research communications
E)-4-bromo-N′-(4-methoxybenzylidene)benzohydrazide
Hirshfeld surface analysis and HOMO–LUMO analysis of (aDepartment of Chemistry, Government Arts College (Autonomous), Thanthonimalai, Karur 639 005, Tamil Nadu, India, and bDepartment of Chemistry, Pondicherry University, R.V. Nagar, Kalapet, Puducherry 605 014, India
*Correspondence e-mail: manavaibala@gmail.com
The title Schiff base compound, C15H13BrN2O2, displays an E configuration with respect to the C=N double bond, which forms a dihedral angle of 58.06 (9)° with the benzene ring. In the crystal, the molecules are linked into chains parallel to the b axis by N—H⋯O and C—H⋯O hydrogen bonds, giving rise to rings with an R21(6) graph-set motif. The chains are further linked into a three-dimensional network by C—H⋯π interactions. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from C⋯H (33.2%), H⋯H (27.7%), Br⋯H/H⋯Br (14.2%) and O⋯H/H⋯O (13.6%) interactions. The title compound has also been characterized by frontier molecular orbital analysis.
Keywords: crystal structure; Schiff base; intermolecular interactions; Hirshfeld surface analysis; HOMO–LUMO calculation.
CCDC reference: 1587248
1. Chemical context
et al., 1864). A wide range of these compounds with the general formula RHC=NR1 (R and R1 can be alkyl, aryl, cycloalkyl or heterocyclic groups) have been synthesized. are of great importance in the field of coordination chemistry because they are able to form stable complexes with metal ions (Souza et al., 1985). The chemical and biological significance of can be attributed to the presence of a in the sp2-hybridized orbital of the nitrogen atom of the azomethine group (Singh et al., 1975). These compounds are used in the fields of organic synthesis, chemical catalysis and medicine, pharmacy, as well as other new technologies (Tanaka et al., 2010). are also used as probes in investigating the structure of DNA (Tiwari et al., 2011), and have gained special attention in pharmacophore research and in the development of several bioactive lead molecules (Muralisankar et al., 2016). showing photochromic and thermochromic properties have been used in information storage, electronic display systems, optical switching devices and ophthalmic glasses (Amimoto et al., 2005). Herein the of the title compound, (E)-4-bromo-N′-(4-methoxybenzylidene)benzohydrazide is reported.
are nitrogen-containing compounds that were first obtained by the condensation reactions of aromatic and (Schiff2. Structural commentary
The ) consists of one independent molecule displaying an E configuration about the C=N double bond. All the bond lengths are within the normal ranges. The values of the C8=N2 [1.281 (3) Å] and C7=O2 [1.222 (3) Å] bond lengths confirm their double-bond character. The C7—N1, N1—N2 and C3—Br1 bond lengths are 1.354 (3), 1.379 (3) and 1.894 (3) Å, respectively. The central O2/C7/N1/N2 fragment is approximately planar (r.m.s. deviation 0.0141 Å) and forms dihedral angles of 32.5 (2) and 27.2 (2)° with the C1–C6 and C9–C14 rings, respectively. The dihedral angle formed by the aromatic rings is 58.06 (9)°.
of the title compound (Fig. 13. Supramolecular features
In the b-axis direction by N1—H1N⋯O2 and C8—H8⋯O2 hydrogen-bonding interactions (Table 1) forming rings with an R21(6) graph-set motif (Fig. 2). The chains are further connected by C—H⋯π interactions, forming a three-dimensional network (Fig. 3).
the molecules are linked into chains extending along the4. Hirshfeld surface analysis
The three-dimensional dnorm surface is a useful tool for analysing and visualizing the intermolecular interactions. dnorm takes negative or positive values depending on whether the intermolecular contact is shorter or longer, respectively, than the van der Waals radii (Spackman & Jayatilaka, 2009; McKinnon et al., 2007). The three-dimensional dnorm surface of the title compound is shown in Fig. 4. The red points, which represent closer contacts and negative dnorm values on the surface, correspond to the N—H⋯O and C—H⋯O interactions. Two-dimensional fingerprint plots from Hirshfeld surface analysis (Fig. 5) provide information about the intermolecular contacts and their percentage contributions to the Hirshfeld surface. The percentage contributions from the different interatomic contacts to the Hirshfeld surface in the title compound are as follows: C⋯H (33.2%), H⋯H (27.7%), Br⋯H/H⋯Br (14.2%), O⋯H/H⋯O (13.6%), N⋯H/H⋯N (4.6%), Br⋯O/O⋯Br (2.4%), C⋯N/N⋯C (1.6%), O⋯N/N⋯O (1.3%), O⋯C/C⋯O (0.6%), Br⋯N/N⋯Br (0.5%) and Br⋯C/C⋯Br (0.3%).
5. Frontier molecular orbitals
The HOMO (highest occupied molecular orbital) acts as an ) as implemented in GAUSSIAN09 (Frisch et al., 2009). The electron distribution of the HOMO-1, HOMO, LUMO and LUMO+1 energy levels, which determines the chemical stability, chemical hardness, and index (Table 2), are shown in Fig. 6. The frontier molecular orbital LUMO is located over the whole of the molecule. The energy gap of the molecule clearly shows the charge-transfer interaction involving donor and acceptor groups. From the HOMO–LUMO energy gap, information on whether or not the molecule is difficult (hard) or delicate (soft) can be derived. If the molecule has a large energy gap, then the molecule can be defined as a hard molecule whereas the presence of a small energy gap classifies the molecule as soft. The soft molecules are more polarizable than the hard ones because they only need a small energy for excitation. Therefore, from the data reported in Table 2, we conclude that the molecule of the title compound belongs to the really hard materials.
and the LUMO (lowest occupied molecular orbital) acts as an If the energy gap is small then the molecule is highly polarizable and has high chemical reactivity. The energy levels were computed by the DFT-B3LYP/6-311G++(d,p) method (Becke, 1993
|
6. Database survey
A search of the Cambridge Structural Database (Version 5.39, update May 2018; Groom et al., 2016) for uncoordinated molecules containing the 4-bromobenzohydrazide fragment yielded 17 hits. Similar to the of the title compound, in seven of them the carbonyl oxygen atom is engaged in intermolecular N—H⋯O and C—H⋯O hydrogen bonds as a bifurcated acceptor [4-bromo-N′-(2,4-dihydroxybenzylidene)benzohydrazide (Mohanraj et al., 2016; Arunagiri et al., 2018); 4-bromo-N′-(2-nitrobenzylidene)benzohydrazide (Zhang et al. 2009); 4-bromo-N′-(2-hydroxy-5-methoxybenzylidene)benzohydrazide (Wang et al., 2017)] or trifurcated acceptor [4-bromo-N′-(2-chlorobenzylidene)benzohydrazide (Shu et al., 2009); 4-bromo-N′((5-methylfuran-2-yl)methylene)benzohydrazide (Bai & Jing, 2007); 4-bromo-N′-(4-methyl-1,2,3-thiadizole-5-yl)methylidenebenzohydrazine (Zhang et al., 2017); (2-fluoro-2-methyl-2-phenylethylidene) 4-bromobenzoyl hydrazone (Brandes et al., 2006)], forming molecular chains.
7. Synthesis and crystallization
The title compound was synthesized by the reaction of a 1:1 molar ratio mixture of a hot ethanolic solution (20 mL) of 4-bromobenzohydrazide (0.213 mg) and a hot ethanolic solution of 4-methoxybenzaldehyde (0.136 mg). The mixture was refluxed for 8 h, then it was cooled and kept at room temperature. The powder formed was recrystallized from DMSO. Colourless block-shaped crystals suitable for X-ray analysis were obtained after a few days on slow evaporation of the solvent.
8. Refinement
Crystal data, data collection and structure . The hydrogen atoms were positioned geometrically (C—H = 0.93–0.9 Å, N—H = 0.86 Å) and were refined as riding with Uiso(H) = 1.2Ueq(C, N) or 1.5Ueq(C) for methyl H atoms. A rotating model was used for the methyl H atoms. Three outliers (100, 02, 002) were omitted in the last cycles of refinement.
details are summarized in Table 3
|
Supporting information
CCDC reference: 1587248
https://doi.org/10.1107/S2056989018013373/rz5241sup1.cif
contains datablocks global, I, 1. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018013373/rz5241Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018013373/rz5241Isup3.cml
Data collection: APEX2 (Bruker, 2004); cell
APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2017/1 (Sheldrick, 2015).C15H13BrN2O2 | F(000) = 672 |
Mr = 333.18 | Dx = 1.609 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 15.6963 (14) Å | Cell parameters from 3040 reflections |
b = 5.4121 (4) Å | θ = 6.0–48.0° |
c = 18.6224 (16) Å | µ = 2.99 mm−1 |
β = 119.609 (6)° | T = 296 K |
V = 1375.4 (2) Å3 | Block, colourless |
Z = 4 | 0.30 × 0.20 × 0.20 mm |
Bruker Kappa APEX2 CCD diffractometer | 1923 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.030 |
ω and φ scan | θmax = 25.5°, θmin = 2.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | h = −19→18 |
Tmin = 0.467, Tmax = 0.586 | k = −6→6 |
9456 measured reflections | l = −20→22 |
2563 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: mixed |
wR(F2) = 0.073 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0247P)2 + 1.0475P] where P = (Fo2 + 2Fc2)/3 |
2563 reflections | (Δ/σ)max = 0.002 |
182 parameters | Δρmax = 0.46 e Å−3 |
0 restraints | Δρmin = −0.49 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.79167 (2) | 0.30890 (7) | 0.92827 (2) | 0.05897 (14) | |
O1 | −0.00864 (14) | 0.0494 (4) | 0.09196 (11) | 0.0533 (5) | |
O2 | 0.43709 (15) | 0.7268 (4) | 0.55090 (12) | 0.0549 (5) | |
N1 | 0.41072 (16) | 0.3124 (4) | 0.53160 (13) | 0.0409 (5) | |
H1N | 0.427566 | 0.168774 | 0.554028 | 0.049* | |
N2 | 0.33475 (16) | 0.3322 (4) | 0.45146 (13) | 0.0407 (6) | |
C1 | 0.59886 (19) | 0.2470 (5) | 0.67875 (17) | 0.0372 (6) | |
H1 | 0.586962 | 0.133251 | 0.637387 | 0.045* | |
C2 | 0.67360 (19) | 0.2047 (5) | 0.75843 (16) | 0.0381 (6) | |
H2 | 0.712459 | 0.064141 | 0.770697 | 0.046* | |
C3 | 0.68987 (18) | 0.3718 (5) | 0.81921 (15) | 0.0355 (6) | |
C4 | 0.63465 (19) | 0.5837 (5) | 0.80198 (16) | 0.0382 (6) | |
H4 | 0.646969 | 0.696761 | 0.843605 | 0.046* | |
C5 | 0.56079 (19) | 0.6261 (5) | 0.72216 (16) | 0.0365 (6) | |
H5 | 0.523578 | 0.769580 | 0.710036 | 0.044* | |
C6 | 0.54134 (18) | 0.4582 (5) | 0.65996 (15) | 0.0322 (6) | |
C7 | 0.45937 (19) | 0.5147 (5) | 0.57559 (16) | 0.0379 (7) | |
C8 | 0.28735 (19) | 0.1307 (5) | 0.42189 (16) | 0.0390 (7) | |
H8 | 0.304278 | −0.008120 | 0.455644 | 0.047* | |
C9 | 0.20794 (19) | 0.1129 (5) | 0.33719 (16) | 0.0342 (6) | |
C10 | 0.19274 (19) | 0.2921 (5) | 0.27816 (16) | 0.0379 (6) | |
H10 | 0.232143 | 0.432276 | 0.293687 | 0.046* | |
C11 | 0.1207 (2) | 0.2643 (5) | 0.19783 (16) | 0.0410 (7) | |
H11 | 0.112410 | 0.384465 | 0.159190 | 0.049* | |
C12 | 0.05982 (19) | 0.0593 (5) | 0.17324 (16) | 0.0379 (6) | |
C13 | 0.0727 (2) | −0.1177 (5) | 0.23154 (17) | 0.0411 (7) | |
H13 | 0.031518 | −0.254468 | 0.216485 | 0.049* | |
C14 | 0.1471 (2) | −0.0895 (5) | 0.31222 (16) | 0.0407 (7) | |
H14 | 0.156194 | −0.210907 | 0.350718 | 0.049* | |
C15 | −0.0603 (2) | −0.1750 (6) | 0.06035 (19) | 0.0606 (9) | |
H15A | −0.014576 | −0.309608 | 0.077155 | 0.091* | |
H15B | −0.096720 | −0.167091 | 0.001142 | 0.091* | |
H15C | −0.104507 | −0.200227 | 0.081334 | 0.091* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0530 (2) | 0.0698 (2) | 0.03805 (19) | 0.00375 (18) | 0.01023 (14) | 0.00735 (16) |
O1 | 0.0519 (12) | 0.0497 (13) | 0.0362 (11) | −0.0031 (11) | 0.0050 (10) | 0.0048 (10) |
O2 | 0.0543 (13) | 0.0428 (13) | 0.0510 (13) | 0.0078 (10) | 0.0132 (10) | 0.0112 (10) |
N1 | 0.0423 (13) | 0.0417 (14) | 0.0299 (12) | 0.0040 (12) | 0.0113 (10) | 0.0069 (11) |
N2 | 0.0389 (13) | 0.0491 (16) | 0.0274 (12) | 0.0054 (12) | 0.0112 (10) | 0.0062 (11) |
C1 | 0.0391 (15) | 0.0326 (15) | 0.0418 (16) | −0.0027 (12) | 0.0213 (13) | −0.0107 (12) |
C2 | 0.0346 (14) | 0.0325 (15) | 0.0426 (16) | 0.0040 (13) | 0.0156 (13) | 0.0017 (13) |
C3 | 0.0316 (14) | 0.0403 (16) | 0.0324 (15) | −0.0032 (12) | 0.0142 (12) | 0.0038 (12) |
C4 | 0.0415 (16) | 0.0362 (15) | 0.0395 (16) | −0.0032 (14) | 0.0218 (13) | −0.0060 (13) |
C5 | 0.0377 (15) | 0.0280 (14) | 0.0460 (16) | 0.0063 (12) | 0.0224 (13) | 0.0035 (12) |
C6 | 0.0319 (14) | 0.0319 (14) | 0.0356 (15) | 0.0010 (12) | 0.0187 (12) | 0.0034 (12) |
C7 | 0.0363 (15) | 0.0397 (18) | 0.0395 (16) | 0.0043 (14) | 0.0202 (13) | 0.0045 (13) |
C8 | 0.0400 (16) | 0.0409 (17) | 0.0359 (15) | 0.0065 (14) | 0.0185 (13) | 0.0065 (13) |
C9 | 0.0361 (15) | 0.0344 (15) | 0.0336 (14) | 0.0059 (12) | 0.0184 (12) | 0.0019 (12) |
C10 | 0.0394 (15) | 0.0317 (14) | 0.0429 (16) | −0.0008 (13) | 0.0205 (13) | 0.0015 (13) |
C11 | 0.0464 (17) | 0.0343 (16) | 0.0382 (16) | 0.0039 (13) | 0.0179 (14) | 0.0099 (12) |
C12 | 0.0361 (15) | 0.0385 (16) | 0.0384 (16) | 0.0043 (14) | 0.0178 (13) | 0.0022 (13) |
C13 | 0.0435 (17) | 0.0345 (15) | 0.0442 (17) | −0.0034 (13) | 0.0208 (14) | 0.0013 (13) |
C14 | 0.0520 (18) | 0.0333 (15) | 0.0377 (16) | 0.0033 (14) | 0.0229 (14) | 0.0084 (13) |
C15 | 0.0538 (19) | 0.055 (2) | 0.0473 (19) | −0.0075 (17) | 0.0054 (16) | −0.0005 (16) |
Br1—C3 | 1.894 (3) | C5—H5 | 0.9300 |
O1—C12 | 1.357 (3) | C6—C7 | 1.490 (4) |
O1—C15 | 1.416 (3) | C8—C9 | 1.452 (4) |
O2—C7 | 1.222 (3) | C8—H8 | 0.9300 |
N1—C7 | 1.354 (3) | C9—C14 | 1.375 (4) |
N1—N2 | 1.379 (3) | C9—C10 | 1.395 (4) |
N1—H1N | 0.8600 | C10—C11 | 1.367 (4) |
N2—C8 | 1.281 (3) | C10—H10 | 0.9300 |
C1—C2 | 1.382 (4) | C11—C12 | 1.386 (4) |
C1—C6 | 1.390 (3) | C11—H11 | 0.9300 |
C1—H1 | 0.9300 | C12—C13 | 1.386 (4) |
C2—C3 | 1.371 (4) | C13—C14 | 1.382 (4) |
C2—H2 | 0.9300 | C13—H13 | 0.9300 |
C3—C4 | 1.376 (4) | C14—H14 | 0.9300 |
C4—C5 | 1.380 (4) | C15—H15A | 0.9600 |
C4—H4 | 0.9300 | C15—H15B | 0.9600 |
C5—C6 | 1.382 (4) | C15—H15C | 0.9600 |
C12—O1—C15 | 118.2 (2) | N2—C8—H8 | 119.1 |
C7—N1—N2 | 121.3 (2) | C9—C8—H8 | 119.1 |
C7—N1—H1N | 119.4 | C14—C9—C10 | 117.9 (2) |
N2—N1—H1N | 119.3 | C14—C9—C8 | 120.0 (2) |
C8—N2—N1 | 114.0 (2) | C10—C9—C8 | 122.0 (2) |
C2—C1—C6 | 120.5 (2) | C11—C10—C9 | 120.9 (3) |
C2—C1—H1 | 119.7 | C11—C10—H10 | 119.6 |
C6—C1—H1 | 119.7 | C9—C10—H10 | 119.6 |
C3—C2—C1 | 119.3 (2) | C10—C11—C12 | 120.8 (2) |
C3—C2—H2 | 120.3 | C10—C11—H11 | 119.6 |
C1—C2—H2 | 120.3 | C12—C11—H11 | 119.6 |
C2—C3—C4 | 121.2 (2) | O1—C12—C13 | 125.1 (3) |
C2—C3—Br1 | 118.7 (2) | O1—C12—C11 | 115.9 (2) |
C4—C3—Br1 | 120.0 (2) | C13—C12—C11 | 119.0 (2) |
C3—C4—C5 | 119.1 (2) | C14—C13—C12 | 119.5 (3) |
C3—C4—H4 | 120.4 | C14—C13—H13 | 120.2 |
C5—C4—H4 | 120.4 | C12—C13—H13 | 120.2 |
C4—C5—C6 | 120.9 (2) | C9—C14—C13 | 121.9 (2) |
C4—C5—H5 | 119.6 | C9—C14—H14 | 119.1 |
C6—C5—H5 | 119.6 | C13—C14—H14 | 119.1 |
C5—C6—C1 | 118.9 (2) | O1—C15—H15A | 109.5 |
C5—C6—C7 | 117.8 (2) | O1—C15—H15B | 109.5 |
C1—C6—C7 | 123.3 (2) | H15A—C15—H15B | 109.5 |
O2—C7—N1 | 124.1 (3) | O1—C15—H15C | 109.5 |
O2—C7—C6 | 121.8 (3) | H15A—C15—H15C | 109.5 |
N1—C7—C6 | 114.0 (2) | H15B—C15—H15C | 109.5 |
N2—C8—C9 | 121.9 (2) |
Cg1 and Cg2 are the centroids of the C1–C6 and C9–C14 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O2i | 0.86 | 2.40 | 3.193 (3) | 154 |
C8—H8···O2i | 0.93 | 2.43 | 3.240 (3) | 146 |
C2—H2···Cg2ii | 0.93 | 2.81 | 3.531 (4) | 135 |
C5—H5···Cg1iii | 0.93 | 2.89 | 3.553 (4) | 130 |
C10—H10···Cg1iv | 0.93 | 2.86 | 3.549 (4) | 132 |
Symmetry codes: (i) x, y−1, z; (ii) −x+1, −y, −z+1; (iii) −x+1, y+1/2, −z+3/2; (iv) −x+1, −y+1, −z+1. |
FMO | Energy |
EHOMO | -6.0275 |
ELUMO | -1.9434 |
EHOMO-1 | -7.0785 |
ELUMO+1 | -1.2582 |
(EHOMO - ELUMO) gap | 4.0841 |
(EHOMO-1 - ELUMO+1) gap | 5.8203 |
Chemical hardness | 2.0420 |
Chemical potential | 3.9854 |
Electronegativity | -3.9854 |
Electrophilicity index | 3.8892 |
Funding information
KB and PS thank the Department of Science and Technology (DST–SERB), New Delhi, India, for financial support (grant No. SB/FT/CS-058/2013).
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Amimoto, K. & Kawato, T. (2005). J. Photochem. Photobiol. Photochem. Rev. 6, 207–226. Web of Science CrossRef CAS Google Scholar
Arunagiri, C., Anitha, A. G., Subashini, A. & Selvakumar, S. (2018). J. Mol. Struct. 1163, 368–378. CrossRef Google Scholar
Bai, Z.-C. & Jing, Z.-L. (2007). Acta Cryst. E63, o3822. Web of Science CSD CrossRef IUCr Journals Google Scholar
Becke, A. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Brandes, S., Niess, B., Bella, M., Prieto, A., Overgaard, J. & Jorgensen, K. A. (2006). Chem. Eur. J. 12, 6038–6052. CrossRef Google Scholar
Bruker (2004). SAINT, APEX2, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Frisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816. Google Scholar
Mohanraj, M., Ayyannan, G., Raja, G. & Jayabalakrishnan, C. (2016). Mater. Sci. Eng. C, 69, 1297–1306. CrossRef Google Scholar
Muralisankar, M., Haribabu, J., Bhuvanesh, N. S. P., Karvembu, R. & Sreekanth, A. (2016). Inorg. Chim. Acta, 449, 82–95. Web of Science CSD CrossRef CAS Google Scholar
Schiff, H. (1864). Ann. Chem. Pharm. 131, 118–119. CrossRef Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shu, X.-H., Diao, Y.-P., Li, M.-L., Yan, X. & Liu, J. (2009). Acta Cryst. E65, o1034. CrossRef IUCr Journals Google Scholar
Singh, P., Goel, R. L. & Singh, B. P. (1975). J. Indian Chem. Soc. 52, 958–959. CAS Google Scholar
Souza, P., Garcia-Vazquez, J. A. & Masaguer, J. R. (1985). Transition Met. Chem. 10, 410–412. CrossRef CAS Web of Science Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Tanaka, K., Shimoura, R. & Caira, M. R. (2010). Tetrahedron Lett. 51, 449–452. Web of Science CSD CrossRef CAS Google Scholar
Tiwari, A. D., Mishra, A. K., Mishra, B. B., Mamba, B. B., Maji, B. & Bhattacharya, S. (2011). Spectrochim. Acta Part A, 79, 1050–1056. CrossRef Google Scholar
Wang, J., Qu, D., Lei, J.-X. & You, Z. (2017). J. Coord. Chem. 70, 544–555. CrossRef Google Scholar
Zhang, J.-P., Li, X.-Y., Dong, Y.-W., Qin, Y.-G., Li, X.-L., Song, B.-A. & Yang, X.-L. (2017). Chin. Chem. Lett. 28, 1238–1242. CrossRef Google Scholar
Zhang, M.-J., Yin, L.-Z., Wang, D.-C., Deng, X.-M. & Liu, J.-B. (2009). Acta Cryst. E65, o508. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.