research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis and HOMO–LUMO analysis of (E)-4-bromo-N′-(4-meth­­oxy­benzyl­­idene)benzohydrazide

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Government Arts College (Autonomous), Thanthonimalai, Karur 639 005, Tamil Nadu, India, and bDepartment of Chemistry, Pondicherry University, R.V. Nagar, Kalapet, Puducherry 605 014, India
*Correspondence e-mail: manavaibala@gmail.com

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 2 July 2018; accepted 19 September 2018; online 28 September 2018)

The title Schiff base compound, C15H13BrN2O2, displays an E configuration with respect to the C=N double bond, which forms a dihedral angle of 58.06 (9)° with the benzene ring. In the crystal, the mol­ecules are linked into chains parallel to the b axis by N—H⋯O and C—H⋯O hydrogen bonds, giving rise to rings with an R21(6) graph-set motif. The chains are further linked into a three-dimensional network by C—H⋯π inter­actions. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from C⋯H (33.2%), H⋯H (27.7%), Br⋯H/H⋯Br (14.2%) and O⋯H/H⋯O (13.6%) inter­actions. The title compound has also been characterized by frontier mol­ecular orbital analysis.

1. Chemical context

Schiff bases are nitro­gen-containing compounds that were first obtained by the condensation reactions of aromatic amines and aldehydes (Schiff et al., 1864[Schiff, H. (1864). Ann. Chem. Pharm. 131, 118-119.]). A wide range of these compounds with the general formula RHC=NR1 (R and R1 can be alkyl, aryl, cyclo­alkyl or heterocyclic groups) have been synthesized. Schiff bases are of great importance in the field of coordination chemistry because they are able to form stable complexes with metal ions (Souza et al., 1985[Souza, P., Garcia-Vazquez, J. A. & Masaguer, J. R. (1985). Transition Met. Chem. 10, 410-412.]). The chemical and biological significance of Schiff bases can be attributed to the presence of a lone electron pair in the sp2-hybridized orbital of the nitro­gen atom of the azomethine group (Singh et al., 1975[Singh, P., Goel, R. L. & Singh, B. P. (1975). J. Indian Chem. Soc. 52, 958-959.]). These compounds are used in the fields of organic synthesis, chemical catalysis and medicine, pharmacy, as well as other new technologies (Tanaka et al., 2010[Tanaka, K., Shimoura, R. & Caira, M. R. (2010). Tetrahedron Lett. 51, 449-452.]). Schiff bases are also used as probes in investigating the structure of DNA (Tiwari et al., 2011[Tiwari, A. D., Mishra, A. K., Mishra, B. B., Mamba, B. B., Maji, B. & Bhattacharya, S. (2011). Spectrochim. Acta Part A, 79, 1050-1056.]), and have gained special attention in pharmacophore research and in the development of several bioactive lead mol­ecules (Muralisankar et al., 2016[Muralisankar, M., Haribabu, J., Bhuvanesh, N. S. P., Karvembu, R. & Sreekanth, A. (2016). Inorg. Chim. Acta, 449, 82-95.]). Schiff bases showing photochromic and thermochromic properties have been used in information storage, electronic display systems, optical switching devices and ophthalmic glasses (Amimoto et al., 2005[Amimoto, K. & Kawato, T. (2005). J. Photochem. Photobiol. Photochem. Rev. 6, 207-226.]). Herein the crystal structure of the title compound, (E)-4-bromo-N′-(4-meth­oxy­benzyl­idene)benzohydrazide is reported.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound (Fig. 1[link]) consists of one independent mol­ecule displaying an E configuration about the C=N double bond. All the bond lengths are within the normal ranges. The values of the C8=N2 [1.281 (3) Å] and C7=O2 [1.222 (3) Å] bond lengths confirm their double-bond character. The C7—N1, N1—N2 and C3—Br1 bond lengths are 1.354 (3), 1.379 (3) and 1.894 (3) Å, respectively. The central O2/C7/N1/N2 fragment is approximately planar (r.m.s. deviation 0.0141 Å) and forms dihedral angles of 32.5 (2) and 27.2 (2)° with the C1–C6 and C9–C14 rings, respectively. The dihedral angle formed by the aromatic rings is 58.06 (9)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In the crystal structure, the mol­ecules are linked into chains extending along the b-axis direction by N1—H1N⋯O2 and C8—H8⋯O2 hydrogen-bonding inter­actions (Table 1[link]) forming rings with an R21(6) graph-set motif (Fig. 2[link]). The chains are further connected by C—H⋯π inter­actions, forming a three-dimensional network (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C9–C14 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.86 2.40 3.193 (3) 154
C8—H8⋯O2i 0.93 2.43 3.240 (3) 146
C2—H2⋯Cg2ii 0.93 2.81 3.531 (4) 135
C5—H5⋯Cg1iii 0.93 2.89 3.553 (4) 130
C10—H10⋯Cg1iv 0.93 2.86 3.549 (4) 132
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y, -z+1; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
Partial packing diagram of the title compound showing the formation of a mol­ecular chain parallel to the b axis through N—H⋯O and C—H⋯O hydrogen bonds (dashed lines).
[Figure 3]
Figure 3
Packing diagram of the title compound viewed down the b axis.

4. Hirshfeld surface analysis

The three-dimensional dnorm surface is a useful tool for analysing and visualizing the inter­molecular inter­actions. dnorm takes negative or positive values depending on whether the inter­molecular contact is shorter or longer, respectively, than the van der Waals radii (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]; McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814-3816.]). The three-dimensional dnorm surface of the title compound is shown in Fig. 4[link]. The red points, which represent closer contacts and negative dnorm values on the surface, correspond to the N—H⋯O and C—H⋯O inter­actions. Two-dimensional fingerprint plots from Hirshfeld surface analysis (Fig. 5[link]) provide information about the inter­molecular contacts and their percentage contributions to the Hirshfeld surface. The percentage contributions from the different inter­atomic contacts to the Hirshfeld surface in the title compound are as follows: C⋯H (33.2%), H⋯H (27.7%), Br⋯H/H⋯Br (14.2%), O⋯H/H⋯O (13.6%), N⋯H/H⋯N (4.6%), Br⋯O/O⋯Br (2.4%), C⋯N/N⋯C (1.6%), O⋯N/N⋯O (1.3%), O⋯C/C⋯O (0.6%), Br⋯N/N⋯Br (0.5%) and Br⋯C/C⋯Br (0.3%).

[Figure 4]
Figure 4
Hirshfeld surfaces of the title compound mapped over dnorm.
[Figure 5]
Figure 5
Two-dimensional fingerprint plots of the title compound and relative contributions of the atom pairs to the Hirshfeld surface.

5. Frontier mol­ecular orbitals

The HOMO (highest occupied mol­ecular orbital) acts as an electron donor and the LUMO (lowest occupied mol­ecular orbital) acts as an electron acceptor. If the energy gap is small then the mol­ecule is highly polarizable and has high chemical reactivity. The energy levels were computed by the DFT-B3LYP/6-311G++(d,p) method (Becke, 1993[Becke, A. (1993). J. Chem. Phys. 98, 5648-5652.]) as implemented in GAUSSIAN09 (Frisch et al., 2009[Frisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.]). The electron distribution of the HOMO-1, HOMO, LUMO and LUMO+1 energy levels, which determines the chemical stability, chemical hardness, chemical potential, electronegativity and electrophilicity index (Table 2[link]), are shown in Fig. 6[link]. The frontier mol­ecular orbital LUMO is located over the whole of the mol­ecule. The energy gap of the mol­ecule clearly shows the charge-transfer inter­action involving donor and acceptor groups. From the HOMO–LUMO energy gap, information on whether or not the mol­ecule is difficult (hard) or delicate (soft) can be derived. If the mol­ecule has a large energy gap, then the mol­ecule can be defined as a hard mol­ecule whereas the presence of a small energy gap classifies the mol­ecule as soft. The soft mol­ecules are more polarizable than the hard ones because they only need a small energy for excitation. Therefore, from the data reported in Table 2[link], we conclude that the mol­ecule of the title compound belongs to the really hard materials.

Table 2
Calculated frontier mol­ecular orbital energies (eV)

FMO Energy
EHOMO −6.0275
ELUMO −1.9434
EHOMO−1 −7.0785
ELUMO+1 −1.2582
(EHOMOELUMO) gap 4.0841
(EHOMO−1ELUMO+1) gap 5.8203
Chemical hardness 2.0420
Chemical potential 3.9854
Electronegativity −3.9854
Electrophilicity index 3.8892
[Figure 6]
Figure 6
Mol­ecular orbital energy levels of the title compound.

6. Database survey

A search of the Cambridge Structural Database (Version 5.39, update May 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for uncoordinated mol­ecules containing the 4-bromo­benzohydrazide fragment yielded 17 hits. Similar to the crystal structure of the title compound, in seven of them the carbonyl oxygen atom is engaged in inter­molecular N—H⋯O and C—H⋯O hydrogen bonds as a bifurcated acceptor [4-bromo-N′-(2,4-di­hydroxy­benzyl­idene)benzohydrazide (Mohanraj et al., 2016[Mohanraj, M., Ayyannan, G., Raja, G. & Jayabalakrishnan, C. (2016). Mater. Sci. Eng. C, 69, 1297-1306.]; Arunagiri et al., 2018[Arunagiri, C., Anitha, A. G., Subashini, A. & Selvakumar, S. (2018). J. Mol. Struct. 1163, 368-378.]); 4-bromo-N′-(2-nitro­benzyl­idene)benzohydrazide (Zhang et al. 2009[Zhang, M.-J., Yin, L.-Z., Wang, D.-C., Deng, X.-M. & Liu, J.-B. (2009). Acta Cryst. E65, o508.]); 4-bromo-N′-(2-hy­droxy-5-meth­oxy­benzyl­idene)benzohydrazide (Wang et al., 2017[Wang, J., Qu, D., Lei, J.-X. & You, Z. (2017). J. Coord. Chem. 70, 544-555.])] or trifurcated acceptor [4-bromo-N′-(2-chloro­benzyl­idene)benzohydrazide (Shu et al., 2009[Shu, X.-H., Diao, Y.-P., Li, M.-L., Yan, X. & Liu, J. (2009). Acta Cryst. E65, o1034.]); 4-bromo-N′((5-methyl­furan-2-yl)methyl­ene)benzohydrazide (Bai & Jing, 2007[Bai, Z.-C. & Jing, Z.-L. (2007). Acta Cryst. E63, o3822.]); 4-bromo-N′-(4-methyl-1,2,3-thia­dizole-5-yl)methyl­idenebenzohydrazine (Zhang et al., 2017[Zhang, J.-P., Li, X.-Y., Dong, Y.-W., Qin, Y.-G., Li, X.-L., Song, B.-A. & Yang, X.-L. (2017). Chin. Chem. Lett. 28, 1238-1242.]); (2-fluoro-2-methyl-2-phenyl­ethyl­idene) 4-bromo­benzoyl hydrazone (Brandes et al., 2006[Brandes, S., Niess, B., Bella, M., Prieto, A., Overgaard, J. & Jorgensen, K. A. (2006). Chem. Eur. J. 12, 6038-6052.])], forming mol­ecular chains.

7. Synthesis and crystallization

The title compound was synthesized by the reaction of a 1:1 molar ratio mixture of a hot ethano­lic solution (20 mL) of 4-bromo­benzohydrazide (0.213 mg) and a hot ethano­lic solution of 4-meth­oxy­benzaldehyde (0.136 mg). The mixture was refluxed for 8 h, then it was cooled and kept at room temperature. The powder formed was recrystallized from DMSO. Colourless block-shaped crystals suitable for X-ray analysis were obtained after a few days on slow evaporation of the solvent.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The hydrogen atoms were positioned geometrically (C—H = 0.93–0.9 Å, N—H = 0.86 Å) and were refined as riding with Uiso(H) = 1.2Ueq(C, N) or 1.5Ueq(C) for methyl H atoms. A rotating model was used for the methyl H atoms. Three outliers (100, [\overline{1}]02, 002) were omitted in the last cycles of refinement.

Table 3
Experimental details

Crystal data
Chemical formula C15H13BrN2O2
Mr 333.18
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 15.6963 (14), 5.4121 (4), 18.6224 (16)
β (°) 119.609 (6)
V3) 1375.4 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.99
Crystal size (mm) 0.30 × 0.20 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). SAINT, APEX2, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.467, 0.586
No. of measured, independent and observed [I > 2σ(I)] reflections 9456, 2563, 1923
Rint 0.030
(sin θ/λ)max−1) 0.606
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.073, 1.02
No. of reflections 2563
No. of parameters 182
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.46, −0.49
Computer programs: APEX2, SAINT and XPREP (Bruker, 2004[Bruker (2004). SAINT, APEX2, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR92 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), SHELXL2017/1 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2017/1 (Sheldrick, 2015).

(E)-4-Bromo-N'-(4-methoxybenzylidene)benzohydrazide top
Crystal data top
C15H13BrN2O2F(000) = 672
Mr = 333.18Dx = 1.609 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 15.6963 (14) ÅCell parameters from 3040 reflections
b = 5.4121 (4) Åθ = 6.0–48.0°
c = 18.6224 (16) ŵ = 2.99 mm1
β = 119.609 (6)°T = 296 K
V = 1375.4 (2) Å3Block, colourless
Z = 40.30 × 0.20 × 0.20 mm
Data collection top
Bruker Kappa APEX2 CCD
diffractometer
1923 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
ω and φ scanθmax = 25.5°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1918
Tmin = 0.467, Tmax = 0.586k = 66
9456 measured reflectionsl = 2022
2563 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: mixed
wR(F2) = 0.073H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0247P)2 + 1.0475P]
where P = (Fo2 + 2Fc2)/3
2563 reflections(Δ/σ)max = 0.002
182 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.49 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.79167 (2)0.30890 (7)0.92827 (2)0.05897 (14)
O10.00864 (14)0.0494 (4)0.09196 (11)0.0533 (5)
O20.43709 (15)0.7268 (4)0.55090 (12)0.0549 (5)
N10.41072 (16)0.3124 (4)0.53160 (13)0.0409 (5)
H1N0.4275660.1687740.5540280.049*
N20.33475 (16)0.3322 (4)0.45146 (13)0.0407 (6)
C10.59886 (19)0.2470 (5)0.67875 (17)0.0372 (6)
H10.5869620.1332510.6373870.045*
C20.67360 (19)0.2047 (5)0.75843 (16)0.0381 (6)
H20.7124590.0641410.7706970.046*
C30.68987 (18)0.3718 (5)0.81921 (15)0.0355 (6)
C40.63465 (19)0.5837 (5)0.80198 (16)0.0382 (6)
H40.6469690.6967610.8436050.046*
C50.56079 (19)0.6261 (5)0.72216 (16)0.0365 (6)
H50.5235780.7695800.7100360.044*
C60.54134 (18)0.4582 (5)0.65996 (15)0.0322 (6)
C70.45937 (19)0.5147 (5)0.57559 (16)0.0379 (7)
C80.28735 (19)0.1307 (5)0.42189 (16)0.0390 (7)
H80.3042780.0081200.4556440.047*
C90.20794 (19)0.1129 (5)0.33719 (16)0.0342 (6)
C100.19274 (19)0.2921 (5)0.27816 (16)0.0379 (6)
H100.2321430.4322760.2936870.046*
C110.1207 (2)0.2643 (5)0.19783 (16)0.0410 (7)
H110.1124100.3844650.1591900.049*
C120.05982 (19)0.0593 (5)0.17324 (16)0.0379 (6)
C130.0727 (2)0.1177 (5)0.23154 (17)0.0411 (7)
H130.0315180.2544680.2164850.049*
C140.1471 (2)0.0895 (5)0.31222 (16)0.0407 (7)
H140.1561940.2109070.3507180.049*
C150.0603 (2)0.1750 (6)0.06035 (19)0.0606 (9)
H15A0.0145760.3096080.0771550.091*
H15B0.0967200.1670910.0011420.091*
H15C0.1045070.2002270.0813340.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0530 (2)0.0698 (2)0.03805 (19)0.00375 (18)0.01023 (14)0.00735 (16)
O10.0519 (12)0.0497 (13)0.0362 (11)0.0031 (11)0.0050 (10)0.0048 (10)
O20.0543 (13)0.0428 (13)0.0510 (13)0.0078 (10)0.0132 (10)0.0112 (10)
N10.0423 (13)0.0417 (14)0.0299 (12)0.0040 (12)0.0113 (10)0.0069 (11)
N20.0389 (13)0.0491 (16)0.0274 (12)0.0054 (12)0.0112 (10)0.0062 (11)
C10.0391 (15)0.0326 (15)0.0418 (16)0.0027 (12)0.0213 (13)0.0107 (12)
C20.0346 (14)0.0325 (15)0.0426 (16)0.0040 (13)0.0156 (13)0.0017 (13)
C30.0316 (14)0.0403 (16)0.0324 (15)0.0032 (12)0.0142 (12)0.0038 (12)
C40.0415 (16)0.0362 (15)0.0395 (16)0.0032 (14)0.0218 (13)0.0060 (13)
C50.0377 (15)0.0280 (14)0.0460 (16)0.0063 (12)0.0224 (13)0.0035 (12)
C60.0319 (14)0.0319 (14)0.0356 (15)0.0010 (12)0.0187 (12)0.0034 (12)
C70.0363 (15)0.0397 (18)0.0395 (16)0.0043 (14)0.0202 (13)0.0045 (13)
C80.0400 (16)0.0409 (17)0.0359 (15)0.0065 (14)0.0185 (13)0.0065 (13)
C90.0361 (15)0.0344 (15)0.0336 (14)0.0059 (12)0.0184 (12)0.0019 (12)
C100.0394 (15)0.0317 (14)0.0429 (16)0.0008 (13)0.0205 (13)0.0015 (13)
C110.0464 (17)0.0343 (16)0.0382 (16)0.0039 (13)0.0179 (14)0.0099 (12)
C120.0361 (15)0.0385 (16)0.0384 (16)0.0043 (14)0.0178 (13)0.0022 (13)
C130.0435 (17)0.0345 (15)0.0442 (17)0.0034 (13)0.0208 (14)0.0013 (13)
C140.0520 (18)0.0333 (15)0.0377 (16)0.0033 (14)0.0229 (14)0.0084 (13)
C150.0538 (19)0.055 (2)0.0473 (19)0.0075 (17)0.0054 (16)0.0005 (16)
Geometric parameters (Å, º) top
Br1—C31.894 (3)C5—H50.9300
O1—C121.357 (3)C6—C71.490 (4)
O1—C151.416 (3)C8—C91.452 (4)
O2—C71.222 (3)C8—H80.9300
N1—C71.354 (3)C9—C141.375 (4)
N1—N21.379 (3)C9—C101.395 (4)
N1—H1N0.8600C10—C111.367 (4)
N2—C81.281 (3)C10—H100.9300
C1—C21.382 (4)C11—C121.386 (4)
C1—C61.390 (3)C11—H110.9300
C1—H10.9300C12—C131.386 (4)
C2—C31.371 (4)C13—C141.382 (4)
C2—H20.9300C13—H130.9300
C3—C41.376 (4)C14—H140.9300
C4—C51.380 (4)C15—H15A0.9600
C4—H40.9300C15—H15B0.9600
C5—C61.382 (4)C15—H15C0.9600
C12—O1—C15118.2 (2)N2—C8—H8119.1
C7—N1—N2121.3 (2)C9—C8—H8119.1
C7—N1—H1N119.4C14—C9—C10117.9 (2)
N2—N1—H1N119.3C14—C9—C8120.0 (2)
C8—N2—N1114.0 (2)C10—C9—C8122.0 (2)
C2—C1—C6120.5 (2)C11—C10—C9120.9 (3)
C2—C1—H1119.7C11—C10—H10119.6
C6—C1—H1119.7C9—C10—H10119.6
C3—C2—C1119.3 (2)C10—C11—C12120.8 (2)
C3—C2—H2120.3C10—C11—H11119.6
C1—C2—H2120.3C12—C11—H11119.6
C2—C3—C4121.2 (2)O1—C12—C13125.1 (3)
C2—C3—Br1118.7 (2)O1—C12—C11115.9 (2)
C4—C3—Br1120.0 (2)C13—C12—C11119.0 (2)
C3—C4—C5119.1 (2)C14—C13—C12119.5 (3)
C3—C4—H4120.4C14—C13—H13120.2
C5—C4—H4120.4C12—C13—H13120.2
C4—C5—C6120.9 (2)C9—C14—C13121.9 (2)
C4—C5—H5119.6C9—C14—H14119.1
C6—C5—H5119.6C13—C14—H14119.1
C5—C6—C1118.9 (2)O1—C15—H15A109.5
C5—C6—C7117.8 (2)O1—C15—H15B109.5
C1—C6—C7123.3 (2)H15A—C15—H15B109.5
O2—C7—N1124.1 (3)O1—C15—H15C109.5
O2—C7—C6121.8 (3)H15A—C15—H15C109.5
N1—C7—C6114.0 (2)H15B—C15—H15C109.5
N2—C8—C9121.9 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C9–C14 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.862.403.193 (3)154
C8—H8···O2i0.932.433.240 (3)146
C2—H2···Cg2ii0.932.813.531 (4)135
C5—H5···Cg1iii0.932.893.553 (4)130
C10—H10···Cg1iv0.932.863.549 (4)132
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z+1; (iii) x+1, y+1/2, z+3/2; (iv) x+1, y+1, z+1.
Calculated frontier molecular orbital energies (eV) top
FMOEnergy
EHOMO-6.0275
ELUMO-1.9434
EHOMO-1-7.0785
ELUMO+1-1.2582
(EHOMO - ELUMO) gap4.0841
(EHOMO-1 - ELUMO+1) gap5.8203
Chemical hardness2.0420
Chemical potential3.9854
Electronegativity-3.9854
Electrophilicity index3.8892
 

Funding information

KB and PS thank the Department of Science and Technology (DST–SERB), New Delhi, India, for financial support (grant No. SB/FT/CS-058/2013).

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAmimoto, K. & Kawato, T. (2005). J. Photochem. Photobiol. Photochem. Rev. 6, 207–226.  Web of Science CrossRef CAS Google Scholar
First citationArunagiri, C., Anitha, A. G., Subashini, A. & Selvakumar, S. (2018). J. Mol. Struct. 1163, 368–378.  CrossRef Google Scholar
First citationBai, Z.-C. & Jing, Z.-L. (2007). Acta Cryst. E63, o3822.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBecke, A. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationBrandes, S., Niess, B., Bella, M., Prieto, A., Overgaard, J. & Jorgensen, K. A. (2006). Chem. Eur. J. 12, 6038–6052.  CrossRef Google Scholar
First citationBruker (2004). SAINT, APEX2, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816.  Google Scholar
First citationMohanraj, M., Ayyannan, G., Raja, G. & Jayabalakrishnan, C. (2016). Mater. Sci. Eng. C, 69, 1297–1306.  CrossRef Google Scholar
First citationMuralisankar, M., Haribabu, J., Bhuvanesh, N. S. P., Karvembu, R. & Sreekanth, A. (2016). Inorg. Chim. Acta, 449, 82–95.  Web of Science CSD CrossRef CAS Google Scholar
First citationSchiff, H. (1864). Ann. Chem. Pharm. 131, 118–119.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShu, X.-H., Diao, Y.-P., Li, M.-L., Yan, X. & Liu, J. (2009). Acta Cryst. E65, o1034.  CrossRef IUCr Journals Google Scholar
First citationSingh, P., Goel, R. L. & Singh, B. P. (1975). J. Indian Chem. Soc. 52, 958–959.  CAS Google Scholar
First citationSouza, P., Garcia-Vazquez, J. A. & Masaguer, J. R. (1985). Transition Met. Chem. 10, 410–412.  CrossRef CAS Web of Science Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTanaka, K., Shimoura, R. & Caira, M. R. (2010). Tetrahedron Lett. 51, 449–452.  Web of Science CSD CrossRef CAS Google Scholar
First citationTiwari, A. D., Mishra, A. K., Mishra, B. B., Mamba, B. B., Maji, B. & Bhattacharya, S. (2011). Spectrochim. Acta Part A, 79, 1050–1056.  CrossRef Google Scholar
First citationWang, J., Qu, D., Lei, J.-X. & You, Z. (2017). J. Coord. Chem. 70, 544–555.  CrossRef Google Scholar
First citationZhang, J.-P., Li, X.-Y., Dong, Y.-W., Qin, Y.-G., Li, X.-L., Song, B.-A. & Yang, X.-L. (2017). Chin. Chem. Lett. 28, 1238–1242.  CrossRef Google Scholar
First citationZhang, M.-J., Yin, L.-Z., Wang, D.-C., Deng, X.-M. & Liu, J.-B. (2009). Acta Cryst. E65, o508.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds