research communications
H-pyrrol-2-yl)-1-(thiophen-2-yl)propanone
and synthesis of 3-(1aSchool of Chemistry, Trinity Biomedical Sciences Institute, 152–160 Pearse Street, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
*Correspondence e-mail: gibbondi@tcd.ie
The title compound, C11H9NOS, was obtained in an improved yield compared to previous literature methods. The molecule is essentially planar with a maximum deviation of 0.085 Å from the mean plane through all non-H atoms. There is directive intermolecular hydrogen bonding in the form of N—H⋯O hydrogen bonds with a distance of 2.889 (3) Å between the pyrrole amine and the ketone carbonyl O atom. The resulting hydrogen-bonding network defines a ribbon parallel to the a axis. These ribbons form offset stacks along the b axis.
Keywords: crystal structure; thiophene; pyrrole; BODIPY; aza-BODIPY.
CCDC reference: 1864793
1. Chemical context
In nature, pyrroles are often present in tetrapyrrolic ring systems such as heme and chlorophyll. These macrocyclic compounds carry out a multitude of biochemical reactions and are responsible for oxygen transport in the body and harvesting light for food production in plants, respectively. Pyrroles are also widely incorporated in drugs, catalysts and advanced materials (Michlik & Kempe, 2013; Estévez et al., 2014). The incorporation of pyrroles and thiophenes into boron-dipyrromethene (BODIPY) dyes creates the possibility of long-wavelength absorptions and emissions (Schmidt et al., 2009; Zrig et al., 2008; Collado et al., 2011; Rihn et al., 2009; Gresser et al., 2011; Ulrich et al., 2007; Benniston et al., 2008; Goeb & Ziessel, 2008). BODIPYs continue to be studied for their potential in fluorescence sensors, photodynamic therapy (PDT) and dye-sensitized solar cells (DSSCs) (Callaghan & Senge, 2018; Filatov et al., 2018; Boens et al., 2011, 2012; Antina et al., 2017; Kamkaew et al., 2013; Singh & Gayathri, 2014; Loudet & Burgess, 2007; Er et al., 2015; Kand et al., 2015; Cheng et al., 2016). Changing the meso-carbon of the BODIPY to a nitrogen atom creates an aza-BODIPY compound. The absorption and emission in an aza-BODIPY is shifted more towards the near infra-red region compared to BODIPY (Lu et al., 2014; Balsukuri, et al., 2018). Herein, we report the improved synthesis and of a previously synthesized ketone (Stark et al., 2016) that can be further functionalized to create a sophisticated aza-BODIPY.
2. Structural commentary
The title compound 1 crystallizes in a polar non-centrosymmetric (Pna21) and is almost planar in its crystalline form (Fig. 1; Table 1) with deviations ranging from −0.059 (3) (C11) to 0.085 Å (C7) from the mean plane of all non-hydrogen atoms. The pyrrole ring (N1/C8–C11) is rotated out of the plane through the ketone and thiophenyl groups (S1/O1/C1–C7) by 4.32 (10)°. The aliphatic chain linking the two ring systems has a trans conformation and the nitrogen atom (N1) of the pyrrole ring is protonated. Atom N1 is oriented opposite to the sulfur atom S1 of the thiophene ring to enable intermolecular hydrogen bonding (Fig. 2). Atom S1 lies on the same side of the molecular backbone as the oxygen of the ketone (O1).
3. Supramolecular features
Hydrogen bonding dominates the crystal packing of 1 and occurs between the amine group and the carbonyl oxygen (Fig. 2, Table 1), linking the molecules into a head-to-head ribbon-type assembly that extends down the a axis in an alternating X-pattern (Fig. 3). The angle between the alternating molecules in this X-pattern is 88.804 (8)°. The ribbons form offset stacks along the b axis with centroid–centroid distances of 3.9257 (15) Å between the centroids of adjacent pyrrole or thiophene rings and a plane shift distance of 1.89 (3) Å between any two molecules in the three-dimensional C—H⋯O interactions also occur.
4. Database survey
A search of the Cambridge Structural Database (CSD, version 5.39; Groom et al., 2016) gave two structures of aza-BODIPY precursor derivatives of 1 (Table 2). In (E)-1,3-di(thiophen-2-yl)prop-2-en-1-one (LINFET; Li & Su, 1995), a thiophene ring replaces the pyrrole ring, yielding a di-thiophene-linked α,β-unsaturated ketone aliphatic chain. LINFET contains two independent molecules in the One dithiophene-linked chain is less planar than in 1 (LINFET A) while the other is more planar (LINFET B; Table 2). The deviations from the plane of LINFET A range from −0.127 Å (C5) to 0.233 Å (S1); the deviations in LINFET B are smaller ranging from −0.032 Å for C22 to 0.055 Å for O2. They both exhibit the same trans conformation seen in the title molecule. Non-classical hydrogen bonding exists between a C—H group and the carbonyl oxygen, O1 with a C—H⋯O distance of 3.326 (6) Å. This bonding network results in three separate sheets, parallel to the a-axis. A second non-classical hydrogen-bonding network [C—H⋯O = 2.381 (4) Å] is observed extending along the c-axis direction, generating a staggered ribbon. The combination of these two networks gives rise to a three-dimensional structure.
(E)-1,3-Di(furan-2-yl)prop-2-en-1-one (SANRIJ; Ocak Ískeleli et al., 2005) comprises two furan heterocycles linked by an α,β-unsaturated ketone aliphatic chain. There are also two independent molecules in the (SANRIJ A and SANRIJ B), both of which are less planar than 1, LINFET A and LINFET B. The largest deviation from the molecular plane is for C17 (0.157 Å) in SANRIJ A and C18 (−0.152 Å) in SANRIJ B. Again, a non-classical hydrogen bonding network exists [C—H⋯O = 2.473 (18) Å] between aryl C—H atoms and the carbonyl oxygen. Each molecule participates in two hydrogen bonds and the network extends in a linear fashion along the b-axis direction, forming a network structure.
5. Synthesis and crystallization
The title compound was synthesized via an elimination unimolecular conjugate base (E1cB) reaction between 2-pyrrole-carbaldehyde (376.87 mg, 3.96 mmol, 1.0 eq.) and 2-acetylthiophene (500 mg, 3.96 mmol, 1.0 eq.) in 1:1 MeOH:H2O (10 ml) using NaOH (15.85 mg, 396.28 µmol, 0.1 eq.) as a base. The resulting precipitate was filtered and then crystallized using a solution of CHCl3, layered with hexane to give a single crystal suitable for X-ray diffraction. [C11H9NOS]: yield 85% m.p 420–430 K.
1H NMR (CDCl3, ppm, 400MHz): δ 6.34 (dd, J = 5.9, 2.6 Hz, 1H, =C—H), 6.74 (s, 1H, Ar-H), 7.01 (s, 1H, Ar-H), 7.06–7.10 (d, 1H, Ar-H), 7.15 (t, J = 8.7 Hz, 1H, Ar-H), 7.63 (d, J = 4.9 Hz, 1H, Ar-H), 7.81 (t, 1H, Ar-H), 7.83 (d, J = 10.3 Hz, 1H, =C—H), 9.17 (s, 1H, NH). 13C NMR (CDCl3, ppm, 400 MHz): δ 111.54, 115.16, 123.30, 128.15, 129.16, 131.11, 133.17, 133.98, 145.89, 182.05. HRMS (ESI): m/z calculated for C11H9NOS: 204.047690 (M + H)+. Found: 204.04776.
6. Refinement
Crystal data, data collection and structure . H atoms were placed in their expected calculated positions and refined as riding: C—H = 0.95–0.98 Å with Uiso(H) = 1.2 Ueq(C).
details are summarized in Table 3
|
Supporting information
CCDC reference: 1864793
https://doi.org/10.1107/S2056989018012331/tx2008sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018012331/tx2008Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018012331/tx2008Isup3.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C11H9NOS | Dx = 1.425 Mg m−3 |
Mr = 203.25 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pna21 | Cell parameters from 9918 reflections |
a = 11.1559 (3) Å | θ = 3.7–27.5° |
b = 3.9258 (1) Å | µ = 0.30 mm−1 |
c = 21.6293 (6) Å | T = 100 K |
V = 947.27 (4) Å3 | Triangular, yellow |
Z = 4 | 0.2 × 0.09 × 0.07 mm |
F(000) = 424 |
Bruker SMART APEXII area detector diffractometer | 2159 independent reflections |
Radiation source: standard sealed X-ray tube, Siemens, KFF Mo 2K -90 C | 2070 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.049 |
Detector resolution: 7.9 pixels mm-1 | θmax = 27.5°, θmin = 1.9° |
ω and φ scans | h = −14→14 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −5→5 |
Tmin = 0.658, Tmax = 0.746 | l = −27→28 |
25996 measured reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.032 | w = 1/[σ2(Fo2) + (0.0533P)2 + 0.3056P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.082 | (Δ/σ)max < 0.001 |
S = 1.06 | Δρmax = 0.28 e Å−3 |
2159 reflections | Δρmin = −0.17 e Å−3 |
131 parameters | Absolute structure: Flack x determined using 956 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
1 restraint | Absolute structure parameter: 0.00 (4) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.4383 (3) | 0.3593 (7) | 0.30581 (13) | 0.0220 (6) | |
H1 | 0.4090 | 0.2839 | 0.2669 | 0.026* | |
C2 | 0.5545 (3) | 0.3241 (7) | 0.32434 (13) | 0.0199 (5) | |
H2 | 0.6149 | 0.2208 | 0.2997 | 0.024* | |
C3 | 0.5754 (2) | 0.4580 (6) | 0.38425 (12) | 0.0146 (5) | |
H3 | 0.6510 | 0.4546 | 0.4045 | 0.018* | |
C4 | 0.4712 (2) | 0.5956 (7) | 0.40983 (12) | 0.0154 (5) | |
C5 | 0.4521 (2) | 0.7623 (7) | 0.46958 (11) | 0.0158 (5) | |
C6 | 0.5566 (2) | 0.7940 (7) | 0.51008 (13) | 0.0167 (5) | |
H6 | 0.6303 | 0.6917 | 0.4983 | 0.020* | |
C7 | 0.5498 (2) | 0.9663 (7) | 0.56396 (12) | 0.0166 (5) | |
H7 | 0.4753 | 1.0719 | 0.5733 | 0.020* | |
C8 | 0.6436 (2) | 1.0055 (7) | 0.60829 (13) | 0.0160 (5) | |
C9 | 0.6393 (2) | 1.1517 (7) | 0.66686 (12) | 0.0183 (5) | |
H9 | 0.5713 | 1.2570 | 0.6852 | 0.022* | |
C10 | 0.7529 (3) | 1.1168 (7) | 0.69428 (12) | 0.0195 (5) | |
H10 | 0.7758 | 1.1928 | 0.7343 | 0.023* | |
C11 | 0.8247 (2) | 0.9509 (7) | 0.65194 (13) | 0.0182 (6) | |
H11 | 0.9065 | 0.8924 | 0.6579 | 0.022* | |
N1 | 0.7588 (2) | 0.8850 (6) | 0.60020 (11) | 0.0179 (5) | |
H1A | 0.787 (3) | 0.791 (9) | 0.5687 (16) | 0.019 (8)* | |
O1 | 0.35144 (16) | 0.8661 (6) | 0.48409 (9) | 0.0199 (4) | |
S1 | 0.35151 (5) | 0.55340 (15) | 0.36015 (3) | 0.01928 (17) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0338 (15) | 0.0180 (12) | 0.0144 (12) | −0.0026 (11) | −0.0025 (10) | 0.0009 (10) |
C2 | 0.0266 (13) | 0.0172 (13) | 0.0160 (12) | −0.0001 (10) | 0.0048 (10) | −0.0005 (11) |
C3 | 0.0173 (11) | 0.0139 (11) | 0.0126 (11) | −0.0020 (9) | 0.0005 (9) | 0.0009 (9) |
C4 | 0.0187 (12) | 0.0154 (12) | 0.0120 (11) | −0.0046 (9) | −0.0014 (9) | 0.0023 (9) |
C5 | 0.0200 (12) | 0.0166 (10) | 0.0108 (11) | −0.0016 (10) | 0.0010 (10) | 0.0036 (10) |
C6 | 0.0158 (11) | 0.0201 (12) | 0.0140 (11) | −0.0006 (10) | −0.0014 (10) | 0.0010 (11) |
C7 | 0.0188 (12) | 0.0165 (12) | 0.0146 (12) | −0.0002 (10) | 0.0013 (10) | 0.0030 (10) |
C8 | 0.0195 (12) | 0.0155 (12) | 0.0130 (12) | −0.0010 (10) | 0.0007 (9) | 0.0016 (9) |
C9 | 0.0244 (13) | 0.0168 (12) | 0.0138 (12) | 0.0011 (10) | 0.0017 (10) | −0.0013 (10) |
C10 | 0.0274 (13) | 0.0182 (12) | 0.0129 (12) | −0.0024 (10) | −0.0025 (10) | −0.0010 (10) |
C11 | 0.0194 (13) | 0.0205 (13) | 0.0149 (12) | −0.0040 (10) | −0.0010 (10) | 0.0006 (10) |
N1 | 0.0191 (11) | 0.0218 (11) | 0.0129 (11) | −0.0012 (9) | 0.0016 (9) | −0.0015 (9) |
O1 | 0.0183 (9) | 0.0272 (9) | 0.0143 (9) | 0.0008 (8) | 0.0013 (7) | 0.0014 (8) |
S1 | 0.0198 (3) | 0.0223 (3) | 0.0157 (3) | −0.0019 (2) | −0.0033 (3) | 0.0002 (3) |
C1—H1 | 0.9500 | C6—C7 | 1.350 (4) |
C1—C2 | 1.364 (4) | C7—H7 | 0.9500 |
C1—S1 | 1.702 (3) | C7—C8 | 1.428 (4) |
C2—H2 | 0.9500 | C8—C9 | 1.392 (4) |
C2—C3 | 1.418 (4) | C8—N1 | 1.381 (3) |
C3—H3 | 0.9500 | C9—H9 | 0.9500 |
C3—C4 | 1.397 (4) | C9—C10 | 1.406 (4) |
C4—C5 | 1.464 (3) | C10—H10 | 0.9500 |
C4—S1 | 1.722 (3) | C10—C11 | 1.380 (4) |
C5—C6 | 1.463 (3) | C11—H11 | 0.9500 |
C5—O1 | 1.236 (3) | C11—N1 | 1.364 (4) |
C6—H6 | 0.9500 | N1—H1A | 0.84 (4) |
C2—C1—H1 | 123.7 | C6—C7—C8 | 126.4 (3) |
C2—C1—S1 | 112.5 (2) | C8—C7—H7 | 116.8 |
S1—C1—H1 | 123.7 | C9—C8—C7 | 129.1 (2) |
C1—C2—H2 | 123.6 | N1—C8—C7 | 124.1 (2) |
C1—C2—C3 | 112.8 (3) | N1—C8—C9 | 106.8 (2) |
C3—C2—H2 | 123.6 | C8—C9—H9 | 125.9 |
C2—C3—H3 | 124.2 | C8—C9—C10 | 108.2 (2) |
C4—C3—C2 | 111.6 (2) | C10—C9—H9 | 125.9 |
C4—C3—H3 | 124.2 | C9—C10—H10 | 126.6 |
C3—C4—C5 | 130.0 (2) | C11—C10—C9 | 106.8 (2) |
C3—C4—S1 | 111.2 (2) | C11—C10—H10 | 126.6 |
C5—C4—S1 | 118.77 (19) | C10—C11—H11 | 125.6 |
C6—C5—C4 | 116.8 (2) | N1—C11—C10 | 108.7 (2) |
O1—C5—C4 | 120.2 (2) | N1—C11—H11 | 125.6 |
O1—C5—C6 | 122.9 (2) | C8—N1—H1A | 127 (2) |
C5—C6—H6 | 119.5 | C11—N1—C8 | 109.4 (2) |
C7—C6—C5 | 121.0 (2) | C11—N1—H1A | 124 (2) |
C7—C6—H6 | 119.5 | C1—S1—C4 | 91.90 (14) |
C6—C7—H7 | 116.8 | ||
C1—C2—C3—C4 | −0.2 (3) | C7—C8—C9—C10 | 177.3 (3) |
C2—C1—S1—C4 | 0.4 (2) | C7—C8—N1—C11 | −177.4 (3) |
C2—C3—C4—C5 | −179.2 (2) | C8—C9—C10—C11 | 0.2 (3) |
C2—C3—C4—S1 | 0.5 (3) | C9—C8—N1—C11 | 0.3 (3) |
C3—C4—C5—C6 | 0.0 (4) | C9—C10—C11—N1 | 0.0 (3) |
C3—C4—C5—O1 | −179.5 (3) | C10—C11—N1—C8 | −0.2 (3) |
C3—C4—S1—C1 | −0.5 (2) | N1—C8—C9—C10 | −0.3 (3) |
C4—C5—C6—C7 | 175.0 (2) | O1—C5—C6—C7 | −5.6 (4) |
C5—C4—S1—C1 | 179.2 (2) | S1—C1—C2—C3 | −0.2 (3) |
C5—C6—C7—C8 | 177.7 (2) | S1—C4—C5—C6 | −179.67 (19) |
C6—C7—C8—C9 | −173.4 (3) | S1—C4—C5—O1 | 0.9 (3) |
C6—C7—C8—N1 | 3.8 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O1i | 0.84 (4) | 2.06 (4) | 2.889 (3) | 171 (3) |
C6—H6···O1i | 0.95 | 2.50 | 3.396 (3) | 158 |
Symmetry code: (i) x+1/2, −y+3/2, z. |
The twist angle is the dihedral angle between the five-membered heterocycle and the keto-aromatic plane. |
Compound | r.m.s. deviation | Twist angle |
1 | 0.04 (8) | 4.32 (10) |
LINFET Aa | 0.111 (2) | 10.21 (12) |
LINFET Ba | 0.023 (2) | 1.19 (15) |
SANRIJ Ab | 0.104 (15) | 8.98 (4) |
SANRIJ Bb | 0.122 (20) | 9.67 (6) |
Notes: (a) Li & Su (1995); (b) Ocak Ískeleli et al. (2005). |
Compound | R. M. S. deviation (Å) | Twist angle (o) |
1 | 0.056 | 2.87 (11) |
2 (First independent molecule) | 0.093 (2) | 7.15 (6) |
Second independent molecule | 0.02 (2) | 0.20 (15) |
3 (First independent molecule) | 0.104 | 8.41 (6) |
Second independent molecule | 0.122 | 11.11 (7) |
Acknowledgements
Special thanks to Dr. Brendan Twamley for his continued support.
Funding information
This work was supported by a grant from the Science Foundation Ireland (SFI IvP 13/IA/1894, MOS).
References
Antina, E. V., Bumagina, N. A., V'yugin, A. I. & Solomonov, A. V. (2017). Dyes Pigments, 136, 368–381. CrossRef Google Scholar
Balsukuri, N., Boruah, N. J., Kesavan, P. E. & Gupta, I. (2018). New J. Chem. 42, 5875–5888. CrossRef Google Scholar
Benniston, A. C., Copley, C., Harriman, A., Rewinska, D. B., Harrington, R. W. & Clegg, W. (2008). J. Am. Chem. Soc. 130, 7174–7175. CrossRef Google Scholar
Boens, N., Leen, V. & Dehaen, W. (2012). Chem. Soc. Rev. 41, 1130–1172. Web of Science CrossRef CAS PubMed Google Scholar
Boens, N., Qin, W., Baruah, M., De Borggraeve, W. M., Filarowski, A., Smisdom, N., Ameloot, M., Crovetto, L., Talavera, E. M. & Alvarez-Pez, J. M. (2011). Chem. Eur. J. 17, 10924–10934. CrossRef Google Scholar
Bruker. (2016). APEX3 and SAINT .Bruker AXS Inc. Madison, Wisconsin, USA. Google Scholar
Callaghan, S. & Senge, M. O. (2018). Photochem. Photobiol. Sci. Advance Article, doi: 10.1039C8PP00008E. Google Scholar
Cheng, T., Zhao, J., Wang, Z., An, J., Xu, Y., Qian, X. & Liu, G. (2016). Dyes Pigments, 126, 218–223. CrossRef Google Scholar
Collado, D., Casado, J., Rodríguez González, S., López Navarrete, J. T., Suau, R., Perez-Inestrosa, E., Pappenfus, T. M. & Raposo, M. M. M. (2011). Chem. Eur. J. 17, 498–507. CrossRef Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Er, J. C., Leong, C., Teoh, C. L., Yuan, Q., Merchant, P., Dunn, M., Sulzer, D., Sames, D., Bhinge, A., Kim, D., Kim, S. M., Yoon, M. H., Stanton, L. W., Je, S. H., Yun, S. W. & Chang, Y. T. (2015). Angew. Chem. Int. Ed. 54, 2442–2446. CrossRef Google Scholar
Estévez, V., Villacampa, M. & Menéndez, J. C. (2014). Chem. Soc. Rev. 43, 4633–4657. Web of Science PubMed Google Scholar
Filatov, M. A., Karuthedath, S., Polestshuk, P. M., Callaghan, S., Flanagan, K. J., Telitchko, M., Wiesner, T., Laquai, F. & Senge, M. O. (2018). Phys. Chem. Chem. Phys. 20, 8016–8031. CrossRef Google Scholar
Goeb, S. & Ziessel, R. (2008). Tetrahedron Lett. 49, 2569–2574. CrossRef Google Scholar
Gresser, R., Hummert, M., Hartmann, H., Leo, K. & Riede, M. (2011). Chem. Eur. J. 17, 2939–2947. CrossRef Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kamkaew, A., Lim, S. H., Lee, H. B., Kiew, L. V., Chung, L. Y. & Burgess, K. (2013). Chem. Soc. Rev. 42, 77–88. CrossRef Google Scholar
Kand, D., Saha, T., Lahiri, M. & Talukdar, P. (2015). Org. Biomol. Chem. 13, 8163–8168. CrossRef Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Li, Z. & Su, G. (1995). Acta Cryst. C51, 681–683. CrossRef IUCr Journals Google Scholar
Loudet, A. & Burgess, K. (2007). Chem. Rev. 107, 4891–4932. Web of Science CrossRef PubMed CAS Google Scholar
Lu, H., Mack, J., Yang, Y. & Shen, Z. (2014). Chem. Soc. Rev. 43, 4778–4823. Web of Science CrossRef CAS PubMed Google Scholar
Michlik, S. & Kempe, R. (2013). Nat. Chem. 5, 140–144. CrossRef Google Scholar
Ocak Ískeleli, N., Işık, S., Özdemir, Z. & Bilgin, A. (2005). Acta Cryst. E61, o1356–o1358. CrossRef IUCr Journals Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Rihn, S., Retailleau, P., Bugsaliewicz, N., Nicola, A. D. & Ziessel, R. (2009). Tetrahedron Lett. 50, 7008–7013. CrossRef Google Scholar
Schmidt, E. Y., Trofimov, B. A., Mikhaleva, A. I., Zorina, N. V., Protzuk, N. I., Petrushenko, K. B., Ushakov, I. A., Dvorko, M. Y., Méallet-Renault, R., Clavier, G., Vu, T. T., Tran, H. T. & Pansu, R. B. (2009). Chem. Eur. J. 15, 5823–5830. CrossRef Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Singh, S. P. & Gayathri, T. (2014). Eur. J. Org. Chem. 2014, 4689–4707. CrossRef Google Scholar
Stark, D. G., Williamson, P., Gayner, E. R., Musolino, S. F., Kerr, R. W. F., Taylor, J. E., Slawin, A. M. Z., O'Riordan, T. J. C., Macgregor, S. A. & Smith, A. D. (2016). Org. Biomol. Chem. 14, 8957–8965. CrossRef Google Scholar
Ulrich, G., Goeb, S., De Nicola, A., Retailleau, P. & Ziessel, R. (2007). Synlett, 2007, 1517–1520. CrossRef Google Scholar
Zrig, S., Rémy, P., Andrioletti, B., Rose, R., Asselberghs, I. & Clays, K. (2008). J. Org. Chem. 73, 1563–1566. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.