research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and synthesis of 3-(1H-pyrrol-2-yl)-1-(thio­phen-2-yl)propanone

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, Trinity Biomedical Sciences Institute, 152–160 Pearse Street, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
*Correspondence e-mail: gibbondi@tcd.ie

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 10 August 2018; accepted 30 August 2018; online 21 September 2018)

The title compound, C11H9NOS, was obtained in an improved yield compared to previous literature methods. The mol­ecule is essentially planar with a maximum deviation of 0.085 Å from the mean plane through all non-H atoms. There is directive inter­molecular hydrogen bonding in the form of N—H⋯O hydrogen bonds with a distance of 2.889 (3) Å between the pyrrole amine and the ketone carbonyl O atom. The resulting hydrogen-bonding network defines a ribbon parallel to the a axis. These ribbons form offset stacks along the b axis.

1. Chemical context

In nature, pyrroles are often present in tetra­pyrrolic ring systems such as heme and chloro­phyll. These macrocyclic compounds carry out a multitude of biochemical reactions and are responsible for oxygen transport in the body and harvesting light for food production in plants, respectively. Pyrroles are also widely incorporated in drugs, catalysts and advanced materials (Michlik & Kempe, 2013[Michlik, S. & Kempe, R. (2013). Nat. Chem. 5, 140-144.]; Estévez et al., 2014[Estévez, V., Villacampa, M. & Menéndez, J. C. (2014). Chem. Soc. Rev. 43, 4633-4657.]). The incorporation of pyrroles and thio­phenes into boron-dipyrromethene (BODIPY) dyes creates the possibility of long-wavelength absorptions and emissions (Schmidt et al., 2009[Schmidt, E. Y., Trofimov, B. A., Mikhaleva, A. I., Zorina, N. V., Protzuk, N. I., Petrushenko, K. B., Ushakov, I. A., Dvorko, M. Y., Méallet-Renault, R., Clavier, G., Vu, T. T., Tran, H. T. & Pansu, R. B. (2009). Chem. Eur. J. 15, 5823-5830.]; Zrig et al., 2008[Zrig, S., Rémy, P., Andrioletti, B., Rose, R., Asselberghs, I. & Clays, K. (2008). J. Org. Chem. 73, 1563-1566.]; Collado et al., 2011[Collado, D., Casado, J., Rodríguez González, S., López Navarrete, J. T., Suau, R., Perez-Inestrosa, E., Pappenfus, T. M. & Raposo, M. M. M. (2011). Chem. Eur. J. 17, 498-507.]; Rihn et al., 2009[Rihn, S., Retailleau, P., Bugsaliewicz, N., Nicola, A. D. & Ziessel, R. (2009). Tetrahedron Lett. 50, 7008-7013.]; Gresser et al., 2011[Gresser, R., Hummert, M., Hartmann, H., Leo, K. & Riede, M. (2011). Chem. Eur. J. 17, 2939-2947.]; Ulrich et al., 2007[Ulrich, G., Goeb, S., De Nicola, A., Retailleau, P. & Ziessel, R. (2007). Synlett, 2007, 1517-1520.]; Benniston et al., 2008[Benniston, A. C., Copley, C., Harriman, A., Rewinska, D. B., Harrington, R. W. & Clegg, W. (2008). J. Am. Chem. Soc. 130, 7174-7175.]; Goeb & Ziessel, 2008[Goeb, S. & Ziessel, R. (2008). Tetrahedron Lett. 49, 2569-2574.]). BODIPYs continue to be studied for their potential in fluorescence sensors, photodynamic therapy (PDT) and dye-sensitized solar cells (DSSCs) (Callaghan & Senge, 2018[Callaghan, S. & Senge, M. O. (2018). Photochem. Photobiol. Sci. Advance Article, doi: 10.1039C8PP00008E.]; Filatov et al., 2018[Filatov, M. A., Karuthedath, S., Polestshuk, P. M., Callaghan, S., Flanagan, K. J., Telitchko, M., Wiesner, T., Laquai, F. & Senge, M. O. (2018). Phys. Chem. Chem. Phys. 20, 8016-8031.]; Boens et al., 2011[Boens, N., Qin, W., Baruah, M., De Borggraeve, W. M., Filarowski, A., Smisdom, N., Ameloot, M., Crovetto, L., Talavera, E. M. & Alvarez-Pez, J. M. (2011). Chem. Eur. J. 17, 10924-10934.], 2012[Boens, N., Leen, V. & Dehaen, W. (2012). Chem. Soc. Rev. 41, 1130-1172.]; Antina et al., 2017[Antina, E. V., Bumagina, N. A., V'yugin, A. I. & Solomonov, A. V. (2017). Dyes Pigments, 136, 368-381.]; Kamkaew et al., 2013[Kamkaew, A., Lim, S. H., Lee, H. B., Kiew, L. V., Chung, L. Y. & Burgess, K. (2013). Chem. Soc. Rev. 42, 77-88.]; Singh & Gayathri, 2014[Singh, S. P. & Gayathri, T. (2014). Eur. J. Org. Chem. 2014, 4689-4707.]; Loudet & Burgess, 2007[Loudet, A. & Burgess, K. (2007). Chem. Rev. 107, 4891-4932.]; Er et al., 2015[Er, J. C., Leong, C., Teoh, C. L., Yuan, Q., Merchant, P., Dunn, M., Sulzer, D., Sames, D., Bhinge, A., Kim, D., Kim, S. M., Yoon, M. H., Stanton, L. W., Je, S. H., Yun, S. W. & Chang, Y. T. (2015). Angew. Chem. Int. Ed. 54, 2442-2446.]; Kand et al., 2015[Kand, D., Saha, T., Lahiri, M. & Talukdar, P. (2015). Org. Biomol. Chem. 13, 8163-8168.]; Cheng et al., 2016[Cheng, T., Zhao, J., Wang, Z., An, J., Xu, Y., Qian, X. & Liu, G. (2016). Dyes Pigments, 126, 218-223.]). Changing the meso-carbon of the BODIPY to a nitro­gen atom creates an aza-BODIPY compound. The absorption and emission in an aza-BODIPY is shifted more towards the near infra-red region compared to BODIPY (Lu et al., 2014[Lu, H., Mack, J., Yang, Y. & Shen, Z. (2014). Chem. Soc. Rev. 43, 4778-4823.]; Balsukuri, et al., 2018[Balsukuri, N., Boruah, N. J., Kesavan, P. E. & Gupta, I. (2018). New J. Chem. 42, 5875-5888.]). Herein, we report the improved synthesis and crystal structure of a previously synthesized ketone (Stark et al., 2016[Stark, D. G., Williamson, P., Gayner, E. R., Musolino, S. F., Kerr, R. W. F., Taylor, J. E., Slawin, A. M. Z., O'Riordan, T. J. C., Macgregor, S. A. & Smith, A. D. (2016). Org. Biomol. Chem. 14, 8957-8965.]) that can be further functionalized to create a sophisticated aza-BODIPY.

[Scheme 1]

2. Structural commentary

The title compound 1 crystallizes in a polar non-centrosymmetric space group (Pna21) and is almost planar in its crystalline form (Fig. 1[link]; Table 1[link]) with deviations ranging from −0.059 (3) (C11) to 0.085 Å (C7) from the mean plane of all non-hydrogen atoms. The pyrrole ring (N1/C8–C11) is rotated out of the plane through the ketone and thio­phenyl groups (S1/O1/C1–C7) by 4.32 (10)°. The aliphatic chain linking the two ring systems has a trans conformation and the nitro­gen atom (N1) of the pyrrole ring is protonated. Atom N1 is oriented opposite to the sulfur atom S1 of the thio­phene ring to enable inter­molecular hydrogen bonding (Fig. 2[link]). Atom S1 lies on the same side of the mol­ecular backbone as the oxygen of the ketone (O1).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.84 (4) 2.06 (4) 2.889 (3) 171 (3)
C6—H6⋯O1i 0.95 2.50 3.396 (3) 158
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
The hydrogen bonding (dashed line) between the amine group and the carbonyl oxygen atom (Table 1[link]). Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

Hydrogen bonding dominates the crystal packing of 1 and occurs between the amine group and the carbonyl oxygen (Fig. 2[link], Table 1[link]), linking the mol­ecules into a head-to-head ribbon-type assembly that extends down the a axis in an alternating X-pattern (Fig. 3[link]). The angle between the alternating mol­ecules in this X-pattern is 88.804 (8)°. The ribbons form offset stacks along the b axis with centroid–centroid distances of 3.9257 (15) Å between the centroids of adjacent pyrrole or thio­phene rings and a plane shift distance of 1.89 (3) Å between any two mol­ecules in the three-dimensional crystal structure. C—H⋯O inter­actions also occur.

[Figure 3]
Figure 3
View of the X-pattern in the packing, viewed approximately along the a axis. Displacement ellipsoids are drawn at the 50% probability level.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.39; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave two structures of aza-BODIPY precursor derivatives of 1 (Table 2[link]). In (E)-1,3-di(thio­phen-2-yl)prop-2-en-1-one (LINFET; Li & Su, 1995[Li, Z. & Su, G. (1995). Acta Cryst. C51, 681-683.]), a thio­phene ring replaces the pyrrole ring, yielding a di-thio­phene-linked α,β-unsaturated ketone aliphatic chain. LINFET contains two independent mol­ecules in the asymmetric unit. One di­thio­phene-linked chain is less planar than in 1 (LINFET A) while the other is more planar (LINFET B; Table 2[link]). The deviations from the plane of LINFET A range from −0.127 Å (C5) to 0.233 Å (S1); the deviations in LINFET B are smaller ranging from −0.032 Å for C22 to 0.055 Å for O2. They both exhibit the same trans conformation seen in the title mol­ecule. Non-classical hydrogen bonding exists between a C—H group and the carbonyl oxygen, O1 with a C—H⋯O distance of 3.326 (6) Å. This bonding network results in three separate sheets, parallel to the a-axis. A second non-classical hydrogen-bonding network [C—H⋯O = 2.381 (4) Å] is observed extending along the c-axis direction, generating a staggered ribbon. The combination of these two networks gives rise to a three-dimensional structure.

Table 2
r. m. s. deviations and twist (Å, °) angles

The twist angle is the dihedral angle between the five-membered heterocycle and the keto-aromatic plane.

Compound r.m.s. deviation Twist angle
1 0.04 (8) 4.32 (10)
LINFET Aa 0.111 (2) 10.21 (12)
LINFET Ba 0.023 (2) 1.19 (15)
SANRIJ Ab 0.104 (15) 8.98 (4)
SANRIJ Bb 0.122 (20) 9.67 (6)
Notes: (a) Li & Su (1995); (b) Ocak Ískeleli et al. (2005).

(E)-1,3-Di(furan-2-yl)prop-2-en-1-one (SANRIJ; Ocak Ískeleli et al., 2005[Ocak Ískeleli, N., Işık, S., Özdemir, Z. & Bilgin, A. (2005). Acta Cryst. E61, o1356-o1358.]) comprises two furan heterocycles linked by an α,β-unsaturated ketone aliphatic chain. There are also two independent mol­ecules in the asymmetric unit (SANRIJ A and SANRIJ B), both of which are less planar than 1, LINFET A and LINFET B. The largest deviation from the mol­ecular plane is for C17 (0.157 Å) in SANRIJ A and C18 (−0.152 Å) in SANRIJ B. Again, a non-classical hydrogen bonding network exists [C—H⋯O = 2.473 (18) Å] between aryl C—H atoms and the carbonyl oxygen. Each mol­ecule participates in two hydrogen bonds and the network extends in a linear fashion along the b-axis direction, forming a network structure.

5. Synthesis and crystallization

The title compound was synthesized via an elimination unimolecular conjugate base (E1cB) reaction between 2-pyrrole-carbaldehyde (376.87 mg, 3.96 mmol, 1.0 eq.) and 2-acetyl­thio­phene (500 mg, 3.96 mmol, 1.0 eq.) in 1:1 MeOH:H2O (10 ml) using NaOH (15.85 mg, 396.28 µmol, 0.1 eq.) as a base. The resulting precipitate was filtered and then crystallized using a solution of CHCl3, layered with hexane to give a single crystal suitable for X-ray diffraction. [C11H9NOS]: yield 85% m.p 420–430 K.

1H NMR (CDCl3, ppm, 400MHz): δ 6.34 (dd, J = 5.9, 2.6 Hz, 1H, =C—H), 6.74 (s, 1H, Ar-H), 7.01 (s, 1H, Ar-H), 7.06–7.10 (d, 1H, Ar-H), 7.15 (t, J = 8.7 Hz, 1H, Ar-H), 7.63 (d, J = 4.9 Hz, 1H, Ar-H), 7.81 (t, 1H, Ar-H), 7.83 (d, J = 10.3 Hz, 1H, =C—H), 9.17 (s, 1H, NH). 13C NMR (CDCl3, ppm, 400 MHz): δ 111.54, 115.16, 123.30, 128.15, 129.16, 131.11, 133.17, 133.98, 145.89, 182.05. HRMS (ESI): m/z calculated for C11H9NOS: 204.047690 (M + H)+. Found: 204.04776.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms were placed in their expected calculated positions and refined as riding: C—H = 0.95–0.98 Å with Uiso(H) = 1.2 Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula C11H9NOS
Mr 203.25
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 100
a, b, c (Å) 11.1559 (3), 3.9258 (1), 21.6293 (6)
V3) 947.27 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.30
Crystal size (mm) 0.2 × 0.09 × 0.07
 
Data collection
Diffractometer Bruker SMART APEXII area detector
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.658, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 25996, 2159, 2070
Rint 0.049
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.082, 1.06
No. of reflections 2159
No. of parameters 131
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.28, −0.17
Absolute structure Flack x determined using 956 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.00 (4)
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker. (2016). APEX3 and SAINT .Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

3-(1H-Pyrrol-2-yl)-1-(thiophen-2-yl)propanone top
Crystal data top
C11H9NOSDx = 1.425 Mg m3
Mr = 203.25Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 9918 reflections
a = 11.1559 (3) Åθ = 3.7–27.5°
b = 3.9258 (1) ŵ = 0.30 mm1
c = 21.6293 (6) ÅT = 100 K
V = 947.27 (4) Å3Triangular, yellow
Z = 40.2 × 0.09 × 0.07 mm
F(000) = 424
Data collection top
Bruker SMART APEXII area detector
diffractometer
2159 independent reflections
Radiation source: standard sealed X-ray tube, Siemens, KFF Mo 2K -90 C2070 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 7.9 pixels mm-1θmax = 27.5°, θmin = 1.9°
ω and φ scansh = 1414
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 55
Tmin = 0.658, Tmax = 0.746l = 2728
25996 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0533P)2 + 0.3056P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.082(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.28 e Å3
2159 reflectionsΔρmin = 0.17 e Å3
131 parametersAbsolute structure: Flack x determined using 956 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.00 (4)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4383 (3)0.3593 (7)0.30581 (13)0.0220 (6)
H10.40900.28390.26690.026*
C20.5545 (3)0.3241 (7)0.32434 (13)0.0199 (5)
H20.61490.22080.29970.024*
C30.5754 (2)0.4580 (6)0.38425 (12)0.0146 (5)
H30.65100.45460.40450.018*
C40.4712 (2)0.5956 (7)0.40983 (12)0.0154 (5)
C50.4521 (2)0.7623 (7)0.46958 (11)0.0158 (5)
C60.5566 (2)0.7940 (7)0.51008 (13)0.0167 (5)
H60.63030.69170.49830.020*
C70.5498 (2)0.9663 (7)0.56396 (12)0.0166 (5)
H70.47531.07190.57330.020*
C80.6436 (2)1.0055 (7)0.60829 (13)0.0160 (5)
C90.6393 (2)1.1517 (7)0.66686 (12)0.0183 (5)
H90.57131.25700.68520.022*
C100.7529 (3)1.1168 (7)0.69428 (12)0.0195 (5)
H100.77581.19280.73430.023*
C110.8247 (2)0.9509 (7)0.65194 (13)0.0182 (6)
H110.90650.89240.65790.022*
N10.7588 (2)0.8850 (6)0.60020 (11)0.0179 (5)
H1A0.787 (3)0.791 (9)0.5687 (16)0.019 (8)*
O10.35144 (16)0.8661 (6)0.48409 (9)0.0199 (4)
S10.35151 (5)0.55340 (15)0.36015 (3)0.01928 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0338 (15)0.0180 (12)0.0144 (12)0.0026 (11)0.0025 (10)0.0009 (10)
C20.0266 (13)0.0172 (13)0.0160 (12)0.0001 (10)0.0048 (10)0.0005 (11)
C30.0173 (11)0.0139 (11)0.0126 (11)0.0020 (9)0.0005 (9)0.0009 (9)
C40.0187 (12)0.0154 (12)0.0120 (11)0.0046 (9)0.0014 (9)0.0023 (9)
C50.0200 (12)0.0166 (10)0.0108 (11)0.0016 (10)0.0010 (10)0.0036 (10)
C60.0158 (11)0.0201 (12)0.0140 (11)0.0006 (10)0.0014 (10)0.0010 (11)
C70.0188 (12)0.0165 (12)0.0146 (12)0.0002 (10)0.0013 (10)0.0030 (10)
C80.0195 (12)0.0155 (12)0.0130 (12)0.0010 (10)0.0007 (9)0.0016 (9)
C90.0244 (13)0.0168 (12)0.0138 (12)0.0011 (10)0.0017 (10)0.0013 (10)
C100.0274 (13)0.0182 (12)0.0129 (12)0.0024 (10)0.0025 (10)0.0010 (10)
C110.0194 (13)0.0205 (13)0.0149 (12)0.0040 (10)0.0010 (10)0.0006 (10)
N10.0191 (11)0.0218 (11)0.0129 (11)0.0012 (9)0.0016 (9)0.0015 (9)
O10.0183 (9)0.0272 (9)0.0143 (9)0.0008 (8)0.0013 (7)0.0014 (8)
S10.0198 (3)0.0223 (3)0.0157 (3)0.0019 (2)0.0033 (3)0.0002 (3)
Geometric parameters (Å, º) top
C1—H10.9500C6—C71.350 (4)
C1—C21.364 (4)C7—H70.9500
C1—S11.702 (3)C7—C81.428 (4)
C2—H20.9500C8—C91.392 (4)
C2—C31.418 (4)C8—N11.381 (3)
C3—H30.9500C9—H90.9500
C3—C41.397 (4)C9—C101.406 (4)
C4—C51.464 (3)C10—H100.9500
C4—S11.722 (3)C10—C111.380 (4)
C5—C61.463 (3)C11—H110.9500
C5—O11.236 (3)C11—N11.364 (4)
C6—H60.9500N1—H1A0.84 (4)
C2—C1—H1123.7C6—C7—C8126.4 (3)
C2—C1—S1112.5 (2)C8—C7—H7116.8
S1—C1—H1123.7C9—C8—C7129.1 (2)
C1—C2—H2123.6N1—C8—C7124.1 (2)
C1—C2—C3112.8 (3)N1—C8—C9106.8 (2)
C3—C2—H2123.6C8—C9—H9125.9
C2—C3—H3124.2C8—C9—C10108.2 (2)
C4—C3—C2111.6 (2)C10—C9—H9125.9
C4—C3—H3124.2C9—C10—H10126.6
C3—C4—C5130.0 (2)C11—C10—C9106.8 (2)
C3—C4—S1111.2 (2)C11—C10—H10126.6
C5—C4—S1118.77 (19)C10—C11—H11125.6
C6—C5—C4116.8 (2)N1—C11—C10108.7 (2)
O1—C5—C4120.2 (2)N1—C11—H11125.6
O1—C5—C6122.9 (2)C8—N1—H1A127 (2)
C5—C6—H6119.5C11—N1—C8109.4 (2)
C7—C6—C5121.0 (2)C11—N1—H1A124 (2)
C7—C6—H6119.5C1—S1—C491.90 (14)
C6—C7—H7116.8
C1—C2—C3—C40.2 (3)C7—C8—C9—C10177.3 (3)
C2—C1—S1—C40.4 (2)C7—C8—N1—C11177.4 (3)
C2—C3—C4—C5179.2 (2)C8—C9—C10—C110.2 (3)
C2—C3—C4—S10.5 (3)C9—C8—N1—C110.3 (3)
C3—C4—C5—C60.0 (4)C9—C10—C11—N10.0 (3)
C3—C4—C5—O1179.5 (3)C10—C11—N1—C80.2 (3)
C3—C4—S1—C10.5 (2)N1—C8—C9—C100.3 (3)
C4—C5—C6—C7175.0 (2)O1—C5—C6—C75.6 (4)
C5—C4—S1—C1179.2 (2)S1—C1—C2—C30.2 (3)
C5—C6—C7—C8177.7 (2)S1—C4—C5—C6179.67 (19)
C6—C7—C8—C9173.4 (3)S1—C4—C5—O10.9 (3)
C6—C7—C8—N13.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.84 (4)2.06 (4)2.889 (3)171 (3)
C6—H6···O1i0.952.503.396 (3)158
Symmetry code: (i) x+1/2, y+3/2, z.
r. m. s. deviations and twist (Å, °) angles top
The twist angle is the dihedral angle between the five-membered heterocycle and the keto-aromatic plane.
Compoundr.m.s. deviationTwist angle
10.04 (8)4.32 (10)
LINFET Aa0.111 (2)10.21 (12)
LINFET Ba0.023 (2)1.19 (15)
SANRIJ Ab0.104 (15)8.98 (4)
SANRIJ Bb0.122 (20)9.67 (6)
Notes: (a) Li & Su (1995); (b) Ocak Ískeleli et al. (2005).
Route mean square (r. m. s.) deviations and twist angles of the two five-membered heterocycles in 1 and the two derivatives known in literature (Li &amp; Su, 1995; Ocak Ískeleli et al., 2005) top
CompoundR. M. S. deviation (Å)Twist angle (o)
10.0562.87 (11)
2 (First independent molecule)0.093 (2)7.15 (6)
Second independent molecule0.02 (2)0.20 (15)
3 (First independent molecule)0.1048.41 (6)
Second independent molecule0.12211.11 (7)

Acknowledgements

Special thanks to Dr. Brendan Twamley for his continued support.

Funding information

This work was supported by a grant from the Science Foundation Ireland (SFI IvP 13/IA/1894, MOS).

References

First citationAntina, E. V., Bumagina, N. A., V'yugin, A. I. & Solomonov, A. V. (2017). Dyes Pigments, 136, 368–381.  CrossRef Google Scholar
First citationBalsukuri, N., Boruah, N. J., Kesavan, P. E. & Gupta, I. (2018). New J. Chem. 42, 5875–5888.  CrossRef Google Scholar
First citationBenniston, A. C., Copley, C., Harriman, A., Rewinska, D. B., Harrington, R. W. & Clegg, W. (2008). J. Am. Chem. Soc. 130, 7174–7175.  CrossRef Google Scholar
First citationBoens, N., Leen, V. & Dehaen, W. (2012). Chem. Soc. Rev. 41, 1130–1172.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBoens, N., Qin, W., Baruah, M., De Borggraeve, W. M., Filarowski, A., Smisdom, N., Ameloot, M., Crovetto, L., Talavera, E. M. & Alvarez-Pez, J. M. (2011). Chem. Eur. J. 17, 10924–10934.  CrossRef Google Scholar
First citationBruker. (2016). APEX3 and SAINT .Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationCallaghan, S. & Senge, M. O. (2018). Photochem. Photobiol. Sci. Advance Article, doi: 10.1039C8PP00008E.  Google Scholar
First citationCheng, T., Zhao, J., Wang, Z., An, J., Xu, Y., Qian, X. & Liu, G. (2016). Dyes Pigments, 126, 218–223.  CrossRef Google Scholar
First citationCollado, D., Casado, J., Rodríguez González, S., López Navarrete, J. T., Suau, R., Perez-Inestrosa, E., Pappenfus, T. M. & Raposo, M. M. M. (2011). Chem. Eur. J. 17, 498–507.  CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEr, J. C., Leong, C., Teoh, C. L., Yuan, Q., Merchant, P., Dunn, M., Sulzer, D., Sames, D., Bhinge, A., Kim, D., Kim, S. M., Yoon, M. H., Stanton, L. W., Je, S. H., Yun, S. W. & Chang, Y. T. (2015). Angew. Chem. Int. Ed. 54, 2442–2446.  CrossRef Google Scholar
First citationEstévez, V., Villacampa, M. & Menéndez, J. C. (2014). Chem. Soc. Rev. 43, 4633–4657.  Web of Science PubMed Google Scholar
First citationFilatov, M. A., Karuthedath, S., Polestshuk, P. M., Callaghan, S., Flanagan, K. J., Telitchko, M., Wiesner, T., Laquai, F. & Senge, M. O. (2018). Phys. Chem. Chem. Phys. 20, 8016–8031.  CrossRef Google Scholar
First citationGoeb, S. & Ziessel, R. (2008). Tetrahedron Lett. 49, 2569–2574.  CrossRef Google Scholar
First citationGresser, R., Hummert, M., Hartmann, H., Leo, K. & Riede, M. (2011). Chem. Eur. J. 17, 2939–2947.  CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKamkaew, A., Lim, S. H., Lee, H. B., Kiew, L. V., Chung, L. Y. & Burgess, K. (2013). Chem. Soc. Rev. 42, 77–88.  CrossRef Google Scholar
First citationKand, D., Saha, T., Lahiri, M. & Talukdar, P. (2015). Org. Biomol. Chem. 13, 8163–8168.  CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLi, Z. & Su, G. (1995). Acta Cryst. C51, 681–683.  CrossRef IUCr Journals Google Scholar
First citationLoudet, A. & Burgess, K. (2007). Chem. Rev. 107, 4891–4932.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLu, H., Mack, J., Yang, Y. & Shen, Z. (2014). Chem. Soc. Rev. 43, 4778–4823.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMichlik, S. & Kempe, R. (2013). Nat. Chem. 5, 140–144.  CrossRef Google Scholar
First citationOcak Ískeleli, N., Işık, S., Özdemir, Z. & Bilgin, A. (2005). Acta Cryst. E61, o1356–o1358.  CrossRef IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRihn, S., Retailleau, P., Bugsaliewicz, N., Nicola, A. D. & Ziessel, R. (2009). Tetrahedron Lett. 50, 7008–7013.  CrossRef Google Scholar
First citationSchmidt, E. Y., Trofimov, B. A., Mikhaleva, A. I., Zorina, N. V., Protzuk, N. I., Petrushenko, K. B., Ushakov, I. A., Dvorko, M. Y., Méallet-Renault, R., Clavier, G., Vu, T. T., Tran, H. T. & Pansu, R. B. (2009). Chem. Eur. J. 15, 5823–5830.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, S. P. & Gayathri, T. (2014). Eur. J. Org. Chem. 2014, 4689–4707.  CrossRef Google Scholar
First citationStark, D. G., Williamson, P., Gayner, E. R., Musolino, S. F., Kerr, R. W. F., Taylor, J. E., Slawin, A. M. Z., O'Riordan, T. J. C., Macgregor, S. A. & Smith, A. D. (2016). Org. Biomol. Chem. 14, 8957–8965.  CrossRef Google Scholar
First citationUlrich, G., Goeb, S., De Nicola, A., Retailleau, P. & Ziessel, R. (2007). Synlett, 2007, 1517–1520.  CrossRef Google Scholar
First citationZrig, S., Rémy, P., Andrioletti, B., Rose, R., Asselberghs, I. & Clays, K. (2008). J. Org. Chem. 73, 1563–1566.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds