research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Different classical hydrogen-bonding patterns in three salicylaldoxime derivatives, 2-HO-4-XC6H3C=NOH (X = Me, OH and MeO)

CROSSMARK_Color_square_no_text.svg

aREQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, P-4169-007, Porto, Portugal, bFP-ENAS-Faculdade de Ciências de Saúde, Escola Superior de Saúde da UFP, Universidade Fernando Pessoa, Rua Carlos da Maia, 296, P-4200-150 Porto, Portugal, cInstituto de Tecnologia em Fármacos e Farmanguinhos, Fundação Oswaldo Cruz, 21041-250 Rio de Janeiro, RJ, Brazil, and dDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen, AB24 3UE, Scotland
*Correspondence e-mail: jnlow111@gmail.com

Edited by P. McArdle, National University of Ireland, Ireland (Received 18 September 2018; accepted 19 September 2018; online 25 September 2018)

The crystal structures of three salicyaldoxime compounds, namely 2-hy­droxy-4-methyl­benzaldehyde oxime, C8H9NO2, 1, 2,4-di­hydroxy­benzaldehyde oxime, C7H7NO3, 2, and 2-hy­droxy-4-meth­oxy­benzaldehyde oxime, C8H9NO3, 3, are discussed. In each compound, the hydroxyl groups are essentially coplanar with their attached phenyl group. The inter­planar angles between the C=N—O moieties of the oxime unit and their attached phenyl rings are 0.08 (9), 1.08 (15) and 6.65 (15)° in 1, 2 and 3, respectively. In all three mol­ecules, the 2-hy­droxy group forms an intra­molecular O—H⋯N(oxime) hydrogen bond. In compound (1), inter­molecular O—H(oxime)⋯O(hydrox­yl) hydrogen bonds generate R22(14) dimers, related by inversion centres. In compound 2, inter­molecular O—H(oxime)⋯O(4-hy­droxy) hydrogen bonds generate C9 chains along the b-axis direction, while O—H(4-hydrox­yl)⋯O(2-hydrox­yl) inter­actions form zigzag C6 spiral chains along the c-axis direction, generated by a screw axis at 1, y, 1/4: the combination of the two chains provides a bimolecular sheet running parallel to the b axis, which lies between 0–1/2 c and 1/2–1 c. In compound 3, similar C9 chains, along the b-axis direction are generated by O—H(oxime)⋯O(4-meth­oxy) hydrogen bonds. Further weaker, C—H⋯π (in 1), ππ (in 2) and both C—H⋯π and ππ inter­actions (in 3) further cement the three-dimensional structures. Hirshfeld surface and fingerprint analyses are discussed.

1. Chemical context

Aldoximes, RCH=NOH, are found in many biologically active compounds (Abele et al., 2008[Abele, E., Abele, R. & Lukevics, E. (2008). Chem. Heterocycl. Cmpd, 44, 769-792.]; Nikitjuka & Jirgensons 2014[Nikitjuka, A. & Jirgensons, A. (2014). Chem. Heterocycl. C. 49, 1544-1559.]), having a diverse range of uses including as anti-tumor agents (Martínez-Pascual et al., 2017[Martínez-Pascual, R., Meza-Reyes, S., Vega-Baez, J. L., Merino-Montiel, P., Padrón, J. M., Mendoza, Á. & Montiel-Smith, S. (2017). Steroids, 122, 24-33.]; Qin et al., 2017[Qin, H. L., Leng, J., Youssif, B. G. M., Amjad, M. W., Raja, M. A. G., Hussain, M. A., Hussain, Z., Kazmi, S. N. & Bukhari, S. N. A. (2017). Chem. Biol. Drug Des. 90, 443-449.]; Canario et al., 2018[Canario, C., Silvestre, S., Falcao, A. & Alves, G. (2018). Curr. Med. Chem. 25, 660-686.]; Huang et al., 2018[Huang, G., Zhao, H. R., Meng, Q. Q., Zhang, Q. J., Dong, J. Y., Zhu, B. Q. & Li, S. S. (2018). Eur. J. Med. Chem. 143, 166-181.]), acaricidal and insecticidal agents (Dai et al., 2017[Dai, H., Chen, J., Li, G., Ge, S. S., Shi, Y. J., Fang, Y. & Ling, Y. (2017). Bioorg. Med. Chem. Lett. 27, 950-953.]), thymidine phospho­rylase inhibitors (Zhao et al., 2018[Zhao, S. Y., Li, K., Jin, Y. & Lin, J. (2018). Eur. J. Med. Chem. 144, 41-51.]), anti-microbial agents (Yadav et al., 2017[Yadav, P., Lal, K., Rani, P., Mor, S., Kumar, A. & Kumar, A. (2017). Med. Chem. Res. 26, 1469-1480.]), bacteriocides (Kozlowska et al., 2017[Kozlowska, J., Potaniec, B., Zarowska, B. & Aniol, M. (2017). Molecules, 22 No. 1485.]), anti-inflammatory agents (Mohassab et al., 2017[Mohassab, M., Hassan, H. A., Abdelhamid, D., Abdel-Aziz, M., Dalby, K. N. & Kaoud, T. S. (2017). Bioorg. Chem. 75, 242-259.]) and in the treatment of nerve-gas poisoning (Lorke et al., 2008[Lorke, D. E., Kalasz, H., Petroianu, G. A. & Tekes, K. (2008). Curr. Med. Chem. 15, 743-753.]; Voicu et al., 2010[Voicu, V. A., Thiermann, H., Rădulescu, F. Ş., Mircioiu, C. & Miron, D. S. (2010). Basic Clin. Pharmacol. Toxicol. 106, 73-85.]; Katalinić et al., 2017[Katalinić, M., Zandona, A., Ramić, A., Zorbaz, T., Primožič, I. & Kovarik, Z. (2017). Molecules, 22, No. 1234.]; Radić et al., 2013[Radić, Z., Dale, T., Kovarik, Z., Berend, S., Garcia, E., Zhang, L., Amitai, G., Green, C., Radić, B., Duggan, B. M., Ajami, D., Rebek, J. Jr & Taylor, P. (2013). Biochem. J. 450, 231-242.]). In the plant kingdom, oximes play a vital role in metabolism (Sørensen et al., 2018[Sørensen, M., Neilson, E. H. J. & Møller, B. L. (2018). Mol. Plant. 11, 95-117.]). A specific inter­est in 2-hydroxbenzaldehyde derivatives has arisen regarding their use as ligands for metal complexation (Wood et al., 2006[Wood, P. A., Forgan, R. S., Henderson, D., Parsons, S., Pidcock, E., Tasker, P. A. & Warren, J. E. (2006). Acta Cryst. B62, 1099-1111.], 2008b[Wood, P. A., Forgan, R. S., Lennie, A. R., Parsons, S., Pidcock, E., Tasker, P. A. & Warren, J. E. (2008b). CrystEngComm, 10, 239-251.]).

[Scheme 1]

The compounds described herein are all salicylaldoxime derivatives (2-HO-4-X-C6H3-CH=NOH) with different substituents in the 4-position, namely a methyl group, a hy­droxy group and a meth­oxy group, respectively, in compounds, 1, 2 and 3. A frequent finding for salicylaldoxime derivatives is the formation of inversion-related R22(14) dimers, as concluded from a Cambridge Structural Database survey (CSD Version 5.39, May 2018 update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). While the structures of many salicylaldoxime derivatives have been reported, the structures of very few compounds with an additional substituent in the 4 position are known.

Compounds 1 and 3 have been shown to have significant activity against Mycobacterium tuberculosis ATTC 27294. The full report will be published elsewhere (da Costa et al., 2018[Costa, C. F. da, Lourenço, M. C. S., Coimbra, E. S., Carvalho, G. S., Wardell, J. L., Calixto, S. L., Granato, J. T. & de Souza, M. V. N. (2018). Unpublished observations.]).

2. Structural commentary

There are no unusual features in the mol­ecular structures. Compound 1 (Fig. 1[link]) crystallizes in the monoclinic space group P21/n with one mol­ecule in the asymmetric unit. Compounds 2 and 3 crystallize in the monoclinic space group P21/c with one mol­ecule in the asymmetric unit (Figs. 2[link] and 3[link]), all having an oxime unit with an (E) geometry. Bond angles and bond lengths in the phenyl and oxime fragments are all in the expected ranges.

[Figure 1]
Figure 1
The mol­ecular structure of compound 1, showing 80% displacement ellipsoids.
[Figure 2]
Figure 2
The mol­ecular structure of compound 2, showing 80% displacement ellipsoids.
[Figure 3]
Figure 3
The mol­ecular structure of compound 3, showing 80% displacement ellipsoids.

In compound 1, the hydroxyl group is essentially coplanar with its attached phenyl group [displaced by 0.020 (1) Å], while the inter­planar angle between the C=NO moiety of the oxime unit and the attached phenyl rings is 0.08 (9)°. In compound 2, the hydroxyl groups lie essentially within the phenyl ring plane [O atoms deviate by −0.003 (1) and 0.006 (1) Å], while the inter­planar angle between the C=NO moiety of the oxime unit and the attached phenyl rings is 1.08 (15)°. In compound 3, the inter­planar angle between the C=NO moiety of the oxime unit and the attached phenyl rings is 6.65 (15)°.

In all three mol­ecules, an intra­molecular O2—H2⋯N12 hydrogen bond (Tables 1[link]–3[link][link]) forms a pseudo six-membered ring.

Table 1
Hydrogen-bond geometry (Å, °) for 1[link]

Cg is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N12 0.879 (18) 1.814 (18) 2.6066 (10) 149.0 (15)
O13—H13⋯O2i 0.857 (17) 2.019 (17) 2.8132 (9) 153.7 (15)
O13—H13⋯O13ii 0.857 (17) 2.611 (16) 2.8961 (14) 100.8 (12)
C3—H3⋯Cgiii 0.95 2.71 3.4577 (9) 136
C11—H11⋯Cgiv 0.95 2.73 3.4910 (9) 138
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z+1; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N12 0.91 (3) 1.77 (3) 2.5899 (17) 150 (2)
O4—H4⋯O2i 0.86 (2) 1.85 (2) 2.7062 (16) 174 (2)
O13—H13⋯O4ii 0.86 (3) 1.90 (3) 2.7583 (16) 171 (2)
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x-1, y-1, z.

Table 3
Hydrogen-bond geometry (Å, °) for 3[link]

Cg is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N12 0.92 (3) 1.81 (3) 2.6518 (19) 152 (2)
O13—H13⋯O41i 0.91 (3) 1.89 (3) 2.7829 (18) 169 (3)
C141—H14B⋯O2ii 0.98 2.62 3.412 (2) 138
C3—H3⋯O2ii 0.95 2.70 3.570 (2) 154
C11—H11⋯Cgiii 0.95 2.89 3.4524 (6) 128
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y, -z+1; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

3. Supra­molecular features

3.1. Hydrogen Bonding

In the crystal of 1, mol­ecules are linked by O13—H13 ⋯O2 hydrogen bonds into inversion-related R44(14) dimers (Table 1[link]). As stated above, such dimers are the most frequently found arrangement for salicyldoxime derivatives. These R22(14), or R44(10) (via the intra­molecular hydrogen bond) dimers are linked into two-mol­ecule-wide chains, propagating in the a-axis direction by pairs of O13—H13⋯O13 hydrogen bonds, thereby creating R22(4) rings, as shown in Fig. 4[link]. The H13⋯O13 lengths in the O13—H13⋯O13ii hydrogen bond are rather long [2.611 (16) Å] with a small angle of 100.8 (12)°. However, such data fits well with published findings for H2O2 rings: a recent CSD (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) search revealed more than 500 entries for non-solvated structures having centrosymmetric H2O2 rings with H—O—H angles of 120° or less and H⋯O distances up to the sum of the van der Waals contact radii, 2.72 Å, of oxygen and hydrogen atoms. The two-mol­ecule-wide chains are further linked into a three-dimensional arrangement by C3—H3⋯Cgiii and C11—H11⋯ Cgiv inter­actions (Table 1[link]). No ππ inter­actions can be identified.

[Figure 4]
Figure 4
Part of a two-mol­ecule-wide chain in 1 (symmetry codes as in Table 1[link]).

Compound 2 with two hydroxyl groups, as well as the oxime moiety, produces a much more complex classical hydrogen-bonding arrangement than the one found for compound 1. The bonding arrangement in 2 can be readily considered to be composed of two elements: a C9 chain, generated from O13—H13(oxime)⋯O4(4-hy­droxy)ii hydrogen bonds, propagating in the direction of the b axis, see Fig. 5[link], and secondly a zigzag C6 spiral chain formed from O4—H4⋯O2i hydrogen bonds, see Fig. 6[link]. The C6 and C9 chains combine to form a bimol­ecular sheet running parallel to the b axis which lies between 0–½ c and ½–1 c. These sheets are further linked by moderately strong ππ stacking inter­actions, involving all the phenyl rings in the sheet: the CgCg separation is 3.7242 (13) Å with a phenyl ring slippage of 1.586 Å. The lack of an R22(14) dimer in 2 is apparent and results from the preferential inter­action of the oxime group with the 4-hydroxyl group rather than with the 2-hy­droxy group.

[Figure 5]
Figure 5
Compound 2. Part of a C9 chain, propagating in the b-axis direction, formed by O13—H13⋯O4 hydrogen bonds.
[Figure 6]
Figure 6
Compound 2, part of a spiral C6 chain formed from O4—H4⋯O2 hydrogen bonds

In compound 3, C9 chains are generated from O13—H13⋯O41(meth­oxy)i hydrogen bonds, which propagate in the direction of the b axis, see Fig. 7[link]. This chain is similar to that found in compound 2, but involving the meth­oxy oxygen atom O41 involved instead of the hy­droxy oxygen O4. Inter­estingly, the parameters of the two hydrogen bonds in the chains of compound 2 and 3 are very similar. The chains in compound 3 are linked into a two-dimensional array by C11—H11⋯Cg (Table 3[link]) and ππ inter­actions. The centroid–centroid separation in the ππ inter­action is 3.7926 (12) Å with a phenyl ring slippage of 1.571 Å – again similar parameters are found in the inter­actions of compounds 2 and 3. The lack of an R22(14) dimer results from the preferential inter­action of the oxime group with the 4-meth­oxy group rather than with the 2-hy­droxy group. The C141—H14B⋯O2ii and C3—H3⋯O2iii hydrogen bonds link the molecules into centrosymmetric dimers across the centre of symmetry at (½, 0, ½). The former hydrogen bond forms R22(14) rings, and the latter R22(8) rings. These link anti-parallel C9 chains, forming a corrugated ribbon which runs parallel to the a axis.

[Figure 7]
Figure 7
Compound 3, part of a C9 chain of mol­ecules formed by O13—H13⋯O41 hydrogen bonds, propagating along the a-axis direction.

3.2. Hirshfeld Surface Analyses

The Hirshfeld surfaces (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and two-dimensional fingerprint (FP) plots (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]) provide complementary information concerning the inter­molecular inter­actions discussed above. The analyses were generated using CrystalExplorer3.1 (Wolff et al., 2012[Wolff, S. K., Grimwood, D. I., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia.]). The Hirshfeld surfaces mapped over dnorm for 13 are illustrated in Fig. 8[link]. The intense red areas on the surfaces correspond to O⋯H close contacts. The less intense red spot on the surface of 1 relates to a O⋯O short contact. The fingerprint plots are shown in Fig. 9[link]. The percentage contributions to the Hirshfeld surface of the various atom⋯atom contacts shown in Table 4[link] are derived from the fingerprint plots.

Table 4
Percentages of atom–atom contacts for compounds 13

Compound 1 2 3
H⋯H 42.7 36.9 41.5
H⋯O/O⋯H 21.4 33.8 27.9
H⋯C/C⋯H 29.1 10.0 15.5
H⋯N/N⋯H 5.4 2.9 4.1
C⋯C 10.8 5.8
O⋯C/C⋯O 1.2 2.2 3.1
N⋯O/O⋯N 2.0 0.7
N⋯C/C⋯N
O⋯O 0.2
[Figure 8]
Figure 8
Views of the Hirshfeld surfaces mapped over dnorm for 13. In each case, the red areas relate to classical hydrogen bonds.
[Figure 9]
Figure 9
The FP plots for 1, 2 and 3. The pair of southwest spikes are due to the O⋯H /H⋯O close contacts. The highest intensity of pixels in the FP plot for 2 at de/di = 1.8 Å includes C⋯C contacts.

There are some differences in the percentage of close contacts listed in Table 4[link] between the R22(14) dimer formed by compound 1 and the mol­ecular chains formed by compounds 2 and 3. Thus compound 1 exhibits the highest percentage of H⋯C/ C⋯H close contacts, but no C⋯C and N⋯O/ O⋯N close contacts, unlike compounds 2 and 3, and is the only one of the three compounds to have any close O⋯O contacts, albeit a very small percentage. It has to be said that the different substituents, especially the number of hydroxyl units, and other inter­actions, such as C—H⋯π and ππ inter­actions, will have significant effects on the hydrogen-bonding.

4. Database survey

A survey of the Cambridge Structural Database (CSD Version 5.39, May 2018 update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) of the hydrogen-bonding patterns of oximes confirmed the invariable occurrence for salicylaldoximes, R—CH=N—OH (where R is a 2-hy­droxy­phenyl derivative) of the formation of intra­molecular O—H⋯NO(oxime) hydrogen bonds involv­ing the ortho hydroxyl group. In addition, this hydroxyl group is also most frequently involved in inter­molecular inter­actions producing inversion-related R22(14) dimers (Smith et al., 2003[Smith, A. G., Tasker, P. & White, D. J. (2003). Coord. Chem. Rev. 241, 61-85.]; Wood et al., 2006[Wood, P. A., Forgan, R. S., Henderson, D., Parsons, S., Pidcock, E., Tasker, P. A. & Warren, J. E. (2006). Acta Cryst. B62, 1099-1111.], 2008b[Wood, P. A., Forgan, R. S., Lennie, A. R., Parsons, S., Pidcock, E., Tasker, P. A. & Warren, J. E. (2008b). CrystEngComm, 10, 239-251.]). Exceptions include MXSALO [R = 2-HO-5-MeOC6H3, producing a C5 chain from O—H(oxime)⋯O(2-hydrox­yl) hydrogen bonds; Pfluger et al., 1978[Pfluger, C. E., Pfluger, M. T. & Brackett, E. B. (1978). Acta Cryst. B34, 1017-1019.]], YUPSOT [R = 2-HO-5-tBu-C6H3, producing a C5 chain from O—H(oxime)⋯O(2-hydrox­yl) hydrogen bonds; White et al., 2015a[White, F., Gordon, R. & Tasker, P. (2015a). Private communication (refcode 1410312). CCDC, Cambridge, England.]], YUPROS [R = 2-HO-3-Me-5-(piperin-1-yl-CH2)-C6H2, producing a C9 chain from O—H(oxime)⋯N(piperin­yl) hydrogen bonds; White et al., 2015b[White, F., Forgan, R. & Tasker, P. (2015b). Private communication (refcode 1410307). CCDC, Cambridge, England.]] and XUSPIL [R = 2-HO-3-(piperin-1-ylmeth­yl)-5-tBu-C6H2, producing a C9 chain from O—H(oxime)⋯N(piperin­yl) hydrogen bonds; Forgan et al., 2010[Forgan, R. S., Davidson, J. E., Fabbiani, F. P. A., Galbraith, S. G., Henderson, D. K., Moggach, S. A., Parsons, S., Tasker, P. A. & White, F. J. (2010). Dalton Trans. 39, 1763-1770.]].

The compounds 2-HO-3-MeOC6H3CH=N—OH (ABULIT01–07; Forgan et al., 2007[Forgan, R. S., Wood, P. A., Campbell, J., Henderson, D. K., McAllister, F. E., Parsons, S., Pidcock, E., Swart, R. M. & Tasker, P. A. (2007). Chem. Commun. pp. 4940-4942.]; Wood et al., 2008a[Wood, P. A., Forgan, R. S., Henderson, D., Lennie, A. R., Parsons, S., Pidcock, E., Tasker, P. A. & Warren, J. E. (2008a). CrystEngComm, 10, 259-251.]) and 2-HO-3-EtOC6H3CH=N—OH (HAHGAA; Cai, 2011[Cai, L.-F. (2011). Z. Kristallogr. New Cryst. Struct. 226, 315-316.]) both form R22(14) dimers, in contrast to the chain forming 2-HO-4-MeOC6H3CH=N—OH (this study) and 2-HO-5-MeOC6H3CH=N—OH (MXSALO; Pfluger et al., 1978[Pfluger, C. E., Pfluger, M. T. & Brackett, E. B. (1978). Acta Cryst. B34, 1017-1019.]) and 2-HO-5-tBuOC6H3CH=N—OH (YUPSOT; White et al., 2015a[White, F., Gordon, R. & Tasker, P. (2015a). Private communication (refcode 1410312). CCDC, Cambridge, England.]).

An earlier search (Low et al., 2010[Low, J. N., Santos, L. M. N. B. F., Lima, C. F. R. A. C., Brandão, P. & Gomes, L. R. (2010). Eur. J. Chem. 1, 61-66.]) indicated that the most frequently found hydrogen-bonding arrangements for oximes without a 2-hy­droxy­phenyl group are inversion-related R22(6) dimers and C3 chains.

5. Synthesis and crystallization

The title compounds were prepared from hydroxyl­amine and the corresponding benzaldehyde in methanol in the presence of potassium carbonate and were recrystallized from methanol. Compound 1, m.p. 378–379 K. Compound 2, m.p. 451–452 K. Compound 3, m.p. 410–411 K.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. All hydroxyl H atoms were refined isotropically. Those attached to C atoms were refined as riding atoms with C—H = 0.95–0.98 Å and Uiso(H) = 1.2–1.5Uiso(C).

Table 5
Experimental details

  1 2 3
Crystal data
Chemical formula C8H9NO2 C7H7NO3 C8H9NO3
Mr 151.16 153.14 167.16
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 100 100 100
a, b, c (Å) 6.5507 (2), 7.2523 (2), 15.5478 (4) 3.7241 (1), 8.6902 (2), 20.7570 (5) 9.3591 (13), 6.2634 (7), 13.6260 (2)
β (°) 96.737 (3) 92.501 (2) 108.636 (16)
V3) 733.54 (4) 671.12 (3) 756.87 (15)
Z 4 4 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.10 0.12 0.11
Crystal size (mm) 0.25 × 0.15 × 0.02 0.20 × 0.10 × 0.05 0.15 × 0.05 × 0.01
 
Data collection
Diffractometer Rigaku FRE+ AFC12 with HyPix 6000 detector Rigaku FRE+ AFC12 with HyPix 6000 detector Rigaku FRE+ AFC12 with HyPix 6000 detector
Absorption correction Multi-scan (CrysAlis PRO ; Rigaku OD, 2017[Rigaku OD (2017). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO ; Rigaku OD, 2017[Rigaku OD (2017). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2017[Rigaku OD (2017). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.742, 1.000 0.654, 1.000 0.305, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 16323, 1696, 1560 29482, 1537, 1482 5525, 1686, 1323
Rint 0.024 0.039 0.060
(sin θ/λ)max−1) 0.649 0.649 0.648
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.100, 1.08 0.040, 0.092, 0.86 0.049, 0.158, 1.01
No. of reflections 1696 1537 1686
No. of parameters 109 113 118
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.33, −0.20 0.38, −0.21 0.26, −0.29
Computer programs: CrysAlis PRO (Rigaku OD, 2017[Rigaku OD (2017). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), OSCAIL (McArdle et al., 2004[McArdle, P., Gilligan, K., Cunningham, D., Dark, R. & Mahon, M. (2004). CrystEngComm, 6, 303-309.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), ShelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]), SHELXL2017/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

For all structures, data collection: CrysAlis PRO (Rigaku OD, 2017); cell refinement: CrysAlis PRO (Rigaku OD, 2017); data reduction: CrysAlis PRO (Rigaku OD, 2017); program(s) used to solve structure: OSCAIL (McArdle et al., 2004), SHELXT (Sheldrick, 2015a). Program(s) used to refine structure: OSCAIL (McArdle et al., 2004), ShelXle (Hübschle et al., 2011), SHELXL2017/1 (Sheldrick, 2015b) for (1), (2); OSCAIL (McArdle et al., 2004), ShelXle (Hübschle et al., 2011), SHELXL2017/1 (Sheldrick, 2015b) for (3). For all structures, molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: OSCAIL (McArdle et al., 2004), SHELXL2017/1 (Sheldrick, 2015b), PLATON (Spek, 2009).

2-Hydroxy-4-methylbenzaldehyde oxime (1) top
Crystal data top
C8H9NO2F(000) = 320
Mr = 151.16Dx = 1.369 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
a = 6.5507 (2) ÅCell parameters from 8222 reflections
b = 7.2523 (2) Åθ = 3.1–31.9°
c = 15.5478 (4) ŵ = 0.10 mm1
β = 96.737 (3)°T = 100 K
V = 733.54 (4) Å3Plate, brown
Z = 40.25 × 0.15 × 0.02 mm
Data collection top
Rigaku FRE+ AFC12 with HyPix 6000 detector
diffractometer
1696 independent reflections
Radiation source: Rotating Anode, Rigaku FRE+1560 reflections with I > 2σ(I)
Confocal mirrors, VHF Varimax monochromatorRint = 0.024
Detector resolution: 10 pixels mm-1θmax = 27.5°, θmin = 2.6°
profile data from ω–scansh = 88
Absorption correction: multi-scan
(CrysAlisPro ; Rigaku OD, 2017)
k = 99
Tmin = 0.742, Tmax = 1.000l = 2020
16323 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0569P)2 + 0.1857P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1696 reflectionsΔρmax = 0.33 e Å3
109 parametersΔρmin = 0.20 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.62147 (10)0.55213 (9)0.38936 (4)0.01715 (19)
H20.520 (3)0.516 (2)0.4176 (11)0.046 (4)*
O130.11027 (10)0.35295 (10)0.46255 (4)0.01893 (19)
H130.155 (2)0.389 (2)0.5139 (11)0.041 (4)*
N120.27030 (11)0.40720 (11)0.41612 (5)0.01501 (19)
C10.38496 (13)0.41353 (12)0.27677 (5)0.0129 (2)
C20.57244 (13)0.50209 (12)0.30486 (5)0.0131 (2)
C30.71163 (13)0.54354 (12)0.24671 (6)0.0139 (2)
H30.8373320.6032080.2667990.017*
C40.66904 (13)0.49864 (12)0.15934 (6)0.0137 (2)
C50.48296 (14)0.41041 (12)0.13081 (6)0.0144 (2)
H50.4517500.3790460.0713980.017*
C60.34460 (13)0.36875 (12)0.18861 (6)0.0139 (2)
H60.2194710.3085030.1681960.017*
C110.23470 (13)0.36707 (12)0.33550 (6)0.0139 (2)
H110.1102650.3069890.3139530.017*
C410.81701 (14)0.54974 (13)0.09625 (6)0.0173 (2)
H41A0.8145960.4546500.0513600.026*
H41B0.9560690.5593620.1269450.026*
H41C0.7767790.6684980.0693460.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0175 (3)0.0221 (4)0.0115 (3)0.0050 (3)0.0003 (2)0.0029 (2)
O130.0156 (3)0.0260 (4)0.0162 (3)0.0046 (3)0.0059 (3)0.0030 (3)
N120.0137 (4)0.0158 (4)0.0162 (4)0.0005 (3)0.0048 (3)0.0001 (3)
C10.0133 (4)0.0110 (4)0.0141 (4)0.0013 (3)0.0009 (3)0.0004 (3)
C20.0159 (4)0.0114 (4)0.0115 (4)0.0016 (3)0.0009 (3)0.0006 (3)
C30.0135 (4)0.0124 (4)0.0153 (4)0.0004 (3)0.0001 (3)0.0000 (3)
C40.0152 (4)0.0112 (4)0.0147 (4)0.0020 (3)0.0016 (3)0.0009 (3)
C50.0166 (4)0.0137 (4)0.0124 (4)0.0015 (3)0.0009 (3)0.0008 (3)
C60.0133 (4)0.0122 (4)0.0153 (4)0.0005 (3)0.0016 (3)0.0009 (3)
C110.0132 (4)0.0118 (4)0.0164 (4)0.0007 (3)0.0007 (3)0.0005 (3)
C410.0177 (4)0.0192 (4)0.0153 (4)0.0016 (3)0.0029 (3)0.0000 (3)
Geometric parameters (Å, º) top
O2—C21.3645 (10)C3—H30.9500
O2—H20.879 (18)C4—C51.4018 (13)
O13—N121.3973 (9)C4—C411.5041 (12)
O13—H130.857 (17)C5—C61.3826 (12)
N12—C111.2812 (11)C5—H50.9500
C1—C61.4033 (12)C6—H60.9500
C1—C21.4091 (12)C11—H110.9500
C1—C111.4584 (12)C41—H41A0.9800
C2—C31.3902 (12)C41—H41B0.9800
C3—C41.3928 (12)C41—H41C0.9800
C2—O2—H2107.2 (11)C6—C5—C4120.40 (8)
N12—O13—H13101.6 (11)C6—C5—H5119.8
C11—N12—O13112.33 (7)C4—C5—H5119.8
C6—C1—C2117.75 (8)C5—C6—C1121.44 (8)
C6—C1—C11119.63 (8)C5—C6—H6119.3
C2—C1—C11122.61 (8)C1—C6—H6119.3
O2—C2—C3118.06 (8)N12—C11—C1120.08 (8)
O2—C2—C1121.18 (8)N12—C11—H11120.0
C3—C2—C1120.75 (8)C1—C11—H11120.0
C2—C3—C4120.80 (8)C4—C41—H41A109.5
C2—C3—H3119.6C4—C41—H41B109.5
C4—C3—H3119.6H41A—C41—H41B109.5
C3—C4—C5118.86 (8)C4—C41—H41C109.5
C3—C4—C41120.51 (8)H41A—C41—H41C109.5
C5—C4—C41120.60 (8)H41B—C41—H41C109.5
C6—C1—C2—O2179.14 (7)C3—C4—C5—C60.06 (13)
C11—C1—C2—O21.14 (14)C41—C4—C5—C6178.02 (8)
C6—C1—C2—C30.13 (13)C4—C5—C6—C10.24 (14)
C11—C1—C2—C3179.86 (8)C2—C1—C6—C50.28 (13)
O2—C2—C3—C4178.99 (7)C11—C1—C6—C5179.99 (7)
C1—C2—C3—C40.04 (14)O13—N12—C11—C1179.95 (7)
C2—C3—C4—C50.08 (13)C6—C1—C11—N12179.91 (8)
C2—C3—C4—C41177.88 (7)C2—C1—C11—N120.19 (14)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O2—H2···N120.879 (18)1.814 (18)2.6066 (10)149.0 (15)
O13—H13···O2i0.857 (17)2.019 (17)2.8132 (9)153.7 (15)
O13—H13···O13ii0.857 (17)2.611 (16)2.8961 (14)100.8 (12)
C3—H3···Cgiii0.952.713.4577 (9)136
C11—H11···Cgiv0.952.733.4910 (9)138
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x+3/2, y+1/2, z+1/2; (iv) x+1/2, y1/2, z+1/2.
2,4-Dihydroxybenzaldehyde oxime (2) top
Crystal data top
C7H7NO3F(000) = 320
Mr = 153.14Dx = 1.516 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
a = 3.7241 (1) ÅCell parameters from 13388 reflections
b = 8.6902 (2) Åθ = 1.9–32.1°
c = 20.7570 (5) ŵ = 0.12 mm1
β = 92.501 (2)°T = 100 K
V = 671.12 (3) Å3Block, colourless
Z = 40.20 × 0.10 × 0.05 mm
Data collection top
Rigaku FRE+ AFC12 with HyPix 6000 detector
diffractometer
1537 independent reflections
Radiation source: Rotating Anode, Rigaku FRE+1482 reflections with I > 2σ(I)
Confocal mirrors, VHF Varimax monochromatorRint = 0.039
Detector resolution: 10 pixels mm-1θmax = 27.5°, θmin = 2.0°
profile data from ω–scansh = 44
Absorption correction: multi-scan
(CrysAlisPro ; Rigaku OD, 2017)
k = 1111
Tmin = 0.654, Tmax = 1.000l = 2626
29482 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0229P)2 + 1.3357P]
where P = (Fo2 + 2Fc2)/3
S = 0.86(Δ/σ)max < 0.001
1537 reflectionsΔρmax = 0.38 e Å3
113 parametersΔρmin = 0.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.6604 (3)0.13314 (13)0.28983 (5)0.0175 (3)
H20.568 (7)0.056 (3)0.3130 (12)0.045 (7)*
O41.0469 (3)0.64910 (12)0.32704 (5)0.0167 (3)
H41.132 (6)0.639 (3)0.2893 (11)0.031 (6)*
O130.2536 (3)0.13686 (13)0.41952 (6)0.0213 (3)
H130.208 (7)0.200 (3)0.3880 (12)0.043 (7)*
N120.3984 (4)0.01346 (15)0.38573 (6)0.0161 (3)
C10.6052 (4)0.24418 (16)0.39524 (7)0.0125 (3)
C20.7061 (4)0.25485 (16)0.33098 (7)0.0129 (3)
C30.8530 (4)0.38889 (17)0.30720 (7)0.0133 (3)
H30.91930.39460.26360.016*
C40.9020 (4)0.51454 (17)0.34786 (7)0.0133 (3)
C50.8047 (4)0.50773 (17)0.41191 (7)0.0148 (3)
H50.83790.59430.43950.018*
C60.6596 (4)0.37332 (17)0.43460 (7)0.0141 (3)
H60.59470.36830.47830.017*
C110.4474 (4)0.10553 (17)0.42134 (7)0.0144 (3)
H110.38050.10340.46500.017*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0273 (6)0.0106 (5)0.0150 (5)0.0041 (5)0.0047 (4)0.0036 (4)
O40.0249 (6)0.0096 (5)0.0161 (5)0.0052 (4)0.0051 (4)0.0002 (4)
O130.0335 (7)0.0110 (5)0.0194 (6)0.0095 (5)0.0025 (5)0.0019 (4)
N120.0189 (6)0.0103 (6)0.0191 (6)0.0029 (5)0.0010 (5)0.0030 (5)
C10.0127 (7)0.0096 (6)0.0151 (7)0.0003 (5)0.0005 (5)0.0003 (5)
C20.0142 (7)0.0101 (6)0.0143 (7)0.0008 (5)0.0003 (5)0.0023 (5)
C30.0149 (7)0.0123 (7)0.0126 (6)0.0003 (6)0.0020 (5)0.0000 (5)
C40.0135 (7)0.0087 (6)0.0176 (7)0.0005 (5)0.0009 (5)0.0020 (5)
C50.0180 (7)0.0106 (7)0.0158 (7)0.0010 (6)0.0015 (6)0.0027 (5)
C60.0158 (7)0.0132 (7)0.0135 (7)0.0005 (6)0.0021 (5)0.0010 (5)
C110.0158 (7)0.0117 (7)0.0156 (7)0.0003 (6)0.0003 (5)0.0019 (5)
Geometric parameters (Å, º) top
O2—C21.3655 (17)C1—C111.456 (2)
O2—H20.91 (3)C2—C31.387 (2)
O4—C41.3660 (17)C3—C41.387 (2)
O4—H40.86 (2)C3—H30.9500
O13—N121.4020 (16)C4—C51.394 (2)
O13—H130.86 (3)C5—C61.378 (2)
N12—C111.280 (2)C5—H50.9500
C1—C61.398 (2)C6—H60.9500
C1—C21.405 (2)C11—H110.9500
C2—O2—H2106.5 (16)O4—C4—C3121.64 (13)
C4—O4—H4111.3 (15)O4—C4—C5117.43 (13)
N12—O13—H1399.9 (16)C3—C4—C5120.93 (14)
C11—N12—O13112.18 (13)C6—C5—C4118.93 (14)
C6—C1—C2117.65 (13)C6—C5—H5120.5
C6—C1—C11119.85 (13)C4—C5—H5120.5
C2—C1—C11122.50 (13)C5—C6—C1121.98 (14)
O2—C2—C3117.93 (13)C5—C6—H6119.0
O2—C2—C1120.77 (13)C1—C6—H6119.0
C3—C2—C1121.30 (13)N12—C11—C1120.25 (14)
C2—C3—C4119.22 (13)N12—C11—H11119.9
C2—C3—H3120.4C1—C11—H11119.9
C4—C3—H3120.4
C6—C1—C2—O2179.97 (14)O4—C4—C5—C6179.63 (14)
C11—C1—C2—O20.2 (2)C3—C4—C5—C60.3 (2)
C6—C1—C2—C30.3 (2)C4—C5—C6—C10.4 (2)
C11—C1—C2—C3179.41 (14)C2—C1—C6—C50.4 (2)
O2—C2—C3—C4179.88 (13)C11—C1—C6—C5179.33 (14)
C1—C2—C3—C40.2 (2)O13—N12—C11—C1178.31 (12)
C2—C3—C4—O4179.71 (14)C6—C1—C11—N12179.63 (14)
C2—C3—C4—C50.2 (2)C2—C1—C11—N120.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N120.91 (3)1.77 (3)2.5899 (17)150 (2)
O4—H4···O2i0.86 (2)1.85 (2)2.7062 (16)174 (2)
O13—H13···O4ii0.86 (3)1.90 (3)2.7583 (16)171 (2)
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x1, y1, z.
2-Hydroxy-4-methoxybenzaldehyde oxime (3) top
Crystal data top
C8H9NO3F(000) = 352
Mr = 167.16Dx = 1.467 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
a = 9.3591 (13) ÅCell parameters from 1379 reflections
b = 6.2634 (7) Åθ = 3.3–30.2°
c = 13.6260 (2) ŵ = 0.11 mm1
β = 108.636 (16)°T = 100 K
V = 756.87 (15) Å3Plate, colourless
Z = 40.15 × 0.05 × 0.01 mm
Data collection top
Rigaku FRE+ AFC12 with HyPix 6000 detector
diffractometer
1686 independent reflections
Radiation source: Rotating Anode, Rigaku FRE+1323 reflections with I > 2σ(I)
Confocal mirrors, VHF Varimax monochromatorRint = 0.060
Detector resolution: 10 pixels mm-1θmax = 27.4°, θmin = 2.3°
profile data from ω–scansh = 1112
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2017)
k = 77
Tmin = 0.305, Tmax = 1.000l = 1717
5525 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.158 w = 1/[σ2(Fo2) + (0.1063P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
1686 reflectionsΔρmax = 0.26 e Å3
118 parametersΔρmin = 0.29 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.63191 (14)0.1847 (2)0.42822 (9)0.0193 (3)
H20.711 (3)0.265 (5)0.423 (2)0.049 (7)*
O130.91351 (14)0.6293 (2)0.38674 (10)0.0228 (4)
H130.981 (3)0.524 (5)0.388 (2)0.062 (9)*
O410.10398 (13)0.30632 (19)0.36291 (8)0.0182 (3)
N120.78766 (16)0.5076 (2)0.38782 (11)0.0175 (4)
C10.52304 (18)0.5260 (3)0.36005 (11)0.0145 (4)
C20.51014 (18)0.3173 (3)0.39480 (11)0.0147 (4)
C30.37212 (18)0.2374 (3)0.39667 (12)0.0158 (4)
H30.3650660.0971180.4211990.019*
C40.24440 (19)0.3667 (3)0.36197 (12)0.0150 (4)
C50.25337 (19)0.5722 (3)0.32479 (12)0.0172 (4)
H50.1653540.6576700.2993660.021*
C60.39104 (19)0.6495 (3)0.32543 (12)0.0158 (4)
H60.3971950.7907610.3017400.019*
C110.66646 (18)0.6195 (3)0.36181 (12)0.0157 (4)
H110.6702490.7652450.3434580.019*
C1410.0866 (2)0.0952 (3)0.39792 (14)0.0220 (4)
H14A0.0181850.0740610.3956370.033*
H14B0.1536670.0768250.4691610.033*
H14C0.1123400.0096590.3528990.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0191 (7)0.0148 (6)0.0240 (7)0.0044 (5)0.0068 (5)0.0056 (5)
O130.0187 (6)0.0164 (7)0.0360 (8)0.0006 (5)0.0127 (5)0.0018 (5)
O410.0181 (6)0.0152 (7)0.0220 (6)0.0002 (5)0.0075 (5)0.0021 (4)
N120.0179 (7)0.0163 (8)0.0200 (7)0.0027 (5)0.0083 (6)0.0003 (5)
C10.0200 (8)0.0122 (8)0.0122 (8)0.0001 (6)0.0062 (6)0.0011 (6)
C20.0175 (8)0.0147 (8)0.0121 (7)0.0024 (6)0.0051 (6)0.0005 (6)
C30.0216 (9)0.0118 (8)0.0149 (8)0.0013 (6)0.0073 (6)0.0007 (6)
C40.0180 (8)0.0155 (9)0.0119 (7)0.0001 (6)0.0054 (6)0.0024 (6)
C50.0204 (8)0.0150 (8)0.0160 (8)0.0045 (6)0.0055 (6)0.0006 (6)
C60.0235 (9)0.0106 (8)0.0139 (8)0.0017 (6)0.0068 (6)0.0008 (6)
C110.0204 (9)0.0131 (8)0.0143 (8)0.0004 (6)0.0065 (6)0.0004 (5)
C1410.0225 (9)0.0144 (9)0.0290 (9)0.0018 (7)0.0082 (7)0.0031 (7)
Geometric parameters (Å, º) top
O2—C21.365 (2)C3—C41.395 (2)
O2—H20.92 (3)C3—H30.9500
O13—N121.4067 (18)C4—C51.396 (2)
O13—H130.91 (3)C5—C61.374 (2)
O41—C41.371 (2)C5—H50.9500
O41—C1411.432 (2)C6—H60.9500
N12—C111.283 (2)C11—H110.9500
C1—C21.409 (2)C141—H14A0.9800
C1—C61.405 (2)C141—H14B0.9800
C1—C111.458 (2)C141—H14C0.9800
C2—C31.393 (2)
C2—O2—H2104.4 (17)C6—C5—C4119.18 (15)
N12—O13—H13100.6 (19)C6—C5—H5120.4
C4—O41—C141117.95 (13)C4—C5—H5120.4
C11—N12—O13111.75 (14)C5—C6—C1122.04 (15)
C2—C1—C6117.58 (15)C5—C6—H6119.0
C2—C1—C11123.02 (15)C1—C6—H6119.0
C6—C1—C11119.37 (15)N12—C11—C1120.87 (16)
O2—C2—C3117.11 (15)N12—C11—H11119.6
O2—C2—C1121.63 (15)C1—C11—H11119.6
C3—C2—C1121.26 (15)O41—C141—H14A109.5
C4—C3—C2118.99 (15)O41—C141—H14B109.5
C4—C3—H3120.5H14A—C141—H14B109.5
C2—C3—H3120.5O41—C141—H14C109.5
O41—C4—C3123.83 (15)H14A—C141—H14C109.5
O41—C4—C5115.24 (14)H14B—C141—H14C109.5
C3—C4—C5120.92 (16)
C6—C1—C2—O2178.92 (13)C2—C3—C4—C50.7 (2)
C11—C1—C2—O23.1 (2)O41—C4—C5—C6177.11 (13)
C6—C1—C2—C31.2 (2)C3—C4—C5—C61.9 (2)
C11—C1—C2—C3176.75 (14)C4—C5—C6—C11.6 (2)
O2—C2—C3—C4179.21 (13)C2—C1—C6—C50.1 (2)
C1—C2—C3—C40.9 (2)C11—C1—C6—C5178.10 (14)
C141—O41—C4—C32.5 (2)O13—N12—C11—C1178.61 (13)
C141—O41—C4—C5178.56 (14)C2—C1—C11—N125.8 (2)
C2—C3—C4—O41178.25 (14)C6—C1—C11—N12176.33 (14)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O2—H2···N120.92 (3)1.81 (3)2.6518 (19)152 (2)
O13—H13···O41i0.91 (3)1.89 (3)2.7829 (18)169 (3)
C141—H14B···O2ii0.982.623.412 (2)138
C3—H3···O2ii0.952.703.570 (2)154
C11—H11···Cgiii0.952.893.4524 (6)128
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1; (iii) x+1, y+1/2, z+1/2.
Percentages of atom–atom contacts for compounds 13 top
Compound123
H···H42.736.941.5
H···O/O···H21.433.827.9
H···C/C···H29.110.015.5
H···N/N···H5.42.94.1
C···C10.85.8
O···C/C···O1.22.23.1
N···O/O···N2.00.7
N···C/C···N
O···O0.2
 

Acknowledgements

The authors thank the staff at the National Crystallographic Service, University of Southampton (Coles & Gale, 2012[Coles, S. J. & Gale, P. A. (2012). Chem. Sci. 3, 683-689.]), for the data collection, help and advice.

References

First citationAbele, E., Abele, R. & Lukevics, E. (2008). Chem. Heterocycl. Cmpd, 44, 769–792.  CrossRef Google Scholar
First citationCai, L.-F. (2011). Z. Kristallogr. New Cryst. Struct. 226, 315–316.  Google Scholar
First citationCanario, C., Silvestre, S., Falcao, A. & Alves, G. (2018). Curr. Med. Chem. 25, 660–686.  Google Scholar
First citationColes, S. J. & Gale, P. A. (2012). Chem. Sci. 3, 683–689.  Web of Science CSD CrossRef CAS Google Scholar
First citationCosta, C. F. da, Lourenço, M. C. S., Coimbra, E. S., Carvalho, G. S., Wardell, J. L., Calixto, S. L., Granato, J. T. & de Souza, M. V. N. (2018). Unpublished observations.  Google Scholar
First citationDai, H., Chen, J., Li, G., Ge, S. S., Shi, Y. J., Fang, Y. & Ling, Y. (2017). Bioorg. Med. Chem. Lett. 27, 950–953.  CrossRef Google Scholar
First citationForgan, R. S., Davidson, J. E., Fabbiani, F. P. A., Galbraith, S. G., Henderson, D. K., Moggach, S. A., Parsons, S., Tasker, P. A. & White, F. J. (2010). Dalton Trans. 39, 1763–1770.  CrossRef Google Scholar
First citationForgan, R. S., Wood, P. A., Campbell, J., Henderson, D. K., McAllister, F. E., Parsons, S., Pidcock, E., Swart, R. M. & Tasker, P. A. (2007). Chem. Commun. pp. 4940–4942.  CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHuang, G., Zhao, H. R., Meng, Q. Q., Zhang, Q. J., Dong, J. Y., Zhu, B. Q. & Li, S. S. (2018). Eur. J. Med. Chem. 143, 166–181.  CrossRef Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKatalinić, M., Zandona, A., Ramić, A., Zorbaz, T., Primožič, I. & Kovarik, Z. (2017). Molecules, 22, No. 1234.  Google Scholar
First citationKozlowska, J., Potaniec, B., Zarowska, B. & Aniol, M. (2017). Molecules, 22 No. 1485.  Google Scholar
First citationLorke, D. E., Kalasz, H., Petroianu, G. A. & Tekes, K. (2008). Curr. Med. Chem. 15, 743–753.  CrossRef Google Scholar
First citationLow, J. N., Santos, L. M. N. B. F., Lima, C. F. R. A. C., Brandão, P. & Gomes, L. R. (2010). Eur. J. Chem. 1, 61–66.  CrossRef Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMartínez-Pascual, R., Meza-Reyes, S., Vega-Baez, J. L., Merino-Montiel, P., Padrón, J. M., Mendoza, Á. & Montiel-Smith, S. (2017). Steroids, 122, 24–33.  Google Scholar
First citationMcArdle, P., Gilligan, K., Cunningham, D., Dark, R. & Mahon, M. (2004). CrystEngComm, 6, 303–309.  Web of Science CSD CrossRef CAS Google Scholar
First citationMohassab, M., Hassan, H. A., Abdelhamid, D., Abdel-Aziz, M., Dalby, K. N. & Kaoud, T. S. (2017). Bioorg. Chem. 75, 242–259.  CrossRef Google Scholar
First citationNikitjuka, A. & Jirgensons, A. (2014). Chem. Heterocycl. C. 49, 1544–1559.  CrossRef Google Scholar
First citationPfluger, C. E., Pfluger, M. T. & Brackett, E. B. (1978). Acta Cryst. B34, 1017–1019.  CrossRef IUCr Journals Google Scholar
First citationQin, H. L., Leng, J., Youssif, B. G. M., Amjad, M. W., Raja, M. A. G., Hussain, M. A., Hussain, Z., Kazmi, S. N. & Bukhari, S. N. A. (2017). Chem. Biol. Drug Des. 90, 443–449.  CrossRef Google Scholar
First citationRadić, Z., Dale, T., Kovarik, Z., Berend, S., Garcia, E., Zhang, L., Amitai, G., Green, C., Radić, B., Duggan, B. M., Ajami, D., Rebek, J. Jr & Taylor, P. (2013). Biochem. J. 450, 231–242.  Google Scholar
First citationRigaku OD (2017). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, A. G., Tasker, P. & White, D. J. (2003). Coord. Chem. Rev. 241, 61–85.  CrossRef Google Scholar
First citationSørensen, M., Neilson, E. H. J. & Møller, B. L. (2018). Mol. Plant. 11, 95–117.  Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVoicu, V. A., Thiermann, H., Rădulescu, F. Ş., Mircioiu, C. & Miron, D. S. (2010). Basic Clin. Pharmacol. Toxicol. 106, 73–85.  CrossRef Google Scholar
First citationWhite, F., Forgan, R. & Tasker, P. (2015b). Private communication (refcode 1410307). CCDC, Cambridge, England.  Google Scholar
First citationWhite, F., Gordon, R. & Tasker, P. (2015a). Private communication (refcode 1410312). CCDC, Cambridge, England.  Google Scholar
First citationWolff, S. K., Grimwood, D. I., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia.  Google Scholar
First citationWood, P. A., Forgan, R. S., Henderson, D., Lennie, A. R., Parsons, S., Pidcock, E., Tasker, P. A. & Warren, J. E. (2008a). CrystEngComm, 10, 259–251.  Google Scholar
First citationWood, P. A., Forgan, R. S., Henderson, D., Parsons, S., Pidcock, E., Tasker, P. A. & Warren, J. E. (2006). Acta Cryst. B62, 1099–1111.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWood, P. A., Forgan, R. S., Lennie, A. R., Parsons, S., Pidcock, E., Tasker, P. A. & Warren, J. E. (2008b). CrystEngComm, 10, 239–251.  CrossRef Google Scholar
First citationYadav, P., Lal, K., Rani, P., Mor, S., Kumar, A. & Kumar, A. (2017). Med. Chem. Res. 26, 1469–1480.  CrossRef Google Scholar
First citationZhao, S. Y., Li, K., Jin, Y. & Lin, J. (2018). Eur. J. Med. Chem. 144, 41–51.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds