—AsB—Tl2xiii | 65.6 (7) |
O3ii—Tl2—O4xi | 126.54 (10) | O2xxii—AsB—Tl2xiii | 164.8 (9) |
O3—Tl2—O4xi | 110.02 (11) | As—AsB—Tl1xxvi | 149.0 (12) |
O1vii—Tl2—O4xi | 79.30 (8) | O4iii—AsB—Tl1xxvi | 84.2 (10) |
O1viii—Tl2—O4xi | 45.33 (8) | O1xxi—AsB—Tl1xxvi | 142.5 (11) |
O1ix—Tl2—O4xi | 88.61 (8) | O2xxii—AsB—Tl1xxvi | 56.2 (5) |
O4x—Tl2—O4xi | 44.26 (9) | Tl2xiii—AsB—Tl1xxvi | 116.5 (6) |
O3i—Tl2—O4xii | 126.54 (11) | As—AsB—Tl1xxii | 150.8 (12) |
O3ii—Tl2—O4xii | 110.01 (10) | O4iii—AsB—Tl1xxii | 86.9 (10) |
O3—Tl2—O4xii | 153.52 (11) | O1xxi—AsB—Tl1xxii | 140.0 (11) |
O1vii—Tl2—O4xii | 88.61 (8) | O2xxii—AsB—Tl1xxii | 54.8 (5) |
O1viii—Tl2—O4xii | 79.30 (8) | Tl2xiii—AsB—Tl1xxii | 117.2 (6) |
O1ix—Tl2—O4xii | 45.33 (8) | Tl1xxvi—AsB—Tl1xxii | 2.7 (3) |
O4x—Tl2—O4xii | 44.26 (9) | As—AsB—Tl1xxvii | 150.4 (12) |
O4xi—Tl2—O4xii | 44.26 (9) | O4iii—AsB—Tl1xxvii | 83.6 (10) |
O3i—Tl2—O3xiii | 117.91 (14) | O1xxi—AsB—Tl1xxvii | 141.8 (11) |
O3ii—Tl2—O3xiii | 152.25 (13) | O2xxii—AsB—Tl1xxvii | 58.4 (6) |
O3—Tl2—O3xiii | 82.85 (11) | Tl2xiii—AsB—Tl1xxvii | 114.1 (6) |
O1vii—Tl2—O3xiii | 46.50 (9) | Tl1xxvi—AsB—Tl1xxvii | 2.4 (3) |
O1viii—Tl2—O3xiii | 62.74 (9) | Tl1xxii—AsB—Tl1xxvii | 3.9 (4) |
O1ix—Tl2—O3xiii | 122.31 (9) | As—AsB—Tl2xxvii | 146.6 (12) |
O4x—Tl2—O3xiii | 45.47 (8) | O4iii—AsB—Tl2xxvii | 112.1 (11) |
O4xi—Tl2—O3xiii | 42.94 (8) | O1xxi—AsB—Tl2xxvii | 82.8 (8) |
O4xii—Tl2—O3xiii | 78.63 (8) | O2xxii—AsB—Tl2xxvii | 91.1 (7) |
O3i—Tl2—O3xiv | 82.85 (11) | Tl2xiii—AsB—Tl2xxvii | 73.8 (4) |
O3ii—Tl2—O3xiv | 117.91 (14) | Tl1xxvi—AsB—Tl2xxvii | 64.0 (4) |
O3—Tl2—O3xiv | 152.25 (12) | Tl1xxii—AsB—Tl2xxvii | 62.3 (3) |
O1vii—Tl2—O3xiv | 62.74 (9) | Tl1xxvii—AsB—Tl2xxvii | 62.2 (3) |
O1viii—Tl2—O3xiv | 122.31 (9) | As—AsB—Tl1ii | 22.5 (7) |
O1ix—Tl2—O3xiv | 46.50 (9) | O4iii—AsB—Tl1ii | 66.6 (9) |
O4x—Tl2—O3xiv | 42.94 (9) | O1xxi—AsB—Tl1ii | 88.7 (8) |
O4xi—Tl2—O3xiv | 78.63 (8) | O2xxii—AsB—Tl1ii | 99.8 (7) |
O4xii—Tl2—O3xiv | 45.47 (8) | Tl2xiii—AsB—Tl1ii | 95.0 (5) |
O3xiii—Tl2—O3xiv | 87.33 (9) | Tl1xxvi—AsB—Tl1ii | 126.5 (5) |
O3i—Tl2—O3xv | 152.25 (13) | Tl1xxii—AsB—Tl1ii | 128.3 (5) |
O3ii—Tl2—O3xv | 82.85 (11) | Tl1xxvii—AsB—Tl1ii | 128.0 (5) |
O3—Tl2—O3xv | 117.91 (14) | Tl2xxvii—AsB—Tl1ii | 168.1 (5) |
O1vii—Tl2—O3xv | 122.31 (9) | As—AsB—Tl1 | 22.9 (7) |
O1viii—Tl2—O3xv | 46.50 (9) | O4iii—AsB—Tl1 | 63.7 (9) |
O1ix—Tl2—O3xv | 62.74 (9) | O1xxi—AsB—Tl1 | 89.8 (9) |
O4x—Tl2—O3xv | 78.63 (8) | O2xxii—AsB—Tl1 | 102.1 (7) |
O4xi—Tl2—O3xv | 45.47 (8) | Tl2xiii—AsB—Tl1 | 92.8 (5) |
O4xii—Tl2—O3xv | 42.94 (8) | Tl1xxvi—AsB—Tl1 | 126.1 (5) |
O3xiii—Tl2—O3xv | 87.33 (9) | Tl1xxii—AsB—Tl1 | 128.1 (5) |
O3xiv—Tl2—O3xv | 87.33 (9) | Tl1xxvii—AsB—Tl1 | 127.5 (5) |
O3i—Tl2—AsBxiii | 90.6 (3) | Tl2xxvii—AsB—Tl1 | 166.5 (6) |
O3ii—Tl2—AsBxiii | 159.8 (4) | Tl1ii—AsB—Tl1 | 3.1 (3) |
O3—Tl2—AsBxiii | 116.2 (4) | As—AsB—Tl2 | 26.4 (7) |
O1vii—Tl2—AsBxiii | 25.9 (3) | O4iii—AsB—Tl2 | 87.6 (10) |
O1viii—Tl2—AsBxiii | 104.1 (4) | O1xxi—AsB—Tl2 | 44.9 (7) |
O1ix—Tl2—AsBxiii | 87.9 (4) | O2xxii—AsB—Tl2 | 128.4 (8) |
O4x—Tl2—AsBxiii | 21.2 (3) | Tl2xiii—AsB—Tl2 | 60.8 (3) |
O4xi—Tl2—AsBxiii | 63.0 (3) | Tl1xxvi—AsB—Tl2 | 171.8 (6) |
O4xii—Tl2—AsBxiii | 62.7 (3) | Tl1xxii—AsB—Tl2 | 174.5 (6) |
O3xiii—Tl2—AsBxiii | 47.7 (4) | Tl1xxvii—AsB—Tl2 | 171.0 (6) |
O3xiv—Tl2—AsBxiii | 42.9 (4) | Tl2xxvii—AsB—Tl2 | 120.2 (4) |
O3xv—Tl2—AsBxiii | 99.8 (3) | Tl1ii—AsB—Tl2 | 48.6 (2) |
O3i—Tl2—AsBxv | 159.8 (4) | Tl1—AsB—Tl2 | 48.5 (2) |
O3ii—Tl2—AsBxv | 116.2 (4) | AsBxxviii—O1—Asxxviii | 47.6 (8) |
O3—Tl2—AsBxv | 90.6 (4) | AsBxxviii—O1—Al2xxix | 138.8 (8) |
O1vii—Tl2—AsBxv | 87.9 (4) | Asxxviii—O1—Al2xxix | 137.7 (2) |
O1viii—Tl2—AsBxv | 25.9 (3) | AsBxxviii—O1—Tl2vii | 88.4 (8) |
O1ix—Tl2—AsBxv | 104.1 (3) | Asxxviii—O1—Tl2vii | 88.78 (15) |
O4x—Tl2—AsBxv | 62.7 (3) | Al2xxix—O1—Tl2vii | 126.91 (15) |
O4xi—Tl2—AsBxv | 21.2 (3) | AsBxxviii—O1—Tl2xxix | 75.1 (8) |
O4xii—Tl2—AsBxv | 63.0 (3) | Asxxviii—O1—Tl2xxix | 121.09 (16) |
O3xiii—Tl2—AsBxv | 42.9 (4) | Al2xxix—O1—Tl2xxix | 92.35 (12) |
O3xiv—Tl2—AsBxv | 99.8 (3) | Tl2vii—O1—Tl2xxix | 75.55 (7) |
O3xv—Tl2—AsBxv | 47.7 (4) | AsBxxviii—O1—Tl2xxviii | 119.6 (8) |
AsBxiii—Tl2—AsBxv | 78.5 (5) | Asxxviii—O1—Tl2xxviii | 73.85 (13) |
O3i—Tl2—AsBxiv | 116.2 (4) | Al2xxix—O1—Tl2xxviii | 92.31 (12) |
O3ii—Tl2—AsBxiv | 90.6 (4) | Tl2vii—O1—Tl2xxviii | 75.53 (7) |
O3—Tl2—AsBxiv | 159.8 (4) | Tl2xxix—O1—Tl2xxviii | 146.93 (9) |
O1vii—Tl2—AsBxiv | 104.1 (4) | As—O2—Al1xxvii | 122.5 (2) |
O1viii—Tl2—AsBxiv | 87.9 (4) | As—O2—AsBxxx | 104.8 (6) |
O1ix—Tl2—AsBxiv | 25.9 (3) | Al1xxvii—O2—AsBxxx | 102.5 (6) |
O4x—Tl2—AsBxiv | 63.0 (3) | As—O2—Tl1ii | 100.8 (2) |
O4xi—Tl2—AsBxiv | 62.7 (3) | Al1xxvii—O2—Tl1ii | 128.4 (2) |
O4xii—Tl2—AsBxiv | 21.2 (3) | AsBxxx—O2—Tl1ii | 90.8 (7) |
O3xiii—Tl2—AsBxiv | 99.8 (3) | As—O2—Tl1 | 97.2 (3) |
O3xiv—Tl2—AsBxiv | 47.7 (4) | Al1xxvii—O2—Tl1 | 130.04 (17) |
O3xv—Tl2—AsBxiv | 42.9 (4) | AsBxxx—O2—Tl1 | 94.2 (7) |
AsBxiii—Tl2—AsBxiv | 78.5 (5) | Tl1ii—O2—Tl1 | 4.4 (5) |
AsBxv—Tl2—AsBxiv | 78.5 (5) | As—O2—Tl1i | 99.66 (14) |
O2xvi—Al1—O2ii | 91.34 (17) | Al1xxvii—O2—Tl1i | 129.68 (16) |
O2xvi—Al1—O2xvii | 91.34 (17) | AsBxxx—O2—Tl1i | 90.6 (7) |
O2ii—Al1—O2xvii | 91.34 (17) | Tl1ii—O2—Tl1i | 1.27 (13) |
O2xvi—Al1—O4xviii | 92.20 (15) | Tl1—O2—Tl1i | 3.9 (4) |
O2ii—Al1—O4xviii | 176.43 (17) | As—O2—Tl2 | 60.21 (10) |
O2xvii—Al1—O4xviii | 88.17 (15) | Al1xxvii—O2—Tl2 | 163.54 (15) |
O2xvi—Al1—O4i | 88.17 (15) | AsBxxx—O2—Tl2 | 62.4 (6) |
O2ii—Al1—O4i | 92.20 (16) | Tl1ii—O2—Tl2 | 61.76 (9) |
O2xvii—Al1—O4i | 176.43 (18) | Tl1—O2—Tl2 | 61.25 (6) |
O4xviii—Al1—O4i | 88.32 (17) | Tl1i—O2—Tl2 | 60.58 (8) |
O2xvi—Al1—O4xix | 176.43 (17) | As—O3—Tl2 | 131.46 (18) |
O2ii—Al1—O4xix | 88.16 (15) | As—O3—Tl1 | 105.45 (17) |
O2xvii—Al1—O4xix | 92.20 (15) | Tl2—O3—Tl1 | 93.5 (2) |
O4xviii—Al1—O4xix | 88.32 (17) | As—O3—Tl1ii | 102.7 (3) |
O4i—Al1—O4xix | 88.32 (17) | Tl2—O3—Tl1ii | 92.38 (13) |
O2xvi—Al1—Tl2xxiii | 124.31 (12) | Tl1—O3—Tl1ii | 5.0 (5) |
O2ii—Al1—Tl2xxiii | 124.31 (12) | As—O3—Tl1i | 107.1 (3) |
O2xvii—Al1—Tl2xxiii | 124.31 (12) | Tl2—O3—Tl1i | 89.8 (3) |
O4xviii—Al1—Tl2xxiii | 53.56 (12) | Tl1—O3—Tl1i | 3.9 (4) |
O4i—Al1—Tl2xxiii | 53.56 (12) | Tl1ii—O3—Tl1i | 4.5 (5) |
O4xix—Al1—Tl2xxiii | 53.56 (12) | As—O3—Tl2xiii | 83.17 (14) |
O2xvi—Al1—Tl1xviii | 32.98 (11) | Tl2—O3—Tl2xiii | 97.14 (11) |
O2ii—Al1—Tl1xviii | 104.20 (15) | Tl1—O3—Tl2xiii | 156.2 (3) |
O2xvii—Al1—Tl1xviii | 120.62 (14) | Tl1ii—O3—Tl2xiii | 161.0 (3) |
O4xviii—Al1—Tl1xviii | 79.07 (14) | Tl1i—O3—Tl2xiii | 158.83 (12) |
O4i—Al1—Tl1xviii | 57.99 (12) | AsBiii—O4—Asiii | 50.7 (10) |
O4xix—Al1—Tl1xviii | 143.97 (14) | AsBiii—O4—Al1xxix | 170.4 (10) |
Tl2xxiii—Al1—Tl1xviii | 92.86 (3) | Asiii—O4—Al1xxix | 130.5 (2) |
O2xvi—Al1—Tl1i | 120.61 (14) | AsBiii—O4—Tl2xxxi | 88.9 (9) |
O2ii—Al1—Tl1i | 32.98 (11) | Asiii—O4—Tl2xxxi | 84.96 (12) |
O2xvii—Al1—Tl1i | 104.20 (15) | Al1xxix—O4—Tl2xxxi | 100.65 (14) |
O4xviii—Al1—Tl1i | 143.97 (14) | AsBiii—O4—Tl1xxxii | 76.1 (10) |
O4i—Al1—Tl1i | 79.07 (14) | Asiii—O4—Tl1xxxii | 121.76 (16) |
O4xix—Al1—Tl1i | 57.99 (13) | Al1xxix—O4—Tl1xxxii | 98.16 (12) |
Tl2xxiii—Al1—Tl1i | 92.86 (3) | Tl2xxxi—O4—Tl1xxxii | 119.60 (14) |
Tl1xviii—Al1—Tl1i | 119.753 (11) | AsBiii—O4—Tl1xxviii | 77.7 (10) |
O2xvi—Al1—Tl1xix | 104.20 (16) | Asiii—O4—Tl1xxviii | 124.1 (3) |
O2ii—Al1—Tl1xix | 120.61 (14) | Al1xxix—O4—Tl1xxviii | 96.88 (19) |
O2xvii—Al1—Tl1xix | 32.98 (12) | Tl2xxxi—O4—Tl1xxviii | 117.56 (15) |
O4xviii—Al1—Tl1xix | 57.99 (13) | Tl1xxxii—O4—Tl1xxviii | 2.8 (3) |
O4i—Al1—Tl1xix | 143.97 (14) | AsBiii—O4—Tl1xxxiii | 74.5 (10) |
O4xix—Al1—Tl1xix | 79.07 (15) | Asiii—O4—Tl1xxxiii | 120.5 (2) |
Tl2xxiii—Al1—Tl1xix | 92.86 (4) | Al1xxix—O4—Tl1xxxiii | 99.8 (2) |
Tl1xviii—Al1—Tl1xix | 119.753 (7) | Tl2xxxi—O4—Tl1xxxiii | 118.95 (9) |
Tl1i—Al1—Tl1xix | 119.753 (6) | Tl1xxxii—O4—Tl1xxxiii | 1.61 (17) |
O2xvi—Al1—Tl1xvi | 32.35 (12) | Tl1xxviii—O4—Tl1xxxiii | 3.7 (4) |
O2ii—Al1—Tl1xvi | 106.6 (2) | AsBiii—O4—Tl1 | 101.3 (10) |
O2xvii—Al1—Tl1xvi | 118.5 (2) | Asiii—O4—Tl1 | 53.74 (18) |
O4xviii—Al1—Tl1xvi | 76.73 (19) | Al1xxix—O4—Tl1 | 77.44 (19) |
O4i—Al1—Tl1xvi | 59.94 (18) | Tl2xxxi—O4—Tl1 | 103.75 (9) |
O4xix—Al1—Tl1xvi | 144.77 (15) | Tl1xxxii—O4—Tl1 | 136.34 (9) |
Tl2xxiii—Al1—Tl1xvi | 92.78 (3) | Tl1xxviii—O4—Tl1 | 138.6 (2) |
Tl1xviii—Al1—Tl1xvi | 2.9 (3) | Tl1xxxiii—O4—Tl1 | 136.76 (8) |
Tl1i—Al1—Tl1xvi | 122.7 (3) | AsBiii—O4—Tl1i | 98.2 (10) |
Tl1xix—Al1—Tl1xvi | 116.9 (3) | Asiii—O4—Tl1i | 51.25 (16) |
O2xvi—Al1—Tl1ii | 118.5 (2) | Al1xxix—O4—Tl1i | 80.3 (2) |
O2ii—Al1—Tl1ii | 32.35 (12) | Tl2xxxi—O4—Tl1i | 105.06 (14) |
O2xvii—Al1—Tl1ii | 106.6 (2) | Tl1xxxii—O4—Tl1i | 134.6 (3) |
O4xviii—Al1—Tl1ii | 144.77 (15) | Tl1xxviii—O4—Tl1i | 136.94 (8) |
O4i—Al1—Tl1ii | 76.7 (2) | Tl1xxxiii—O4—Tl1i | 134.9 (2) |
O4xix—Al1—Tl1ii | 59.94 (19) | Tl1—O4—Tl1i | 3.3 (4) |
Tl2xxiii—Al1—Tl1ii | 92.78 (3) | AsBiii—O4—Tl2xxxiv | 53.0 (10) |
Tl1xviii—Al1—Tl1ii | 116.9 (3) | Asiii—O4—Tl2xxxiv | 97.70 (13) |
Tl1i—Al1—Tl1ii | 2.9 (3) | Al1xxix—O4—Tl2xxxiv | 130.13 (14) |
Tl1xix—Al1—Tl1ii | 122.7 (3) | Tl2xxxi—O4—Tl2xxxiv | 67.31 (5) |
Tl1xvi—Al1—Tl1ii | 119.767 (7) | Tl1xxxii—O4—Tl2xxxiv | 56.91 (9) |
O1ix—Al2—O1xv | 92.72 (15) | Tl1xxviii—O4—Tl2xxxiv | 55.99 (5) |
O1ix—Al2—O1xx | 92.72 (15) | Tl1xxxiii—O4—Tl2xxxiv | 55.69 (6) |
O1xv—Al2—O1xx | 92.72 (15) | Tl1—O4—Tl2xxxiv | 151.34 (16) |
O1ix—Al2—O1i | 180.0 | Tl1i—O4—Tl2xxxiv | 148.95 (14) |
O1xv—Al2—O1i | 87.28 (15) | AsBiii—O4—Tl1ii | 99.9 (10) |
O1xx—Al2—O1i | 87.28 (15) | Asiii—O4—Tl1ii | 52.32 (10) |
O1ix—Al2—O1xix | 87.28 (15) | Al1xxix—O4—Tl1ii | 78.86 (11) |
O1xv—Al2—O1xix | 180.0 | Tl2xxxi—O4—Tl1ii | 103.45 (10) |
O1xx—Al2—O1xix | 87.28 (15) | Tl1xxxii—O4—Tl1ii | 136.45 (9) |
O1i—Al2—O1xix | 92.71 (15) | Tl1xxviii—O4—Tl1ii | 138.7 (2) |
O1ix—Al2—O1xviii | 87.28 (15) | Tl1xxxiii—O4—Tl1ii | 136.81 (8) |
O1xv—Al2—O1xviii | 87.28 (15) | Tl1—O4—Tl1ii | 1.42 (15) |
O1xx—Al2—O1xviii | 180.00 (17) | Tl1i—O4—Tl1ii | 2.3 (3) |
O1i—Al2—O1xviii | 92.71 (15) | Tl2xxxiv—O4—Tl1ii | 149.95 (8) |
Symmetry codes: (i) −y, x−y, z; (ii) −x+y, −x, z; (iii) −x, −x+y, −z+3/2; (iv) y, x, −z+3/2; (v) x−y, −y, −z+3/2; (vi) −x+y, −x−1, z; (vii) −x+2/3, −y−2/3, −z+4/3; (viii) x−y−4/3, x−2/3, −z+4/3; (ix) y+2/3, −x+y+4/3, −z+4/3; (x) x−1/3, x−y−2/3, z−1/6; (xi) −y−1/3, −x+1/3, z−1/6; (xii) −x+y+2/3, y+1/3, z−1/6; (xiii) −x−1/3, −y−2/3, −z+4/3; (xiv) y+2/3, −x+y+1/3, −z+4/3; (xv) x−y−1/3, x+1/3, −z+4/3; (xvi) −y, x−y+1, z; (xvii) x+1, y+1, z; (xviii) x, y+1, z; (xix) −x+y+1, −x+1, z; (xx) −x+2/3, −y+1/3, −z+4/3; (xxi) x−1, y, z; (xxii) −x+y−1, −x−1, z; (xxiii) −y+1/3, −x+2/3, z+1/6; (xxiv) −x−1/3, −y+1/3, −z+4/3; (xxv) −x+2/3, −y+4/3, −z+4/3; (xxvi) −y−1, x−y−1, z; (xxvii) x−1, y−1, z; (xxviii) x+1, y, z; (xxix) x, y−1, z; (xxx) −y−1, x−y, z; (xxxi) −y+1/3, −x−1/3, z+1/6; (xxxii) −x+y+1, −x, z; (xxxiii) −y+1, x−y, z; (xxxiv) y+1, x, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O4xxxv | 0.87 (4) | 1.87 (5) | 2.584 (5) | 139 (6) |
Symmetry code: (xxxv) y, x−1, −z+3/2. |
Funding information
Funding for this research was provided by: Doc fForte Fellowship of the Austrian Academy of Sciences to K. Schwendtner. The authors acknowledge the TU Wien University Library for financial support through its Open Access Funding Program.
References
Brandenburg, K. (2005). DIAMOND. Bonn, Germany. Google Scholar
Chouchene, S., Jaouadi, K., Mhiri, T. & Zouari, N. (2017). Solid State Ionics, 301, 78–85. Web of Science CrossRef CAS Google Scholar
Gagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562–578. Web of Science CrossRef IUCr Journals Google Scholar
Gagné, O. C. & Hawthorne, F. C. (2018). Acta Cryst. B74, 63–78. Web of Science CrossRef IUCr Journals Google Scholar
García-Rodríguez, L., Rute-Pérez, Á., Piñero, J. R. & González-Silgo, C. (2000). Acta Cryst. B56, 565–569. Web of Science CrossRef IUCr Journals Google Scholar
Lesage, J., Adam, L., Guesdon, A. & Raveau, B. (2007). J. Solid State Chem. 180, 1799–1808. Web of Science CrossRef CAS Google Scholar
Lii, K.-H. & Wu, L.-S. (1994). J. Chem. Soc. A, 10, 1577–1580. Google Scholar
Masquelier, C., Padhi, A. K., Nanjundaswamy, K. S., Okada, S. & Goodenough, J. B. (1996). Proceedings of the 37th Power Sources Conference, June 17–20, 1996, pp. 188–191. Cherry Hill, New Jersey. Fort Monmouth, NJ: US Army Research Laboratory. Google Scholar
Nonius, B. V. (2003). COLLECT. Delft, The Netherlands. Google Scholar
Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228–234. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ouerfelli, N., Guesmi, A., Molinié, P., Mazza, D., Zid, M. F. & Driss, A. (2007). J. Solid State Chem. 180, 2942–2949. Web of Science CrossRef CAS Google Scholar
Ren, J., Ma, Z., He, C., Sa, R., Li, Q. & Wu, K. (2015). Comput. Mater. Sci. 106, 1–4. Web of Science CrossRef CAS Google Scholar
Schwendtner, K. (2006). J. Alloys Compd. 421, 57–63. Web of Science CrossRef CAS Google Scholar
Schwendtner, K. (2008). PhD thesis, Universität Wien, Austria. Google Scholar
Schwendtner, K. & Kolitsch, U. (2004). Acta Cryst. C60, i79–i83. Web of Science CrossRef CAS IUCr Journals Google Scholar
Schwendtner, K. & Kolitsch, U. (2005). Acta Cryst. C61, i90–i93. Web of Science CrossRef CAS IUCr Journals Google Scholar
Schwendtner, K. & Kolitsch, U. (2007a). Acta Cryst. B63, 205–215. Web of Science CrossRef IUCr Journals Google Scholar
Schwendtner, K. & Kolitsch, U. (2007b). Acta Cryst. C63, i17–i20. Web of Science CrossRef IUCr Journals Google Scholar
Schwendtner, K. & Kolitsch, U. (2007c). Eur. J. Mineral. 19, 399–409. Web of Science CrossRef CAS Google Scholar
Schwendtner, K. & Kolitsch, U. (2017a). Acta Cryst. C73, 600–608. Web of Science CSD CrossRef IUCr Journals Google Scholar
Schwendtner, K. & Kolitsch, U. (2017b). Acta Cryst. E73, 1580–1586. Web of Science CrossRef IUCr Journals Google Scholar
Schwendtner, K. & Kolitsch, U. (2018a). Acta Cryst. C74, 721–727. Web of Science CrossRef IUCr Journals Google Scholar
Schwendtner, K. & Kolitsch, U. (2018b). Acta Cryst. E74, 766–771. Web of Science CrossRef IUCr Journals Google Scholar
Schwendtner, K. & Kolitsch, U. (2018c). Acta Cryst. E74, 1244–1249. CrossRef IUCr Journals Google Scholar
Schwendtner, K. & Kolitsch, U. (2018d). Acta Cryst. E74, 1163–1167. CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sun, Y., Yang, Z., Hou, D. & Pan, S. (2017). RSC Adv. 7, 2804–2809. Web of Science CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wohlschlaeger, A., Lengauer, C. & Tillmanns, E. (2007). ICDD Grant-in-Aid. University of Vienna, Austria. Google Scholar
Yakubovich, O. V. (1993). Kristallografiya, 38, 43–48. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.